Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene s

X
saddle point
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický; slov: hyperbolický bod; něm: hyperbolischer Punkt m, Sattelpunkt m; fr: point-col m, point hyperbolique m, point neutre m, point-selle m; rus: гиперболическая точка, точка седловины  1993-a3
saddle point
syn. sedlo tlakové – oblast v tlakovém poli mezi dvěma oblastmi nízkého tlaku vzduchu a dvěma oblastmi vysokého tlaku vzduchu rozloženými přibližně šachovnicově. Izobarické plochy v barickém sedle mají charakteristický tvar sedla. Bod ve středu sedla se nazývá hyperbolický bod. Barické sedlo je jedním z tlakových útvarů. Viz též pole deformační.
česky: sedlo barické; slov: barické sedlo; něm: Luftdrucksattel m; rus: барическая седловина, седловина  1993-a1
Saffir–Simpson Hurricane Wind Scale
nejrozšířenější stupnice k vyjádření síly větru v hurikánu, případně v jiné plně vyvinuté tropické cykloně, navržená H. S. Saffirem (1973) a R. H. Simpsonem (1974). Kritériem pro zařazení do jedné z pěti kategorií je maximální naměřený minutový průměr rychlosti větru při zemském povrchu. Od kategorie 3 mluvíme o silném hurikánu. Stupnice slouží k odhadu potenciálně způsobených škod. Dříve uváděné údaje o minimu tlaku vzduchu a výšce vzdutí způsobeného bouří pro jednotlivé kategorie byly vypuštěny, protože jejich hodnoty se v jednotlivých případech mohou od uváděného rozpětí podstatně lišit.
Kategorie Max. rychlost větru Způsobené škody
1 33–42 m.s–1 velmi malé
2 43–49 m.s–1 střední
3 50–58 m.s–1 rozsáhlé
4 59–69 m.s–1 mimořádné
5 70 m.s–1 a více katastrofální
česky: stupnice Saffirova–Simpsonova; slov: Saffirova–Simpsonova stupnica; něm: Saffir-Simpson-Hurrikan-Skala f  2014
salt haze
zákal podmíněný přítomností drobných částeček mořských solí v ovzduší, vzniká při vypařování vodní tříště a malých vodních kapiček, které odstříkly do vzduchu při probublávání vzduchových bublin povrchovými vrstvami mořské vody.
česky: zákal solný; slov: soľný zákal; něm: Salzdunst m; rus: солевая дымка  1993-a3
sampling frequency
počet meteorologických měření provedených nebo zaznamenaných za daný časový úsek. V případě měření meteorologických prvků na meteorologických stanicích jde o frekvenci záznamů veličiny spojité v čase, při radiosondážních měřeních o frekvenci záznamů veličiny spojité v prostoru. Vzorkovací frekvencí také popisujeme skenovací strategii distančních meteorologických měření. Převrácenou hodnotou vzorkovací frekvence je vzorkovací perioda (vzorkovací interval, interval snímání). Viz též doba odběrová.
česky: frekvence vzorkovací  2023
sampling interval
syn. doba vzorkovací – délka časového intervalu, po který se v aerochemických měřeních odebírá jeden vzorek. Měření se pak vztahuje k celému časovému intervalu. V praxi se užívá 30 minut, 1 hodina, 24 hodin, nebo i více (týden, měsíc).
česky: doba odběrová; slov: doba odberu; něm: Beprobungszeitpunkt m, Probenahmezeit f; fr: période d'échantillonnage f; rus: период отбора (проб)  1993-a2
sampling interval
česky: perioda vzorkovací  2023
sampling interval
česky: interval vzorkovací  2023
sampling period
česky: perioda vzorkovací  2023
sampling period
česky: interval vzorkovací  2023
sampling rate
počet meteorologických měření provedených nebo zaznamenaných za daný časový úsek. V případě měření meteorologických prvků na meteorologických stanicích jde o frekvenci záznamů veličiny spojité v čase, při radiosondážních měřeních o frekvenci záznamů veličiny spojité v prostoru. Vzorkovací frekvencí také popisujeme skenovací strategii distančních meteorologických měření. Převrácenou hodnotou vzorkovací frekvence je vzorkovací perioda (vzorkovací interval, interval snímání). Viz též doba odběrová.
česky: frekvence vzorkovací  2023
sand haze
označení pro zákal vytvářený jemnými písečnými částicemi v ovzduší po předchozí písečné bouři. Vzhledem k současné přítomnosti prachových částic se v met. literatuře zahrnuje pod termín prachový zákal.
česky: zákal písečný; slov: pieskový zákal; něm: Sanddunst m; rus: песчаная мгла  1993-a3
sand wall
česky: zeď prachová nebo písečná; slov: prachový alebo piesočný múr; něm: Sandmauer f, Staubmauer f; rus: пыльная или песчаная стена  1993-a3
sand whirl
česky: vír písečný; slov: pieskový vír; něm: Sandwirbel m; rus: песчаный вихрь  2019
sandstorm
velké množství písku vyzdviženého do vzduchu silným větrem. Písečné bouře jsou typické pro oblasti s aridním klimatem a dostatkem nezpevněného materiálu. K jejich rozvoji může přispět přehřátí zemského povrchu, proto se v noci vyskytují méně často. Na rozdíl od prachové bouře bývá písečná bouře vertikálně méně mocná, obvykle dosahuje do výšky méně než 15 metrů. Hrubý písek a případně i štěrk se pohybuje saltací ve vrstvě desítek centimetrů při zemském povrchu, naopak jemný písek může být unášen na značné vzdálenosti, Během písečné bouře je výrazně snížena dohlednost, což vyvolává potíže v dopravě, dále může dojít k zavátí infrastruktury a případné vegetace. Viz též bouře prachová nebo písečná, vítr pouštní.
česky: bouře písečná; něm: Sandsturm m; fr: tempête de sable f  1993-a3
sarma
místní název větru, který má vlastnosti bóry. Sarma vzniká při ústupu cyklony a začínajícím vlivu anticyklony v oblasti záp. od Bajkalského jezera čili na vých. okraji anticyklony s chladným prouděním sev. směrů. V důsledku konfigurace terénu i orientace údolí řeky Sarmy dosahuje rychlost větru až 40 m.s–1. V zimním období dochází pří sarmě k vytváření námrazy na lodích a na ostrově Olchon. Sarma se vyskytuje nejčastěji od října do prosince a její převládající směr je sz.
Termín je odvozen od stejnojmenné řeky Sarmy, která se vlévá do jezera Bajkal a v jejímž ústí je tento vítr pozorován.
česky: sarma; slov: sarma; něm: Sarma m; rus: сарма  1993-a1
satelite data processing
komplex procesů prováděných na datech naměřených meteorologickou družicí. Zpravidla zahrnuje korekci družicových dat, jejich kalibraci,  přemapování družicových snímků a další cílené zpracování – buď pro zobrazení formou digitálního snímku (resp. jejich sekvencí), nebo pro další automatizované nebo počítačové využití (např. různé odvozené meteorologické produkty, asimilace do modelů numerické předpovědi počasí aj.).
česky: zpracování družicových dat; slov: spracovanie údajov z meteorologickej družice; něm: Satellitendatenverarbeitung f  2014
satelite ozone measurement
měření ozonu ve stratosféře pomocí meteorologických družic. Používají se pro něj především družice na nízkých polárních drahách, které při každém svém obletu kolem Země snímají i polární oblasti. K měření vlastností ozonové vrstvy se používají různé družicové radiometry, jejichž data poskytují jak informace plošného charakteru (o horizontálním rozložení celkového množství ozonu), tak informace o vertikálních profilech koncentrace ozonu. Měření ozonu z družic sahá do začátku 70. let 20. století, v současnosti je již operativně realizováno na více družicích a různými přístroji. Družicová měření ozonu zásadní měrou přispěla k mapování polárních ozonových děr.
V současné době se začínají rozvíjet metody družicového měření ozonu v troposféře, a to především v rámci programu Copernicus pomocí jeho přístrojů Sentinel.
česky: měření ozonu družicové; slov: družicové meranie ozónu; rus: спутниковые измерения озона  2020
satellite active radiometer
radiometr na meteorologické družici, který pro pořizování informací využívá zpětně odraženého umělého záření generovaného přístrojem družice. Do této kategorie lze zahrnout např. družicové lidary, altimetry, skaterometry, družicové oblačné či srážkové radary a multi- nebo hyperspektrální sondážní družicové radiometry (soundery).
česky: radiometr družicový aktivní; slov: aktívny družicový rádiometer; něm: satellitengetragenes aktives Radiometer n  2014
satellite data calibration
fáze zpracování družicových dat spočívající v převodu dat získaných přístroji meteorologických družic na standardní fyzikální veličiny, např. intenzitu záření, jasovou teplotu, odrazivost (albedo) aj.
česky: kalibrace družicových dat; slov: kalibrácia družicových dát; něm: Kalibrierung (Eichung) der Satellitendaten f; rus: калибровка спутниковых ганных  1993-a3
satellite data corrections
fáze zpracování družicových dat spočívající v potlačení či odstranění různých chyb a nepřesností dat, případně cílená úprava některých jejich vlastností. Zahrnuje např. geometrické korekce, filtraci šumu, odstranění chybných dat, konverzi dat na určitou nominální polohu družice (u geostacionárních družic) aj.
česky: korekce družicových dat; slov: korekcie družicových údajov; něm: Korrektur der Satellitendaten f; rus: поправка (исправление) спутниковых данных  1993-a3
satellite lightning detection
metoda detekce blesků pomocí přístrojů umístěných na meteorologických družicích. Vzhledem k povaze detekce (snímání v optickém oboru) se tímto způsobem monitoruje celková blesková aktivita, tj. nerozlišují se blesky mezi oblakem a zemí a blesky mezi oblaky.
První pokusy o družicovou detekci blesků byly realizovány přístroji umístěnými na družicích na nízkých oběžných drahách – především na družici TRMM (Tropical Rainfall Measuring Mission, vypuštěné v roce 1997) přístrojem Lightning Imaging Sensor. V současnosti se na geostacionárních družicích GOES-R využívá přístroj Geostationary Lightning Mapper (GLM). Ten nepřetržitě snímá většinu zemského disku, pozorovatelnou z dané družice, přičemž výboje blesků jsou zaznamenávány v blízkém infračerveném oboru v čáře atomárního kyslíku 774,4 nm. Rozlišení přístroje (přesnost detekce) je kolem 10 km, data jsou poskytována v téměř reálném čase, efektivita detekce je přibližně 90 % pro noční hodiny, resp. kolem 70 % pro denní hodiny. Geostacionární družice MTG, konkrétně MTG-I, jsou vybaveny obdobným přístrojem Lightning Imager (LI).
česky: detekce blesků družicová; slov: družicová detekcia bleskov; něm: satellitengestützte Blitzortung f; fr: détection optique des éclairs par satellite f, détection de la foudre par satellite f  2014
satellite meteorology
specializovaná oblast meteorologie využívající družicová meteorologická měření. Jedná se spíš o charakteristiku způsobu získávání, zpracování a interpretace dat, než o samostatnou meteorologickou disciplínu.
česky: meteorologie družicová; slov: družicová meteorológia; něm: Satellitenmeteorologie f; rus: спутниковая метеорология  1993-a3
satellite passive radiometer
radiometr na meteorologické družici, který pro pořizování informací využívá přirozené záření – odražené sluneční záření nebo tepelné záření vyzařované zemským povrchem, oblačností či plynnými složkami atmosféry.
česky: radiometr družicový pasivní; slov: pasívny družicový rádiometer; něm: satellitengetragenes passives Radiometer n  2014
satellite picture
soubor digitálních dat naměřený zobrazovacím družicovým radiometrem, zpravidla nasnímaný současně ve více spektrálních kanálech, resp. jejich zobrazení formou zpracovaného digitálního snímku. Interval získávání družicových snímků je závislý především na konkrétním typu meteorologické družice, resp. přístroje – u geostacionárních družic je dána technickými parametry radiometru družice, přičemž se pohybuje od desítek sekund do desítek minut, u polárních družic závisí na periodě přeletů dané družice nad konkrétní oblastí a šířce pásu snímaného území (perioda se pohybuje od cca 12 hodin do několika dní). Rozlišení, tzn. rozlišovací schopnost, závisí především na konstrukci radiometru družice a výšce její oběžné dráhy. Pro meteorologické využití je vysoce žádoucí, aby snímek byl k dispozici v co nejkratší době od svého pořízení (nasnímání). Viz též přemapování družicových snímků.
česky: snímek družicový; slov: družicová snímka; něm: Satellitenbild n; rus: снимок со спутника, спутниковый снимок  1993-a3
satellite sounding
metoda sondáže atmosféry multispektrálními (hyperspektrálními) sondážními družicovými radiometry, jejímž cílem je získání třírozměrných informací o polích meteorologických prvků v atmosféře (teploty a tlaku vzduchu, směru a rychlosti větru), prostorovém rozdělení koncentrací některých plynných složek atmosféry (např. vodní páry, ozonu, oxidu uhličitého) aj. Výstupy jsou využívány jako jeden ze vstupních zdrojů dat pro modely numerické předpovědi počasí, pro operativní monitoring vertikální instability atmosféry (v rámci nowcastingu) apod.
česky: sondáž atmosféry družicová; slov: družicová sondáž atmosféry; něm: Satellitensondierung f; rus: зондирование с помощью спутника  2014
saturated adiabat
křivka na termodynamickém diagramu, vyjadřující vztah mezi dvěma stavovými proměnnými (zpravidla mezi teplotou a tlakem) při adiabatickém dějinasyceném vzduchu, který může obsahovat i zkondenzovanou vodu v kapalné fázi. Sklon křívky  tedy odpovídá nasyceně adiabatickému teplotnímu gradientu a slabě závisí na množství zkondenzované kapalné vody. Protože teplo potřebné ke změně teploty kapalné vody přítomné v nasyceném vzduchu je velmi malé, je rozdíl mezi nasycenou adiabatou a pseudoadiabatou zanedbatelný. Na termodynamickém diagramu se proto při znázornění adiabatického děje v nasyceném vzduchu používají pseudoadiabaty. V americké terminologii se nasycená adiabata označuje jako vlhká adiabata.
česky: adiabata nasycená; slov: nasýtená adiabata; něm: Sättigungsadiabate f; fr: adiabatique saturée f, adiabatique saturée f, pseudoadiabatique f, isoligne pseudoadiabatique f; rus: влажная адиабата  1993-a3
saturated adiabatic lapse rate
adiabatický teplotní gradient částice nasyceného vzduchu, která může obsahovat i kondenzovanou vodu. Lze jej vyjádřit přibližným vztahem
γs=(-dT dz)sγd 1+εLvew RdTp1+ε2 Lv2ewcpd RdT2p,
kde dT je změna teploty, dz změna výšky, γd suchoadiabatický teplotní gradient, ε = 0,622 je poměr měrné plynové konstanty suchého vzduchu a měrné plynové konstanty vodní páry, Lv je latentní teplo výparu, Rd měrná plynová konstanta suchého vzduchu, ew tlak nasycené vodní páry vzhledem k vodě při teplotě T, cpd měrné teplo suchého vzduchu při konstantním tlaku vzduchu p. Hodnota nasyceně adiabatického teplotního gradientu závisí na teplotě a tlaku vzduchu v rozsahu přibližně od 0,2 do 1,0 K na 100 m výšky. Při teplotě 0 °C a tlaku vzduchu 1 000 hPa nabývá nasyceně adiabatický teplotní gradient hodnoty 0,6 K na 100 m. Přibližný vztah uvedený výše zanedbává množství tepla potřebné ke změně teploty kondenzované vody, a tedy i rozdíl mezi vratným nasyceně adiabatickým gradientem a pseudoadiabatickým teplotním gradientem. Při nasycení nad ledem lze použít stejný vztah, v němž však nahradíme latentní teplo výparu latentním teplem sublimace a použijeme tlak nasycené vodní páry vzhledem k ledu. Někdy se nasyceně adiabatický teplotní gradient chybně označuje jako gradient vlhkoadiabatický (toto označení je obvyklé v amerických textech, v češtině se u nasyceného vzduchu nepoužívá). Viz též adiabata nasycená, Clausiova–Clapeyronova rovnice, děj adiabatický.
česky: gradient teplotní nasyceně adiabatický; slov: nasýtene adiabatický teplotný gradient; něm: feuchtadiabatischer Temperaturgradient m; fr: gradient adiabatique saturé m; rus: влажноадиабатический градиент  1993-a3
saturated air
vlhký vzduch, který je nasycen vodní párou, tzn., že parciální tlak vodní páry při teplotě vlhkého vzduchu odpovídá stavu nasycení, zpravidla uvažovanému vůči rovinnému vodnímu povrchu (není-li v kontextu konkrétně uvedeno jinak). Relativní vlhkost nasyceného vzduchu je 100%. Rozlišujeme vzduch nasycený vodní párou vzhledem k vodě a vzhledem k ledu. Pojem nasycený vzduch se v meteorologii běžně užívá, jde však o terminologické zjednodušení (terminologickou zkratku). Věcně korektní by mělo být: vzduch obsahující nasycenou vodní páru. Viz též  vzduch suchý, vzduch nenasycenývzduch přesycený, rovnice Clausiova–Clapeyronova.
česky: vzduch nasycený; slov: nasýtený vzduch; něm: gesättigte Luft f; rus: насыщенный воздух  1993-a3
saturated soil
nesprávný název pro půdu s rel. vysokým obsahem vody, který se blíží max. vodní kapacitě půdy po nadměrném zavlažení shora srážkami.
česky: půda nasycená; slov: nasýtená pôda; něm: gesättigter Boden m; rus: насыщенная почва  1993-a1
saturated vapor
pára sytá – plynná fáze dané látky, nalézající se ve stavu termodynamické rovnováhy s kapalnou (v případě sublimace s pevnou) fází téže látky při rovinném tvaru fázového rozhraní. Za této rovnováhy je tok molekul směřující přes fázové rozhraní z kapalné (pevné) do plynné fáze stejně velký jako tok opačný. Vztah mezi tlakem nasycené páry a teplotou udává Clausiova–Clapeyronova rovnice. Na fázovém diagramu je vztah mezi tlakem a teplotou nasycené páry zobrazen křivkou vypařování, nazývanou též křivka nasycených par. V meteorologických aplikacích jde zpravidla o nasycenou vodní páru a v praxi se pro přibližné vyjádření závislosti jejího tlaku na teplotě používá např. Magnusův vzorec. Při teplotách pod teplotou trojného bodu rozlišujeme nasycenou vodní páru nad povrchem přechlazené vody a nasycenou vodní páru nad ledem.
U zakřiveného rozhraní fází vzniká složitější situace. Pro kladné zakřivení fázového rozhraní (např. u vodních kapiček) při dané teplotě roste tlak nasycené páry se zvětšujícím se zakřivením. Při záporném zakřivení (např. tvar vodní hladiny v kapiláře se stěnami smáčitelnými vodou) je tomu naopak. Příslušné kvantitativní vyjádření této závislosti poskytuje Thomsonův vztah. U vodních roztoků závisí tlak nasycené vodní páry též na koncentraci příměsi a u disociovaných roztoků (elektrolytů) na jejím druhu. Příslušnou závislost udává Raoultův zákon. Uvedené skutečnosti mají podstatný význam ve fyzice oblaků a srážek, zejména pak v mikrofyzice oblaků a srážek.
česky: pára nasycená; slov: nasýtená para; něm: gesättigter Dampf m  2017
saturated water vapour pressure with respect to ice
tlak vodní páry, která je ve stavu termodynamické rovnováhy s rovným povrchem čistého ledu za dané teploty. Viz též nasycení, rovnice Clausiova–Clapeyronova, vzduch nasycený.
česky: tlak nasycené vodní páry vzhledem k ledu; slov: tlak nasýtenej vodnej pary vzhľadom na ľad; něm: Sättigungswasserdampfdruck über Eis m; rus: упругость насыщения водяного пара по отношению ко льду  1993-a3
saturated water vapour pressure with respect to water
tlak vodní páry, která je ve stavu termodynamické rovnováhy s rovným povrchem čisté vody za dané teploty. Viz též nasycení, rovnice Clausiova–Clapeyronova, vzduch nasycený.
česky: tlak nasycené vodní páry vzhledem k vodě; slov: tlak nasýtenej vodnej pary vzhľadom na vodu; něm: Sättigungswasserdampfdruck über Wasser m; rus: упругость насыщения водяного пара по отношению к воде  1993-a3
saturation
v atm. podmínkách stav nasycené vodní páry; jde o rovnovážný stav systému vodní pára a kapalná voda, popř. vodní pára a led. Ve stavu nasycení tok molekul vody z povrchu kapalné vody, popř. ledu, do vodní páry odpovídá toku molekul vody z vodní páry do kapalné vody, popř. ledu. Viz též vzduch nasycený, vzduch přesycený, tlak nasycené vodní páry vzhledem k vodě, tlak nasycené vodní páry vzhledem k ledu.
česky: nasycení; slov: nasýtenie; něm: Sättigung f; rus: насыщение  1993-a3
saturation deficit
charakteristika vlhkosti vzduchu, která vyjadřuje, jaké množství vodní páry je třeba dodat do vzduchu, aby se stal nasyceným při konstantní teplotě. Většinou se definuje jako rozdíl tlaku nasycené vodní páry a skutečného tlaku vodní páry při dané teplotě, tzn. doplněk tlaku páry. Setkáme se však i s vyjádřením sytostního doplňku směšovacího poměru či měrné vlhkosti, který je stanoven při zachování teploty a tlaku vzduchu. Někdy se nesprávně zaměňuje za deficit teploty rosného bodu.
česky: doplněk sytostní; slov: sýtostný doplnok; něm: Sattigungsdefizit n; fr: rapport de mélange saturant m; rus: дефицит влажности  1993-a3
saturation pressure
nevh. termín pro tlak vodní páry ve stavu nasycení.
česky: tlak nasycení; slov: tlak nasýtenia; něm: Sättigungsdampfdruck m  1993-a3
savanna climate
Köppenově klasifikaci klimatu typ tropického dešťového klimatu, označovaný Aw, případně As, s celoročně vysokou teplotou a výrazným ročním chodem srážek, takže v nejsušším měsíci klesá jejich prům. měs. úhrn pod 60 mm. Vyznačuje se střídáním období sucha a období dešťů, které přichází zpravidla v létě dané polokoule v souvislosti s pohybem ekvatoriální deprese, případně i s výskytem letního monzunu. Roční chod teploty vzduchu je nevýrazný, s větší denní amplitudou v období sucha a s maximem teploty vzduchu před začátkem období dešťů. V Alisovově klasifikaci klimatu mu přibližně odpovídá subekvatoriální klima, jiní autoři je označují jako pasátové klima. Viz též klima monzunové.
česky: klima savany; slov: savanová klíma; něm: Savannenklima n; rus: климат саванн  1993-b3
Savinov formula
česky: vzorec Savinovův; slov: Savinovov vzorec; něm: Savinov-Formel f; rus: формула Савинова  1993-a1
scatterd sky radiation
česky: záření oblohy rozptýlené; slov: rozptýlené žiarenie oblohy; něm: gestreute Himmelsstrahlng f  1993-a1
scattered
česky: místy; slov: miestami; něm: örtlich  2014
scattered light
česky: světlo rozptýlené; slov: rozptýlené svetlo; něm: Streulicht n; rus: рассеянное световое излучение, рассеянный свет  1993-a1
scattered radiation
česky: záření difuzní; slov: difúzne žiarenie; něm: diffuse Strahlung f, Streustrahlung f  1993-a1
scattered radiation
česky: záření rozptýlené; slov: rozptýlené žiarenie; něm: Streustrahlung f, gestreute Strahlung f; rus: рассеянaя радиация  1993-a1
scattering coefficient
charakteristika schopnosti daného prostředí rozptylovat záření. Rozlišujeme objemový a hmotový koeficient rozptylu. Objemový koeficient rozptylu je číselně roven množství zářivé energie rozptýlené z paprsku jednotkové intenzity na dráze jednotkové délky. Vynásobením objemového koeficientu rozptylu převrácenou hodnotou hustoty rozptylujícího prostředí dostaneme hmotový koeficient rozptylu. V meteorologii se setkáváme s koeficientem rozptylu slunečního záření, jehož hodnota závisí na vlnové délce. S ohledem na tuto závislost se koeficient rozptylu obvykle udává jen pro určitou dostatečně úzkou část spektra slunečního záření, takže lze hovořit o spektrálním, popř. monochromatickém koeficientu rozptylu. Viz též koeficient absorpce, koeficient extinkce, rozptyl Rayleighův, rozptyl Mieův.
česky: koeficient rozptylu; slov: koeficient rozptylu; něm: Streukoeffizient m; rus: коэффициент рассеяния  1993-a1
scattering indicatrix
česky: diagram rozptýleného světla; slov: diagram rozptýleného svetla; něm: Streulichtdiagramm n; fr: diagramme de diffusion de la lumière m, diagramme de diffusion lumineuse m; rus: диаграмма рассеяния светa, диаграмма рассеянного света  1993-a1
scattering indicatrix
prostorové rozložení intenzity záření rozptýleného určitou částicí nebo souborem částic. Vyjadřuje se pomocí rozptylového diagramu.
česky: indikatrice rozptylová; slov: rozptylová indikatrica; něm: Streufunktion f, Streuindikatrix f; rus: индикатриса рассеяния  1993-a2
scattering indicatrix
syn. diagram rozptýleného světla prostorový – diagram používaný při studiu různých problémů atmosférické optiky, který zobrazuje rozptylovou indikatrici. Střed diagramu leží v geometrickém středu částice rozptylující záření (nebo ve středu souboru takových částic). V každém směru se z něho vynáší na polopřímku množství záření rozptylovaného do jednotkového prostorového úhlu, jehož osou je zmíněná polopřímka. Protože se v atmosféře zpravidla setkáváme s rozptylem válcově symetrickým vzhledem ke směru rozptylovaných paprsků, zakresluje se obvykle pouze řez rozptylovým diagramem, který obsahuje rozptylovaný paprsek. Předpokladem této válcové symetrie je nulová polarizace světla před uvažovaným rozptylem, čemuž vcelku dobře vyhovují paprsky přímého slunečního záření. Viz též rozptyl elektromagnetického vlnění v atmosféře.
česky: diagram rozptylový; slov: rozptylový diagram; něm: Streulichtdiagramm n; fr: diagramme de diffusion m; rus: диаграмма диффузии  1993-a1
scattering of electromagnetic waves in atmosphere
česky: rozptyl elektromagnetického vlnění v atmosféře; slov: rozptyl elektromagnetického vlnenia v atmosfére; něm: Streuung von elektromagnetischen Wellen in der Atmosphäre f; rus: рассеяние электромагнитных волн в атмосфере  1993-a3
scattering of radiation
syn. rozptyl elektromagnetického vlnění v atmosféře – rozdělení elmag. záření z původního směru do nenulového prostorového úhlu vlivem molekul vzduchu (molekulární rozptyl) nebo kapalných či pevných atmosférických částic. Závisí na velikosti rozptylujících částic vůči vlnové délce záření, dále na jejich tvaru a elektrickém náboji; podle těchto vlastností vymezujeme mj. rozptyl Mieův a potažmo rozptyl Rayleighův. Podle případných změn vlnové délky rozptýleného záření rozeznáváme pružný a nepružný rozptyl záření, jehož příkladem je Ramanův rozptyl. V rámci rozptylové indikatrice lze rozptyl rozdělit na dopředný a zpětný, který způsobuje odraz záření v atmosféře. Spolu s absorpcí záření se tak rozptyl podílí na jeho extinkci. V meteorologii se nejčastěji uvažuje rozptýlené sluneční záření, při radiolokaci se využívá zpětného rozptylu radiových vln. Viz též rozptyl světla v atmosféře, polarizace elektromagnetických vln.
česky: rozptyl záření v atmosféře; slov: rozptyl žiarenia; něm: Streuung der Strahlung f; rus: рассеяние радиации  1993-a3
scatterometer
aktivní družicový radiometr, zaměřený na získávání informací o fyzikálních charakteristikách hladin moří a oceánů (především výška a orientace vln) a meteorologických podmínkách (směr a rychlost větru) bezprostředně nad hladinou. Viz též altimetr.
Termín se skládá z angl. scatter „rozptyl“ a z řec. μέτρον [metron] „míra, měřidlo“.
česky: skaterometr; slov: skaterometer; něm: Scatterometer n  1993-a3
schedule of transmission
dříve používaná tabulka udávající čas, druh a způsob vysílání meteorologických zpráv, meteorologických informací a podkladů, sestavená obvykle pro určitou část nebo úroveň Globálního telekomunikačního systému.
česky: rozvrh vysílací; slov: vysielací rozvrh; něm: Sendeplan m; rus: расписание передач  1993-a3
Schmidt number
poměr mezi kinematickou vazkostí vzduchu a koeficientem molekulární difuze dané pasivní příměsi. Používá se např. v souvislosti se zajištěním podobnostních kritérií ve fyzikálním modelování difuze pasivních příměsí v atmosféře.
česky: číslo Schmidtovo; slov: Schmidtovo číslo; něm: Schmidt-Zahl f, Schmidt-Zahl f; fr: nombre de Schmidt m  2014
Schuman – Ludlam limit, SLL
(SLL) – kritická hodnota kapalného vodního obsahu, při níž nastává suchý růst krup (nebo i namrzání vody na jiných předmětech) zachycováním a mrznutím přechlazených kapek oblačné vody. Hodnota SLL závisí na teplotě a rychlosti proudění, při nichž všechna zachycená voda mrzne a teplota povrchu kroupy nepřekročí 0°C. Tvoří tedy rozhraní mezi podmínkami, za nichž nastává suchý a mokrý růst kroupy. Jestliže množství zachycené vody překračuje hodnotu SLL, mrzne jenom část zachycené vody a zbytek je odstříknut z povrchu padající kroupy v kapalném stavu nebo vtažen do dutin kroupy a vytváří tak strukturu houbovitého ledu.
česky: mez Schumanova – Ludlamova; rus: предел Шумана – Людлама  2022
scintillation
jev podobný optickému chvění, který se projevuje rychlými změnami (často pulzacemi) intenzity světla hvězd nebo pozemských světelných zdrojů. Patří mezi fotometeory. V češtině se též setkáváme s pojmem mihotání.
Termín pochází z lat. scintillatio „jiskření“, které je odvozeno od slovesa scintillare „jiskřit“ (od scintilla „jiskra“).
česky: scintilace; slov: scintilácia, trblietanie; něm: Flimmern n, Funkeln n, Szintillation f; rus: сверкание, сцинтилляция  1993-a3
scirocco
[širokko] – v původním významu teplý již. nebo jv. vítr, vanoucí ze Sahary nad Sicílii a již. Itálii. V širším smyslu se jedná o pouštní vítr proudící ze Sahary nebo arabských pouští do oblasti Středozemního moře na přední straně cyklony postupující Středomořím k východu. Původně suchý a prašný vítr, který se nad mořem zvlhčuje, při dalším postupu na sever přináší mlhu a déšť (tzv. vlhký scirocco) a za horskými překážkami má ráz fénu. Suchý scirocco v zemích Předního východu má ráz katastrofálních suchovějů.
Termín byl přejat z it. scirocco „jihovýchodní vítr“, které pochází z arabštiny.
česky: scirocco; slov: scirocco; něm: Schirokko m, Scirocco m; rus: сирокко  1993-a2
Scorer parameter
veličina používaná pro diagnózu, popř. prognózu mechanické turbulence, nebo vlnového proudění za horskou překážkou. Ve zjednodušené podobě je definována vztahem:
l=(gv2 1θθz) 1/2,
kde g je velikost tíhového zrychlení, v velikost průmětu vektoru rychlosti větru na kolmici k ose horského hřebene, Θ potenciální teplota vzduchu a z vert. souřadnice. Scorerův parametr se určuje pro jednotlivé vrstvy ovzduší, přičemž tloušťka vrstvy se volí podle stupně „monotónnosti“ změny teploty vzduchu s výškou. Při použití aerol. údajů je nejvhodnější určit Scorerův parametr pro vrstvy mezi význačnými tepl. body (tepl. „zlomy“). Příznivé podmínky pro vlnové proudění nastávají při poklesu Scorerova parametru s výškou.
česky: parametr Scorerův; slov: Scorerov parameter; něm: Scorer-Parameter m, Scorer-Parameter m; rus: параметр Скорера  1993-a3
screaming sixties
česky: šedesátky ječící; slov: jačiace šesťdesiatky; něm: heulende Sechziger m/pl; rus: беснующиеся шестидесятые  1993-a1
sea breeze
bríza vanoucí během dne od moře na pevninu, když je povrch moře chladnější než povrch pevniny. V tropických oblastech sahá od zemského povrchu často do výšky 1 500 m, zatímco v mírných zeměp. šířkách v létě nejvýše do 600 m. V zimě se ve stř. a vysokých šířkách prakticky nevyskytuje. V oblasti Baltského moře zasahuje tento vítr na pevninu 20 až 30 km od pobřežní čáry, v tropických oblastech až 100 km. Mořská bríza na pobřežích přispívá ke snížení teploty vzduchu v poledních a odpoledních hodinách, ke zvýšení vlhkosti vzduchu a vytváření typických pobřežních kupovitých oblaků. Viz též cirkulace brízová.
česky: bríza mořská; slov: morská bríza; něm: Seewind m; fr: brise de mer f; rus: морской бриз  1993-a3
sea fog
advekční mlha, vznikající nad mořem ve vzduchové hmotě, která se přemísťuje z teplejšího povrchu vody nad chladnější. Proto jsou hlavními oblastmi tvorby mořské mlhy oblasti, kde se setkávají oceánské proudy o různé teplotě povrchu moře, např. u Newfoundlandu na styku Golfského a Labradorského proudu nebo východně od Japonska na rozhraní proudu Kurošio a proudu Ojašio. Mořská mlha se zde často tvoří především v létě. Viz též mlha pobřežní.
česky: mlha mořská; slov: morská hmla; něm: Meernebel m, Seenebel m; rus: морской туман  1993-a3
sea horizon
česky: obzor ideální; slov: ideálny obzor; něm: idealer Horizont m  2016
sea level horizon
česky: obzor ideální; slov: ideálny obzor; něm: idealer Horizont m  2016
sea of cloud
vrstva oblaků, jejíž horní hranice má vzhled menších nebo větších vln, takže při pohledu shora, tj. z horských stanic nebo letadel, působí dojmem vln na moři. Oblačné moře zpravidla souvisí s vrstvou inverze teploty vzduchu. Viz též mlha údolní.
česky: moře oblačné; slov: oblačné more; něm: Wolkenmeer n; rus: облачное море  1993-a3
sea station
meteorologická stanice, která provádí měření a pozorování na prostředku plovoucím nebo zakotveném na moři, např. na lodi, bóji nebo těžní plošině. Mezi mořské met. stanice patří stanice meteorologické námořní, stanice meteorologické lodní a stanice na majákových lodích. Některé postupy při obsluze přístrojů, pozorování met. jevů a umísťování čidel na mořských met. stanicích jsou odlišné od postupů používaných na pozemních met. stanicích.
česky: stanice meteorologická mořská; slov: morská meteorologická stanica; něm: Seestation f, Seewetterstation f; rus: морская станция  1993-a3
sea surface temperature
(SST, z angl. sea surface temperature) – teplota vody na mořské hladině nebo v její blízkosti do hloubky několika metrů. V prvním případě se určuje na základě družicových meteorologických měření, v druhém případě na námořních meteorologických stanicích. Teplota povrchové vrstvy vody vykazuje podstatně menší gradienty a méně výrazný denní a roční chod než teplota povrchu pevniny, což je způsobeno neustálým promícháváním vody, jejím větším objemovým měrným teplem a částečnou propustností pro přímé sluneční záření. Teplota povrchu moře významně ovlivňuje interakci atmosféry a oceánu, proto patří k důležitým vstupům do modelů numerické předpovědi počasí i do modelů klimatu.
česky: teplota povrchu moře; slov: teplota povrchu mora; něm: Meeresoberflächentemperatur f; rus: температура поверхности моря  1993-a3
season
syn. období roční – fáze roku podmíněná sezonalitou klimatu. Astronomické vymezení sezon je dáno okamžiky rovnodenností a slunovratů. Klimatické sezony jsou vymezovány s ohledem na průběh klimatických prvků: ve vyšších zeměpisných šířkách se podle teplotních poměrů vymezuje jaro, léto, podzim a zima, případně chladné a teplé pololetí; v tropických oblastech se případné sezony liší především množstvím srážek (období sucha, období dešťů). Fenologické sezony odpovídají etapám vývoje flóry a fauny během roku, přičemž jsou odděleny významnými fenologickými fázemi.
Termín pochází z fr. saison „roční období“, dříve též ve významu „příhodný okamžik“ (z lat. satio „setí“, odvozeného od slovesa serere „sít“, jehož příčestí minulé má tvar satus).
česky: sezona; slov: sezóna; něm: Saison f, Jahreszeit f; rus: сезон  2014
seasonal anticyclone
anticyklona, která se vyskytuje nad danou oblastí jen v některé sezoně. Nejtypičtějším příkladem sezonních anticyklon jsou kontinentální anticyklony, které mají charakter studených anticyklon. Z nich sibiřská anticyklona je horiz. velmi rozsáhlá a někdy zasahuje až nad vých. a stř. Evropu. Kanadská anticyklona je méně pravidelným útvarem a často se rozpadává na několik menších anticyklon. V letním období se na místě sezonních anticyklon mohou vyskytovat oblasti nižšího tlaku vzduchu.
česky: anticyklona sezonní; slov: sezónna anticyklóna; něm: saisonale Antizyklone f; rus: сезонный антициклон  1993-a2
seasonality of climate
charakteristická vlastnost většiny klimatických oblastí na Zemi, podmíněná změnami bilance záření během kalendářního roku a projevující se periodickým střídáním klimatických sezon. Projevuje se ročním chodem meteorologických prvků, přičemž mírou sezonality klimatu je jejich prům. roční amplituda. Pro tropy je rozhodující srážkový režim, v mimotropických oblastech dominuje vliv ročního chodu teploty vzduchu. Sezonalita klimatu zde roste se zeměpisnou šířkou a s kontinentalitou klimatu.
česky: sezonalita klimatu; slov: sezonalita klímy; něm: Saisonalität des Klimas f  2014
seclusion
stadium v okluzním procesu, kdy ke spojení teplé a studené fronty při zemi nedojde nejdříve ve středu  frontální cyklony, ale v jisté vzdálenosti od něj. Sekluze znamená, že blízko týlové části okluzní fronty se vytvoří kapsa teplého vzduchu v nízkých hladinách, která je obklopena vzduchem chladnějším. Sekluze je ve vývoji cyklony výjimečným jevem, např. se může vyskytnout v průběhu orografické okluze, ovšem relativně často se vytváří v dospělém stadiu vývoje hlubokých mimotropických cyklon nad oceány (jak bylo potvrzeno např. experimetnem ERICA). V současné literatuře se pojem sekluze vyskytuje v poněkud modifikovaném smyslu v souvislosti se Shapirovým–Keyserovým modelem cyklony.
Termín pochází z lat. seclusio „odloučení“, odvozeného od slovesa secludere „uzavřít, odloučit“ (z předpony se- vyjadřující rozdělení, oddělení od sebe navzájem a slovesa claudere „zavřít“, srov. např. angl. close). Význam se původně týkal kapsy teplého vzduchu uzavřené a odloučené od zbytku teplého sektoru cyklony.
česky: sekluze; slov: seklúzia; něm: Seklusion f; rus: секклюзия  1993-a3
second tropopause
česky: tropopauza druhá; slov: druhá tropopauza; něm: zweite Tropopause f; rus: вторая тропопауза  1993-a1
secondary aerosols
syn. aerosoly nukleační – aerosolové částice, které vznikají v atmosféře procesem nukleace z původně plynných látek. Ve starší čes. tech. literatuře se označují i jako aerosoly kondenzační.
česky: aerosoly sekundární; slov: sekundárne aerosoly; něm: sekundäres Aerosol n; fr: aérosols secondaires; rus: вторичные аэрозольные (взвешенные) частицы  2014
secondary circulation
syn. cirkulace druhotná – 1. podle H. C. Willeta atmosférická cirkulace v měřítku cyklon a anticyklon;
2. obecně jakákoli cirkulace, která je dynamicky indukovaná nebo je součástí silnější cirkulace zpravidla většího měřítka. Viz též cirkulace primární, cirkulace terciární.
česky: cirkulace sekundární; slov: sekundárna cirkulácia; něm: sekundäre Zirkulation f; fr: circulation secondaire f; rus: вторичная циркуляция  1993-a3
secondary cyclone
cyklona, která se formuje v blízkosti a ve spojitosti s řídicí cyklonou. Jedná se o nevelký útvar, který se zpravidla vyskytuje na již. okraji řídicí cyklony, pohybující se obvykle kolem ní ve směru cyklonální cirkulace. Podružná cyklona vzniká často na studené frontě spojené s řídicí cyklonou nebo i se starší podružnou cyklonou, jak je tomu v případě série cyklon. V Evropě se podružná cyklona typicky formuje např. nad Baltským mořem, pokud řídicí cyklona setrvává u záp. pobřeží Norska.
česky: cyklona podružná; slov: podružná cyklóna; něm: Randtief n; fr: cyclone secondaire m; rus: вторичная депресия, вторичный циклон  1993-a3
secondary depression
cyklona, která se formuje v blízkosti a ve spojitosti s řídicí cyklonou. Jedná se o nevelký útvar, který se zpravidla vyskytuje na již. okraji řídicí cyklony, pohybující se obvykle kolem ní ve směru cyklonální cirkulace. Podružná cyklona vzniká často na studené frontě spojené s řídicí cyklonou nebo i se starší podružnou cyklonou, jak je tomu v případě série cyklon. V Evropě se podružná cyklona typicky formuje např. nad Baltským mořem, pokud řídicí cyklona setrvává u záp. pobřeží Norska.
česky: cyklona podružná; slov: podružná cyklóna; něm: Randtief n; fr: cyclone secondaire m; rus: вторичная депресия, вторичный циклон  1993-a3
secondary front
atmosférická fronta oddělující různé části téže vzduchové hmoty. Obvykle se vyskytují podružné studené fronty, což jsou fronty uvnitř horizontálně nestejnorodého arktického vzduchu nebo vzduchu mírných šířek, za nimiž postupuje chladnější část této vzduchové hmoty. Často se vyskytují v týlu cyklony za hlavní frontou a mají oproti ní menší vert. rozsah. Zasahují pouze spodní, nanejvýš stř. troposféru.
česky: fronta podružná; slov: podružný front; něm: Nebenfront f, sekundäre Front f; fr: front secondaire m; rus: вторичный фронт  1993-a3
secondary ice nucleation
vznik ledových částic v oblacích, který neodpovídá heterogenní nukleaci ledu na ledových jádrech. Jde např. o vznik ledových fragmentů při tříštění primárních ledových krystalků nebo při explozivním mrznutí větších kapek. Souvislost s těmito procesy má tzv. Hallettův-Mossopův proces popsaný v roce 1974. Při něm dochází ke vzniku ledových fragmentů při mrznutí kapek, které jsou zachyceny ledovou krupkou. Vzhledem k tomu, že při leteckých měřeních koncentrace ledových částic u vrcholků oblaků byly zjištěny hodnoty, které řádové převyšují koncentraci ledových jader, označuje se proces sekundární nukleace také jako multiplikace neboli navýšení ledových částic v oblacích.
česky: nukleace ledu sekundární; slov: sekundárna nukleácia ľadu; něm: sekundäre Eisnukleation f; rus: вторичное образование ледяных частиц, размножение ледяных частиц  2014
secondary organic aerosols
(SOA) – sekundární aerosoly, které vznikají v atmosféře cykly chemických reakcí, do nichž vstupují VOC jak přírodního (biogenního), tak antropogenního původu. Prvotními reakcemi jsou zde zejména reakce VOC s hydroxylovým radikálem OH*, ale uplatňují se též reakce s dalšími radikály, popř. s ozonem. Navazujícími cykly reakcí se vytvářejí organické sloučeniny se stále nižší volatilitou (těkavostí), až nakonec dojde k nukleaci, tj. vzniku částic typu Aitkenových jader. Jako součást sekundárních organických aerosolů se uplatňují látky typu PAN, hydroperoxidů a další typy organických sloučenin. Cesta vedoucí ke vzniku sekundárních organických aerosolů je z hlediska celkových transformací těkavých organických látek v atmosféře sice v řadě ohledů významná, ale kvantitativně spíše minoritní. Většinovou transformační cestou jsou pak homogenní reakce v plynné fázi, jejichž konečným produktem je formaldehyd HCHO.
česky: aerosoly organické sekundární; slov: sekundárne organické aerosoly; něm: sekundäres organisches Aerosol n; fr: aérosols organiques (biogéniques) secondaires pl  2014
secondary pollutant
látka znečišťující ovzduší, která nemá vlastní významný zdroj, nýbrž vzniká v důsledku chemických reakcí v atmosféře z tzv. prekurzorů. Mezi sekundární znečišťující látky patří např. přízemní ozon, tvořící součást fotochemického smogu.
česky: látka znečišťující sekundární; slov: sekundárne znečisťujúce látky; rus: вторичные (секундарные) загрязняющие вещества  2014, ed. 2024
secondary rainbow
1. syn. duha vedlejší;
2. v mn. č. označení pro podružné duhové oblouky, které se vyskytují na vnitřní straně duhy hlavní a na vnější straně duhy vedlejší. Jde o interferenční jev související s uplatněním optického principu minimální odchylky.
česky: duha sekundární; slov: sekundárna dúha; něm: sekundärer Regenbogen m; fr: arc secondaire m; rus: вторичная радуга  1993-a3
sections of atmospheric front
větší nebo menší úsek hlavní troposférické fronty, např. arktické nebo polární fronty, které prakticky nikdy nejsou souvislé okolo celé zemské polokoule, ale jsou zřetelně vyvinuty jen v některých oblastech. Např. polární fronta se nejčastěji rozpadá na tyto větve: polární frontu v západní části Tichého oceánu, polární frontu ve východní části Tichého oceánu, atlantskou polární frontu, která často zasahuje nad Evropu, a v chladné roční době i na středomořskou frontu. Větve atmosférické fronty vykazují značnou prostorovou proměnlivost během roku, a to i v jednotlivých měsících, přičemž se mění i jejich počet.
česky: větev atmosférické fronty; slov: vetva atmosférického frontu; něm: Frontabschnitt m; rus: ветвь атмосферного фронта  1993-a1
secular trend of meteorological elements
dlouhodobé jednosměrné změny hodnot meteorologických prvků (během řádově 100 let), způsobující jejich postupné zvyšování nebo snižování. Mohou být dávány do souvislosti např. se sekulárním cyklem sluneční činnosti. Sekulární chod hodnot met. prvků se analyzuje pomocí prům. hodnot vypočítaných z dlouholetých řad pozorování, často po shlazení jejich průběhu s cílem vyloučit vliv krátkodobých kolísání. Viz též kolísání klimatu, změna klimatická, řada klimatická.
česky: trend meteorologických prvků sekulární; slov: sekulárny trend meteorologických prvkov; něm: säkularer Gang des meteorologischen Elementes m; rus: вековой ход метеорологических элементов  1993-a3
seeder – feeder effect
česky: efekt seeder–feeder  2021
seeder – feeder mechanism
(mechanizmus SF) – označení vzniku nebo zesílení srážek z původně nesrážkových oblaků nebo mlhy vlivem propadávání srážkových částic z výše položených oblaků srážkových. Srážkové kapky nebo ledové krystalky, které vypadávají z výše se vyskytujícího oblaku (zasévající – seeder, zóna S), sbírají oblačnou vodu ve spodním oblaku nebo mlze (zachycující – feeder, zóna F) působením koalescence kapek nebo zachycování kapek padajícími krystalky ledu. Příkladem je orografické zesílení srážek, spojené s orografickými oblaky. Jiným příkladem jsou srážky vypadávající z mlhy (zóna F), jestliže srážkové částice z výše ležící oblačnosti (zóna S) mlhou propadávají.
Obdobný mechanizmus SF se může uplatnit i v rámci jednoho oblaku. Např. zesílení vrstevnatých srážeknimbostratu při vnořené konvekci probíhá, když ledové krystalky vypadávající z výše položených konvektivních elementů lokálně zesílí vývoj srážek ve spodní části oblaku. Mechanizmus SF se uplatňuje i při umělé infekci oblaků, jejímž cílem je vyvolat srážky nebo uspíšit jejich vývoj. Infekce umělými ledovými jádry v horní partii oblaku vyvolá vznik dodatečných ledových krystalků a propadání krystalků spodními částmi oblaku může zesílit, popř. uspíšit vypadávání srážek.
V češtině není k dispozici vhodný český ekvivalent; používáme buď anglický výraz nebo jeho zkratku.
česky: mechanizmus seeder–feeder  2022
segmentation of cyclone
proces v atmosféře, při němž z jedné cyklony vzniknou dvě, nebo více cyklon. K segmentaci cyklony dochází většinou tak, že na okraji staré cyklony, která se už vyplňuje, se vytvoří samostatná cyklona s uzavřenou cirkulací, jindy nastává segmentace cyklony při postupu mladé cyklony přes horskou překážku. Nově vzniklé cyklony se obyčejně vzájemně pohybují proti směru pohybu hodinových ručiček. O nepravé segmentaci cyklony se hovoří tehdy, když se rozsáhlá cyklona začíná vyplňovat, přičemž se rozpadá na několik samostatných cyklon, které se pak vyplňují nerovnoměrně. Cyklony, které vznikají segmentací, mají jednu, nebo více uzavřených izobar a jako celek jsou ohraničené dalšími izobarami, takže vytvářejí rozsáhlou oblast nízkého tlaku vzduchu.
česky: segmentace cyklony; slov: segmentácia cyklóny; něm: Sektoreinteilung der Zyklone f, Zyklonenteilung f; rus: сегментация циклона  1993-a1
seiche
[séš] – viz vlny stojaté.
Termín zavedl švýcarský hydrolog François-Alphonse Forel roku 1890; pochází z francouzského nářečního výrazu, který má nejasný původ (možná souvisí s lat. siccus „suchý“, s ohledem na přechodné vysušení pobřeží, k němuž při stojatých vlnách dochází).
česky: seiche; slov: seiche; něm: Seiches pl; rus: сейшa  1993-a1
seiche
1. obecně vlny, jež se zdánlivě nepohybují vůči svému prostředí a projevují se jako stacionární sled stabilních uzlů a kmiten. Běžným mechanizmem vzniku stojatých vln je skládání dvou sledů příčných vln, které mají shodnou vlnovou délku, ale postupují vzájemně proti sobě. Dochází k tomu např. tehdy, jedná-li se o skládání původního a odraženého vlnění. Tímto způsobem mohou někdy vznikat stojaté vlny na vodní hladině při odrazu povrchových vnějších gravitačních vln od břehů. Výskyt tohoto jevu je však poměrně vzácný, neboť předpokládá náročné podmínky pro vzájemnou geometrickou konfiguraci nabíhající vlny a břehu. Jiným případem stojatých vln jsou velmi dobře známé vnitřní gravitační vlny na dolních hranicích výškových teplotních inverzí při zanedbatelné rychlosti horiz. proudění vzduchu. Za této podmínky se vlnové rozruchy projevují vznikem dvou sledů stejných gravitačních vln, které postupují vzájemně proti sobě, a mohou tak vytvořit stojaté vlnění. Jiným případem stojatých vln v atmosféře mohou být závětrné vlny.
2. v hydrologii kolísavé rytmické pohyby celé vodní hladiny na stojatých vodách (jezerech, uzavřených částech moří apod.), jejichž příčinou bývá rozdílný tlak vzduchu v různých částech hladiny, náhlé změny atm. tlaku, nárazy větru z hor, prudké deště aj. Názvem stojaté vlny se označuje střídavé nakláněni vodní hladiny na jednu či druhou stranu kolem více méně stálých os, zvaných uzly. Perioda stojatých vln trvá od několika minut do několika hodin, amplituda činí v závislosti na velikosti nádrže mm až m. Stojaté vlny mají mnoho místních názvů, často používaný název „seiche“ pochází od Ženevského jezera, kde je studoval a pojmenoval F. A. Forel. Na jezerech stojaté vlny zcela převyšují dmutí.
česky: vlny stojaté; slov: stojaté vlny; něm: Seiches m/pl, stehende Wellen f/pl; rus: сейшa  1993-a3
seistan
místní název větru v oblasti Sistan na jihovýchodě Íránu a v přilehlé části Afgánistánu. Seistan má obvykle sz. až sev. směr a vane na okraji monzunové cyklony se středem nad sev. Pákistánem. Vyskytuje se od konce května nebo počátku června téměř bez přestávky až do konce září; proto je seistan znám též jako „vítr 120 dní“. Může dosáhnout i rychlosti větší než 30 m.s–1, vzhledem k velké prašnosti může mít některé vlastnosti prachové nebo písečné bouře.
Termín je odvozen od názvu oblasti, v níž vítr vane.
česky: seistan; slov: seistan; něm: Seistan m; rus: систан  1993-a2
selected ship station
meteorologická stanice na pohybující se lodi, která je vybavena spolehlivými met. přístroji a předává v plném rozsahu kódované zprávy o přízemních met. pozorováních.
česky: stanice meteorologická lodní základní; slov: lodná základná meteorologická stanica; něm: ausgewählte Schiffsstation f; rus: выборочная судовая станция  1993-a3
selective absorption
absorpce záření určitých vlnových délek radiačně aktivními plyny. Příčinou jsou změny kvantových stavů jejich atomů či molekul, k nimž dochází pouze na určitých absorpčních čárách, tvořících dohromady absorpční spektrum daného plynu. Z energ. hlediska se na selektivní absorpci záření podílejí největší měrou skleníkové plyny, pohlcující podstatnou část dlouhovlnného záření. Pro život na Zemi je neméně důležitá selektivní absorpce ultrafialového záření molekulami ozonu ve stratosféře a excitovaným atomárním kyslíkem v mezosféře a spodní termosféře. Viz též koeficient absorpce.
česky: absorpce záření selektivní; slov: selektívna absorpcia žiarenia; něm: selektive Absorption f; fr: absorption sélective f; rus: избирательное поглощение  1993-a3
self-cleaning of air
soubor všech procesů, jejichž výsledkem je snižování množství znečišťujících příměsí v atmosféře. Zahrnuje atmosférickou depozici a chemické reakce v atmosféře. K procesům samočištění ovzduší nepatří šíření příměsí v atmosféře. Viz též znečištění ovzduší, znečišťování ovzduší.
česky: samočištění ovzduší; slov: samočistenie ovzdušia; něm: Selbstreinigung der Atmosphäre f; rus: самоочищение воздуха  1993-a3
semi-permanent atmospheric center of action
akční centrum atmosféry, které se vyskytuje na klimatologických mapách nad určitou geografickou oblastí pouze v teplé, nebo naopak v chladné části roku (např. jihoasijská cyklona, resp. středomořská cyklona nebo sibiřská anticyklona). Sezonní akční centra spojená s monzuny se někdy nazývají monzunová akční centra atmosféry.
česky: centrum atmosféry akční sezonní; slov: sezónne akčné centrum atmosféry; něm: quasistationäres Aktionszentrum n; fr: centre d'action de caractère semi-permanent m; rus: сезонный центр действия  1993-a2
semiarid climate
česky: klima semiaridní; slov: semiaridná klíma; něm: semiarides Klima n; rus: семиаридный климат  1993-b3
semigeostrophic approximation
méně zjednodušující alternativa kvazigeostrofické aproximace, kde jsou lokální časová změna a gradient složek rychlosti větru nahrazeny lokální časovou změnou a gradientem složek rychlosti geostrofického větru. Semigeostrofická aproximace tedy předpokládá nulové zrychlení ve vert. směru a uvažuje advekci geostrofickými i ageostrofickými složkami proudění. Prostřednictvím specifické transformace souřadnic lze dosáhnout zjednodušeného tvaru základních rovnic, podobného jako v případě kvazigeostrofické aproximace. Semigeostrofická aproximace je vhodná pro analýzu atmosférických front a výrazných cyklonmezosynoptickém měřítku. Viz též vítr ageostrofický.
česky: aproximace semigeostrofická; slov: semigeostrofická aproximácia; něm: semigeostrophische Aproximation f, semigeostrophische Aproximation f; fr: approximation semi-géostrophique f, approximation quasi-géostrophique f  2014
sensible heat
1. syn. entalpie;
2. méně vhodné označení členu reprezentujícího v rámci tepelné bilance zemského povrchu přenos tepla od země do atmosféry turbulentní výměnou.
česky: teplo zjevné; slov: zjavné teplo; něm: fühlbare Wärme f, sensible Wärme f; rus: активная теплота, ощутимая теплота  1993-a1
sensor
syn. senzor, snímač – část přístroje, která měří určitou fyz. veličinu. V případě el. přístrojů čidlo převádí el. signál na kvantitativní hodnotu, která je zaznamenávána jinou částí přístroje a následně přenášena k dalšímu zpracování.
Termín vznikl jako novotvar od zast. slovesa čít ve smyslu „vnímat“ (srov. čich).
česky: čidlo; slov: čidlo; něm: Fühler m; fr: senseur m, capteur m  2014
sensor
syn. čidlo.
Termín pochází z angl. sensor (od slova sense „rozum, smysl“, z lat. sensus „vnímání, cit, smysl“).
česky: senzor; slov: senzor; něm: Sensor m, Messfühler m  2014
Sentinel
družicové meteorologii označení pro evropské meteorologické družice, resp. přístroje zaměřené na monitorování atmosféry a oceánů pro jiné primární účely než předpověď počasí. Družice Sentinel jsou iniciovány Evropskou komisí a ESA pro operativní podporu programu Copernicus. Zahrnují celou škálu různě zaměřených družic a přístrojů. Na přípravě některých z družic, resp. přístrojů Sentinel se podílí i organizace EUMETSAT.
Název pochází z angl. sentinel „hlídka, stráž“.
česky: Sentinel; slov: Sentinel; něm: Sentinel m  2014
series of climatological observations (values)
chronologicky nebo podle velikosti uspořádaná posloupnost klimatických prvků. Mezi nejčastěji používané klimatologické řady patří např. řada denních, pentádních, dekádních, měs. a roč. průměrů teploty vzduchu, řada měs. a roč. úhrnů srážek, řada roč. amplitud teploty vzduchu apod. Při vytváření klimatologické řady z řad met. pozorování a při jejich klimatologickém zpracování se většinou vychází z metod mat. statistiky. V některých případech může klimatologická řada splývat s řadou met. pozorování.
česky: řada klimatologická; slov: klimatologický rad; něm: klimatologische Beobachtungsreihe f; rus: климатологический ряд, ряд климатических данных  1993-a2
severe climate
česky: klima drsné; slov: drsná klíma; něm: strenges Klima n; rus: суровый климат  1993-b2
severe weather
obecné označení pro počasí vyznačující se nebezpečnými meteorologickými jevy. Anglický ekvivalent se kromě uvedeného významu používá i v užším smyslu ve vztahu ke konvektivním bouřím. Viz též bouře, počasí extrémní.
česky: počasí nebezpečné; slov: nebezpečné počasie; rus: суровая погода  2016
severity of the climate
neurčitý souhrnný pojem pro nepříznivé klimatické podmínky určitého místa nebo oblasti. Projevuje se velmi nízkými či naopak vysokými hodnotami klimatických prvků (teploty vzduchu, relativní vlhkosti, atmosférických srážek apod.), případně velkou četností nebezpečných meteorologických jevů. V bioklimatologii je drsnost klimatu hodnocena nejrůznějšími indexy a odvozenými veličinami, viz např. diagram komfortu, teplota efektivní. Viz též tuhost zimy.
česky: drsnost klimatu; slov: drsnosť klímy; něm: Rauigkeit des Klimas f; fr: rigueur climatique f, sévérité du climat f, rudesse du climat f, dureté du climat f; rus: жестокость климата, суровость климата  1993-a3
severity of winter
syn. tuhost zimy.
česky: drsnost zimy; slov: drsnosť zimy; něm: Winterstrenge f; fr: rigueur hivernale f, rudesse de l'hiver f; rus: суровость зимы  1993-a1
SEVIRI
(Spinning Enhanced Visible and InfraRed Imager) – zobrazovací radiometr družic MSG. Tento pasivní radiometr používá celkem 12 spektrálních kanálů, v nichž snímá celý zemský disk s periodou 15 minut, resp. severní část polokoule s periodou 5 minut. Rozlišení přístroje v nadiru je 3 km s výjimkou kanálu HRV (High Resolution Visible) s rozlišením 1 km.
česky: SEVIRI; slov: SEVIRI; něm: SEVIRI n  2014
sferics
syn. sfériky.
Termín je odvozen od slova atmosféra. Odkazuje na atmosférický původ těchto rozruchů radiových vln.
česky: atmosfériky; slov: atmosfériky; něm: Sferics m/pl; rus: атмосферики  1993-a1
sferics
syn. atmosfériky – elmag. rozruchy ve tvaru krátkých impulzů, šířící se v atmosféře ve vlnovodu tvořeném povrchem Země a dnem ionosféry na velké vzdálenosti až tisíců kilometrů. Původcem sfériků jsou dílčí výboje blesků. Intenzita sfériků na místě pozorování závisí na intenzitě původního výboje na vzdálenosti mezi úderem blesků a pozorováním sfériky a na vlastnostech ionosféry (den/noc). Viz též detekce blesků pozemní.
Termín vznikl zkrácením slova atmosfériky.
česky: sfériky; slov: sfériky; něm: Atmosphärische Impulsstrahlung f, Sferics f/pl; rus: атмосферики  1993-a3
shadow of the Earth
česky: stín Země; slov: tieň Zeme; něm: Erdschatten m; rus: тень Земли  1993-a1
shallow convection
konvekce omezená na spodní troposféru (do cca 3 km), která je bezoblačnou konvekcí nebo se projevuje jen vývojem nesrážkových oblaků. Z hlediska příčin jde zpravidla o termickou konvekci. Viz též konvekce vertikálně mohutná.
česky: konvekce mělká; slov: plytká konvekcia; něm: flache Konvektion f; rus: мелкая конвекция  1993-a3
shallow low
slang. označení pro nevýraznou oblast nižšího a rovnoměrně rozloženého tlaku vzduchu redukovaného na hladinu moře, která se vytváří především v létě nad pevninou. Jednou z příčin je přehřátí zemského povrchu v důsledku insolace. V tlakovém bahnu mohou vznikat místní bouřky doprovázené často přívalovým deštěm.
česky: bahno tlakové; slov: tlakové bahno; něm: flaches Tief n; fr: marais barométrique m; rus: барическое болото  1993-a3
shallow low
cyklona s malým horizontálním tlakovým gradientem, která je na přízemní mapě zpravidla vymezena jen jednou uzavřenou izobarou (při jejich znázornění po 5 hPa).
česky: cyklona mělká  2021
shallow low
tlakové pole s velmi malými horiz. tlakovými gradienty, tedy bez přítomnosti některého z tlakových útvarů.  Viz též bahno tlakové.
česky: pole tlakové nevýrazné; slov: nevýrazné tlakové pole; něm: gradientschwaches Gebiet n, flaches Tief n; rus: безградиентная зона, неглубокая депресия  1993-a3
shallow-water equations
v odb. literatuře, zejména z tematické oblasti aplikací numerických výpočetních metod, často používaný název pro Navierovy–Stokesovy rovnice zjednodušené přizpůsobením k jednovrstvému modelu nestlačitelné tekutiny. V meteorologických aplikacích obvykle zahrnují hydrostatickou aproximaci a dále jsou tvořeny rovnicí kontinuity pro nestlačitelnou tekutinu spolu se dvěma pohybovými rovnicemi pro horiz. složky rychlosti proudění, do nichž v roli působících sil vstupují síla tlakového gradientu a Coriolisova síla. Není zde souvislost s aproximací tenké vrstvy.
česky: rovnice mělké vody; slov: rovnica plytkej vody; něm: Flachwasser-Gleichungen f/pl  2014
Shapiro–Keyser cyclone model
koncepční model cyklony, který je vhodný pro popis vývoje struktury atmosférických front zejména v rychle se vyvíjejících mimotropických cyklonách nad otevřeným mořem, pro něž model cyklony podle norské meteorologické školy selhává. Model publikovali M. A. Shapiro a D. Keyser poprvé v roce 1990 na základě výsledků systematických studií cyklon nad severozápadním Atlantikem. Model zahrnuje celkem čtyři stadia vývoje počínaje:
(i) zformováním frontální vlny s teplou frontou v přední a studenou frontou v zadní části cyklony;
(ii), vznikem struktury front ve tvaru písmene T, kdy studená fronta postupuje směrem do teplého sektoru cyklony, avšak kolmo k teplé frontě, tzn. nedochází ke spojení teplé a studené fronty a ke vzniku okluzní fronty;
(iii) rozpadem části studené fronty v blízkosti středu cyklony a na něm navazujícím ohýbáním teplé fronty kolem středu cyklony;
(iv) uzavřením oblasti relativně teplejšího vzduchu v blízkosti středu cyklony chladnějším vzduchem z okolí, což vede ke vzniku teplé sekluze. Cyklony, které se vyvíjejí podle Shapirova–Keyserova modelu, mají zpravidla protáhlý tvar od západu k východu podél výrazné teplé fronty a mají tendenci se vyvíjet v místech s konfluentním prouděním, např. ve vstupní oblasti jet streamu.
česky: model cyklony Shapirův–Keyserův; slov: Shapirov–Keyserov model cyklóny; něm: Zyklonenmodell nach Shapiro-Keyser n  2015
sharpening of a front
syn. zvýraznění fronty – proces, při němž se na atmosférické frontě zvětšuje velikost rozdílů mezi vzduchovými hmotami především v teplotě, ale i u jiných meteorologických prvků. Například na teplých frontách se pozoruje tehdy, pokud postupují v zimním období nad prochlazenou pevninu. Na studené frontě nastává zostření fronty tehdy, pokud postupuje v letním období z oceánu nad přehřátou pevninu. Zostření fronty podmiňuje i denní doba; v zimě v noci se zostřují teplé fronty, v létě ve dne studené fronty. Zostření fronty nemusí nutně vést ke zvýšení aktivity projevů počasí na ní.
česky: zostření fronty; slov: zvýraznenie frontu; něm: Frontverschärfung f; rus: обострение фронта  1993-a3
shear line
čára, podél níž dochází k náhlé změně horiz. složek větru. Viz též horizontální střih větru.
česky: čára střihu větru; slov: čiara strihu vetra; něm: Scherungslinie f; fr: ligne de cisaillement f; rus: линия сдвига ветра  1993-a1
shear vector
lokální prostorová změna vektoru rychlosti větru vztažená na jednotkovou vzdálenost. V dynamické meteorologii rozlišujeme horizontální a vertikální střih větru. V případech, kdy uvažujeme jen rychlost proudění bez ohledu na směr, hovoříme o gradientu rychlosti proudění, slang. gradientu větru, který vyjadřujeme v případě vert. změny v m.s–1 na 100 m či na 1 000 m, případně v uzlech na 1 000 stop; v případě horiz. změny uvádíme tento gradient nejčastěji v m.s–1 na 100 km. Střih větru je bezpečnostním rizikem zejména pro leteckou dopravu, proto je letecká meteorologická služba povinna vydávat výstrahu při překročení určitých hodnot střihu větru podle směrnic ICAO. Viz též stáčení větrupočasí střihové.
česky: střih větru; slov: strih vetra; něm: Windscherung f; rus: сдвиг ветра  1993-a2
shear vorticity
složka rel. vorticity určená horizontálním střihem větru. V přirozené souřadnicové soustavě lze střihovou vorticitu ξS jednoduše určit podle vztahu:
ξS=VRHs, kde V představuje rychlost větru, RHs horiz. poloměr křivosti proudnic. Je-li střih cyklonální, je na sev. (již.) polokouli střihová vorticita kladná (záporná), je-li anticyklonální, střihová vorticita je záporná (kladná). Tato složka rel. vorticity popisuje tendenci k omezenému stáčení proudění s výrazným horiz. střihem větru, např. na cyklonální straně tryskového proudění. Termín se používá hlavně pro pohyby synoptického měřítka. Viz též vorticita křivostní, rovnice vorticity.
česky: vorticita střihová; slov: strihová vorticita; něm: Scherungsvorticity f  2015
shear waves
česky: vlny střižné; slov: strihové vlny; něm: Scherwellen f/pl  2014
shearing stress
obecně tečná síla vztažená k jednotkové ploše. V meteorologii mají význam především složky tzv. Reynoldsova napětí, související s turbulentním přenosem hybnosti v mezní vrstvě atmosféry. Lze je vyjádřit ve tvaru
-ρvx2 ¯,-ρvy2 ¯,-ρvz2 ¯,-ρvx vy¯,-ρ vxvz ¯,-ρvy vz¯,-ρ vyvx ¯,-ρvz vx¯,-ρ vzvy¯,
kde ρ značí hustotu vzduchu a vx,v y,vz turbulentní fluktuace složek rychlosti proudění v trojrozměrném souřadnicovém systému tvořeném osami x, y, z. Těchto devět veličin představuje složky symetrického tenzoru druhého řádu a fyz. je lze interpretovat jako složky síly turbulentního tření působící v daném bodě na jednotkovou plochu orientovanou kolmo ke směru jednotlivých souřadnicových os. Viz též tření v atmosféře, síla tření.
česky: napětí tečné; slov: dotykové napätie; něm: Schubpannung f, Tangentialspannung f, Scherspannung f; rus: напряжение сдвига  1993-a1
sheet lightning
oblak osvětlený vnitrooblačným bleskem, přičemž kanál blesku není z místa pozorovatele vidět. Tento jev bývá pozorován zejména při blýskavicích.
česky: blesk plošný; slov: plošný blesk; něm: Wetterleuchten n; fr: éclair diffus m, éclair en nappe m; rus: плоская молния, сплошная молния  1993-a3
shelf cloud
[šelf kloud] – hustý, horizontálně orientovaný oblačný útvar s více či méně roztřepenými okraji, který se může vyskytnout na spodní přední části mohutných kupovitých oblaků. Zpravidla se vyskytuje na čele gust fronty u postupující konvektivní bouře, výjimečně na čele studené fronty i bez přítomnosti bouře. Zviditelňuje rozhraní mezi studeným vzduchem vytékajícím z bouře a teplým vzduchem do bouře vtékajícím. Podél tohoto rozhraní vytváří zpravidla zahnutý pás oblačnosti, často klínovitého tvaru na přední straně. Základna shelf cloudu bývá značně turbulentní, zatímco svrchní část mívá zpravidla hladký, až laminární povrch. Při přechodu shelf cloudu často dochází k prudkému zhoršení počasí, nástupu srážek a zesílení větru i jeho nárazů. Na rozdíl od roll cloudu je shelf cloud propojený s oblačností mateřské bouře a může se vytvářet i ve více vrstvách nad sebou. V české odborné terminologii nebyl český termín zaveden a používá se termín převzatý z angličtiny. V rámci mezinárodní morfologické klasifikace oblaků spadá shelf cloud pod zvláštnost oblaků nazývanou arcus.
česky: shelf cloud; slov: shelf cloud; něm: Böenkragen m, shelf cloud f  2014
shimmer
fotometeor projevující se jako zdánlivé chvění objektů pozorovaných nad prohřátým zemským povrchem. Vzniká krátkodobými změnami indexu lomu světla ve vzduchu a často může snižovat dohlednost. Viz též scintilace.
česky: chvění optické; slov: optické chvenie; něm: Schimmern n; rus: оптическое дрожание атмосферы  1993-a2
ship meteorological observation
meteorologické pozorování prováděné na palubě lodi. Viz též meteorologie mořská, loď meteorologická.
česky: pozorování meteorologické lodní; slov: lodné meteorologické pozorovanie; něm: meteorologische Schiffsbeobachtung f; rus: судовое метеорологическое наблюдение  1993-a3
shock wave
prudká porucha v poli tlaku, hustoty a teploty vzduchu, jejíž postup je doprovázen výraznými akustickými projevy. Vznik rázové vlny lze např. vysvětlit tak, že oblast zhuštění vzduchu, tvořící součást zvukových vln, postupuje rychleji než oblast zředění a dohání ji. K tomuto jevu dochází, pohybuje-li se zdroj zvukových vln (např. letadlo, raketa, dělostřelecký granát) nadzvukovou rychlostí vzhledem k okolnímu vzduchu. Doprovodné akustické projevy se pak označují jako sonický třesk Rázové vlny vznikají také v důsledku adiabatického oteplování v oblasti zhuštění zvukové vlny a adiabatického ochlazování v oblasti jejího zředění, neboť rychlost zvuku ve vzduchu roste s rostoucí teplotou. K uplatnění tohoto mechanizmu vzniku rázových vln však může docházet pouze tehdy, je-li velikost přetlaku v oblasti zhuštění, resp. velikost podtlaku v oblasti zředění řádově alespoň srovnatelná s okolním tlakem vzduchu. K transformaci běžné zvukové vlny na vlnu rázovou tak může dojít při jejím šíření do vysokých řídkých vrstev atmosféry, neboť velikost zmíněného přetlaku, resp. podtlaku klesá s výškou podstatně pomaleji než velikost atm. tlaku stanovená podle barometrické formule. Ve fyzice a v technické praxi se pojem rázové vlny používá i v dalších souvislostech, např. u silných výbuchů, kdy hodnoty zmíněného přetlaku mohou převyšovat hodnoty tlaku vzduchu až o několik řádů. Viz též šíření zvuku v atmosféře.
česky: vlna rázová; slov: rázová vlna; něm: Stosswelle f; rus: ударная волна  1993-a3
short-range forecast
předpověď budoucího stavu počasí v daném místě nad určitou oblastí nebo územím na období od 12 hodin do 3 dnů. Pro její zpracování se v současnosti používá především numerických předpovědí počasí. Viz též předpověď počasí střednědobá, dlouhodobá, velmi krátkodobá.
česky: předpověď počasí krátkodobá; slov: krátkodobá predpoveď počasia; něm: kurzfristige Vorhersage f; rus: краткосрочный прогноз  1993-a3
short-term concentration of heterogeneous matter in atmosphere
stř. hodnota koncentrace znečišťující látky v ovzduší zjištěná na stanoveném místě v časovém intervalu řádu minut (v ČR obvykle 60 min. apod.). Vyjadřuje krátkodobé extrémní hodnoty znečištění ovzduší způsobem postačujícím pro praxi.
česky: koncentrace znečišťující látky v ovzduší krátkodobá; slov: krátkodobá koncentrácia znečisťujúcich látok v ovzduší; něm: Kurzzeitkonzentration von Fremdstoffen in der Luft f; rus: кратковременная концентрация инородного вещества в воздухе  1993-b3
short-wave radiation
v meteorologii elmag. záření o vlnových délkách kratších než 3 µm. Viz též záření dlouhovlnné.
česky: záření krátkovlnné; slov: krátkovlnné žiarenie; něm: kurzwellige Strahlung f; rus: коротковолновая радиация  1993-a3
Showalter index
index stability definovaný podle vzorce
SI=T500-TL,
kde T500 je teplota vzduchu v hladině 500 hPa a TL je teplota vzduchové částice adiabaticky zdvižené z hladiny 850 hPa do hladiny 500 hPa nejprve po suché adiabatě do nasycení a dále po nasycené adiabatě. Kladné hodnoty Showalterova indexu značí stabilní zvrstvení, záporné instabilní. Index formuloval A. K. Showalter v roce 1963.
česky: index Showalterův; slov: Showalterov index; něm: Showalter-Index m; rus: индекс Шоуолтера  2014
shower
druh konvektivních srážek vyznačující se náhlým začátkem a koncem, rychlým kolísáním intenzity a obvykle krátkým trváním. Při přeháňkách dochází často k rychlému střídání velké oblačnosti s krátkým vyjasněním, přičemž dobrá dohlednost se v intenzivních srážkách značně snižuje. Jednotlivé přeháňky mají obvykle malý plošný rozsah. Přeháňky mohou být jak dešťové, tak sněhové, popř. dešťové se sněhem. V chladném ročním období v přeháňkách vypadávají často sněhové krupky, v létě někdy kroupy. Při špatných podmínkách pozorování oblohy lze podle přeháněk usuzovat na výskyt konvektivních oblaků. Naopak podle charakteru oblačnosti lze odlišit přeháňky od občasných srážek. Viz též srážky trvalé.
česky: přeháňka; slov: prehánka; něm: Schauer m; rus: ливень  1993-a2
showers of (secondary) cosmic radiation (2.)
1. lid. označení pro dešťovou přeháňku. Viz též přeprška.
2. ve smyslu spršky sekundárního kosmického záření viz záření kosmické.
česky: sprška; slov: spŕška; něm: Regenschauer m  1993-a3
showery precipitation
česky: srážky přeháňkové; slov: prehánkové zrážky; něm: Schauerniederschlag m, schauerartiger Niederschlag m; rus: ливневые осадки  1993-a1
shrieking sixties
česky: šedesátky ječící; slov: jačiace šesťdesiatky; něm: heulende Sechziger m/pl; rus: беснующиеся шестидесятые  1993-a1
Siberian anticyclone
kontinentální anticyklona vytvářející se v zimních měsících nad stř. a sev. částí Eurasie. Střed sibiřské anticyklony leží v dlouhodobém průměru nad Mongolskem. V sibiřské anticykloně byl naměřen nejvyšší tlak vzduchu (na Zemi) redukovaný na hladinu moře. Sibiřská anticyklona netrvá po celou zimu, nýbrž se obnovuje v důsledku stabilizace postupujících anticyklon nad ochlazenou pevninu. Někdy zasahuje až do stř. Evropy, pokud její střed leží záp. od Uralu. Ze sibiřské anticyklony se někdy oddělují postupující anticyklony, které putují až nad Tichý oceán, kde způsobují regeneraci subtropické anticyklony. Sibiřské anticyklony patří k nejrozsáhlejším anticyklonám. Její vert. mohutnost je však malá, často nedosahuje ani výšky 2000 m, nad ní je výrazná inverze teploty vzduchu. Sibiřská anticyklona je sezonním akčním centrem atmosféry. Viz též anticyklona kvazistacionární, extrémy tlaku vzduchu.
česky: anticyklona sibiřská; slov: sibírska anticyklóna; něm: sibirische Antizyklone f; fr: anticyclone de Sibérie m; rus: сибирский антициклон  1993-a2
sigma system
syn. soustava souřadnicová σ – pravoúhlá souřadnicová soustava se zobecněnou vertikální souřadnicí, kde tato souřadnice vyjadřuje normovaný tlak vzduchu. Popisujeme ho veličinou σ definovanou vztahem
σ=ppT pSpT
kde p je tlak vzduchu ve zvolené hladině, pS tlak vzduchu v úrovni zemského povrchu a pT tlak vzduchu na horním okraji uvažované části atmosféry. Kvazihorizontální osy x a y leží v hladině s konstantní hodnotou veličiny σ = 1, která je totožná se zemským povrchem; vert. osu označenou σ orientujeme ve směru poklesu hodnot této veličiny. Výhodou sigma-systému je nepřerušenost všech hladin orografií a jejich větší hustota v blízkosti zemského povrchu, proto se sigma-systém často používá v numerické předpovědi počasí. Viz též p-systém, soustava souřadnicová hybridní.
česky: sigma-systém; slov: sigma-systém; něm: Sigma-System n; rus: сигма-система  1993-a3
SIGMET information
(Significant Meteorological Phenomena) – informace vydaná leteckou meteorologickou výstražnou službou týkající se výskytu nebo očekávaného výskytu určitých meteorologických jevů na trati, které mohou ovlivnit bezpečnost letového provozu. Informace SIGMET jsou předmětem mezinárodní výměny a vydávají se v souladu s postupy ICAO ve zkrácené otevřené řeči (anglické) vždy na jeden z následujících jevů: bouřky, tropická cyklona, silná turbulence, silná námraza, silná horská vlna, silná prachová vichřice, silná písečná vichřice, vulkanický popel a radioaktivní oblak. Období platnosti informací SIGMET je maximálně čtyři hodiny, v případě vulkanického popela a tropické cyklony je období platnosti šest hodin.
česky: informace SIGMET; slov: informácia SIGMET; něm: SIGMET-Meldung f; rus: информация SIGMET  2014
significant levels
hladiny uváděné ve zprávách PILOT a TEMP, v nichž podle aerologických měření nabývá teplota vzduchu, relativní vlhkost vzduchu, směr a rychlost větru hodnot, významných pro sestrojení křivek vertikálního profilu teploty, vlhkosti vzduchu a větru. Za význačné hladiny teploty se v troposféře považují zejména dolní a horní hranice inverzí teploty, resp. izotermií v případě, že tlakový rozdíl mezi základnou a horní hranicí těchto vrstev je alespoň 20 hPa, nebo je-li vrstva charakterizována významnou změnou vlhkosti vzduchu. Výběr dalších význačných hladin u teploty a vlhkosti vzduchu se provádí tak, aby se rozdíl změřené teploty a vlhkosti vzduchu nelišil od profilu zkonstruovaného pomocí význačných hladin o více než 1 °C do výšky hladiny 300 hPa, nebo první tropopauzy, o 2 °C nad touto výškou a o 15 % rel. vlhkosti v celém rozsahu měření vlhkosti. Pro výběr význačných hladin větru jsou rozhodující odchylky od vert. průběhu změřené rychlosti a směru větru o více než 10° u směru a 5 m.s–1 u rychlosti větru. Za význačnou hladinu se považuje i tropopauza, hladina maximálního větru, počáteční a nejvyšší bod měření. Jestliže se vert. průběh měřeného prvku vynáší do termodynamického diagramu pomocí lomené čáry, označují se význačné hladiny často jako zlomové body, popř. „zlomy".
česky: hladiny význačné; slov: význačné hladiny; něm: signifikante Flächen f/pl; rus: характерные уровни  1993-a3
significant weather
česky: počasí význačné; slov: význačné počasie; něm: signifikantes Wetter n; rus: осoбыe явления погоды, характерная погода  1993-a1
significant weather chart
letecká povětrnostní mapa obsahující grafický popis význačného počasí pro letový provoz. Mapa význačného počasí pro letové hladiny mezi FL100-270 nebo nad FL270 označované SWM nebo SWH (Significant weather chart for Middle or High levels) obsahující hranice oblastí s význačným počasím, údaje o výšce základny význačných oblaků a jejich horní hranici, údaje o výšce tropopauzy, o vrstvách s výskytem námrazy a turbulence, o oblastech s výskytem tropických, písečných nebo prachových bouří, o poloze tryskového proudění (jet streamu) nebo o poloze vulkanických erupcí s vyznačením výraznosti příslušného jevu pomocí mezinárodně přijatých symbolů. Mapy význačného počasí jsou jedním ze základních materiálů letecké meteorologické dokumentace. Označují se jako SW mapy (Significant weather chart). Viz též jevy počasí význačné.
česky: mapa význačného počasí; slov: mapa význačného počasia; něm: Karte signifikanter Wettererscheinungen f; rus: карта опасных явлений погоды  1993-a3
significant weather phenomena
letecké meteorologii souborné označení pro následující jevy: bouřku, tropickou cyklonu, výrazné čáry instability, kroupy, mírnou a silnou turbulenci, mírnou a silnou námrazu na letadlech, významné závětrné vlny, rozsáhlé písečné nebo prachové bouře, namrzající déšť, popř. ledovku aj. Tyto jevy se někdy zkráceně označují jako význačné počasí. Viz též mapy význačného počasí, informace SIGMET, informace AIRMET, indikátory změny v přistávacích a letištních předpovědích.
česky: jevy počasí význačné; slov: význačné javy počasia; něm: signifikante Wettererscheinungen f/pl; rus: характерные явления погоды  1993-a3
Silurian
třetí geol. perioda paleozoika (prvohor) mezi ordovikem a devonem, zahrnující období před 444 – 419 mil. roků. Koncentrace kyslíku v atmosféře Země dosáhla několika procent, takže ozonová vrstva již byla natolik mocná, aby umožnila rostlinám kolonizovat souš.
V geologickém významu termín zavedl R. Murchison v r. 1835; pochází z názvu keltského kmene Silurů, obývajícího jihovýchodní Wales, kde jsou horniny z tohoho období časté.
česky: silur; slov: silur; něm: Silur n  2018
silvagenitus
označení jednoho ze zvláštních oblaků podle mezinárodní morfologické klasifikace oblaků. Označení zvláštního oblaku silvagenitus se vztahuje na oblaky, které se vyvíjejí lokálně nad lesním porostem jako výsledek zvýšení vlhkosti vzduchu v důsledku evapotranspirace z lesního porostu. Označují se názvem vhodného druhu, popř. tvaru, odrůdy a zvláštnosti, následovaného označením silvagenitus, např. stratus silvagenitus.
Termín se skládá z lat. silva „les“ a genitus „zrozený, vzniklý“ (z gignere „plodit, rodit“), tedy doslova „zrozený lesem“.
česky: silvagenitus; slov: silvagenitus; něm: silvagenitus  2018
similarity criteria
kritéria používaná při modelování proudění tekutin k zachování tzv. dynamické podobnosti, tzn. k zajištění toho, aby proudění na modelu mělo podobnou strukturu a geometrii jako odpovídající proudění v modelované skutečnosti. K vyjádření těchto kritérií se v hydrodynamice a aerodynamice používají různá bezrozměrná čísla, např. číslo Reynoldsovo, Froudovo, Machovo, Nusseltovo, Pecletovo, Prandtlovo, Richardsonovo, Rossbyho, Rayleighovo, Eckertovo, Schmidtovo, představující vzájemné poměry dvojic různých působících sil nebo toků veličin.
česky: kritéria podobnostní; slov: podobnostné kritéria; něm: Ähnlichkeitskriterium n  2014
similarity theory
ve fyzice mezní vrstvy atmosféry teorie turbulentního přenosu hybnosti, tepla a vodní páry, vypracovaná v 50. letech 20. století A. S. Moninem a A. M. Obuchovem. Používá se při studiu procesů v přízemní vrstvě atmosféry, někdy i v celé mezní vrstvě atmosféry. Je založena na aplikaci Obuchovovy délky L. Roli charakteristiky podobnosti má poměr z/L, kde z je výška nad rovinným zemským povrchem. Je-li hodnota tohoto poměru konstantní, zůstává např. zachován poměr mezi mech. a termickou produkcí kinetické energie, příslušející turbulentním fluktuacím rychlosti proudění. Viz též proudění turbulentní.
česky: teorie podobnosti Moninova–Obuchovova; slov: Moninova a Obuchovova teória podobnosti; něm: Ähnlichkeitstheorie f; rus: теория подобия  1993-b3
simm
syn. hakím – oblastní název pro silný a horký pouštní vítr (zpravidla záp. směru). Vyskytuje se v sev. Africe, v Palestině, Jordánsku, Sýrii a na Arabském poloostrově. Teplota vzduchu při samumu dosahuje až 55 °C a relativní vlhkost vzduchu klesá i pod 10 %. Jeho náhlý výskyt může vyvolat zdravotní potíže i úmrtí, neboť lidský organismus se nestačí vysoké teplotě tak rychle přizpůsobit. Maximum výskytu samumu připadá na jaro a časné léto.
Termín je přejat z arabského výrazu pro „jedovatý vítr“.
česky: samum; slov: sámum; něm: Samum m; rus: самум  1993-a1
simoom
syn. hakím – oblastní název pro silný a horký pouštní vítr (zpravidla záp. směru). Vyskytuje se v sev. Africe, v Palestině, Jordánsku, Sýrii a na Arabském poloostrově. Teplota vzduchu při samumu dosahuje až 55 °C a relativní vlhkost vzduchu klesá i pod 10 %. Jeho náhlý výskyt může vyvolat zdravotní potíže i úmrtí, neboť lidský organismus se nestačí vysoké teplotě tak rychle přizpůsobit. Maximum výskytu samumu připadá na jaro a časné léto.
Termín je přejat z arabského výrazu pro „jedovatý vítr“.
česky: samum; slov: sámum; něm: Samum m; rus: самум  1993-a1
single cell
zákl. jednotka ve struktuře konvektivní bouře. Zpravidla prochází třemi vývojovými stadii:
1. stadiem cumulu, kdy v cele převládá výstupný konvektivní proud vzduchu, který transportuje vlhký a teplý vzduch z přízemních hladin do výšky;
2. stadiem zralosti, kdy se v oblaku kromě výstupného proudu vyvíjí i sestupný konvektivní proud vzduchu s vypadávajícími srážkami;
3. stadiem rozpadu, kdy vtok vlhkého a teplého vzduchu i výstupný proud zaniká, sestupné pohyby převládají a způsobí rozpad cely. Typická doba trvání stadia cumulu je 10–15 min, typické trvání stadia zralosti je 15–30 min. Trvání stadia rozpadu je obtížné vymezit, protože zbytek kovadliny Cb může existovat v horních hladinách velmi dlouho, často ve formě vysoké oblačnosti. Viz též multicela, supercela.
Termín cela pochází z lat. cella „schránka, komůrka, buňka (medového plástu)“; jeho použití v meteorologii vychází z posledního uvedeného významu, viz cela otevřená, cela uzavřená.
česky: cela jednoduchá; slov: jednoduchá bunka (cela); něm: einzelne Zelle f; fr: orage ordinaire m, orage unicellulaire m, orage monocellulaire m  2014
single observer forecast
obvykle laický odhad budoucího počasí, který může být prováděn podle pozorování meteorologických prvků a jevů v daném místě nebo podle pozorování přírodních úkazů. Lidé žijící ve stálém styku s přírodou mohou někdy ze zvláštností průběhu počasí v určitém místě a na základě svých dlouhodobých zkušeností úspěšně odhadnout na krátkou dobu tamější budoucí počasí. Viz též počasí místní.
česky: předpověď počasí podle místního pozorování; slov: predpoveď počasia podľa miestneho pozorovania; něm: Wettervorhersage nach lokalen Beobachtungen f, Landewettervorhersage f; rus: прогноз по данным одного наблюдателя, прогноз по одной станции наблюдений  1993-a2
single station forecast
obvykle laický odhad budoucího počasí, který může být prováděn podle pozorování meteorologických prvků a jevů v daném místě nebo podle pozorování přírodních úkazů. Lidé žijící ve stálém styku s přírodou mohou někdy ze zvláštností průběhu počasí v určitém místě a na základě svých dlouhodobých zkušeností úspěšně odhadnout na krátkou dobu tamější budoucí počasí. Viz též počasí místní.
česky: předpověď počasí podle místního pozorování; slov: predpoveď počasia podľa miestneho pozorovania; něm: Wettervorhersage nach lokalen Beobachtungen f, Landewettervorhersage f; rus: прогноз по данным одного наблюдателя, прогноз по одной станции наблюдений  1993-a2
single-stroke lightning
blesk, který je tvořen jen jedním dílčím výbojem. Tento charakter má asi polovina všech blesků mezi oblakem a zemí, které mají zápornou polaritu. Blesky s kladnou polaritou bývají většinou jednoduché. Viz též blesk vícenásobný.
česky: blesk jednoduchý; slov: jednoduchý blesk; něm: Einfachblitz m; rus: единичный удар молнии  1993-b3
single-theodolite observation
pilotovací měření pomocí jednoho optického pilotovacího teodolitu. Poněvadž se vychází z předpokladu konstantní stoupací rychlosti balonu, lze jednopilotáž použít v případech, kdy se nepožaduje vysoká přesnost měření.
česky: jednopilotáž; slov: jednopilotáž  1993-a2
singularity
v původním významu odchylka od hladké (idealizované) křivky dlouhodobého ročního chodu meteorologického prvku, zvláště teploty vzduchu a množství srážek; tato odchylka má být patrná ještě při uvažování průměrů za 100 let. V tomto smyslu se tedy jedná o jev přesně vázaný na určité kalendářní období. V širším smyslu nazýváme singularitou poměrně pravidelnou odchylku od ročního chodu počasí, podmíněnou zvýšeným výskytem určitých povětrnostních situací v dané části roku a v některé geogr. oblasti (tedy syn. pro meteorologickou pravidelnost).
Ve stř. Evropě je nejvýraznější singularitou medardovské počasí, popř. ovčí chladna, o něco méně výraznou pak babí léto. Tzv.. ledoví muži, kteří patří k nejznámějším výkyvům v roč. průběhu počasí, se na křivkách prům. roč. chodu teploty vzduchu za víceleté období výrazněji neprojevují vzhledem k značně nepravidelnému nástupu v jednotlivých rocích. Tradovaná existence vánoční oblevy bývá v novějších pracích zpochybňována. Některé singularity jsou zachyceny v povětrnostních pranostikách.
 
Termín zavedl A. Schmauss v r. 1928. Pochází z pozdnělat. singularitas „jedinečnost“, odvozeného od přídavného jména singularis „jedinečný, jednotlivý“ (od singulus „jednotlivý“, srov. např. slovo singl).
česky: singularita; slov: singularita; něm: Singularität f; rus: особенность  1993-a3
sinking of horizon
syn. snížení horizontu – viz zvýšení obzoru.
česky: snížení obzoru; slov: zníženie obzoru; něm: Horizontdepression f; rus: депрессия горизонта, понижение горизонта  1993-a1
siphon
1. na jednom konci uzavřená skleněná trubice tvořící součást rtuťového tlakoměru zahnutá do tvaru písmene „U“, která má stejný průřez v místech, kde se pohybuje horní a dolní hladina rtuti. Viz též nádobka tlakoměru;
2. trubice tvořící součást plovákového ombrografu zahnutá do tvaru obráceného písmene „U“, která slouží k jednorázovému rychlému výtoku vody z plovákové komory, jakmile její hladina dosáhne nastavené úrovně.
česky: násoska; slov: násoska; něm: Saugheber m, Siphon m; rus: сифон  1993-a1
siphon barometer
rtuťový tlakoměr konstruovaný tak, že do nádobky zcela zaplněné rtutí jsou vzduchotěsně zapuštěny svými dolními konci barometrická trubice a na svém horním konci otevřená krátká skleněná trubice o stejném průřezu, v níž se při měření vytváří krátký sloupec rtuti. Výška rtuťového sloupce je dána rozdílem výšky hladiny rtuti v barometrické a krátké trubici. Nádobka má vždy pohyblivé dno, jímž se při měření nastaví horní hladina rtuťového sloupce v krátké trubici tak, aby splynula s nulovým bodem stupnice tlakoměru. Jako tlakoměr nádobkový–násoskový je konstruován tzv. kontrolní tlakoměr (Wildův–Fuessův). Vzhledem k tomu, že konstrukce nádobkového–násoskového tlakoměru prakticky odstraňuje vliv kapilární deprese na údaje tlaku vzduchu, má tento barometr vyšší přesnost než např. staniční tlakoměr, a proto se dříve často používal jako cestovní přístroj při kalibraci na met. stanicích. Viz též tlakoměr nádobkový.
česky: tlakoměr nádobkový–násoskový; slov: nádobkový-násoskový tlakomer; něm: Gefässheberbarometer n; rus: сифонный барометр  1993-a3
siphon barometer
syn. tlakoměr sifonový – rtuťový tlakoměr, v němž je jako barometrická trubice použita násoska, resp. jednoduchá U-trubice, eventuálně s krátkým a dlouhým ramenem, kde se musí číst polohy horní hladiny (v dlouhém rameni s vakuem nad touto hladinou) a dolní hladiny (v krátkém rameni otevřeném okolnímu tlaku). Délka rtuťového sloupce se stanoví jako rozdíl úrovně horní a dolní hladiny rtuti. Vzhledem k nižší přesnosti není příliš vhodný pro met. účely.
česky: tlakoměr násoskový; slov: násoskový tlakomer; něm: Heberbarometer n; rus: сифонный барометр  1993-a3
sirocco
[širokko] – v původním významu teplý již. nebo jv. vítr, vanoucí ze Sahary nad Sicílii a již. Itálii. V širším smyslu se jedná o pouštní vítr proudící ze Sahary nebo arabských pouští do oblasti Středozemního moře na přední straně cyklony postupující Středomořím k východu. Původně suchý a prašný vítr, který se nad mořem zvlhčuje, při dalším postupu na sever přináší mlhu a déšť (tzv. vlhký scirocco) a za horskými překážkami má ráz fénu. Suchý scirocco v zemích Předního východu má ráz katastrofálních suchovějů.
Termín byl přejat z it. scirocco „jihovýchodní vítr“, které pochází z arabštiny.
česky: scirocco; slov: scirocco; něm: Schirokko m, Scirocco m; rus: сирокко  1993-a2
situation Vb
[pět b] – povětrnostní situace charakterizovaná teplotně asymetrickou cyklonou, jejíž střed se přesouvá ze severní Itálie a Jaderského moře k severovýchodu po dráze cyklon Vb podle van Bebbera (1891). V ojedinělých případech se směr postupu cyklony mění na s. až sz., čímž se cyklona stává cyklonou retrográdní. Na frontálním rozhraní spojeném s touto cyklonou, které často probíhá nad územím ČR a vyznačuje se výrazným vertikálním střihem větru, mohou vypadávat dlouhotrvající intenzivní srážky zasahující území až několika desítek tisíc km2. Většina rekordních denních úhrnů srážek teplého pololetí byla zejména v horských a podhorských oblastech ČR pozorována v týlu cyklony při situaci Vb, viz extrémy atmosférických srážek. Tato situace vyvolává často velké povodně, např. v letech 1997 a 2002. Viz též cyklona janovská.
česky: situace Vb; slov: situácia Vb; něm: Wetterlage Vb f, Vb-Wetterlage f  1993-a2
Six thermometer
česky: teploměr maximo-minimální; slov: maximo-minimálny teplomer; něm: Minimum-Maximum-Thermometer n  1993-a1
Six thermometer
teploměr zkonstruovaný J. Sixem pro měření jak maximální, tak i minimální teploty vzduchu ve zvoleném časovém intervalu, obvykle 24 hodin. Teploměr je plněný dvěma kapalinami, lihem a rtutí. Má dvě stupnice, které obě ukazují aktuální teplotu. Extrémní teploty udávají dvě skleněné tyčinky se zatavenými drátky (indexy), které se pohybují v ramenech trubice ve tvaru písmene U, ve spodní části vyplněné rtutí. V důsledku změny objemu teploměrné kapaliny se mění poloha obou menisků rtuti, a tím i poloha indexů. Nastavení přístroje k měření se provádí pomocí magnetu, kterým se stahují indexy na hladinu rtuti. Sloužil původně jako staniční přístroj pro měření denních extrémů teploty vzduchu a byl umísťován v meteorologické budce. V současné době se pro svou menší přesnost na met. stanicích již nepoužívá.
česky: teploměr Sixův; slov: Sixov teplomer; něm: Six-Thermometer n; rus: термометр Сикса  1993-a3
size distribution of cloud droplets
syn. spektrum velikosti oblačných kapek – vyjádření závislosti koncentrace oblačných kapek na jejich velikosti. Měření v oblacích a v mlhách ukazují, že koncentrace oblačných kapek zpravidla prudce roste k maximální hodnotě a pozvolna klesá směrem k větším velikostem kapek. Byla však zjištěna i spektra bimodální. Typický tvar rozdělení velikosti oblačných kapek lze vystihnout pomocí logaritmicko-normálního rozdělení nebo rozdělení gama ve tvaru:
f(r)=Arα exp(-Brβ),
kde r je poloměr kapky a f(r)dr udává počet kapek o poloměru v intervalu <r, r + dr). Parametry A, B, α, β můžeme vyjádřit pomocí momentů funkce f(r) a bimodální tvar rozdělení lze vystihnout superpozicí dvou monomodálních rozdělení. Často používaným příkladem rozdělení velikosti oblačných kapek je Chrgianovo-Mazinovo rozdělení. Analytické vyjádření rozdělení velikosti oblačných kapek reprezentuje střední rozdělení, přičemž rozdělení měřená v oblacích a mlhách se mohou vzájemně i od analytického vyjádření značně lišit. Viz též rozdělení velikosti dešťových kapek, oblačná voda.
česky: rozdělení velikosti oblačných kapek; něm: Größenverteilung von Wolkentropfen f; rus: распределение по размерам облачных капель  2019
Skagerrak cyclone
cyklona, vznikající v důsledku orografické cyklogeneze v závětří Skandinávského pohoří při sz. proudění.
česky: cyklona skagerrakská; slov: skagerrakská cyklóna; něm: Skagerrak-Zyklone f; fr: dépression de Skagerrak f; rus: скагерракский циклон  1993-a3
skew T-log p diagram
[skjú tý] – v odb. slangu označení pro zkosený diagram.
česky: diagram skew-T; slov: skew-T diagram; rus: косоугольная аэрологическая диаграмма, эмаграмма в косоугольной системе координат  2019
skew T-log p diagram
varianta emagramu, jehož souřadnicové osy T, –log p jsou kosoúhlé (T je teplota vzduchu, p tlak vzduchu). Izobary zůstávají vodorovné, izotermy jsou však vůči vertikálám pootočeny nejčastěji o 45° ve směru pohybu hodinových ručiček, aby byly lépe znázorněny plochy mezi jednotlivými křivkami na diagramu. Zkosený diagram je vhodný např. pro grafické vyjádření velikosti CAPE a CIN. Zkosení izoterem navrhl v r. 1947 N. Herlofson (1947), proto byl zkosený diagram ve starší literatuře označován jako Herlofsonův diagram. V současném odb. slangu se běžně používá anglické označení skew-T diagram.
česky: diagram zkosený; slov: skosený diagram; rus: косоугольная аэрологическая диаграмма, эмаграмма в косоугольной системе координат  2019
skew-T diagram
[skjú tý] – v odb. slangu označení pro zkosený diagram.
česky: diagram skew-T; slov: skew-T diagram; rus: косоугольная аэрологическая диаграмма, эмаграмма в косоугольной системе координат  2019
skew-T diagram
varianta emagramu, jehož souřadnicové osy T, –log p jsou kosoúhlé (T je teplota vzduchu, p tlak vzduchu). Izobary zůstávají vodorovné, izotermy jsou však vůči vertikálám pootočeny nejčastěji o 45° ve směru pohybu hodinových ručiček, aby byly lépe znázorněny plochy mezi jednotlivými křivkami na diagramu. Zkosený diagram je vhodný např. pro grafické vyjádření velikosti CAPE a CIN. Zkosení izoterem navrhl v r. 1947 N. Herlofson (1947), proto byl zkosený diagram ve starší literatuře označován jako Herlofsonův diagram. V současném odb. slangu se běžně používá anglické označení skew-T diagram.
česky: diagram zkosený; slov: skosený diagram; rus: косоугольная аэрологическая диаграмма, эмаграмма в косоугольной системе координат  2019
sky
1. v astronomii část nebeské sféry, která se v dané části roku a případně i fázi dne nachází nad astronomickým obzorem;
2. v meteorologii označení pro obzorem ohraničený prostor nad zemským povrchem, kde mohou být pozorovány meteorologické jevy. Obloha může být zcela nebo částečně pokryta oblačností, případně ovlivněna zakalením atmosféry. Během světlého dne se bezoblačná část oblohy vlivem molekulárního rozptylu vyznačuje modří oblohy, která při soumraku přechází do soumrakových barev. Během jasné noci se oblohou rozumí viditelná část nebeské sféry. V případě výrazného snížení dohlednosti, např. vlivem mlhy, nelze oblohu rozeznat. Viz též světlo oblohy, svit oblohy přirozený, znečištění světelné.
Termín je odvozen od slovesa „obložit“, doslova tedy znamená „to, čím jsme obloženi“.
česky: obloha; slov: obloha; něm: Himmelsgewölbe n, Firmament n  2016
Sky Condition Algorithm
část softwarové výbavy ceilometrů, která používá časovou sérii měření ceilometru k výpočtu pokrytí oblohy oblaky a výšky vrstev oblaků. Informace o stavu oblohy jsou pravidelně aktualizovány v minutových intervalech, přičemž se vychází z dat naměřených v průběhu posledních 30 minut. Algoritmus podává informace až o čtyřech vrstvách oblaků. Odrazy z jednotlivých měření jsou podle jejich výšky přiřazeny k jednotlivým vrstvám, podle počtu odrazů v určitých výškách je odhadnuto množství oblačnosti v dané vrstvě. Přímý překlad do češtiny se nepoužívá.
česky: Sky Condition Algorithm; slov: Sky Condition Algorithm  2016
sky radiation
syn. záření difuzní, záření oblohy rozptýlené – krátkovlnné záření směřující dolů, dopadající na vodorovnou plochu z prostorového úhlu 2π po odstínění přímého slunečního záření, tj. po zakrytí slunečního disku. Vzniká rozptylem slunečního záření na molekulách vzduchu a na částicích atmosférického aerosolu, např. na vodních kapičkách, ledových krystalcích, různých prachových částicích apod. Nejsilnější rozptýlené sluneční záření přichází z úseku oblohy o šířce několika úhlových stupňů okolo slunečního disku a nazývá se cirkumsolární záření. Protože velikost rozptylu slunečního záření molekulami vzduchu je úměrná převrácené hodnotě čtvrté mocniny vlnové délky, je rozptýlené sluneční záření ve viditelné oblasti bohaté na světlo fialové a modré barvy, čímž se vysvětluje modrá barva oblohy. Rozptyl slunečního záření na větších částicích je však k vlnové délce neutrální, o čemž svědčí bílá barva ozářených oblaků. Vlnové délky rozptýleného slunečního záření se pohybují v rozmezí asi 0,2 až 10 µm. Za jasné oblohy při výškách Slunce větších než 30° nad obzorem roste intenzita rozptýleného slunečního záření v závislosti na zakalení atmosféry od 0,07 asi až do 0,24 kW.m–2. Při oblačném počasí dosahuje ve stř. zeměp. šířkách max. intenzity asi 0,5 kW.m–2, v polárních oblastech při současném výskytu sněhové pokrývky a tenké vrstvy oblaků dokonce až 0,7 kW.m–2. Měří se difuzometry.
 
česky: záření sluneční rozptýlené; slov: rozptýlené slnečné žiarenie; něm: gestreute Sonnenstrahlung f; rus: рассеянная солнечная радиация  1993-a1
skylight
opticky (fotometricky) hodnocený tok elektromagnetického záření ve viditelném oboru vlnových délek směřující do oka pozorovatele nebo na čidlo měřicího přístroje z různých úseků oblohy ve dne mimo sluneční disk, v noci mimo disk Měsíce. V denních hodinách v tomto případě zcela dominuje viditelné rozptýlené sluneční záření. V noci se uplatňuje rozptýlené měsíční světlo, světlo hvězd, zvířetníkové světlo, přirozený svit oblohy, osvícení oblohy v důsledku světelného znečištění, v době soumraku rozptýlené sluneční světlo z příslušných částí oblohy apod.
česky: světlo oblohy; slov: svetlo oblohy; něm: Himmelsstrahlung f; rus: свечение неба  2015
skypunch
(z angl. cloud hole) – kruhová nebo eliptická bezoblačná mezera, v jejímž středu může být patrná virga. Jev byl identifikován v oblacích altocumulus nebo cirrocumulus, v nichž se mohou vyskytnout přechlazené vodní kapky, které nemrznou vzhledem k nedostatku ledových jader. Na družicových snímcích byl zaznamenán i v oblacích druhu altostratus či cirrostratus. Náhlý vzrůst koncentrace ledových jader může vyvolat vznik drobných ledových krystalků a jejich růst na úkor vypařujícich se kapek. Vypadávání krystalů může vytvořit virgu. Ke zvýšení koncentrace aktivních ledových jader nebo náhlému zmrznutí malých přechlazených kapek může dojít turbulencí a poklesem tlaku při průletu letadla. Jde o velmi řídký jev, který je však při svém výskytu na obloze jasně patrný a bývá občas nesprávně interpretován. Morfologicky byl jev zařazen v roce 2017 do kategorie zvláštnosti oblaků pod označením cavum. Viz též teorie vzniku srážek Bergeronova–Findeisenova, pruh rozpadový.
česky: díra oblačná průletová; slov: preletová oblačná diera; něm: Wolkenlücke f, Wolkenloch n; fr: trou de virga m  2014
slant visibility, oblique visibility
dohlednost ve směru odkloněném o určitý ostrý úhel od horiz. roviny. V letecké meteorologii se určuje z vyvýšeného bodu směrem k zemskému povrchu jako vzdálenost k nejdále viditelnému bodu na zemi. Šikmá dohlednost pozorovaná z kabiny letícího letadla ve směru přistání v závěrečné fázi letu je přistávací dohlednost. Šikmá dohlednost pozorovaná z letištní budovy Řízení letového provozu je věžová dohlednost.
česky: dohlednost šikmá; slov: šikmá dohľadnosť; něm: Schrägsicht f; fr: visibilité oblique f; rus: косая видимость  1993-b3
slantwise convection
zvláštní druh konvekce, k níž dochází při výstupu vzduchu v šikmém směru v prostředí symetrické nstability.
česky: konvekce šikmá; slov: šikmá konvekcia  2014
sleet
obecné označení pro počasí nepříznivé pro pobyt venku, vyznačující se padáním sněhu s deštěm, často za silnějšího nárazovitého větru. Nemá charakter odborného termínu.
Slovo vzniklo jako zvukomalebné označení, připomínající pleskání dešťových kapek.
česky: plískanice; slov: čľapkanica; něm: Schlackerwetter n, Matschwetter n; rus: мокрый снег, слякоть  1993-a2
slice method
metoda hodnocení stability teplotního zvrstvení ovzduší v horiz. vrstvě atmosféry o jednotkové tloušťce, kterou současně procházejí výstupné i kompenzující sestupné proudy. Metoda předpokládá, že hmotnosti vystupujícího a sestupujícího vzduchu jsou si rovny, změny teploty ve vystupujícím vzduchu probíhají podle nasycené adiabaty a v sestupujícím vzduchu přibližně podle suché adiabaty. Zahrnutí sestupných proudů způsobuje, že ve srovnání s metodou částice se zmenšuje rozdíl teploty mezi vystupujícím vzduchem a vzduchem v jeho okolí. Odhad horní hladiny konvekce stanovený metodou vrstvy obvykle lépe odpovídá skutečnosti než výsledek metody částice. Metoda vrstvy však vyžaduje odhad nebo znalost poměru plošného rozsahu výstupných a sestupných proudů. Nutnost znát tento parametr způsobuje, že provozní použití metody vrstvy není obvyklé. Viz též metoda vtahování.
česky: metoda vrstvy; slov: metóda vrstvy; něm: Schichtmethode f; rus: метод слоя  1993-a3
sling thermometer
skleněný teploměr upevněný na provázku, řetízku nebo v držadle. Při měření jím pozorovatel otáčí tak, aby dosáhl dostatečné ventilace nádobky, tj. rychlosti pohybu větší než 2 m.s–1. Používal se jako předchůdce aspiračního psychrometru k měření teploty vzduchu mimo meteorologickou budku.
  1993-a1
slope of a front
úhel, který svírá frontální plocha s horiz. rovinou vedenou ve zvolené výšce. Ve volné atmosféře je tangens sklonu atmosférické fronty řádově roven 1/300 až 1/100, v extrémních případech dosahuje hodnot až 1/50. Sklon stacionární fronty se určuje podle Margulesovy rovnice. Viz též profil atmosférické fronty.
česky: sklon atmosférické fronty; slov: sklon atmosférického frontu; něm: Neigung der Frontfläche f; rus: наклон фронта  1993-a3
slope of isobaric surface
úhel mezi izobarickou plochou a vodorovnou rovinou. Je obvykle udáván tangentou tohoto úhlu:
tgβ=λgvg,
kde λ je Coriolisův parametr, g velikost tíhového zrychlení a vg rychlost geostrofického větru. V reálných atm. podmínkách je tato tangenta řádově rovná 10–5 až 10–4, což odpovídá jednotkám až desítkám úhlových vteřin.
česky: sklon izobarické plochy; slov: sklon izobarickej plochy; něm: Neigung der Isobarenfläche f; rus: наклон изобарической поверхности  1993-a1
slope wind
vítr místní cirkulace s denní periodicitou na svazích horských hřebenů, kopců apod. Ve dne se vzduch nad osluněnými svahy ohřívá a stoupá ve formě anabatického větru, dále od svahu pak zpravidla existují kompenzující sestupy vzduchu. Pokud stoupající vzduch dosáhne konvektivní kondenzační hladiny, začnou se tvořit orografické oblaky. Naopak v noci při intenzívním radiačním ochlazování svahů stéká vzduch do nižších poloh jako vítr katabatický. V údolích se kromě svahového větru uplatňuje i horský a údolní vítr. Viz též klima svahové.
česky: vítr svahový; slov: svahový vietor; něm: Hangwind m; rus: ветер склонов  1993-a3
Slovak Bioclimatological Society
(SBkS) – vědecká společnost sdružující zájemce o bioklimatologii v SR, popř. čestné členy ze zahraničí. SBkS vznikla v listopadu 1968 vyčleněním z Československé bioklimatologické společnosti při ČSAV v souladu se zákonem o čs. federaci. Jejím prvním předsedou byl prof. MUDr. Juraj Hensel. Její náplní je vědecká činnost, výměna informací mezi pracovníky z různých pracovišť a popularizace bioklimatologie.
česky: Slovenská bioklimatologická spoločnosť; slov: Slovenská bioklimatologická spoločnosť; něm: Slowakische bioklimatologische Gesellschaft f  1993-a3
Slovak Hydrometeorological Institute
(SHMÚ) – specializovaná organizace Ministerstva životního prostředí Slovenské republiky, vykonávající hydrologickou a meteorologickou službu na národní i mezinárodní úrovni; řídí se především zákonem 201/2009 Sb. o státní hydrologické službě a meteorologické službě. Monitoruje množství a jakost ovzduší a vod na území SR, archivuje, kontroluje, hodnotí a interpretuje data a informace o stavu a režimu atmosféry a hydrosféry, vytváří předpovědi a výstrahy. Provozuje Státní meteorologickou síť a Státní hydrologickou síť, síť na měření dávkového příkonu gama záření, dále provozuje meteorologické radary a sondážní aerologická měření ve vyšších vrstvách atmosféry. Poskytuje informace o počasí, klimatu a hydrologické situaci, vodních zdrojích a radioaktivitě životního prostředí. Vytváří a distribuuje předpovědi a výstrahy na nebezpečné hydrometeorologické situace, smog, ozon a radioaktivním zamoření pro vládu SR, státní správu a samosprávu, krizové řízení, veřejnost a další uživatele. Sleduje vývoj klimatického systému, koordinuje národní programy monitorování ovzduší a vod, poskytuje informace pro civilní letectví a Armádu SR. SHMÚ se podílí na výzkumu a vývoji a spolupracuje s vysokými školami na výchově odborníků. Je členem nebo zabezpečuje členství v mezinárodních organizacích: Světová meteorologická organizace (WMO), Evropská organizace pro využívání meteorologických družic (EUMETSAT), Evropské centrum pro střednědobé předpovědi počasí (ECMWF), Mezinárodní organizace pro civilní letectví (ICAO).
SHMÚ je pověřen výkonem funkce Regionálního instrumentálního centra WMO (ROC), dočasně provozuje regionální kancelář Mezinárodního centra pro hodnocení vod (IWAC) a zabezpečuje činnost regionální kanceláře Globálního partnerství v oblasti vod (GWP). Viz též meteorologie v ČR.
česky: Slovenský hydrometeorologický ústav; slov: Slovenský hydrometeorologický ústav; něm: Slowakisches hydrometeorologisches Institut n  1993-a3
Slovak Meteorological Society
(SMS) – vědecká společnost, sdružující zájemce o meteorologii na Slovensku, popř. čestné členy ze zahraničí. SMS vznikla v roce 1960 jako součást Československé meteorologické společnosti při ČSAV, jejím prvním předsedou byl prof. RNDr. Mikuláš Konček, DrSc., člen korespondent ČSAV a SAV. Samostatnou společností se stala stejně jako ČMeS v roce 1993. Sídlí v Bratislavě v sídle SHMÚ; další pobočky v Banské Bystrici a v Košicích zanikly. Náplní činnosti SMS je především výměna informací mezi pracovníky z různých pracovišť a popularizace meteorologie.
česky: Slovenská meteorologická spoločnosť; slov: Slovenská meteorologická spoločnosť; něm: Slowakische meteorologische Gesellschaft f  1993-a3
slowly moving cold front
studená fronta s výstupnými pohyby teplého vzduchu podél frontální plochy v celém jejím výškovém rozsahu. Je anafrontou a její oblačný systém je tvořen zpravidla oblaky druhu cumulonimbus přecházejícími v druhy nimbostratus, altostratus a cirrostratus. Srážkové pásmo studené fronty prvního druhu bývá široké 300 až 400 km a vyskytuje se za frontální čárou. Srážky na čele fronty mají charakter přeháněk, dále za frontou přecházejí v trvalé srážky. Tato fronta se pohybuje zpravidla pomaleji než studená fronta druhého druhu.
česky: fronta studená prvního druhu; slov: studený front prvého druhu; něm: Kaltfront 1. Art f; fr: front froid principal m; rus: холодный фронт первого рода  1993-a1
small hail
viz krupky.
česky: krupky námrazové; slov: námrazové krúpky; něm: kleiner Hagel m; rus: ледяная крупа  1993-a3
small hail
srážky složené z průsvitných ledových částic převážně kulového, zřídka též kuželovitého tvaru o ekvivalentním průměru do 5 mm. Krupky se vyskytují výhradně v přeháňkách. V konvektivních oblacích mohou krupky tvořit kroupové zárodky. V literatuře se setkáváme i s označením krupky námrazové pro odlišení od neprůsvitných srážkových částic označených jako krupky sněhové.
Termín je zdrobnělinou slova kroupy.
česky: krupky; slov: krúpky; něm: Graupel f; rus: ледяная крупа, небольшой град  1993-a3
small halo
syn. halo malé – ve starší české literatuře někdy užíváno jako synonymum pro korónu.
česky: kolo malé; slov: halo 22°; něm: 22°-Ring m, kleiner Ring m; rus: гало в 22°, малое гало  1993-a3
small halo
syn. halo 22°, kolo malé – fotometeor, projevující se jako bělavý nebo duhově zbarvený světelný kruh kolem zdroje světla (Slunce nebo Měsíce) v úhlové vzdálenosti 22°. Vnitřní strana má červený, vnější fialový nádech. Plocha uvnitř kruhu se jeví poněkud tmavší než okolní obloha. Patří k častým halovým jevům. Vzniká dvojitým lomem světelných paprsků na šestibokých hranolcích ledových krystalků, kdy paprsek do krystalku vstupuje i z něho vystupuje stěnami pláště, tzn. že jde o lom na hranolu s lámavým úhlem 60°. V české literatuře se jako synonymum někdy vyskytuje malé kolo, z čehož však mohou vznikat nedorozumění, neboť do vydání české verze Mezinárodního atlasu oblaků v r. 1965 se termínem malé kolo rozuměla koróna, zatímco velké kolo se používalo jak pro velké halo, tak pro malé halo.
česky: halo malé; slov: malé halo; něm: kleiner Ring m, 22°-Ring m; fr: petit halo m, halo de 22° m; rus: гало в 22°, малое гало  1993-a3
small ion
česky: iont lehký; slov: ľahký ión; něm: leichtes Ion n; rus: легкий ион  1993-a1
smog
v současnosti obecně užívané označení pro různé druhy silného znečištění ovzduší nad rozsáhlejším územím, hlavně nad velkoměsty. Různé druhy smogu jsou tvořeny složitým komplexem látek, z nichž některé se v ovzduší účastní chem. reakcí, takže složení smogu není konstantní. V původním smyslu byla termínem smog označována směs kouře a mlhy, vytvářející redukční smog, též označovaný jako londýnský nebo zimní. Druhým hlavním typem smogu je oxidační smog, nazývaný také fotochemický, losangeleský, kalifornský či letní. Viz též Smogový varovný a regulační systém.
Termín zavedl brit. zdravotník H. A. des Vœux v r. 1905. Je složeninou angl. slov smoke „kouř“ a fog „mlha“.
česky: smog; slov: smog; něm: Smog m; rus: смог  1993-a3
smoke
produkty hoření látek všech skupenství rozptýlené ve vzduchu. Částice kouře mají různou velikost i fyz. a chem. vlastnosti. Pevné složky kouře jsou jedním z litometeorů. Viz též vlečka kouřová.
Termín pochází z praslovanského slova *kuriti, které se do jiných jazyků přeneslo ve významu „topit“.
česky: kouř; slov: dym; něm: Rauch m; rus: дым  1993-a3
smoke blanket
viditelná vrstva znečištěného vzduchu nad velkými městy a průmyslovými oblastmi, často s ostrou horní hranicí. Tvar i výška kouřové čepice závisejí především na charakteru počasí a denní době. Viz též zákal průmyslový.
česky: čepice kouřová; slov: dymová čiapka; něm: Rauchwolke f; fr: nuage de pollution m; rus: дымовая шапка  1993-a1
smoke plume
prostorový útvar v ovzduší obsahující kouř a další znečišťující látky souvisle emitované z jednotlivého zdroje znečišťování ovzduší nebo skupiny zdrojů. Délka i tvar kouřové vlečky jsou podmíněny met. podmínkami pro šíření a rozptyl příměsí v ovzduší. Viz též tvar kouřové vlečky, emise, vznos kouřové vlečky, stupnice Ringelmannova.
česky: vlečka kouřová; slov: dymová vlečka; něm: Rauchfahne f; rus: дымовой факел  1993-a3
snow
tuhé padající srážky skládající se z ledových krystalků, které jsou často hvězdicovitě uspořádány a agregovány do sněhových vloček. Vypadávání sněhu se označuje jako sněžení. Pokud k němu dochází při teplotě vzduchu vyšší než 0 °C, mívá charakter mokrého sněhu nebo deště se sněhem. Po dopadu na zemský povrch s teplotou pod 0 °C dochází k akumulaci sněhu ve sněhové pokrývce. Viz též čára sněžná, chionosféra, bouře sněhová, sníh zvířený.
Slovo obsahuje indoevr. kořen s původním významem „co se lepí“; srov. též angl. snow či něm. Schnee.
česky: sníh; slov: sneh; něm: Schnee m; rus: снег  1993-a3
snow avalanche
rychlý sesuv sněhu a ledu o minimálním objemu 100 m3 po dráze delší než 50 m. Menší sesuvy označujeme jako sněhové splazy. Dochází k němu za určitých meteorologických a topografických podmínek. Z met. podmínek patří mezi nejdůležitější intenzita a trvání sněžení, teplota vzduchu a větrné poměry, k topografickým podmínkám sklon a expozice svahu. Uvedené podmínky určují stabilitu sněhového profilu, tedy rozložení vrstev sněhové pokrývky, jejich strukturu a mech. a fyz. vlastnosti, důležité pro zachování rovnovážného stavu. Narušení rovnováhy vyvolává pohyb sněhových vrstev, které se vzájemně liší morfologicky a geneticky. Laviny dělíme podle tvaru dráhy na plošné a žlabové; podle formy odtrhu na laviny s čárovým odtrhem (deskové) a laviny s bodovým odtrhem; podle skluzného horizontu na povrchové a základové; podle vlhkosti sněhu v pásmu odtrhu na laviny ze suchého sněhu či laviny z mokrého sněhu; podle příčin vzniku na laviny samovolné a uměle vyvolané. K ochraně proti sněhovým lavinám se v současnosti stavějí na lavinových svazích lavinové zábrany v podobě zátarasů z betonu a oceli (pasivní ochrana). V případě, že lavina ohrožuje silnice, obydlí, turistické trasy či například sjezdovky, připraví specialisté řízený odstřel (aktivní ochrana). Při vstupu do lavinových katastrů se doporučuje základní lavinové vybavení (lavinový vyhledávač, sonda a lopata). Stupně lavinového nebezpečí (1. až 5.) vyhlašuje v ČR Horská služba na základě analýzy sněhového profilu. Lavinové katastry v ČR jsou v Krkonoších a Jeseníkách. Viz též vítr lavinový.
česky: lavina sněhová; slov: snehová lavína; něm: Schneelawine f; rus: снежная лавина  1993-a3
snow board
dřevěná deska o rozměrech 30 × 30 cm, která slouží k určování výšky nového sněhu, což je výška sněhové vrstvy, která se na sněhoměrném prkénku vytvořila od posledního pozorovacího termínu. Výška nového sněhu se měří v místě pokud možno nerušeném větrem. Od sněhu očištěné prkénko se položí na sněhovou vrstvu a lehce zatlačí tak, aby jeho horní plocha byla ve stejné úrovni se sněhovou pokrývkou. Neleží-li na stanici souvislá sněhová pokrývka, klade se prkénko přímo na půdu. Místo, kde je prkénko položeno, je vhodné označit hůlkou. Viz též měření sněhové pokrývky.
česky: prkénko sněhoměrné; slov: snehomerná doštička; něm: Schneebrett n  1993-a3
snow climate
Köppenově klasifikaci klimatu nejchladnější klimatické pásmo, označené písmenem E. Prům. měs. teplota vzduchu v nejteplejším měsíci nedosahuje 10 °C, což brání vývoji lesa. Typickým znakem je permafrost. Sněhové klima se dělí do dvou klimatických typů: klima tundry (ET) a klima trvalého mrazu (EF). V Alisovově klasifikaci klimatu mu přibližně odpovídá arktické klima a antarktické klima. Viz též klima nivální.
česky: klima sněhové; slov: snehová klíma; něm: Schneeklima n; rus: снежный климат  1993-b3
snow cover
vrstva sněhu nebo ledu, která přímo nebo nepřímo vznikla v důsledku tuhých srážek. Tento termín se vztahuje jak na celkovou sněhovou pokrývku, tak na nový sníh. Viz též měření sněhové pokrývky, hodnota sněhové pokrývky vodní, hustota sněhu, den se sněhovou pokrývkou.
česky: pokrývka sněhová; slov: snehová pokrývka; něm: Schneedecke f; rus: снежный покров  1993-a3
snow cover not continuous
sněhová pokrývka, která pokrývá méně než polovinu plochy reprezentativního okolí stanice. Výška nesouvislé sněhové pokrývky se neměří.
česky: pokrývka sněhová nesouvislá; slov: nesúvislá snehová pokrývka; něm: durchbrochene Schneedecke f  2014
snow crystal
v meteorologii nevhodné označení pro ledový krystalek.
česky: krystalek sněhový; slov: snehový kryštál; něm: Schneekristall m; rus: снежный кристалл  1993-b3
snow crystal shape
vlastnost ledových krystalků ovlivňovaná podmínkami při jejich vzniku a růstu v oblacích a ve srážkách. Při obvyklých hodnotách tlaku vzduchu v atmosféře a při teplotě 0 °C až –80 °C krystalizuje led v hexagonální krystalografické soustavě. Šesterečná symetrie souvisí s uspořádáním molekul vody v krystalové mřížce ledu. Základním stabilním tvarem ledového krystalku je tedy hranol se dvěma základnami ve tvaru šestiúhelníku a šesti bočními stěnami. Šikmé stěny, které lze někdy na krystalcích rozeznat, nejsou stabilní a při dalším růstu mizí. V atmosféře se setkáváme s velkou variabilitou rozměrů tohoto základního tvaru, přičemž se může měnit poměr rozměru základny a výšky hranolu a může docházet i ke vzniku členitých šesterečných hvězdic či dendritů a kombinovaných tvarů. Konkrétní tvar ledového krystalku je určen především teplotou vzduchu a v menší míře i přesycením vodní páry vzhledem k ledu v prostředí, kde se ledový krystal vyvíjí. Variabilita tvarů ledových krystalků byla popsána na základě laboratorního sledování a potvrzena i při odběrech přirozených ledových krystalů ve sněhu. Základními tvary ledových krystalků v atmosféře jsou ledová jehla, šestiboký sloupek, šestiboká destička a šesticípá hvězdice, popř. dendrit. Někdy se do základních tvarů zahrnují i krystalky ve tvaru projektilu s nestabilním šikmým ukončením. Působením turbulence, agregací krystalků při jejich vzájemných srážkách, namrzáním přechlazených vodních kapek na stěnách krystalku apod. vzniká v přírodě i velké množství kombinovaných tvarů.
Bylo sestaveno několik klasifikací tvarů ledových krystalků, přičemž nejčastěji užívaná je klasifikace japonských autorů Ch. Magona a Ch. W. Lee z roku 1966, která definuje 80 kategorií tvaru a zahrnuje i tvary kombinované a narušené. Tato klasifikace byla modifikována a rozšířena skupinou autorů vedených K. Kikuchim (2013) v rámci činnosti pracovní skupiny IACS (International Association of Classification Societies). Klasifikace třídí ledové krystalky i další pevné srážkové částice již do 121 tříd. Viz též vločka sněhová.
česky: tvar ledových krystalků; slov: tvar ľadových kryštálikov; něm: Eiskristallform f; rus: форма ледяных кристаллов  1993-a3
snow day
den se srážkami, v němž bylo pozorováno sněžení, případně padaly sněhově krupky, sněhová zrna, zmrzlý déšť nebo krupky, ledové jehličky nebo sníh s deštěm. V některých zemích (např. v Německu) je definice zúžena na dny, kdy se vyskytly výlučně tuhé srážky, přičemž denní úhrn srážek dosáhl určitého minimálního prahu (např. 0,1 mm).
česky: den se sněžením; slov: deň so snežením; něm: Schneetag m; fr: jour de neige m; rus: день со снегопадом, день со снегом  1993-a3
snow density
hmotnost objemové jednotky sněhové pokrývky vyjádřená v kg.m–3, případně v poměru k hustotě vody. Hustota nově napadlého sněhu se pohybuje v závislosti na teplotě vzduchu a rychlosti  větru od 50 do 150 kg.m–3, hustota starého sněhu často přesahuje 400 kg.m–3. Viz též firn.
česky: hustota sněhu; slov: hustota snehu; něm: Schneedichte f; rus: плотность снега  1993-a3
snow depth
česky: výška sněhové pokrývky; slov: výška snehovej pokrývky; něm: Höhe der Schneedecke f, Schneehöhe f; rus: высота снежного покрова  1993-a3
snow devil
malá a slabá tromba vznikající jen zřídka nad sněhovou pokrývkou, a to v důsledku přízemního horizontálního střihu větru. Podle Mezinárodního atlasu oblaků patří sněhový vír mezi hydrometeory.
česky: vír sněhový; slov: snehový vír  2020
snow gauge
přístroj na měření vodní hodnoty sněhové pokrývky a výšky celkové sněhové pokrývky. Používají se tyto základní metody měření:
1. Vodní hodnota sněhové pokrývky:
a) Vzorek sněhu se váží – používá se tzv. sněhoměr váhový, což je základní přístroj používaný v ČR na profesionálních stanicích, popř. na vybraných klimatologických stanicích, nebo polštář sněhový.
b) Odebraný vzorek se nechá roztát a změří se stejně jako kapalné srážky. V ČR se běžně používala nádoba srážkoměru a k ní příslušná skleněná odměrka.
2. Výška celkové sněhové pokrývky:
a) Používá se sněhoměrná tyč nebo lať.
b) Měření automatickými sněhoměry, v nichž se využívá odrazu nebo útlumu vyslaného paprsku (ultrasonická čidla, radioaktivní sněhoměry (gama zářiče), laserové senzory).
česky: sněhoměr; slov: snehomer; něm: Schneemesser m; rus: снегомер, снегоотборник  1993-b3
snow grains
jeden z hydrometeorů. Je to srážka složená z velmi malých bílých a neprůhledných zrnek ledu, která jsou obvykle zploštělá nebo podlouhlá a mají průměr menší než 1 mm. Při dopadu na tvrdou půdu neodskakují ani se netříští. Obyčejně padají ve velmi malých množstvích, nejčastěji z oblaků druhu stratus nebo z mlhy, nikdy však v přeháňce. Před vydáním Mezinárodního atlasu oblaků se tento druh srážek nazýval „krupice“.
česky: zrna sněhová; slov: snehové zrná; něm: Schneegriesel m; rus: снежные зерна  1993-a2
snow inversion
přízemní inverze teploty vzduchu, jež vzniká zpravidla při advekci relativně teplého vzduchu nad zemský povrch s tající sněhovou pokrývkou v důsledku spotřeby tepla na tání sněhu. Je typickým příkladem přízemní advekční inverze teploty vzduchu.
česky: inverze teploty vzduchu sněhová; slov: snehová inverzia teploty vzduchu; něm: Schneeinversion f; rus: снежная инверсия  1993-a3
snow line
hranice vymezující území s celoročně možným výskytem sněhové pokrývky. Na sněžné čáře existuje rovnováha mezi přírůstkem spadlých tuhých srážek a úbytkem sněhové pokrývky během roku. Existuje dolní a horní sněžná čára. Pod dolní sněžnou čarou se sněhová pokrývka celoročně neudrží z teplotních příčin, nad horní sněžnou čarou, kde je množství srážek již malé, sněhová pokrývka zaniká sublimací v důsledku slunečního záření. Dolní a horní sněžná čára vymezují chionosféru. Praktický význam má dolní sněžná čára, která se zpravidla dělí na čáru sněžnou klimatickou a orografickou. Viz též čára firnová.
česky: čára sněžná; slov: snežná čiara; něm: Schneegrenze f; fr: étage nival m, étage des neiges éternelles m; rus: снеговая линия  1993-a2
snow pellets
tuhé srážky složené z bílých neprůsvitných kuželovitých nebo kulatých ledových částic, jejichž průměr je 2 až 5 mm. Při dopadu na tvrdý povrch odskakují a často se tříští. Většinou se vyskytují v přeháňkách spolu se sněhovými vločkami nebo dešťovými kapkami při přízemních teplotách vzduchu kolem 0 °C. Patří mezi hydrometeory.
česky: krupky sněhové; slov: snehové krúpky; něm: Reifgraupeln f; rus: снежная крупа  1993-a2
snow pillow
automatické sněhoměrné zařízení, které umožňuje v reálném čase měřit a zaznamenávat vodní hodnotu sněhové pokrývky a výšku celkové sněhové pokrývky. Hmotnost sněhové pokrývky na měřicím zařízení je ekvivalentem množství vody obsažené ve sněhové pokrývce. Ke zjištění hmotnosti sněhové pokrývky jsou využívány dva základní principy. Prvním z nich je měření hydrostatického tlaku uvnitř vaku naplněného nemrznoucí směsí, na němž leží sněhová pokrývka. Druhým je vážení sněhové pokrývky ležící na desce pomocí tenzometrických vah. Výška sněhové pokrývky je měřena nad plochou sněhového polštáře. K získání hodnoty výšky sněhové pokrývky jsou využívána ultrazvuková a laserová čidla. Měřicí plocha, jejíž velikost je 2 až 16 m2, může mít tvar kruhu, čtverce, obdélníku či šestihranu. Sněhový polštář je obvykle doplněn měřením dalších meteorologických prvků (např. teplota vzduchu, teplota sněhu, směr a rychlost větru) a v ČR je zpravidla umístěn ve volném terénu mimo síť klimatologických stanic. Viz též pokrývka sněhová celková, měření sněhové pokrývky, stanice srážkoměrná.
česky: polštář sněhový; slov: snehový vankúš; rus: снежная подушка  2014
snow pressure
česky: tlak sněhu; slov: tlak snehu; rus: снеговая нагрузка  1993-a3
snow sampler
přístroj na měření vodní hodnoty sněhové pokrývky a výšky celkové sněhové pokrývky. Používají se tyto základní metody měření:
1. Vodní hodnota sněhové pokrývky:
a) Vzorek sněhu se váží – používá se tzv. sněhoměr váhový, což je základní přístroj používaný v ČR na profesionálních stanicích, popř. na vybraných klimatologických stanicích, nebo polštář sněhový.
b) Odebraný vzorek se nechá roztát a změří se stejně jako kapalné srážky. V ČR se běžně používala nádoba srážkoměru a k ní příslušná skleněná odměrka.
2. Výška celkové sněhové pokrývky:
a) Používá se sněhoměrná tyč nebo lať.
b) Měření automatickými sněhoměry, v nichž se využívá odrazu nebo útlumu vyslaného paprsku (ultrasonická čidla, radioaktivní sněhoměry (gama zářiče), laserové senzory).
česky: sněhoměr; slov: snehomer; něm: Schneemesser m; rus: снегомер, снегоотборник  1993-b3
snow slide
rychlý sesuv sněhu a ledu o minimálním objemu 100 m3 po dráze delší než 50 m. Menší sesuvy označujeme jako sněhové splazy. Dochází k němu za určitých meteorologických a topografických podmínek. Z met. podmínek patří mezi nejdůležitější intenzita a trvání sněžení, teplota vzduchu a větrné poměry, k topografickým podmínkám sklon a expozice svahu. Uvedené podmínky určují stabilitu sněhového profilu, tedy rozložení vrstev sněhové pokrývky, jejich strukturu a mech. a fyz. vlastnosti, důležité pro zachování rovnovážného stavu. Narušení rovnováhy vyvolává pohyb sněhových vrstev, které se vzájemně liší morfologicky a geneticky. Laviny dělíme podle tvaru dráhy na plošné a žlabové; podle formy odtrhu na laviny s čárovým odtrhem (deskové) a laviny s bodovým odtrhem; podle skluzného horizontu na povrchové a základové; podle vlhkosti sněhu v pásmu odtrhu na laviny ze suchého sněhu či laviny z mokrého sněhu; podle příčin vzniku na laviny samovolné a uměle vyvolané. K ochraně proti sněhovým lavinám se v současnosti stavějí na lavinových svazích lavinové zábrany v podobě zátarasů z betonu a oceli (pasivní ochrana). V případě, že lavina ohrožuje silnice, obydlí, turistické trasy či například sjezdovky, připraví specialisté řízený odstřel (aktivní ochrana). Při vstupu do lavinových katastrů se doporučuje základní lavinové vybavení (lavinový vyhledávač, sonda a lopata). Stupně lavinového nebezpečí (1. až 5.) vyhlašuje v ČR Horská služba na základě analýzy sněhového profilu. Lavinové katastry v ČR jsou v Krkonoších a Jeseníkách. Viz též vítr lavinový.
česky: lavina sněhová; slov: snehová lavína; něm: Schneelawine f; rus: снежная лавина  1993-a3
snow stake
syn. tyč sněhoměrná – lať s centimetrovým dělením na měření celkové výšky sněhové pokrývky. Zapouští se svisle do země na místě, kde se netvoří závěje, na celé zimní období tak, aby nula měřítka byla v úrovni terénu. Čtení na sněhoměrné lati se provádí v klimatologických termínech, na synoptických stanicích v termínech 06:00 UTC a 18:00 UTC. Viz též měření sněhové pokrývky.
česky: lať sněhoměrná; slov: snehomerná tyč; něm: Schneepegel m; rus: снегомерная рейка  1993-a3
snow tube
přístroj na měření vodní hodnoty sněhové pokrývky a výšky celkové sněhové pokrývky. Používají se tyto základní metody měření:
1. Vodní hodnota sněhové pokrývky:
a) Vzorek sněhu se váží – používá se tzv. sněhoměr váhový, což je základní přístroj používaný v ČR na profesionálních stanicích, popř. na vybraných klimatologických stanicích, nebo polštář sněhový.
b) Odebraný vzorek se nechá roztát a změří se stejně jako kapalné srážky. V ČR se běžně používala nádoba srážkoměru a k ní příslušná skleněná odměrka.
2. Výška celkové sněhové pokrývky:
a) Používá se sněhoměrná tyč nebo lať.
b) Měření automatickými sněhoměry, v nichž se využívá odrazu nebo útlumu vyslaného paprsku (ultrasonická čidla, radioaktivní sněhoměry (gama zářiče), laserové senzory).
česky: sněhoměr; slov: snehomer; něm: Schneemesser m; rus: снегомер, снегоотборник  1993-b3
snow water equivalent
výška vodní vrstvy, která vznikne rozpuštěním sněhové pokrývky, resp. její hmotnost, vztažená na jednotku plochy. Vodní hodnota sněhové pokrývky se udává v mm vodního sloupce nebo v kg.m–2. Pro zatížení stavebních konstrukcí se používají jednotky kg.m—2 nebo kPa. Viz též sněhoměr.
česky: hodnota sněhové pokrývky vodní; slov: vodná hodnota snehovej pokrývky; něm: Wassergehalt der Schneedecke m; rus: водный эквивалент снега, запас воды в снежном покрове  1993-a3
snow-drift
akumulace sněhu vytvořená zvířeným sněhem na návětří terénní nebo jiné překážky. Viz též jazyk sněhový, závěj sněhová.
česky: návěj sněhová; slov: snehový návej; něm: Schneeverwehung f, Schneewehe f; rus: сугроб  1993-a2
snow-drift
česky: závěj sněhová; slov: snehový závej; něm: Schneeverwehung f, Schneewehe f; rus: сугроб  1993-a1
snowdrift
akumulace sněhu menšího rozsahu v závětří terénní nebo jiné překážky, vytvořená zvířeným sněhem. Tvoří se při sypkém nebo prachovém sněhu a rychlosti větru nad cca 7 m.s–1. Pokud výška akumulace dosáhne cca 25 cm a šířka alespoň 2 m, označujeme ji jako sněhovou závěj. Viz též návěj sněhová.
česky: jazyk sněhový; slov: snehový jazyk; rus: занос  2014
snowfall
vypadávání sněhu ve fromě jednotlivých ledových krystalků nebo sněhových vloček. Intenzita sněžení se hodnotí podle dohlednosti, popř. podle přírůstku výšky sněhové pokrývky před termínem pozorování nebo na základě radarových měření. Rozlišujeme slabé, mírné silné a velmi silné sněžení v termínu pozorování a dále sněžení občasné a trvalé. Na území ČR se už od nadm. výšek kolem 1 300 m může vyskytnout sněžení v každém kalendářním měsíci. Viz též den se sněžením.
česky: sněžení; slov: sneženie; něm: Schneefall m; rus: снегопад  1993-a3
snowflake
1. v meteorologii shluk ledových krystalků. Sněhové vločky se při sněžení tvoří v oblacích, zejména ve vrstevnatých oblacích druhu nimbostratus. Většina sněhových vloček vzniká agregací navzájem propletených dendritů, a to především při teplotě vzduchu nad –5 °C. Čím vyšší je teplota vzduchu, tím větší mohou být sněhové vločky, protože jednotlivé krystalky částečně tají a snadněji se slepují. Střední průměr sněhových vloček je cca 5 mm při hmotnosti cca 4 mg; maximální dokumentovaná velikost se uvádí 38 cm.
2. lidové, avšak v meteorologii nevhodné označení jednotlivého ledového krystalku, především dendritu.
česky: vločka sněhová; slov: snehová vločka; něm: Schneeflocke f; rus: снежнoe хлопьe  1993-a3
snowstorm
intenzivní sněžení nebo vysoko zvířený sníh, zpravidla způsobující značné akumulace sněhu. Nejzhoubnější účinky mají sněhové bouře na sv. USA, kde jsou jejich příčinou hluboké cyklony postupující přes již. části Nové Anglie. Za 1 až 2 dny může při sněhové bouři napadnout přes 1 m sněhu a závěje mohou dosahovat 10 až 12 m. Dochází ke ztrátám na životech a k hospodářským škodám, především v důsledku ochromení dopravy. Ze Sev. Ameriky pochází označení sněhové bouře spojené s vysokou rychlostí větru jako blizard, dalšími regionálními názvy jsou (bílý) buran, purga nebo burga.
česky: bouře sněhová; slov: snehová búrka; něm: Blizzard m, Purga m, Schneesturm m; fr: blizzard m, tempête de neige f; rus: снежная буря, снежный буран  1993-a3
snowstorm
lid. označení pro sněžení při vysoké rychlosti větru, kdy pozorujeme vysoko zvířený sníh. Kromě padajícího sněhu může být větrem unášen také již napadlý, především čerstvý sníh, zvláště při nízké teplotě vzduchu. Viz též bouře sněhová, blizard.
česky: vánice sněhová; slov: fujavica, chumelica, metelica; něm: Schneefegen n, Schneesturm m, Schneetreiben n; rus: снежная метель  1993-a2
SNOWTAM
zpráva obsahující údaje o stavu povrchu vzletové a přistávací dráhy při výskytu sněhu, ledu a podobných jevů. Za měření pro zprávu SNOWTAM a také za její sestavení zodpovídají správy letiště. V období zimního provozu letiště je ze zprávy SNOWTAM generována informace o stavu drah, která se následně zařazuje do pravidelné letecké meteorologické zprávy (METAR).
česky: zpráva o stavu povrchu vzletové a přistávací dráhy (SNOWTAM); slov: správa o stave povrchu vzletovej a pristávacej dráhy; něm: SNOWTAM-Meldung; rus: СНОВТАМ  1993-a3
soaring meteorology
aplikace letecké meteorologie v bezmotorovém létání. Plachatřská meteorologie se zabývá především zákonitostmi procesů v ovzduší, které mají základní význam pro vznik vertikálních pohybů vzduchu vhodných k využití při letech kluzáků. Zahrnuje zejména rozbory podmínek konvekce, místních cirkulací, zejména svahových, popř. cirkulačních systémů, hlavně denních mořských vánků a proudění v horských závětrných vlnách. Viz též komín termický, termiky, konvekce termická, cirkulace brízová.
česky: meteorologie plachtařská; slov: plachtárska meteorológia; něm: Segelflugmeteorologie f; rus: планерная метеорология  1993-a3
socio-economic drought
sucho definované pomocí ekonomických ukazatelů, kdy poptávka po nejrůznějších produktech a službách nemůže být uspokojena v důsledku nedostatku vody. Bývá vyvoláno meteorologickým, půdním nebo hydrologickým suchem, podstatnou roli však hrají i antropogenní faktory, jako rychlost socioekonomického vývoje, vodohospodářská opatření apod.
česky: sucho socioekonomické; slov: socioekonomické sucho; něm: sozio-ökonomische Dürre f  2014
sodar
syn. lokátor akustický – zařízení k akustické sondáži atmosféry. Tento druh profileru pracuje na principu měření rozptylu akustických vln, k němuž dochází na turbulencí vyvolaných nehomogenitách akustického indexu lomu v atmosféře. Sodar vysílá intenzivní impulzy v oboru slyšitelných frekvencí, rozptýlený signál je přijímán citlivým směrovaným mikrofonem nebo soustavou mikrofonů. Z doby, průběhu a charakteru odezvy lze určit polohu a rozsah sledované cílové oblasti a usuzovat na charakter jevů, s nimiž je turbulence spojena (např. inverze teploty nebo vlhkosti vzduchu, vertikální střih větru apod.). Rozlišují se nejčastěji sodary monostatické (vysílač impulsů a přijímací mikrofony jsou na témže místě) a bistatické, kde je vysílač a přijímač oddělen. Starší provedení sodarů používala třísměrovou anténní soustavu uspořádanou tak, že jedna parabolická anténa byla vertikální a dvě další směřovaly obvykle pravoúhle k sobě a šikmo vzhůru. Současné systémy mají anténní systém tvořen polem reproduktorů, k nimž je vysílaný impulz přiváděn s fázovým posuvem. To umožňuje vytvářet směrované svazky v různých rovinách a pod různými vertikálními úhly. Sodar využívá Dopplerova efektu pro vyhodnocení radiálních, vert. a horiz. složek proudění. Provoz sodaru je řízen počítačem, který zajišťuje optimální generování vysílaných svazků, prvotní zpracování přijatého signálu, výpočet složek proudění a odvozených statistických charakteristik. Viz též šíření zvuku v atmosféře, radiolokátor meteorologický dopplerovský.
Termín je akronym úplného angl. názvu sonic detection and ranging „detekce a měření vzdálenosti pomocí akustických vln“.
česky: sodar; slov: sodar; něm: Sodar n; rus: акдар, содар  1993-a3
soft rime
Termín je příbuzný se slovem jíní, se kterým bývá v běžné řeči někdy zaměňován.
česky: jinovatka; slov: inovať; rus: кристаллическая изморозь  1993-a3
soft rime
syn. jinovatka – jeden z námrazových jevů. Je tvořen křehkou ledovou usazeninou ve tvaru jemných jehel nebo šupin. Vzniká zpravidla při teplotách nižších než –8 °C při mlze nebo bez ní. Na povrchu letadla vzniká hlavně při klesání z chladnějšího a suššího prostředí do teplejšího a vlhčího prostředí a také v oblačnosti druhu cirrus, cirrocumulus a cirrostratus. Krystalickou námrazu lze snadno odstranit poklepem. Není příčinou vzniku škod na vegetaci, el. vedeních a neohrožuje bezpečnost leteckého provozu.
česky: námraza krystalická; slov: kryštalická námraza; něm: weiche Raufrost n; rus: кристаллическая изморозь  1993-a3
soil air
syn. atmosféra půdní – plynná fáze vyplňující póry, dutiny a trhliny v půdě, které nejsou vyplněny půdní vodou. Půdní vzduch se chem. složením i dynamikou liší od směsi plynů tvořících atmosféru Země. Složení půdního vzduchu během roku kolísá, přičemž většinou obsahuje více oxidu uhličitého a vodní páry a méně kyslíku než vzduch nad zemským povrchem; půdní vzduch může obsahovat měřitelná množství NH3, H2S, metanu a jiných uhlovodíků v důsledku rozkladu organických látek v půdě. Pohyb a výměna půdního vzduchu se uskutečňuje difuzí, změnami tlaku vzduchu, teploty vzduchu, teploty půdy, vlhkosti půdy, v důsledku pohybu vody v půdě, prouděním vzduchu nad půdou apod. Půdní vzduch je nezbytný pro život rostlin a půdních organizmů a půdní vzdušná kapacita často rozhoduje o úrodnosti půdy.
česky: vzduch půdní; slov: pôdny vzduch; něm: Bodenluft f; rus: почвенный воздух  1993-a3
soil atmosphere
syn. atmosféra půdní – plynná fáze vyplňující póry, dutiny a trhliny v půdě, které nejsou vyplněny půdní vodou. Půdní vzduch se chem. složením i dynamikou liší od směsi plynů tvořících atmosféru Země. Složení půdního vzduchu během roku kolísá, přičemž většinou obsahuje více oxidu uhličitého a vodní páry a méně kyslíku než vzduch nad zemským povrchem; půdní vzduch může obsahovat měřitelná množství NH3, H2S, metanu a jiných uhlovodíků v důsledku rozkladu organických látek v půdě. Pohyb a výměna půdního vzduchu se uskutečňuje difuzí, změnami tlaku vzduchu, teploty vzduchu, teploty půdy, vlhkosti půdy, v důsledku pohybu vody v půdě, prouděním vzduchu nad půdou apod. Půdní vzduch je nezbytný pro život rostlin a půdních organizmů a půdní vzdušná kapacita často rozhoduje o úrodnosti půdy.
česky: vzduch půdní; slov: pôdny vzduch; něm: Bodenluft f; rus: почвенный воздух  1993-a3
soil climate
dlouhodobý režim fyz. vlastností půdy, zejména její teploty a vlhkosti, který se netýká jen půdního vzduchu, nýbrž i půdní vody a tuhé složky půdy. Někdy se vyčleňuje jako samostatná součást porostového klimatu, protože se vytváří v zóně pod povrchem půdy v prostoru kořenových systémů (rhizosféry). Výzkumem půdního klimatu se zabývá půdní klimatologie. Viz též pedosféra, zákony Fourierovy.
česky: klima půdní; slov: pôdna klíma; něm: Bodenklima n  1993-b2
soil climatic types
půdy, na jejichž vzniku se z půdotvorných činitelů nejvíce uplatňuje klima, zatímco povaha mateční horniny má menší význam. V jejich rozložení na Zemi se výrazně projevuje šířková pásmovitost klimatu. Příkladem klimatických půdních typů jsou podzoly, jimž vegetačně odpovídá tajga, nebo černozem, které odpovídá step. Viz též klimatologie půdní.
česky: typy půdní klimatické; slov: pôdne klimatické typy; něm: Typen des Bodenklimas m/pl; rus: климатические типы почвы  1993-a1
soil climatology
česky: klimatologie půdní; slov: pôdna klimatológia; něm: Bodenklimatologie f; rus: почвенная климатология  1993-a1
soil freezing measurement
v agrometeorologii zjišťování hloubky pod povrchem země, v níž dochází k mrznutí půdní vody. Informace o hloubce promrznuti půdy je důležitá např. k posouzení nebezpečí poškození kořenové soustavy rostlin. Kromě zemědělství je využívána i některými technickými obory (nezámrzná hloubka ve stavebnictví). Měření promrzání půdy se provádí půdními mrazoměry. Viz též promrzání půdy, měření teploty půdy.
česky: měření promrzání půdy; slov: meranie premŕzania pôdy; něm: Messung der Bodengefrornis f; rus: измерение промерзания почвы  1993-a3
soil moisture
množství vody, včetně vodní páry, obsažené v půdě. Vlhkost půdy hmotnostní je definována jako poměr hmotnosti vody obsažené ve vzorku půdy k hmotnosti vysušeného vzorku půdy. Vlhkost půdy objemová je definována jako poměr objemu vody obsažené ve vzorku půdy k celkovému objemu tohoto vzorku, tj. objemu suché půdy a půdního vzduchu a vody. Vlhkost půdy hmotnostní i objemová se udávají v procentech. Viz též voda půdní.
česky: vlhkost půdy; slov: vlhkosť pôdy; něm: Bodenfeuchte f, Bodenfeuchtigkeit f; rus: влажность почвы  1993-a3
soil moisture deficit
rozdíl mezi množstvím vody obsažené v půdě a maximálním množstvím vody, které tato půda může zadržovat po odtoku vody vlivem gravitace. Viz též vlhkost půdy.
česky: deficit vlhkosti půdy; slov: deficit vlhkosti pôdy; rus: дефицит влажности почвы  2014
soil temperature
teplota složek půdy v různých hloubkách pod zemským povrchem. Pedosféra se vyznačuje obecně malou tepelnou vodivostí, což platí především v případě pórovitých půd o nízké vlhkosti půdy. Z tohoto důvodu směrem do hloubky prudce klesá vliv výkyvů přízemní teploty vzduchu a dalších meteorologických prvků na teplotu půdy, který může být dále zeslaben sněhovou pokrývkou, hustou vegetací, vrstvou opadanky apod. Při promrzání půdy i při opětovném tání je její teplota podstatně ovlivňována latentním teplem mrznutí, resp. tání. Půdní klima z hlediska denního a ročního chodu teploty půdy v různých hloubkách popisují Fourierovy zákony. Viz též měření teploty půdy.
česky: teplota půdy; slov: teplota pôdy; něm: Bodentemperatur f, Erdbodentemperatur f; rus: температура почвы  1993-a3
soil temperature measurement
určení teploty čidla teploměru, které je v tepelné rovnováze s okolní vrstvou půdy. Teplota půdy se měří ve °C půdními teploměry v hloubkách 5, 10, 20, 50, 100, 150 a 300 cm (v ČR jen 5, 10, 20, 50 a 100 cm) na pozemku s přirozeným složením půdy, porostlém ošetřovaným trávníkem. K měření se používají půdní teploměry, a to elektrické, případně rtuťové. Viz též měření promrzání půdy.
česky: měření teploty půdy; slov: meranie teploty pôdy; něm: Messung der Bodentemperatur f; rus: измерение температуры почвы  1993-a3
soil thermometer
teploměr určený k měření teploty půdy v různých hloubkách. Používají se nejčastěji speciálně konstruované rtuťové nebo elektrické teploměry. V Česku se měření provádí běžně v hloubkách 5, 10, 20, 50 a 100 cm. Pro hloubky do 20 cm se používají lomené půdní teploměry, jejichž stonek svírá se stupnicí úhel 135°. Stonek teploměru se zapouští do svislého otvoru v půdě tak, aby nádobka teploměru byla v požadované hloubce. Pro větší hloubky se užívá hloubkový půdní teploměr, který má rozměrnou nádobku a zasazuje se do držáku, s nímž se spouštěl do svislé ochranné trubice. Na profesionálních stanicích ČR se údaje z půdních rtuťových teploměrů používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s elektrickými teploměry.
V současné době se v Česku používají elektrické odporové teploměry. Výhodou el. půdních teploměrů je možnost lepšího kontaktu čidla s půdou, jeho přesnější nastavení do požadované hloubky, vyloučení ovlivnění teploty způsobené při čtení a celkově větší odolnost proti mech. poškození než u skleněných teploměrů.
česky: teploměr půdní; slov: pôdny teplomer; něm: Erdbodenthermometer n; rus: почвенный термометр  1993-a3
soil water
část podpovrchové vody, včetně vodní páry, obsažená v půdě nebo v přilehlých horninách nad souvislou hladinou podzemní vody. Viz též hydrosféra, bilance půdní vody, vlhkost půdy.
česky: voda půdní; slov: pôdna voda; něm: Bodenwasser n; rus: почвенная вода  1993-a3
soil water budget
syn. bilance vláhová – hydrologická bilance určitého půdního profilu. Příjem půdní vody je realizován především infiltrací části vody z padajících i usazených srážek, zmenšených o intercepci srážek, dále vzlínáním podzemní vody, jejím bočním přítokem a doplňováním vodní páry, která v půdě kondenzovala. K výdeji půdní vody dochází prostřednictvím výparu včetně transpirace rostlin a odtokem, především podpovrchovým.
česky: bilance půdní vody; slov: bilancia pôdnej vody; něm: Bodenwasserbilanz f, Bodenwasserhaushalt m; fr: bilan hydrique des sols m; rus: водный баланс почвы  1993-a3
solaire
[solér] – regionální název vých., popř. jv. větru ve střední a již. Francii. Viz též solano.
Termín byl přejat z fr. solaire „sluneční“ (z lat. solaris téhož významu, od sol „slunce“), odkazuje tím k vanutí ze směru východu Slunce.
česky: solaire; slov: solaire; něm: Solaire m  1993-a1
solano
regionální název jv., popř. vých. větru, vanoucího na jv. pobřeží Španělska v létě. Obvykle se jedná o „prodloužení“ scirocca, takže solano může být jak horký a vlhký, tak suchý a prašný vítr. Viz též solaire.
Termín byl přejat ze španělštiny; pochází z lat. solanus „východní vítr“ (odvozeného od sol „slunce“, čímž odkazuje k vanutí ze směru východu Slunce).
česky: solano; slov: solano; něm: Solano m  1993-a1
solar activity
syn. činnost sluneční – soubor jevů, které probíhají ve sluneční atmosféře s periodickou intenzitou. Jsou to granule, spikule, fakule a sluneční skvrny ve fotosféře, dále sluneční erupce, protuberance a erupce ve sluneční koróně. Nejsnáze pozorovatelné jsou sluneční skvrny. Pro interakci s ostatními tělesy sluneční soustavy a s meziplanetárním plazmatem jsou důležité zejména protonové erupce ve chromosféře. Sluneční aktivita se mění v rámci jedenáctiletého slunečního cyklu i v delších cyklech a ovlivňuje řadu procesů ve vysokých vrstvách zemské atmosféry, jako je atmosférická ionizace, vznik polární záře, magnetických bouří, apod. Tyto procesy zároveň druhotně ovlivňují nižší vrstvy zemské atmosféry a mohou tak působit i na počasí a živé organizmy na Zemi. Mohou také výrazně ovlivnit funkčnost kosmických a pozemských technologických zařízení (např. družice, radiokomunikační zařízení, trafostanice, plynovody, apod.) Viz též číslo Wolfovo.
česky: aktivita sluneční; slov: slnečná aktivita; něm: Sonnenaktivität f, Sonnenaktivität f; fr: activité solaire f; rus: солнечная активность  1993-b3
solar activity
česky: činnost sluneční; slov: slnečná činnosť; něm: Sonnenaktivität f; fr: activité solaire f; rus: солнечная активность  1993-a3
solar chromosphere
relativně tenká spodní vrstva sluneční atmosféry o mocnosti cca 10 000 km. U přechodu k níže ležící fotosféře je teplota chromosféry cca 6000 K a směrem vzhůru stoupá, takže na horním okraji, kde chromosféra přechází ve sluneční korónu, dosahuje 30 000 K. V horní části je chromosféra značně nehomogenní; bývá zde vzhledově složena z tzv. spikulí, což jsou sloupce plazmy tryskající chromosférou do sluneční koróny rychlostí 20 – 30 km.s-1 a svým vzhledem připomínající hořící step. Dalším chromosférickým jevem jsou tzv. flokulová pole, lokalizovaná zpravidla nad níže ležícími fotosférickými fakulovými poli a projevující se jako strukturovaná prostorová zjasnění, označovaná jako flokule. Při zvýšené sluneční aktivitě probíhají v chromosféře sluneční erupce. Viz též protuberance.
Termín zavedl angl. astronom J. Norman Lockyer v r. 1868. Vytvořil jej spojením řec. χρῶμα [chróma] „barva“ (srov. chrom, chromozom) a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: chromosféra; slov: chromosféra; něm: Chromosphäre f; fr: chromosphère f; rus: хромосфера  2020
solar climate
syn. klima matematické – model klimatu, které by se vytvořilo na stejnorodé pevné Zemi bez atmosféry díky působení astronomických klimatotvorných faktorů. Solární klima by bylo určeno jen množstvím dopadajícího záření Slunce v závislosti na zeměp. šířce, takže solární klimatická pásma by byla ohraničena rovnoběžkami: tropické pásmo mezi obratníky, mírná pásma od obratníků po polární kruhy, dále pak polární pásma. Východiskem pro popis solárního klimatu je roční pohyb Slunce po ekliptice. Viz též klima radiační, klima fyzické.
česky: klima solární; slov: solárna klíma; něm: Solarklima n; rus: солярный климат (расчетный)  1993-b3
solar constant
česky: konstanta sluneční; slov: slnečná konštanta; rus: солнечная постоянная  1993-a1
solar constant
syn. konstanta sluneční – celkové množství zářivé energie Slunce dopadající v celém spektru na horní hranici atmosféry Země za jednotku času na jednotku plochy, kolmou ke slunečním paprskům, a vztažené na stř. vzdálenost Země od Slunce. Na základě družicových měření je hodnota solární konstanty nejčastěji uváděna jako 1 366 W.m–2. Termín solární konstanta není zcela přesný, protože její hodnoty kolísají o několik desetin %, např. v důsledku sluneční aktivity. Dlouhodobé změny solární konstanty jsou pokládány za jednu z možných příčin globálních změn klimatu. Pro meteorologii je solární konstanta důležitým výchozím parametrem radiační bilance soustavy Země – atmosféra.
česky: konstanta solární; slov: solárna konštanta; něm: Solarkonstante f; rus: солнечная постоянная  1993-a3
solar corona
vnější vrstva sluneční atmosféry nad chromosférou. Je tvořena žhavými plyny (plazmatem), unikajícími ze Slunce do vesmírného prostoru. Vysoká teplota těchto plynů (v řádu milionů K)  není prozatím plně vysvětlena, ale zřejmě je výsledkem spolupůsobení několika mechanizmů včetně útlumu rázových vln z povrchu Slunce v jeho koroně a přeměn energie akumulované v magnetickém poli Slunce. Viz též vítr sluneční.
česky: koróna sluneční; slov: slnečná koróna; něm: Sonnenkorona f; fr: couronne solaire f; rus: солнечная корона  2020
solar cycle
fluktuace polarity magnetického pole Slunce s přibližně jedenáctiletou periodou. Cyklus se projevuje proměnami počtu slunečních skvrn i charakteristik záření Slunce. Výkyvy solární konstanty v rámci cyklu dosahují přibližně jedno promile, v řádu jednotek procent se mění intenzita ultrafialového záření. Cyklus má významný dopad na podmínky ve vyšších vrstvách zemské atmosféry, v rámci střední atmosféry se projevuje anomáliemi v teplotě i cirkulaci a má vliv i na stabilitu zimního cirkumpolárního víru. Viz též číslo Wolfovo.
česky: cyklus sluneční jedenáctiletý; slov: slnečný cyklus; něm: elf jähriger Sonnenzyklus m, Schwabe-Zyklus m; fr: cycle de 11 ans m, cycle solaire m, cycle solaire de 11 ans m; rus: солнечный цикл  2015
solar elevation angle
česky: výška Slunce nad obzorem; slov: výška Slnka nad obzorom; něm: Sonnenhöhenwinkel m, Elevationswinkel m; rus: высота Солнца над горизонтом  2019
solar flare
česky: erupce chromosférická; slov: chromosférická erupcia; něm: chromosphärische Eruption f, Sonneneruption f; fr: éruption chromosphérique f; rus: солнечная всппышка  1993-a3
solar flare
syn. erupce chromosférická – náhlé, několik minut až několik desítek minut trvající zjasnění flokulového pole ve sluneční chromosféře; při výjimečné silné erupci může dojít i ke zjasnění v oblasti sluneční fotosféry (tzv. bílá erupce). Sluneční erupce jsou typické pro období zesílené sluneční aktivity. Jsou mohutným zdrojem rentgenového, ultrafialového a korpuskulárního záření. Významně ovlivňují sluneční vítr a toky slunečního kosmického záření zasahující Zemi.
česky: erupce sluneční; slov: slnečná erupcia; něm: Sonneneruption f; rus: солнечная всппышка  2021
solar photosphere
vrstva plynného tělesa hvězdy, v užším smyslu Slunce, kde toto těleso začíná být neprůhledné. Sluneční fotosféra, jejíž mocnost  se udává v rozmezí 200 – 500 km, je tak pozorována jako povrch Slunce. Fotosféra emituje až 99 % spojitého spektra elektromagnetického záření Slunce, přičemž vlastnosti tohoto záření jsou podmíněny teplotou fotosféry, která dosahuje cca 5500 – 6000 K. Fotosféra tak představuje nejchladnější část Slunce, od níž dolů i vzhůru (do chromosféry) teplota roste.
V podloží fotosféry probíhá bouřlivá konvekce žhavých plynů, která proniká i do fotosféry a způsobuje její granulaci, tedy členění do domén stoupajících a klesajících proudů plazmatu. Prostorové uspořádání granulí připomíná včelí plásty o rozměrech jednotlivých buněk cca 1000 – 1200 km. Vnitřní části granulí, v nichž proudí horké plazma vzhůru, se jeví jako světlejší; okraje granulí, kde relativně chladnější plazma klesá dolů, jsou tmavší. Při zvýšené sluneční aktivitě vznikají fotosférické deprese, označované jako sluneční skvrny, obklopené výrazně světlejšími, nepravidelně strukturovanými fakulovými poli, jejichž jednotlivé jasné prvky označujeme jako fakule.
česky: fotosféra; slov: fotosféra; něm: Photosphäre f; fr: photosphère f; rus: фотосфера  2020
solar prominence
výron relativně chladnějšího, hustšího plazmatu z fotosféry přes chromosféru do žhavé sluneční koróny. Tyto útvary jsou typické pro období zvýšené sluneční aktivity. Při pozorování se jeví jako výběžky boulovitého tvaru, plameny nebo oblouky, vybíhající ze slunečního tělesa. Někdy se mohou od Slunce úplně odpoutat, pak je označujeme jako výrony korónové hmoty; pokud zasáhnou zemskou magnetosféru, způsobí zde geomagnetickou bouři.
česky: protuberance; slov: protuberancia; něm: Protuberanz f; fr: protubérance solaire f; rus: протуберанец  2020
solar radiation
elmag. a korpuskulární záření vysílané Sluncem. Energeticky významná část elmag. záření povrchu Slunce má vlnové délky mezi 0,1 až 10 µm s max. energií u vlnové délky 0,475 µm. Na horní hranici atmosféry vytváří při stř. vzdálenosti Země od Slunce zářivý tok, který má na ploše kolmé ke směru dopadu intenzitu (1 366 ± 5) W.m–2, nazývaný solární konstanta. Rozdělení energie ve slunečním spektru lze v hrubém přiblížení aproximovat Planckovým zákonem. Z Wienova zákona vyplývá, že povrch Slunce můžeme pokládat za černé těleso zářící při teplotě asi 6 100 K. Převážná část energie záření Slunce je přenášena v oboru krátkovlnného záření. Záření Slunce se dělí na ultrafialovou složku o vlnových délkách menších než 0,4 µm, tvořící při vstupu do zemské atmosféry přibližně 7 % celkového záření Slunce, na viditelné záření (47 % záření Slunce) a na infračervené sluneční záření s vlnovými délkami většími než 0,75 µm (46 % záření Slunce).
česky: záření Slunce; slov: žiarenie Slnka; něm: Sonnenstrahlung f; rus: солнечная радиация  1993-a3
solar wind
spojitý výron plazmy ze sluneční koróny do okolního prostoru. Typická rychlost slunečního větru dosahuje hodnot přibližně od 300 do 750 km.s–1, přičemž sluneční plazma proniká do vzdáleností převyšujících padesátinásobek vzdálenosti Země od Slunce. Sluneční vítr je jednou z forem korpuskulárních toků. Ovlivňuje fyz. procesy v zemské magnetosféře a v horní atmosféře (polární záře, magnetické pole Země atd.). Viz též aktivita sluneční.
česky: vítr sluneční; slov: slnečný vietor; něm: Sonnenwind m; rus: солнечный ветер  1993-a3
solarigram
někdy používané nevhodné označení pro pyranogram.
Termín vznikl odvozením od termínu solarigraf, analogicky k pojmům telegraf a telegram.
česky: solarigram; slov: solarigram; něm: Solarigramm n; rus: соляриграмма  1993-a1
solarigraph
někdy používané nevhodné označení pro pyranograf.
Termín se skládá z lat. solaris „sluneční“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: solarigraf; slov: solarigraf; něm: Solarigraph m; rus: соляриграф  1993-a1
solarimeter
někdy používané nevhodné označení pro pyranometr.
Termín se skládá z lat. solaris „sluneční“ a z řec. μέτρον [metron] „míra, měřidlo“.
česky: solarimetr; slov: solarimeter; něm: Solarimeter n; rus: соляриметр  1993-a3
solenoidal circulation
málo užívané označení pro vířivé pohyby různých měřítek v zemské atmosféře, které jsou podmíněny existencí izobaricko-izosterických solenoidůbaroklinní atmosféře.
česky: cirkulace solenoidní; slov: solenoidná cirkulácia; něm: solenoidale Zirkulation f; fr: circulation solénoïdale f; rus: соленоидальная циркуляция  1993-a2
solid precipitation
ve smyslu české odborné meteorologické terminologie hydrometeor pevného skupenství, který je tvořen ledovými částicemi dopadajícími z oblaků na zemský povrch nebo usazenými na předmětech na zemském povrchu, popř. v atmosféře, např. na plochách letadla, na povrchu balonu apod. Mezi tuhé padající srážky patří sníh, sněhové krupky, sněhová zrna, zmrzlý déšť nebo krupky, kroupy a ledové jehličky. K usazeným tuhým srážkám řadíme zmrzlou rosu, jíní, námrazu a ledovku. Viz též srážky smíšené, srážky kapalné.
česky: srážky tuhé; slov: tuhé zrážky; něm: fester Niederschlag m; rus: твердые осадки  1993-a3
solstice
okamžik, kdy Slunce dosáhne v rámci svého zdánlivého ročního pohybu po ekliptice maximální úhlové vzdálenosti od světového rovníku neboli deklinace, která při současném sklonu zemské osy činí cca 23,44°. Letní (zimní) slunovrat nastává v současnosti na severní (jižní) polokouli nejčastěji 21. června, může se však vyskytnout i o den dříve nebo později. Obdobně je tomu na severní (jižní) polokouli se zimním (letním) slunovratem s nejčastějším výskytem 21. prosince. Ve dni s letním slunovratem vystupuje Slunce na daném místě během roku nejvýše nad obzor, při slunovratu zimním pak nejníže nad obzor, popř. klesá v polárních oblastech nejhlouběji pod obzor. Slunovrat má zásadní význam při členění roku na jednotlivé sezony, přičemž letní slunovrat odděluje astronomické léto od astronomického jara, zimní slunovrat astronomickou zimu od astronomického podzimu. S dobou zejména kolem letního slunovratu je spojena řada zajímavých atmosférických jevů, např. výskyt nočních svítících oblaků nebo tzv. bílé noci ve vyšších zeměpisných šířkách.
česky: slunovrat; slov: slnovrat; něm: Sonnenwende (Sonnwende); rus: солнцестояние  2019
sonic anemometer
česky: anemometr sonický; slov: sonický anemometer  2020
sonic boom
zvukový efekt rázové vlny vyvolané letadlem letícím rychlostí zvuku nebo vyšší. Působí nejen jako jev zvyšující hlučnost, ale může mít i destrukční účinky na objektech na zemi. Vhodné podmínky pro šíření sonického třesku k zemskému povrchu jsou při stabilním teplotním zvrstvení ovzduší, při růstu zádového větru nebo zeslabování protivětru s výškou. S uvedenými met. podmínkami souvisí dispečerské stanovení hladiny přechodu z podzvukové na nadzvukovou rychlost letu, tzv. přechodové výšky. Viz též číslo Machovo, akustika atmosférická.
česky: třesk sonický; slov: sónický tresk; něm: Überschallknall m; rus: звуковой удар  1993-a1
sonic thermometer
teploměr využívající teplotní závislost rychlosti šíření zvuku ve vzduchu nebo teploměr využívající teplotní závislost frekvence vynucených kmitů kovové struny. Používá se v meteorologii jen pro speciální účely, např. k měření turbulentních fluktuací teploty vzduchu.
česky: teploměr akustický; slov: akustický teplomer; něm: akustisches Thermometer n; rus: акустический термометр  1993-a2
sound in atmosphere
česky: zvuk v atmosféře; slov: zvuk v atmosfére; něm: Schall in der Atmosphäre m; rus: звук в атмосфере  1993-a1
sound waves
syn. vlny akustické – podélné vlny, které se šíří jako sled střídajících se zhuštění a zředění vzduchu. Lidské ucho vnímá jako zvuk vlny o frekvenci v rozsahu zhruba 16 Hz až 18 000 Hz. Nad horní hranicí tohoto intervalu se jedná o ultrazvuk, pod dolní hranicí o infrazvuk. Šířením zvukových vln v atmosféře se zabývá atmosférická akustika. Viz též šíření zvuku v atmosféře.
česky: vlny zvukové; slov: zvukové vlny; něm: akustische Wellen f/pl, Schallwellen f/pl; rus: акустические волны, звуковые волны  1993-a3
sounder
česky: sounder  2023
sounder
syn. sounder – radiometr na meteorologické družici, jehož primárním zaměřením je družicová sondáž atmosféry, doplňující radiosondážní nebo další měření ze zemského povrchu. Např. družice MTG, konkrétně MTG-S, bude vybavena sondážním radiometrem IRS.
česky: radiometr družicový sondážní; slov: sondážny družicový rádiometer; rus: исследовательский спутник, спутниковый зондировщик  2014
sounding balloon
balon sondážní – tenkostěnný balon z elastického materiálu, plněný obvykle vodíkem, vypouštěný volně do atmosféry a vynášející radiosondu nebo jiný prostředek sloužící k aerologickému měření.
česky: balon radiosondážní; slov: rádiosondážny balón; něm: Ballonsonde f; fr: ballon-plafond m; rus: радиозонд  1993-a3
sounding of atmosphere
aerologické měření umožňující sestavit zpravidla vertikální profil měřených meteorologických prvků, příp. jiných údajů. Podle druhu měřených charakteristik rozlišujeme komplexní meteorologickou radiosondáž, měření větru radiotechnickými prostředky, sondáž radioaktivity atmosféry, sondáž aktinometrickou, ozonometrickou apod.
Základní metodou sondáže atmosféry je radiosondážní měření pomocí radiosondy, nesené radiosondážním balonem. Sondáž atmosféry lze dále provádět pomocí met. přístrojů nesených i jiným dopravním prostředkem. V dřívější době byly údaje registrovány meteorografy, dnes jsou většinou bezprostředně po získání telemetricky přenášeny na zem. Podle druhu dopravního prostředku rozeznáváme sondáž drakovouletadlovouraketovou, popř. raketo-balonovou; k sondáži atmosféry lze využít také meteorologických dronů. Podle směru pohybu přístroje rozlišujeme vertikální a horizontální sondáž atmosféry.
Jiným způsobem sondáže atmosféry je sondáž pomocí distančních meteorologických měření. Do této kategorie spadá družicová sondáž atmosféry a sondáž pomocí signálů vysílaných ze zemského povrchu meteorologickým radarem nebo některým z profilerů. Podle druhu signálu rozlišujeme akustickou sondáž atmosféry, sondáž pomocí rádiových vln, pomocí světelných paprsků s použitím lidarů a hyperspektrální sondáž v dalších částech elektromag. spektra. Viz též měření meteorologických prvků v mezní vrstvě a volné atmosféře, sonda upoutaná, pseudosondáž.
česky: sondáž atmosféry; slov: sondáž atmosféry; něm: Sondierung der Atmosphäre f; rus: зондирование атмосферы  1993-b3
source of air pollution
přírodní nebo umělý objekt, z něhož se šíří do ovzduší znečišťující látky. Podle umístění nad zemským povrchem rozeznáváme zpravidla zdroje znečišťování ovzduší přízemní a vyvýšené; podle tvaru zdroje bodové, liniové, plošné a prostorové; podle časového režimu emise rozlišujeme zdroje plynulé (kontinuální) s konstantní nebo spojitě proměnnou emisí, přerušované a okamžité (exploze). Dále lze zdroje znečišťování ovzduší dělit na pohyblivé a nepohyblivé (stacionární). Mezi těmito kategoriemi zdrojů jsou různé přechodné a kombinované formy. Významným typem zdrojů je v našich podmínkách tovární komín, který je zpravidla možno považovat za bodový, vyvýšený a plynulý zdroj. Viz též vlečka kouřová.
česky: zdroj znečišťování ovzduší; slov: zdroj znečisťovania ovzdušia; něm: Quelle der Luftverunreinigung f; rus: источник загрязнения атмосферы  1993-a2
South Atlantic anticyclone
česky: anticyklona jihoatlantická; slov: juhoatlantická anticyklóna; něm: St. Helena-Antizyklone f; fr: anticyclone de l'Atlantique Sud m, anticyclone de de Sainte-Hélène m; rus: южноатлантический антициклон  1993-a1
South Atlantic anticyclone
syn. anticyklona jihoatlantická – teplá, vysoká a kvazipermanentní anticyklona nad již. částí Atlantského oceánu se středem často v oblasti ostrova Svaté Heleny. Rozkládá se v subtropických šířkách mezi Jižní Amerikou a již. Afrikou. V období léta na již. polokouli se přesouvá jižněji, v období zimy severněji. Svatohelenská anticyklona patří mezi permanentní akční centra atmosféry.
česky: anticyklona svatohelenská; slov: svätohelenská anticyklóna; něm: St. Helena-Antizyklone f, südatlantische Antizyklone f; fr: anticyclone de Sainte-Hélène m, anticyclone de l'Atlantique Sud m; rus: антициклон острова Святой Елены, южноaтлантический антициклон  1993-a3
South Pacific anticyclone
subtropická kvazipermanentní anticyklona na již. polokouli v jv. části Tichého oceánu záp. od Chile.
česky: anticyklona jihopacifická; slov: juhopacifická anticyklóna; něm: südpazifische Antizyklone f; fr: anticyclone de l'île de Pâques m, anticyclone du Pacific Sud m; rus: южнотихоокеанский антициклон  1993-a3
Southern Oscillation
cyklické zesilování a zeslabování Walkerovy cirkulace v atmosféře tropického Tichomoří. Tato oscilace se projevuje současným výskytem opačných anomálií tlaku vzduchu ve vých., resp. záp. části této oblasti, což umožňuje kvantifikaci této oscilace pomocí indexu jižní oscilace. Při záporné fázi dosahuje tlak vzduchu ve vých. části podnormálních hodnot a v záp. části vyšších hodnot oproti normálu, což vede k zeslabení pasátů. Naopak nárůst rozdílu tlaku vzduchu mezi vých. a záp. Tichomořím při kladné fázi jižní oscilace způsobuje zesílení pasátů. Záporná fáze jižní oscilace souvisí s jevem El Niño, kladná fáze s jevem La Niña; po objevení tohoto vztahu bylo počátkem 80. let 20. století zavedeno souborné označení ENSO.
česky: oscilace jižní; slov: južná oscilácia; něm: Southern Oscillation f; rus: южноe колебание  2014
Southern Oscillation Index
(SOI) – ukazatel aktuální fáze jižní oscilace a jeden z indikátorů ENSO, založený na porovnání tlaku vzduchu redukovaného na hladinu moře na Tahiti ve Francouzské Polynésii (pT) a v australském Darwinu (pD). Má více variant; např. NOAA používá vztah
SOI=(pT p¯TσT pDp¯D σD)1σTD,
kde aktuální měsíční průměry tlaku vzduchu redukovaného na hladinu moře jsou standardizovány dlouhodobým průměrem a směrodatnou odchylkou od průměru (σT a σD) v daném kalendářním měsíci, načež je jejich rozdíl normován směrodatnou odchylkou hodnot pT od pD pro daný kalendářní měsíc (σTD).
česky: index jižní oscilace; slov: index južnej oscilácie; něm: Southern Oscillation Index m; rus: индекс южного колебания  2014
space weather
fyzikální a fenomenologický stav meziplanetárního prostoru. Výzkum kosmického počasí usiluje pomocí pozorování, monitorování, analýz a modelování o pochopení a předpovídání stavu Slunce, meziplanetárního prostoru a vnějších obalů planet i náhlých změn tohoto stavu, vyvolaných sluneční aktivitou a dalšími zdroji, i o předpovědi možných dopadů na biologické a technologické systémy.
česky: počasí kosmické; slov: kozmické počasie; něm: Weltraumwetter n  2014
spatial mean of a meteorological variable
průměr meteorologického prvku podél určité linie, v určité ploše nebo v určitém objemu vzduchu. Pokud je prostorový průměr počítán z měření v síti meteorologických stanic, provádí se nejprve interpolace naměřených hodnot do pravidelné sítě. Hodnoty meteorologického prvku v uzlových bodech této sítě charakterizují jeho průměry v příslušných prostorových elementech této sítě. Prostorovými průměry jsou většinou i hodnoty získané pomocí distančních meteorologických měření v jednotlivých pixlech.
Hodnoty z pravidelné sítě mohou být dále průměrovány za účelem výpočtu prostorových průměrů za větší území. Dříve se k tomuto účelu užívalo planimetrování ploch vymezených izoliniemi na mapě daného meteorologického prvku. Viz též průměr meteorologického prvku časový.
česky: průměr meteorologického prvku prostorový  2024
spatial verification
jedna z metod verifikace meteorologické předpovědi vhodná k posouzení úspěšnosti předpovědi s vysokým prostorovým rozlišením. Kritéria používaná při prostorové verifikaci počítají s určitým stupněm nejistoty předpovědi, např. přibližnou hodnotou, přibližnou lokalizací nebo přibližným časem výskytu, které zohledňují nejčastěji pomocí zvětšujícího se prostorového, resp. časového okna, ve kterém je shoda prognostických a diagnostických polí meteorologických prvků hodnocena. Ze závislosti hodnot verifikačního kritéria na velikosti okna je možné určit prostorovou chybu předpovědi (např. kritériem FSS).
česky: verifikace meteorologické předpovědi prostorová; slov: priestorová verifikácia meteorologickej predpovede; rus: пространственная проверка прогнозов  2020
SPECI
Jde o zkratku angl. slova special „mimořádný“.
česky: SPECI; slov: SPECI; něm: SPECI m  2014
special (weather) phenomena
označení pro meteorologické jevy, kterým je nutno z provozního nebo prognostického hlediska věnovat zvláštní pozornost. V synoptických zprávách z evropských zemí se povinně uvádí informace o výskytu těchto jevů: max. nárazy větru, průměr vrstvy námrazků, max. průměr krup, vysoko zvířený sníh, tromba, tornádo, prachový nebo písečný vír. Další jevy se mohou zařazovat na základě národního rozhodnutí, např. ve zprávách SYNOP z České republiky se uvádí také výška nového sněhu za poslední hodinu, pokud je alespoň 1 cm, nebo výskyt srážek současně s mlhou.
česky: jevy počasí zvláštní; slov: zvláštne javy počasia; něm: ungewöhnliche Wettererscheinungen f; rus: особенные явления погоды  1993-a3
special clouds
oblaky, které se tvoří nebo rostou jako důsledek lokálních přírodních faktorů nebo lidské činnosti. Mezinárodní morfologická klasifikace oblaků ve verzi z roku 2017 rozeznává zvláštní oblaky označené jako flammagenitus, homogenitus, homomutatus, cataractagenitus a silvagenitus. Tyto oblaky netvoří speciální druh oblaků a morfologicky se klasifikují přidáním označení zvláštního oblaku k označení jednoho z 10 definovaných druhů oblaku.
Do roku 2017 byly mezi zvláštní oblaky řazeny též oblaky horní atmosféry, které nyní tvoří samostatnou kategorii.
česky: oblaky zvláštní; slov: zvláštne oblaky; něm: besondere Wolken f/pl  2014
special forecast
předpověď počasí pro předem stanovené účely. Jedná se o letecké předpovědi počasí, zemědělsko-meteorologické předpovědi, předpovědi pro dopravu, stavebnictví, energetiku a jiné obory. Soustřeďuje se na předpověď těch meteorologických prvků a dějů, které jsou v daném oboru lidské činnosti zvláště důležité. Viz též předpověď počasí všeobecná.
česky: předpověď počasí speciální; slov: špeciálna predpoveď počasia; něm: Sonderwettervorhersage f; rus: специализированный прогноз погоды  1993-a2
special station
meteorologická stanice se speciálním zaměřením, sloužící k provádění měření, která nejsou v náplni odb. činností ostatních stanic, např. pozorováním sfériků, měřením atmosférické elektřiny, přímého a rozptýleného slunečního záření, ozonu v atmosféře nebo znečištění ovzduší a srážek. Rozsah měření prováděných těmito stanicemi je určen vnitrostátními předpisy.
česky: stanice speciální; slov: špeciálna stanica; něm: Wetterstation mit speziellen Aufgaben f  1993-a3
special weather report (sudden changes)
1. zpráva o náhlém zhoršení počasí (BOUŘE) vysílaná při překročení stanovených limitů hodnot vybraných meteorologckých prvků, která začíná skupinou MMMMw2 (w2 je kódové číslo jevu, jehož se změna týká). Do roku 1999 se vysílala také zpráva v případě zlepšení počasí začínající skupinou BBBBw2;
2. met. stanice vysílající pravidelné letecké meteorologické zprávy (METAR) používají pro vyjádření náhlé změny mimořádné letecké meteorologické zprávy (SPECI).
česky: zpráva o náhlé změně počasí; slov: správa o náhlej zmene počasia; něm: Sonderwettermeldung f; rus: сообщение о внезапном изменении погоды  1993-a3
specific gas constant
konstanta úměrnosti ve stavové rovnici daného ideálního plynu. Je vlastností plynu a lze ji vyjádřit vztahem R = R* / m, kde R* je univerzální plynová konstanta a m značí relativní (poměrnou) molekulovou hmotnost plynu. Pro suchý vzduch platí Rd = 287,04 J.kg–1.K–1 a pro vodní páru je Rv = 461,5 J.kg–1.K–1. Ve stavové rovnici pro vlhký vzduch používáme hodnotu Rd a teplotu nahrazujeme hodnotou teploty virtuální. Viz též teplo měrné, Mayerův vztah.
česky: konstanta plynová měrná; slov: merná plynová konštanta; něm: spezifische Gaskonstante f; rus: удельная газовая постоянная  1993-a3
specific heat
množství tepelné energie potřebné k ohřátí látky jednotkové hmotnosti o 1 K. U plynů rozlišujeme měrné teplo při stálém tlaku cp a měrné teplo při stálém objemu cv. Měrné teplo plynů závisí na teplotě a tlaku a lze je přímo měřit. V rozsahu podmínek běžných v atmosféře lze tuto závislost zanedbat a považovat hodnoty cp a cv za konstantní. Pro suchý vzduch lze užít hodnoty pro 273,16 K: cpd = 1 004 J.kg–1.K–1, cvd = 717 J.kg–1.K–1. Ve vlhkém vzduchu o směšovacím poměru vodní páry rv je možné použít přibližné vztahy:
cpcpd(1+0.86 rv),cvc vd(1+0.96rv).
Viz též vztah Mayerův.
česky: teplo měrné; slov: merné teplo; něm: spezifische Wärme f; rus: удельная теплoтa, удельная теплоемкость  1993-a3
specific humidity
syn. vlhkost vzduchu specifická – charakteristika vlhkosti vzduchu s, která udává hmotnost vodní páry v jednotce hmotnosti vlhkého vzduchu, tj.
s=mvmv +md,
kde mv značí hmotnost vodní páry a md hmotnost suchého vzduchu v daném objemu vlhkého vzduchu. Měrnou vlhkost vzduchu lze vyjádřit pomocí tlaku vodní páry e a tlaku vzduchu p vztahem:
s=εep( 1ε)eεep,
kde konstanta ε ≈ 0,622 je poměr měrné plynové konstanty pro suchý vzduch a pro vodní páru. Měrná vlhkost vzduchu je bezrozměrná veličina, která v atmosféře dosahuje hodnot řádu 10–3. V meteorologii ji proto často udáváme v jednotkách g.kg–1. Číselnou hodnotou se měrná vlhkost blíží hodnotě směšovacího poměru vodní páry.
česky: vlhkost vzduchu měrná; slov: merná vlhkosť vzduchu (špecifická); něm: spezifische Feuchte f; rus: удельная влажность  1993-b3
specific volume
objem látky o jednotkové hmotnosti. Udává se v m3.kg–1 a je převrácenou hodnotou hustoty látky. V meteorologii se setkáváme zejména s měrným objemem vzduchu jakožto převrácenou hodnotou hustoty vzduchu. Viz též plocha izosterická.
česky: objem měrný; slov: merný objem; něm: spezifisches Volumen n; rus: удельный объем  1993-a3
spectral band
spojitý interval elmag. spektra vymezený dvěma zvolenými vlnovými délkami, resp. frekvencemi. Pro různé účely, především v souvislosti s distančními meteorologickými měřeními, se dle potřeby vymezují různá taková pásma. Viz též kanál spektrální.
česky: pásmo spektrální; slov: spektrálne pásmo; něm: Spektralband n; rus: спектральная полоса  1993-a3
spectral channel
označení části spektrálního pásma, ve které se měří elektromagnetické záření nějakým konkrétním přístrojem, např. radiometrem. Je technicky definován použitým rozsahem spektrálního pásma a technickými parametry použitého senzoru přístroje umožňujícími kalibraci dat.
česky: kanál spektrální; slov: spektrálny kanál; něm: Spektralbereich m, Spektralkanal m; rus: спектральный канал  1993-a2
Spectrometer
přístroj k měření spektrální intenzity toku dopadajícího záření v různých vlnových oblastech elektromagnetického záření. Spektroradiometry se používají většinou při pozemních i družicových měřeních obsahu a rozložení jednotlivých složek a parametrů zemské atmosféry.
Termín se skládá z lat. spectrum „obraz“, z komponentu radio- ve smyslu „radiace“ a řec. μέτρον [metron] „míra, měřidlo“.
česky: spektroradiometr; slov: spektrorádiometer; něm: Spektroradiometer n; rus: спектрометр  2014
spectrum of atmospheric aerosol particles
vyjádření závislosti počtu aerosolových částic určité velikosti obsažených v jednotkovém objemu vzduchu na jejich poloměru r (popř. průměru). Popisuje se funkcí f(r), pro niž platí, že výraz f(r) dr je roven počtu částic v jednotce objemu, jejichž poloměr leží v intervalu hodnot <r, r + dr), nebo funkcí F(r) = f(r) / N, kde N značí počet všech částic v jednotce objemu. Výraz F(r) dr se rovná poměru počtu částic o poloměru z intervalu <r,r + dr) k počtu všech částic v objemové jednotce. Jako konkrétní příklady zmíněných funkcí lze uvést tzv. Jungeho rozdělení vhodné pro většinu aerosolů kontinentálního původu v oboru částic větších než 10–7 m:
f(r)=C r(β+1),
kde C je vhodně zvolená konstanta a hodnota β se většinou volí blízká třem, popř. logaritmicko-normální rozdělení nebo funkci:
f(r)=a rαexp(brβ ),
pro niž a, α, b, ß* jsou konstanty charakterizující daný typ atmosférického aerosolu.
Pro naposled uvedenou funkci používají někteří autoři název zobecněná gama-funkce a tato funkce spolu s logaritmicko-normálním rozdělením představuje příklady asymetrického jednomodálního rozdělení. Reálné spektrum velikostí částic atmosférického aerosolu obvykle představuje superpozici tří takovýchto rozdělení, v níž se pak přirozeně uplatňují tři módy, tzv. nukleační mód, akumulační mód a hrubý mód. Obalová křivka právě zmíněného celkového třímodálního rozdělení často dobře odpovídá zde již rovněž zmíněnému Jungeho rozdělení v oblasti jeho platnosti.
Analogicky k právě uvedenému lze vytvářet spektra ve vztahu k úhrnným objemům nebo hmotnostem aerosolových částic, obsažených v jednotce objemu, v závislosti na jejich poloměru. Mluvíme pak o objemových nebo hmotnostních (hmotových) spektrech. Podoba těchto spekter odpovídá skutečnosti, že s rostoucí velikostí aerosolových částic sice klesají jejich počty, ale výrazně roste jim odpovídající úhrnný objem nebo hmotnost. Viz též nukleace.
česky: spektrum velikosti aerosolových částic; slov: spektrum častíc atmosférického aerosólu; něm: Teilchenspektrum des atmosphärischen Aerosols n, Größenverteilung des atmosphärischen Aerosols n; rus: спектр частиц атмосферного аэрозоля  1993-b3
spectrum of cloud droplets
česky: spektrum velikosti oblačných kapek; slov: spektrum veľkosti oblačných kvapôčok; něm: Wolkentropfenspektrum n; rus: спектр облачных капель  1993-a3
spectrum of turbulent eddies
syn. spektrum vírové – rozdělení velikostí turbulentních vírů vytvářejících se v proudící tekutině, z met. hlediska především ve vzduchu, jestliže Reynoldsovo číslo dosáhne jisté kritické hodnoty. Spektrum turbulentních vírů je určováno transformací kinetické energie základního uspořádaného proudění v kinetickou energii neuspořádaných vířivých turbulentních pohybů. Kinetická energie základního proudění se přímo transformuje v kinetickou energii největších turbulentních vírů, ta se dále transformuje v kinetickou energii stále jemnějších vířivých pohybů, až nakonec nejmenší turbulentní víry zanikají působením molekulární vazkosti a jim příslušející kinetická energie se přeměňuje na teplo. Viz též turbulence.
česky: spektrum turbulentních vírů; slov: spektrum turbulentných vírov; něm: Wirbelspektrum n; rus: спектр турбулентных вихрей  1993-a1
speed of light propagation in atmosphere
česky: rychlost světla v atmosféře; slov: rýchlosť svetla v atmosfére; něm: Lichtgeschwindigkeit in der Atmosphäre f  1993-a1
speed of sound propagation in atmosphere
česky: rychlost zvuku v atmosféře; slov: rýchlosť zvuku v atmosfére; něm: Schallgeschwindigkeit in der Atmosphäre f; rus: скорость звукa в атмосфере  1993-a1
spherical pyranometer
syn. pyranometr sférický – přístroj k měření krátkovlnného záření dopadajícího z prostorového úhlu 4π na kulový povrch. Mezi kulové pyranometry patří lucimetry. Viz též záření cirkumglobální.
česky: pyranometr kulový; slov: guľový pyranometer; něm: Kugelpyranometer n; rus: сферический пиранометр  1993-a1
spherical pyranometer
česky: pyranometr sférický; slov: sférický pyranometer; něm: Kugelpyranometer n  1993-a1
spherics
syn. sfériky.
Termín je odvozen od slova atmosféra. Odkazuje na atmosférický původ těchto rozruchů radiových vln.
česky: atmosfériky; slov: atmosfériky; něm: Sferics m/pl; rus: атмосферики  1993-a1
spherics
syn. atmosfériky – elmag. rozruchy ve tvaru krátkých impulzů, šířící se v atmosféře ve vlnovodu tvořeném povrchem Země a dnem ionosféry na velké vzdálenosti až tisíců kilometrů. Původcem sfériků jsou dílčí výboje blesků. Intenzita sfériků na místě pozorování závisí na intenzitě původního výboje na vzdálenosti mezi úderem blesků a pozorováním sfériky a na vlastnostech ionosféry (den/noc). Viz též detekce blesků pozemní.
Termín vznikl zkrácením slova atmosfériky.
česky: sfériky; slov: sfériky; něm: Atmosphärische Impulsstrahlung f, Sferics f/pl; rus: атмосферики  1993-a3
spiral band
česky: pás spirální; slov: špirálový pás; rus: спиральная полоса  2014
spirit thermometer
skleněný teploměr, jehož teploměrnou kapalinou je líh, popř. jiná organická látka s bodem tuhnutí kolem –100 °C, která bývá někdy zabarvena pro usnadnění čtení údajů. Nejčastěji se používá k měření minimální teploty vzduchu.
česky: teploměr lihový; slov: liehový teplomer; něm: Alkoholthermometer n; rus: спиртовый термометр  1993-a2
spissatus
(spi) [spisátus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Označuje závojovitý oblak, který je opticky tak hustý, že se proti Slunci zdá šedavý. Označení spissatus se používá u druhu cirrus.
Termín byl přejat z lat. spissatus „zhuštěný“, příčestí minulého slovesa spissare „zhustit“.
česky: spissatus; slov: spissatus; něm: spissatus; rus: плотные облака  1993-a2
split cold front
studená fronta vykazující dvojitou strukturu oblačnosti. V přední části je oblačnost vertikálně mohutná, zatímco v zadní části převažuje oblačnost o menším vertikálním rozsahu. Split fronta vzniká, když osa jet streamu protíná frontu téměř v pravém úhlu a s ní spojený sestupující suchý stratosférický a troposférický vzduch vede k rozpouštění oblaků vyšších pater v zadní části fronty. U této studené fronty se tedy hlavní srážková činnost odehrává v přední části fronty. V místě, kde se téměř skokově mění výška horní hranice oblaků, lze hovořit o výškové studené frontě. Pouze v případě, kdy dochází k advekci pozitivní vorticity v oblasti levé části delty tryskového proudění, může vzniknout kupovitá oblačnost s intenzivními srážkami i v zadní části fronty. Málo používaným českým ekvivalentem termínu split fronta je rozštěpená studená fronta.
česky: split fronta; slov: split front  2015
split cold front
zřídka užívané české označení pro split frontu.
česky: fronta studená rozštěpená; slov: rozštiepený studený front  2019
split front
studená fronta vykazující dvojitou strukturu oblačnosti. V přední části je oblačnost vertikálně mohutná, zatímco v zadní části převažuje oblačnost o menším vertikálním rozsahu. Split fronta vzniká, když osa jet streamu protíná frontu téměř v pravém úhlu a s ní spojený sestupující suchý stratosférický a troposférický vzduch vede k rozpouštění oblaků vyšších pater v zadní části fronty. U této studené fronty se tedy hlavní srážková činnost odehrává v přední části fronty. V místě, kde se téměř skokově mění výška horní hranice oblaků, lze hovořit o výškové studené frontě. Pouze v případě, kdy dochází k advekci pozitivní vorticity v oblasti levé části delty tryskového proudění, může vzniknout kupovitá oblačnost s intenzivními srážkami i v zadní části fronty. Málo používaným českým ekvivalentem termínu split fronta je rozštěpená studená fronta.
česky: split fronta; slov: split front  2015
split front
zřídka užívané české označení pro split frontu.
česky: fronta studená rozštěpená; slov: rozštiepený studený front  2019
spongy ice
ledová struktura krup, která obsahuje vzduchové bubliny zčásti nebo úplně zaplněné kapalnou vodou. Existence houbovitého ledu byla prokázána laboratorně i ve vrstevnaté struktuře přirozených velkých krup, Viz mez Schumanova-Ludlamova.
česky: led houbovitý; slov: hubovitý ľad; rus: губчатая структура льда  2014
spontaneous freezing
proces spontánního mrznutí přechlazených kapiček v atmosféře homogenní nukleací ledu. Probíhá bez zjevné přítomnosti ledových jader a ostatních příměsí uvnitř přechlazených kapek. Spontánní krystalizace může podle pozorování nastat v oblacích při poklesu teploty pod –40 °C, někteří autoři však nevylučují možnost existence čisté přechlazené vody i při teplotách ještě nižších (–65 °C až –70 °C).
česky: krystalizace spontánní; slov: spontánna kryštalizácia; něm: spontane Kristallisation f; rus: самопроизвольная кристаллизация, спонтанная кристаллизация  1993-a3
spontaneous nucleation
syn. nukleace spontánní – ve fyzice oblaků a srážek označení nukleace vody nebo ledu, která probíhá spontánně, náhodnými kolizemi molekul nebo podkritických molekulárních shluků ve vodní páře nebo vodě, bez účasti kondenzačních či ledových jader. Za běžných podmínek v atmosféře k homogenní nukleaci nedochází, neboť přítomnost kondenzačních a ledových jader zajišťuje přednostní uplatnění heterogenní nukleace. Hodnoty přesycení vodní párou, které odpovídají detekovatelné rychlosti homogenní nukleace a klesají s rostoucí teplotou, jsou řádu 102 %.
česky: nukleace homogenní; slov: homogénna nukleácia; něm: spontane Nukleation f, homogene Nukleation f; rus: гомогенная нуклеация, спонтанная нуклeация  1993-b3
sporadic E-layer
syn. vrstva Es – vrstva v ionosféře vznikající občas v oblasti výskytu vrstvy E. Na rozdíl od normální vrstvy E se vyskytuje také v noci. Má obláčkovitou, nesouvislou strukturu. Tato velmi tenká vrstva (jednotky km) vzniká zejména ve stř. zeměp. šířkách. Nejčastěji se objevuje ve formě malých oblaků v letních měsících. Její vznik je zapříčiněn dynamickými procesy v atmosféře, zejména střihem větru, které způsobí místní zvýšení hustoty volných elektronů. Tvoří se náhle a její délka trvání se pohybuje v řádu minut až hodin. Vznik Es vrstvy nezávisí jednoznačně na sluneční aktivitě. Malá oblaka intenzivní ionizace významně podporují odrazivost rádiových signálů o frekvencích až desítek či stovek MHz. Údaje o výšce se liší, udává se hodnota výšky v rozmezí 100–160 km. Maximální koncentrace iontů v Es vrstvě může být vyšší než ve vrstvách, které leží výše, a částečně nebo úplně tak znemožňuje pozemní ionosférické sondování.
česky: vrstva E sporadická; slov: sporadická E-vrstva; něm: sporadische E-Schicht f; rus: спорадический слой Е  1993-a3
spreading of air pollution
souhrnné označení pro rozptyl příměsí v ovzduší a přenos příměsí. Viz též transport znečišťujících příměsí, transmise exhalátů.
česky: šíření příměsí v atmosféře; slov: šírenie prímesí v atmosfére; něm: Ausbreitung der Beimengungen in der Luft f, Ausbreitung von Luftverunreinigungen f; rus: распространение примесей в атмосфере  1993-a1
spring
jedna z vedlejších klimatických, příp. fenologických sezon ve vyšších zeměp. šířkách dané polokoule, vymezená např. takto:
1. období od jarní rovnodennosti do letního slunovratu (astronomické jaro);
2. trojice jarních měsíců, na sev. polokouli březen, duben a květen (tzv. klimatologické jaro);
3. období s prům. denními teplotami vzduchu 5 až 15 °C na vzestupné části křivky ročního chodu teploty vzduchu. Počátek jara v tomto pojetí se kryje se začátkem velkého vegetačního období.
Termín vychází z indoevropského kořene s významem „rok, teplé roční období“, stejně jako něm. Jahr a angl. year „rok“ (jaro bylo bráno jako první období roku, srov. rčení „uplynulo mnoho jar“).
česky: jaro; slov: jar; něm: Frühling m; rus: весна  1993-a3
Sprung formula
psychrometrický vzorec používaný k praktickému určení vlhkosti vzduchu z údajů Assmannova psychrometru. Má tvar:
e=es-A(T-T )p/755, kde e je tlak vodní páry v místě měření v torrech, es tlak nasycené vodní páry v torrech při teplotě udávané vlhkým teploměrem, p značí tlak vzduchu v torrech, A je psychrometrický koeficient, jehož hodnota je pro uměle ventilovaný psychrometr a pro vodu 0,5 (pro led 0,43), T značí teplotu suchého teploměru a T' teplotu vlhkého teploměru. Vzorec je pojmenován podle něm. meteorologa A. Sprunga (1848–1909).
česky: vzorec Sprungův; slov: Sprungov vzorec; něm: Sprung-Formel f; rus: формула Шпрунга  1993-a2
squall
1. náhlé a prudké zvýšení rychlosti větru, který je značně nárazovitý a často mění směr. Jev trvá několik minut a náhle ustává. Húlava je projevem přechodu gust fronty přes místo pozorování.
2. nevh. se termín húlava občas vyskytuje i v širším smyslu jako označení pro prudké zhoršení počasí (silný vítr, srážky, oblačnost zvláštnosti arcus), které souvisí s čelem studeného vzduchu přibližující se konvektivní bouře nebo studené fronty. Viz též oblak húlavový, cumulonimbus.
Termín do české odborné literatury zavedl A. Gregor v r. 1920 v širším smyslu náhlé přeháňky provázené prudkým větrem. Převzal ho z nářečí východní Moravy, kde se v tomto významu používá (nářeční původ je vysvětlením pro „ú“ uprostřed slova).
česky: húlava; slov: húľava; něm: Bö f; rus: шквал  1993-a3
squall cloud
starší a v současnosti téměř nepoužívané označení horiz. nebo podlouhlého oblačného klínu na čele studeného vzduchu vytékajícího z konvektivní bouře. Oblak byl lid. označován také jako oblačný nebo húlavový límec. Viz též húlava, arcus, shelf cloud, roll cloud.
česky: oblak húlavový; slov: búrkový golier; něm: Böenwolke f; rus: шкваловое облако  1993-a2
squall line
česky: čára húlav; slov: čiara húľav; něm: Böenlinie f; fr: ligne de grains f; rus: линия шквалов  1993-a1
squall line
česky: fronta húlav; slov: front húľav; něm: Böenfront f, Böenlinie f; fr: ligne de grains f; rus: линия шквалов  1993-a1
squall line
[skvól lajn] – druh mezosynoptického konvektivního systému tvořeného víceméně lineárně uspořádanými dílčími konvektivními bouřemi s přidruženou vrstevnatou částí. Nové konvektivní buňky vznikají na dobře vyvinuté gust frontě systému. Squall line se často vyskytuje v teplém sektoru cyklony před studenou frontou, výjimečně i za ní, dále pak typicky na vlhkostních rozhraních. Pokud se squall line vyskytuje před studenou frontou, mohou být doprovodné projevy počasí daleko výraznější než při samotném přechodu fronty. Viz též bow echo, derecho, čára instability.
Termín je přejat z angličtiny. Skládá se z angl. squall „húlava“ a line „čára“, přičemž první slovo má v námořnickém slangu širší význam „krátká prudká bouře“. Pokus o český ekvivalent „čára húlav“ byl proto zavádějící a nepoužívá se.
česky: squall line; slov: squall line; něm: squall line f, Böenliinie f; rus: линия шквалов  2014
St. Elmo's fire
syn. světlo Eliášovo – označení pro hrotový výboj, který se projevuje viditelným světelným zářením, někdy i zvukově (praskotem). Vzniká nejčastěji pod cumulonimbem na přirozených nebo umělých hrotech (např. na špičkách věží, na stožárech a komínech lodí) nebo na vrcholcích hor a stromů. V historických pojednáních se např. popisuje výskyt ohně svatého Eliáše na stěžních Kolumbových plachetnic a v Cézarových zápiscích na hrotech kopí římských vojsk. Vzácně se stává, že toto světelné záření je viditelné za bouřky okolo naježených vousů a vlasů osob na vrcholcích hor. Český název jevu chybně navozuje souvislost se starozákonním prorokem Eliášem. Cizojazyčné ekvivalenty však vesměs obsahují jméno Elmo, což neodpovídá jménu Eliáš, nýbrž představuje jednu ze dvou variant italského překladu jména Erasmus (Elmo, Erasmo). Jde o Erasma z Antiochie, uváděného též jako Erasmus z Formie, křesťanského světce a mučedníka z doby římského císaře Diokleciána. Ten byl zejména ve středomořské oblasti uctíván námořníky a vzýván při bouřích jako ochránce před úderem blesku do lodi (nejčastěji do stěžně), což souviselo s legendárně popisovanou událostí v jeho životě.
česky: oheň svatého Eliáše; slov: oheň svätého Eliáša; něm: Elmsfeuer n, St.-Elms-Feuer n; rus: огонь св. Эльма  1993-a3
stability classification
klasifikace míry stimulace nebo potlačování vertikálních pohybů v atmosféře. Charakterizuje tendenci vzduchové částice pokračovat ve vertikálním pohybu, nebo se navrátit do výchozího bodu poté, kdy byla vnějším impulzem z této výchozí polohy vychýlena. Při instabilním zvrstvení atmosféry jsou vertikální pohyby v atmosféře podporovány a rozvíjí se intenzivní vertikální turbulentní promíchávání. Při stabilním zvrstvení jsou vertikální pohyby tlumeny a intenzita turbulence je malá. Existuje řada stabilitních klasifikací, nejznámější je klasifikace Pasquillova–Giffordova, v ČR je používaná klasifikace Bubníka a Koldovského. Jako míra stability se rovněž často používají Richardsonovo číslo a Moninova-Obuchovova délka.
česky: klasifikace stabilitní; slov: stabilitná klasifikácia  2014
stability degree
dynamické meteorologii veličina definovaná vztahem Γ = γ - γd pro nenasycený vzduch a Γ = γ - γs pro vzduch nasycený vodní párou (γ, γd, γs po řadě značí vertikální teplotní gradient, suchoadiabatický teplotní gradient a nasyceně adiabatický gradient). Míra stability charakterizuje stabilitní poměry v atmosféře a používá se zejména v prognostických modelech atmosféry. Viz též stabilita atmosféry.
česky: míra stability; slov: miera stability; něm: Stabilitätsmaß f; rus: мера устойчивости  1993-a1
stability index, convective index
číselně vyjádřená míra vertikální stability atmosféry. Indexy stability zpravidla hodnotí kombinovaný vliv teploty a vlhkosti vzduchu ve vybraných hladinách nebo vrstvách. Využívají se zejména pro předpověď vývoje konv. jevů, zejména vývoje přeháněk a bouřek. Výhodou indexů stability je jednoduchost výpočtu, která umožňuje stanovení indexů na základě údajů získaných radiosondážním měřením. V současné době se řada indexů stanoví i z výsledků modelu numerické předpovědi počasí. Mezi nejznámější indexy stability patří Faustův index, K-index, Lifted index, Showalterův index, SWEAT index, Total Totals index. Hodnota indexu stability roste s růstem vertikální stability atmosféry. Pokud se index vyjádří ve tvaru, kdy jeho hodnota roste s růstem vertikální instability atmosféry, označuje se také jako index instability.
česky: index stability; slov: index stability; něm: Stabilitätsindex m; rus: индекс устойчивости (неустойчивости)  1993-a3
stability parameter
kvantit. vyjádření stabilitních podmínek, tj. stability nebo instability teplotního zvrstvení atmosféry. V širším smyslu mezi stabilitní parametry patří např. vertikální teplotní gradient, Bruntova-Vaisalova frekvence a dále parametry, které zahrnují nejen termické, ale i dynamické charakteristiky stavu atmosféry, tj. parametry typu Richardsonova čísla, nebo pro přízemní vrstvu atmosféry poměr z/L, kde z je výška nad zemským povrchem a L je Obuchovova délka. Viz též vertikální instabilita atmosféry, klasifikace stabilitní.
česky: parametr stabilitní; slov: parameter stability; něm: Stabilitätsparameter m; rus: параметр устойчивости  1993-a3
stabilization of anticyclone
méně často používané označení pro proces, během něhož postupující anticyklona, která obyčejně uzavírá sérii cyklon, ztrácí pohyb a mohutní. Izobary se přitom stávají stále symetričtějšími vůči jejímu středu a zvětšuje se její vert. rozsah. Viz též mohutnění anticyklony.
česky: stabilizace anticyklony; slov: stabilizácia anticyklóny; něm: Stabilisierung der Antizyklone f  1993-a3
stable air mass
vzduchová hmota, která má alespoň ve spodní části stabilní zvrstvení, tedy vertikální teplotní gradient menší než nasyceně adiabatický. Ve stabilní vzduchové hmotě se často vyskytují inverze teploty, izotermie a jen malá turbulence. Při dostatečné vlhkosti vzduchu v ní vznikají mlhy nebo nízké vrstevnaté oblaky, hlavně v chladné části roku. Viz též hmota vzduchová instabilní.
česky: hmota vzduchová stabilní; slov: stabilná vzduchová hmota; něm: stabile Luftmasse f; rus: устойчивая воздушная масса , устойчивая масса воздуха  1993-a3
stable waves
1. obecně vlny, jejichž amplituda se s časem nebo s postupem při prostorovém šíření vlnového rozruchu nemění. 2. v synoptické meteorologii pojem stabilní vlna obvykle označuje frontální vlnu, jejíž amplituda s časem neroste.
česky: vlny stabilní; slov: stabilné vlny; něm: stabile Wellen f/pl  2014
staff gauge
hladinoměr s pevnou stupnicí umožňující vizuální čtení vodního stavu v daném okamžiku.
česky: vodočet; něm: Lattenpegel m; fr: échelle limnimétrique  2024
stage gauge
zařízení nebo přístroj k měření vodního stavu. Nejjednodušším hladinoměrem je vodočet, složitějšími různé typy limnigrafů.
česky: hladinoměr; slov: hladinomer; něm: Wasserstandsanzeiger m; fr: limnimètre; rus: уровнемер  2024
stage recorder
automatický hladinoměr sloužící k záznamu časového průběhu vodního stavu.
česky: limnigraf; slov: limnigraf; něm: Schreibpegel m; fr: limnigraphe; rus: лимниграф  2024
stages of anticyclone development
obvykle se rozeznávají tato stadia:
a) stadium vzniku – od prvních příznaků na přízemní povětrnostní mapě (růst tlaku vzduchu na přední i zadní straně hřebene vysokého tlaku) do objevení se první uzavřené izobary s hodnotou dělitelnou pěti (v některých povětrnostních službách dělitelnou čtyřmi);
b) stadium mohutnění (zesilování) anticyklony – období od vzniku anticyklony do doby dosažení nejvyššího tlaku vzduchu;
c) stadium slábnutí anticyklony charakterizované poklesem tlaku vzduchu ve středu anticyklony;
d) stadium rozpadu – období celkového poklesu tlaku vzduchu v oblasti anticyklony až do jejího vymizení jako samostatného tlakového útvaru. Někteří autoři zahrnují stadium rozpadu pod stadium slábnutí anticyklony.
Viz též stadia vývoje cyklony, regenerace anticyklony, stabilizace anticyklony.
česky: stadia vývoje anticyklony; slov: štádiá vývoja anticyklóny; něm: Entwicklungsstadien der Antizyklone n/pl  1993-a3
stages of cyclone development
1. u frontálních cyklon obvykle rozeznáváme:
a) počáteční stadium (stadium vzniku), tj. období od prvních příznaků vývoje cyklony až po objevení se první uzavřené izobary s hodnotou dělitelnou pěti (v některých povětrnostních službách dělitelnou čtyřmi);
b) stadium mladé cyklony, což je období od utvoření cyklony do začátku okluzního procesu, popř. oddělení studené od teplé fronty v případě Shapirova-Keyserova modelu cyklony;
c) stadium největšího vývoje, které trvá od začátku okludování či oddělení front až po dosažení nejnižšího tlaku ve středu cyklony;
d) stadium vyplňování cyklony, od doby začátku vzestupu tlaku vzduchu až do úplného zániku cyklony jako samostatného tlakového útvaru na přízemní povětrnostní mapě.
Stadia b) a c) se často označují společným termínem stadium prohlubování cyklony.

2. Z hlediska frontální analýzy podle norské meteorologické školy rozlišujeme:
a) stadium frontální vlny;
b) stadium mladé cyklony;
c) stadium okludované cyklony.
Přechod z jednoho stadia do druhého je provázen změnou vert. stavby cyklony a změnou počasí v oblasti, kterou cyklona ovlivňuje. Viz též počasí cyklonální, regenerace cyklony, segmentace cyklony.
česky: stadia vývoje cyklony; slov: štádiá vývoja cyklóny; něm: Entwicklungsstadien der Zyklone n/pl  1993-a3
standard
standard měřící jednotky nebo stupnice určité veličiny. Slouží k realizaci a uchovávání této jednotky nebo stupnice a k jejímu přenosu na měřidla nižší přesnosti.
Termín je přejat z franc. étalon, které nemá zcela objasněný původ.
česky: etalon; slov: etalón; něm: Eichmaß n; fr: étalon m; rus: эталон  2016
standard atmosphere
model atmosféry, vypočtený na základě rovnice hydrostatické rovnováhy za předpokladu, že vzduch je ideální plyn. Standardní atmosféra udává hypotetické vert. rozložení tlaku vzduchu, teploty vzduchu a hustoty suchého vzduchu v atmosféře během celého roku ve středních zeměp. šířkách. Různé modely standardní atmosféry používají odlišné hodnoty zákl. prvků (tlak, teplota a hustota vzduchu, vertikální gradient teploty, plynová konstanta a tíhové zrychlení) a různý počet a výškový rozsah modelových vrstev. V letecké meteorologii je dohodnuto používat mezinárodní standardní atmosféru ICAO.
česky: atmosféra standardní; slov: štandardná atmosféra; něm: Standardatmosphäre f; fr: atmosphère standard f; rus: стандартная атмосфера  1993-a3
standard barometer
tlakoměr etalonový, který je vybrán členským státem Světové meteorologické organizace nebo oblastním sdružením WMO jako zákl. přístroj pro srovnávání tlakoměrů na území své působnosti. V současné době se v České republice metrologicky navazují staniční tlakoměry na národní etalon tlaku prostřednictvím hlavního etalonu organizace (ČHMÚ). Při kalibraci se přenáší hodnoty tlaku z pracovního tlakoměru až na etalon nejvyšší kvality prostřednictvím etalonu kalibrační laboratoře. Zásadou je mít etalon tlaku minimálně dvakrát přesnější než dané pracovní měřidlo. V případě ČHMÚ se jedná o číslicový tlakoměr RPM4 od firmy FLUKE DH Instruments, který je navázaný na primární etalon Českého metrologického institutu - Pístový tlakoměr, typ DHI PG 7601 s rozšířenou nejistotou měření 0,3 Pa +0,0011 % z měřené hodnoty. Viz též kalibrace meteorologických přístrojů.
česky: tlakoměr standardní; slov: štandardný tlakomer; něm: Hauptnormalbarometer n, Standardbarometer n  1993-a3
standard coordinate system
z-systém, v němž osy x a y leží v rovině tečné k ideálnímu zemskému povrchu a směřují na východ, resp. na sever. Viz též soustava souřadnicová přirozená.
česky: soustava souřadnicová standardní; slov: štandardná súradnicová sústava; něm: Standardkoordinatensystem n  1993-a3
standard isobaric surface
izobarická hladina vybraná mezinárodní dohodou pro popis podmínek v atmosféře. Za standradní jsou zvoleny hladiny 1 000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 a 10 hPa. Údaje o výšce hladin a hodnotách jednotlivých meteorologických prvků v nich měřených jsou předávány povinně ve zprávách TEMP a TEMP SHIP. Ve zprávách PILOT a PILOT SHIP se uvádějí hodnoty směru a rychlosti větru ve standardních izobarických hladinách 850 až 10 hPa. Výše položené synoptické stanice (v ČR ve výšce nad 550 m. n. m.) uvádějí ve zprávách SYNOP výšku stanovené standardní izobarické hladiny místo tlaku vzduchu redukovaného na hladinu moře.
česky: hladina izobarická standardní; slov: štandardná izobarická hladina; něm: Standarddruckfläche f; rus: стандартная изобарическая поверхность  1993-b3
standard pressure
konvenčně stanovená hodnota tlaku 1013,25 hPa. Byla zavedena jako průměrná hodnota tlaku vzduchu při mořské hladině na 45° s.š., při teplotě 15 °C a tíhovém zrychlení 9,80665 m.s-2.
česky: tlak normální; slov: normálny tlak; něm: Normaldruck m  2017
standard pressure level
izobarická hladina vybraná mezinárodní dohodou pro popis podmínek v atmosféře. Za standradní jsou zvoleny hladiny 1 000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 a 10 hPa. Údaje o výšce hladin a hodnotách jednotlivých meteorologických prvků v nich měřených jsou předávány povinně ve zprávách TEMP a TEMP SHIP. Ve zprávách PILOT a PILOT SHIP se uvádějí hodnoty směru a rychlosti větru ve standardních izobarických hladinách 850 až 10 hPa. Výše položené synoptické stanice (v ČR ve výšce nad 550 m. n. m.) uvádějí ve zprávách SYNOP výšku stanovené standardní izobarické hladiny místo tlaku vzduchu redukovaného na hladinu moře.
česky: hladina izobarická standardní; slov: štandardná izobarická hladina; něm: Standarddruckfläche f; rus: стандартная изобарическая поверхность  1993-b3
standard pyrheliometer
pyrheliometr, který je používán jako referenční etalon pro kalibraci krátkovlnných radiometrů (provozní pyrheliometry, pyranometry). Standardní pyrheliometry slouží především jako národní, regionální a světové referenční přístroje reprezentující mezinárodní pyrheliometrickou stupnici. Národním etalonem pro měření slunečního záření v ČR je absolutní dutinový pyrheliometr typ HF č. 30497 (výrobce Eppley Laboratories, USA) udržovaný v ČHMÚ. Přístroj je v pravidelných intervalech porovnáván vůči světovému standardu ve Světovém radiačním středisku WMO v Davosu, Švýcarsko.
česky: pyrheliometr standardní; slov: štandardný pyrheliometer; něm: Standardpyrheliometer n  1993-a3
standard radioatmosphere
model atmosféry používaný při řešení úloh spojených s výpočty efektivního dosahu radiolokace objektů, radiokomunikačních spojů, při projekci radiolokačních, spojových a jiných zařízení. V modelu standardní radioatmosféry klesá teplota vzduchu s výškou o 6,5 °C na 1 km, tlak vzduchu klesá s výškou podle barometrické formule a tlak vodní páry e podle empirického vztahu A. Ch. Chrgiana
eh=e0exp[ h(bhc)],
kde h je výška v km a konstanty b a c závisejí na roční době v rozmezí 0,1112 ≤ b ≤ 0,2181; 0,0286 ≤ c ≤ 0,0375. Index lomu elektromagnetického vlnění ve vzduchu n je pro troposférické výšky lineárně závislý na h a pro stř. zeměp. šířky platí
dn/dh= 4,0.106km1.
Dále se ve standardní atmosféře zavádí efektivní poloměr Země místo skutečného poloměru Země a vztah poloměru zakřivení paprsku vzhledem k zakřivení Země s ohledem na atmosférickou refrakci. Hodnoty stavových veličin pro standardní radioatmosféru jsou tabelovány.
česky: radioatmosféra standardní; slov: štandardná rádioatmosféra; něm: standarde Radioatmosphäre f  1993-a2
standard time of observation
čas, ke kterému se vztahují meteorologická měření a pozorování, určený WMO.
česky: čas pozorování standardní; slov: štandardný čas pozorovania; něm: Standardbeobachtungstermin m; fr: heure standard d'observation f; rus: стандартный срок наблюдения  1993-a3
Standardized Precipitation Index
(SPI) – velmi rozšířený index sucha, vyjadřující deficit, případně nadbytek srážek na daném místě za libovolný časový úsek; index navrhli McKee a kol. (1993). Dosažený úhrn srážek je porovnán s rozdělením úhrnů během normálového období, transformovaným na normované normální rozdělení. Index je počítán jako rozdíl dosaženého úhrnu a průměru transformovaného rozdělení, dělený příslušnou směrodatnou odchylkou. Hodnota SPI = 0 odpovídá klimatologickému normálu, hodnoty se pak zpravidla pohybují mezi 3 a –3, přičemž pod –1,5 mluvíme o extrémním suchu. SPI je vhodným nástrojem k vymezení epizod sucha, jejichž délka je nicméně závislá na zvoleném časovém kroku.
česky: index srážkový standardizovaný; slov: štandardizovaný zrážkový index  2014
standing cloud
někdy používané označení pro orografický oblak, který se prakticky nepohybuje vzhledem k zemskému povrchu, i když se v hladině jeho vzniku vyskytuje silné proudění vzduchu.
česky: oblak stacionární; slov: stacionárny oblak; něm: stationäre Wolke f; rus: стоячее облако  1993-a3
standing waves
1. obecně vlny, jež se zdánlivě nepohybují vůči svému prostředí a projevují se jako stacionární sled stabilních uzlů a kmiten. Běžným mechanizmem vzniku stojatých vln je skládání dvou sledů příčných vln, které mají shodnou vlnovou délku, ale postupují vzájemně proti sobě. Dochází k tomu např. tehdy, jedná-li se o skládání původního a odraženého vlnění. Tímto způsobem mohou někdy vznikat stojaté vlny na vodní hladině při odrazu povrchových vnějších gravitačních vln od břehů. Výskyt tohoto jevu je však poměrně vzácný, neboť předpokládá náročné podmínky pro vzájemnou geometrickou konfiguraci nabíhající vlny a břehu. Jiným případem stojatých vln jsou velmi dobře známé vnitřní gravitační vlny na dolních hranicích výškových teplotních inverzí při zanedbatelné rychlosti horiz. proudění vzduchu. Za této podmínky se vlnové rozruchy projevují vznikem dvou sledů stejných gravitačních vln, které postupují vzájemně proti sobě, a mohou tak vytvořit stojaté vlnění. Jiným případem stojatých vln v atmosféře mohou být závětrné vlny.
2. v hydrologii kolísavé rytmické pohyby celé vodní hladiny na stojatých vodách (jezerech, uzavřených částech moří apod.), jejichž příčinou bývá rozdílný tlak vzduchu v různých částech hladiny, náhlé změny atm. tlaku, nárazy větru z hor, prudké deště aj. Názvem stojaté vlny se označuje střídavé nakláněni vodní hladiny na jednu či druhou stranu kolem více méně stálých os, zvaných uzly. Perioda stojatých vln trvá od několika minut do několika hodin, amplituda činí v závislosti na velikosti nádrže mm až m. Stojaté vlny mají mnoho místních názvů, často používaný název „seiche“ pochází od Ženevského jezera, kde je studoval a pojmenoval F. A. Forel. Na jezerech stojaté vlny zcela převyšují dmutí.
česky: vlny stojaté; slov: stojaté vlny; něm: Seiches m/pl, stehende Wellen f/pl; rus: сейшa  1993-a3
state curve
obecně grafické vyjádření změn fyz. stavu vert. se pohybující vzduchové částice. V praxi grafické vyjádření změn teploty adiabaticky vystupující či sestupující vzduchové částice na termodynamickém diagramu. Viz též děj adiabatický.
česky: křivka stavová; slov: stavová krivka; něm: Zustandskurve f; rus: кривая состояния  1993-a2
state equation
syn. rovnice Clapeyronova, vzorec Clapeyronův – termodynamická rovnice vyjadřující vztah mezi třemi stavovými veličinami, tj. teplotou, tlakem a hustotou ideálního plynu. Lze ji odvodit kombinací Gay-Lussacova zákonaCharlesovým zákonem. Uvádí se ve tvaru
pρ=RT nebo  pρ=RmT,
kde p značí tlak, ρ hustotu, T teplotu v K, R* univerzální plynovou konstantu, R měrnou plynovou konstantu a m poměrnou molekulovou hmotnost daného plynu. Stavová rovnice patří k zákl. vztahům používaným v termodynamice atmosféry, neboť za hodnot tlaku a teploty, které se běžně vyskytují v atmosféře, platí s postačující přesností i pro reálné plyny.
česky: rovnice stavová; slov: stavová rovnica; něm: Zustandsgleichung f; rus: уравнение состояния газов  1993-a2
state of ground
kvalit. údaj o vlastnostech povrchové vrstvy půdy určovaných povětrnostními vlivy. V bezmrazovém období ovlivňují stav půdy především kapalné srážky (povrch suchý, vlhký nebo mokrý), v zimním období mráz způsobující mrznutí vody obsažené v půdě, dále sněhová pokrývka aj. Z dalších meteorologických prvků stav půdy ovlivňují sluneční záření, vítr atd. Hodnocení stavu půdy se vztahuje k holé půdě typického složení pro danou oblast, a to buď na pozemku stanice, nebo s přihlédnutím k širšímu okolí stanice. Stav půdy se hodnotí vizuálně, a to na klimatologických stanicích ve všech klimatologických termínech, na synoptických stanicích navíc ještě v termínu 06 UTC a za stanovených podmínek i v termínu 18 UTC. Údaje o stavu půdy mají značný praktický význam pro zemědělství, pozemní a leteckou dopravu apod. Viz též holomráz, půda nasycená, půda porostlá trávníkem.
česky: stav půdy; slov: stav pôdy; něm: Erdbodenzustand m; rus: состояние земной поверхности  1993-a3
static pressure
syn. tlak hydrostatický – tlak vyvolaný působením síly zemské tíže uvnitř nepohybující se tekutiny. Působí vždy kolmo na stěny libovolného tělesa vnořeného do dané tekutiny. Ve fyzice atmosféry je možné také označovat tento tlak jako aerostatický, častěji se však i v tomto případě používá pojem hydrostatický tlak. V meteorologii lze za statický tlak pokládat tlak vzduchu změřený správně umístěným tlakoměrem. Viz též rovnováha hydrostatická, tlak dynamický, tlak celkový.
česky: tlak statický; slov: statický tlak; něm: statischer Druck m  1993-a3
statics of atmosphere
část meteorologie zabývající se prostorovým rozložením stavových veličin v atmosféře, tj. rozložením tlaku, teploty a hustoty vzduchu. Přitom se předpokládá, že atmosféra je nepohyblivá vůči zemskému tělesu. Do statiky atmosféry patří mimo jiné problémy hydrostatické rovnováhy a stability teplotního zvrstvení. Viz též dynamika atmosféry.
česky: statika atmosféry; slov: statika atmosféry; něm: Statik der Atmosphäre f  1993-a1
station barometer
přístroj pro měření tlaku vzduchu na meteorologické stanici. Zpravidla se umísťuje uvnitř budov nebo v ochranném krytu mimo budovu (jako součást automatické stanice), aby byl chráněn před nepříznivým vlivem počasí. Dříve se pro měření tlaku vzduchu na stanicích na území ČR používaly nádobkové rtuťové tlakoměry s redukovanou stupnicí. V současnosti se obvykle používají elektronické přístroje, zejména tlakoměry membránové.
česky: tlakoměr staniční; slov: staničný tlakomer; něm: Stationsbarometer n  1993-a3
station designator
označení met. stanice čísly nebo písmeny, které nahrazuje nebo doplňuje její název při předávání zpráv o počasí. Číselné označení WMO se skládá z dvoumístného oblastního indikativu a trojmístného indikativu stanice. Oblastní indikativ může být společný pro několik menších zemí (např. oblastní indikativ 11 je určen pro Rakousko, Českou republiku a Slovensko). Vlastní indikativ stanice je určen pro Českou republiku v rozsahu 400–799 (např. Praha-Ruzyně má 518, takže úplné WMO označení je 11518).Oblastní indikativy i indikativy stanic přiděluje Světová meteorologická organizace. Písmenné označení stanice CCCC (směrovací značka ICAO) se používá při předávání met. zpráv určených k zabezpečení letectví. Skládá se ze čtyř písmen, z nichž první dvě udávají stát (Česká republika má přiděleno LK) a další dvě označují letiště (např. Praha-Ruzyně má PR). Směrovací značky ICAO přiděluje Mezinárodní organizace pro civilní letectví (ICAO).
česky: indikativ stanice; slov: indikatív stanice; něm: Kennziffer der Station f, Stationskennziffer f; rus: индекс станции (международный, местный), номер станции, числовой индекс станции  1993-a3
station index number
označení met. stanice čísly nebo písmeny, které nahrazuje nebo doplňuje její název při předávání zpráv o počasí. Číselné označení WMO se skládá z dvoumístného oblastního indikativu a trojmístného indikativu stanice. Oblastní indikativ může být společný pro několik menších zemí (např. oblastní indikativ 11 je určen pro Rakousko, Českou republiku a Slovensko). Vlastní indikativ stanice je určen pro Českou republiku v rozsahu 400–799 (např. Praha-Ruzyně má 518, takže úplné WMO označení je 11518).Oblastní indikativy i indikativy stanic přiděluje Světová meteorologická organizace. Písmenné označení stanice CCCC (směrovací značka ICAO) se používá při předávání met. zpráv určených k zabezpečení letectví. Skládá se ze čtyř písmen, z nichž první dvě udávají stát (Česká republika má přiděleno LK) a další dvě označují letiště (např. Praha-Ruzyně má PR). Směrovací značky ICAO přiděluje Mezinárodní organizace pro civilní letectví (ICAO).
česky: indikativ stanice; slov: indikatív stanice; něm: Kennziffer der Station f, Stationskennziffer f; rus: индекс станции (международный, местный), номер станции, числовой индекс станции  1993-a3
station number
označení met. stanice čísly nebo písmeny, které nahrazuje nebo doplňuje její název při předávání zpráv o počasí. Číselné označení WMO se skládá z dvoumístného oblastního indikativu a trojmístného indikativu stanice. Oblastní indikativ může být společný pro několik menších zemí (např. oblastní indikativ 11 je určen pro Rakousko, Českou republiku a Slovensko). Vlastní indikativ stanice je určen pro Českou republiku v rozsahu 400–799 (např. Praha-Ruzyně má 518, takže úplné WMO označení je 11518).Oblastní indikativy i indikativy stanic přiděluje Světová meteorologická organizace. Písmenné označení stanice CCCC (směrovací značka ICAO) se používá při předávání met. zpráv určených k zabezpečení letectví. Skládá se ze čtyř písmen, z nichž první dvě udávají stát (Česká republika má přiděleno LK) a další dvě označují letiště (např. Praha-Ruzyně má PR). Směrovací značky ICAO přiděluje Mezinárodní organizace pro civilní letectví (ICAO).
česky: indikativ stanice; slov: indikatív stanice; něm: Kennziffer der Station f, Stationskennziffer f; rus: индекс станции (международный, местный), номер станции, числовой индекс станции  1993-a3
station pressure
tlak vzduchu změřený v nadmořské výšce tlakoměru. Slouží mj. k určení tlakové tendence. U dříve používaných rtuťových tlakoměrů bylo k jeho určení nutné odečtený údaj redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. včetně přepočtu na normální tíhové zrychlení. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
česky: tlak vzduchu na stanici; slov: tlak vzduchu na stanici; něm: Stationsluftdruck m; rus: давление на уровне станции  1993-a3
station thermometer
základní přístroj pro měření teploty vzduchu na meteorologických stanicíchpozorovacích termínech. Na automatizovaných meteorologických stanicích je to elektrický teploměr s čidlem ve výšce 2 m nad povrchem země (sněhovou pokrývkou) v radiačním krytu. Na manuálních meteorologických stanicích je staničním teploměrem suchý teploměr s nádobkou ve stejné výšce, umístěný v meteorologické budce. Na profesionálních stanicích v ČR se používá suchý teploměr jako záložní přístroj.
česky: teploměr staniční; slov: staničný teplomer; něm: Stationsthermometer n  1993-a3
stationary anticyclone
česky: anticyklona stacionární; slov: stacionárna anticyklóna; něm: stationäre Antizyklone f; fr: anticyclone stationnaire; rus: стационарный антициклон  1993-a1
stationary front
teor. model atmosférické fronty, která nemění svou polohu v prostoru. Vzduchové hmoty se pohybují přesně horizontálně bez výkluzných prvků po obou stranách frontálního rozhraní, rovnoběžně s ním, mají však vzájemně opačný směr pohybu. Reálné fronty nejsou stacionární, mohou být nanejvýš frontami kvazistacionárními.
česky: fronta stacionární; slov: stacionárny front; něm: stationäre Front f; fr: front stationnaire m; rus: стационарный фронт  1993-a1
stationary waves
1. obecně vlny, jež se zdánlivě nepohybují vůči svému prostředí a projevují se jako stacionární sled stabilních uzlů a kmiten. Běžným mechanizmem vzniku stojatých vln je skládání dvou sledů příčných vln, které mají shodnou vlnovou délku, ale postupují vzájemně proti sobě. Dochází k tomu např. tehdy, jedná-li se o skládání původního a odraženého vlnění. Tímto způsobem mohou někdy vznikat stojaté vlny na vodní hladině při odrazu povrchových vnějších gravitačních vln od břehů. Výskyt tohoto jevu je však poměrně vzácný, neboť předpokládá náročné podmínky pro vzájemnou geometrickou konfiguraci nabíhající vlny a břehu. Jiným případem stojatých vln jsou velmi dobře známé vnitřní gravitační vlny na dolních hranicích výškových teplotních inverzí při zanedbatelné rychlosti horiz. proudění vzduchu. Za této podmínky se vlnové rozruchy projevují vznikem dvou sledů stejných gravitačních vln, které postupují vzájemně proti sobě, a mohou tak vytvořit stojaté vlnění. Jiným případem stojatých vln v atmosféře mohou být závětrné vlny.
2. v hydrologii kolísavé rytmické pohyby celé vodní hladiny na stojatých vodách (jezerech, uzavřených částech moří apod.), jejichž příčinou bývá rozdílný tlak vzduchu v různých částech hladiny, náhlé změny atm. tlaku, nárazy větru z hor, prudké deště aj. Názvem stojaté vlny se označuje střídavé nakláněni vodní hladiny na jednu či druhou stranu kolem více méně stálých os, zvaných uzly. Perioda stojatých vln trvá od několika minut do několika hodin, amplituda činí v závislosti na velikosti nádrže mm až m. Stojaté vlny mají mnoho místních názvů, často používaný název „seiche“ pochází od Ženevského jezera, kde je studoval a pojmenoval F. A. Forel. Na jezerech stojaté vlny zcela převyšují dmutí.
česky: vlny stojaté; slov: stojaté vlny; něm: Seiches m/pl, stehende Wellen f/pl; rus: сейшa  1993-a3
statistical downscaling
downscaling založený na nalezení statistických závislostí mezi výstupy klimatických modelů a změřenými hodnotami meteorologických prvků v referenčním období a aplikaci těchto závislostí na výstupy klimatických modelů v jiném časovém období. Typicky se hledají vztahy mezi hodnotami meteorologických prvků ve volné atmosféře a lokálními hodnotami u zemského povrchu v současnosti; zjištěné závislosti se aplikují na projekce změny klimatu. Viz též downscaling dynamický.
česky: downscaling statistický  2024
statistical forecast
předpověď meteorologických prvků a jejich kombinací, popř. meteorologických polí, vycházející ze znalostí statist. vlastností souborů met. prvků, vypracovávaná metodami mat. statistiky a teorie pravděpodobnosti. Ke statistické předpovědi počasí se často využívá např. metod regresní analýzy a faktorové analýzy. Statistická předpověď počasí může být součástí předpovědi počasí numerické nebo synoptické, dnes se však uplatňuje především při předpovědi počasí dlouhodobé.
česky: předpověď počasí statistická; slov: štatistická predpoveď počasia; něm: statistische Vorhersage f  1993-a3
statistical models of turbulence
modely, jež vycházejí z fyzikálně ne zcela výstižného předpokladu, že turbulentní proudění má náhodnou povahu, a je tedy možno na ně aplikovat klasické statistické metody, při nichž je východiskem nalezení vhodných středních hodnot charakteristik uvažovaného proudění. Problémy definování a interpretace příslušných středních hodnot jsou potom zásadními otázkami struktury, vývoje a aplikací těchto modelů. Obecně jsou tyto modely tvořeny rovnicemi s vhodně formulovanými okrajovými, event. počátečními podmínkami, kdy právě zmíněné střední hodnoty vystupují v roli hledaných neznámých.
česky: modely turbulence statistické; slov: statické modely turbulencie; něm: statistische Turbulenzmodelle n/pl  2014
steam devil
malá a slabá tromba vznikající jen zřídka nad nezamrzlou vodní hladinu, od níž se ohřívá a labilizuje přízemní vrstva podstatně chladnějšího vzduchu. Mlžné víry se často vyskytují ve větších skupinách, zpravidla současně s mlhou z vypařování. Podmínky pro jejich vznik nastávají hlavně při vpádu studeného vzduchu v chladné části roku, nutnou podmínkou je však rovněž vznik vertikální vorticity. Mlžné víry jsou slabší obdobou prachových nebo písečných vírů, na rozdíl od nich však jejich viditelnost způsobují kapičky vody, vznikající opětovnou kondenzaci vodní páry, vypařené z vodní hladiny. Podle Mezinárodního atlasu oblaků patří mlžný vír mezi hydrometeory.
česky: vír mlžný; slov: hmlový vír  2020
steering flow
málo zakřivené ustálené proudění vzduchu ve stř. troposféře, v jehož směru se všeobecně přemísťují nízké tlakové útvary. Za směr řídícího proudění se v synop. praxi považuje směr izohyps na mapách absolutní topografie hladin 500 nebo 700 hPa. Při subj. předpovědi přízemního tlakového pole se obvykle předpokládalo, že rychlost přesunu tlakových útvarů je přibližně rovna 0,8 rychlosti geostrofického větru v hladině 700 hPa nebo 0,6 rychlosti v hladině 500 hPa. Ve skutečnosti se rychlost přesunu mění v dosti širokých mezích a závisí na typu tlakového útvaru a jeho vývojovém stadiu. V současné době se jedná již o zastaralý pojem spojený s klasickými synoptickými metodami předpovědi počasí.
česky: proudění řídící; slov: riadiace prúdenie; něm: steuernde Strömung f; rus: ведущий поток  1993-a3
steering level
hladina s dostatečně výrazným, ustáleným a co do směru nepříliš plošně proměnlivým přenosem vzduchu ve stř. troposféře, v jehož směru se v podstatě přemísťují přízemní tlakové útvary (odtud řídící proudění). Za hladinu řídícího proudění se obvykle považuje hladina, ve které leží osa výškové frontální zóny. V létě to bývá hladina okolo 500 hPa, v zimě okolo 700 hPa. Viz též proudění řídící.
česky: hladina řídícího proudění; slov: hladina riadiaceho prúdenia; něm: steuernde Fläche f; rus: уровень ведущего потока  1993-a2
Stefan and Boltzmann constant
česky: konstanta Stefanova–Boltzmannova; slov: Stefanova–Boltzmannova konštanta; něm: Stefan-Boltzmann-Konstante f  2016
Stefan-Boltzmann law
fyz. zákon, podle nějž je množství energie E elmag. záření vyzářené za jednotku času jednotkou plochy absolutně černého tělesa do poloprostoru úměrné čtvrté mocnině teploty povrchu tohoto tělesa, tj.
E=σT4,
kde T je teplota v K a σ je Stefanova–Boltzmannova konstanta. Stefanův–Boltzmannův zákon je důsledkem obecnějšího zákona Planckova. Byl experimentálně odvozen franc. fyzikem J. Stefanem v r. 1879 a teor. podložen termodyn. úvahami rakouského fyzika L. E. Boltzmanna v r. 1884. Viz též záření zemského povrchu.
česky: zákon Stefanův–Boltzmannův; slov: Stefanov a Boltzmannov zákon; něm: Stefan-Boltzmann-Gesetz n; rus: закон Стефана-Больцмана  1993-b1
steppe climate
1. v Köppenově klasifikaci klimatu mírnější typ suchého klimatu, označovaný BS; dále se dělí na horké (BSh) a chladné (BSk). Obecně se klima stepi vyznačuje nedostatkem srážek pro přirozený výskyt lesa, naopak vyhovuje travním porostům. Vyskytuje se ve stepích a v suchých savanách. Potřeba závlah je limitujícím faktorem pro intenzivní zemědělské využití těchto oblastí, což platí především v případě výskytu agronomického sucha. Klima stepi může být též označeno jako semiaridní klima.
2. klima oblastí pokrytých biomem stepi. Jejich výskyt na Zemi je důsledkem kontinentality klimatu, která kromě nedostatku srážek způsobuje i velkou roční amplitudu teploty vzduchu. V různých částech Země má step místní názvy, např. v Jižní Americe pampa, v Severní Americe prérie. Vlivem lidské činnosti se step rozšířila i do některých oblastí, kde tento biom neodpovídá klimatických podmínkám (např. maďarská pusta).
česky: klima stepi; slov: stepná klíma; něm: Steppenklima n; rus: климат степей  1993-b3
Stevenson screen
česky: budka meteorologická žaluziová; slov: žalúziová meteorologická búdka; něm: Thermometerhütte f; fr: abri météo à double persiennes m, abri à double persiennes m; rus: жалюзийная будка  1993-a3
Stevenson screen
bílá plastová nebo dřevěná skříňka sloužící jako ochrana jednoho nebo několika v ní umístěných meteorologických přístrojů před rušivými účinky záření a srážek, která umožňuje dostatečnou přirozenou ventilaci čidel přístrojů. Má stěny z dvojitých žaluzií, dvojitou střechu, perforované dno nebo dno z drátěného síta a dvířka orientovaná na sever na severní polokouli. Výška umístění budky nad povrchem země je dána požadavkem Světové meteorologické organizace, aby čidla teploměrů byla ve výšce 1,25 až 2,0 m nad zemí. V ČR se umísťuje na čtyřnohém podstavci tak, aby čidla teploměrů byla ve výšce 200 cm nad zemí, resp. nad povrchem sněhu. V horských oblastech s vysokou sněhovou pokrývkou je tedy vhodné použít výškově nastavitelnou budku. Do meteorologické budky se umísťují: psychrometr, maximální a minimální teploměr, vlhkoměr, popř. další přístroje. V minulosti se v meteorologické budce prováděla základní meteorologická měření, což dosud platí pro meteorologické stanice, které nejsou automatizované. Na profesionálních stanicích ČR se údaje z přístrojů v meteorologické budce používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem.
česky: budka meteorologická; slov: meteorologická búdka; něm: Thermometerhütte f; fr: abri météorologique m, abri météo m, abri Stevenson m; rus: английская будка, метеорологическая будка  1993-a3
sting jet
sestupné silné proudění vzduchu mezosynoptického měřítka pocházejícího ze střední troposféry, které se vyskytuje na sev. (již.) polokouli v již. (sev.) kvadrantu mimotropických cyklon, zpravidla poměrně blízko středu cyklony. Sting jet je pozorován u předního okraje cyklonálně se stáčejícího oblačného systému (někdy analyzovaného jako ohnutá okluze), který se vytváří v oblasti studeného přenosového pásu. Přispívá k lokálnímu výraznému zvýšení rychlosti větru, která může být maximální v rámci celé cyklony s ničivými účinky u zemského povrchu. Někteří autoři spojují jeho přítomnost s rychlostmi o velikosti alespoň 30 m/s. Sting jet je typickým projevem hlubokých cyklon vznikajících nad oceánem a vyvíjejících se podle Shapirova-Keyserova modelu. Jedním z uvažovaných fyzikálních mechanismů odpovědných za jeho formování je uvolnění podmíněné symetrické instability spolu s ochlazováním vlivem spotřeby latentního tepla při sestupu vzduchových částic v oblasti vypadávání srážek. Český ekvivalent zatím není ustálen. Viz též proudění tryskové, instabilita atmosféry podmíněná.
česky: sting jet; slov: sting jet; rus: струя жала  2019
Stokes formula
vzorec pro výpočet pádové rychlosti vodních kapek sférického tvaru, použitelný při malých poloměrech kapek. Má tvar:
v=29(ρw -ρ)gμ r229ρw gμr2,
kde v je pádová rychlost vodní kapky, r její poloměr, ρw hustota vody, ρ hustota vzduchu, µ dynamický koeficient vazkosti vzduchu a g tíhové tíhové zrychlení. Stokesův vzorec lze použít u kapek s poloměrem r ≤ 5.10–5 m. Viz též zákon Stokesův.
česky: vzorec Stokesův; slov: Stokesov vzorec; něm: Stokes-Formel f; rus: формула Стокса  1993-a3
Stokes law
zákon, podle nějž síla odporu F, kterou působí vazké prostředí na pohybující se dostatečně malou částici sférického tvaru, je dána vztahem
F=-6πμρv,
kde µ značí dyn. koeficient vazkosti prostředí a r poloměr částice pohybující se vůči danému prostředí rychlostí ν. Stokesův zákon se v meteorologii používá zejména k popisu pohybu malých vodních kapek ve vzduchu. Zákon byl pojmenován podle angl. matematika sira G. G. Stokese (1819–1903). Viz též vzorec Stokesův.
česky: zákon Stokesův; slov: Stokesov zákon; něm: Stokessches Gesetz n; rus: закон Стокса  1993-a1
Stokes parameter
bezrozměrný parametr, který se v meteorologii používá především v teorii koalescence vodních kapek o různých velikostech. Většinou se uvádí ve tvaru:
2ρwr2 | vRvr |/9μR,
kde vR, resp. vr značí velikost pádové rychlosti kapek o poloměru R, resp. r (r << R), ρw hustotu vody a μ koeficient dynamické vazkosti vzduchu. Výraz 2ρwr2/9μ, vyjadřuje čas, za který klesne na 1/e původní hodnoty (e je základ přirozených logaritmů) rychlost pohybu sférické částice, o dostatečně malém poloměru r a hustotě ρw, na niž působí pouze síla odporu prostředí daná Stokesovým zákonem. Viz též vzorec Stokesův.
česky: parametr Stokesův; slov: Stokesov parameter; něm: Stokes-Parameter m, Stokes-Parameter m; rus: параметр Стокса  1993-a1
storm
1. obecný termín pro jakékoliv výrazné vybočení (zesílení) přírodních jevů či prvků (nejen meteorologických) z normálu. V meteorologii rozeznáváme větrné bouře, prachové bouřepísečné bouře, sněhové bouře, případně ledové bouře, dále pak konvektivní bouře, které jsou celým souborem jevů. V tomto smyslu můžeme za bouři považovat i hlubokou cyklonu, jak napovídá její označení v angličtině (storm), jehož odrazem je mj. český termín tropická bouře. Anglické slovo storm dále označuje desátý stupeň Beaufortovy stupnice větru (česky ovšem silná vichřice). Mimo meteorologii jsou běžné např. termíny sluneční bouře, geomagnetická bouře aj.
2. viz zpráva o náhlé změně počasí.
Termín je odvozen od kořene *burʼa, který se vyskytuje v řadě slovanských jazyků; zřejmě existuje souvislost i s lat. furere „běsnit“. Příbuzným slovem je např. i bourat.
česky: bouře; slov: búrka; něm: Unwetter n; fr: tempête f; rus: буря  2014
storm
vítr o prům. rychlosti 24,5 až 28,4 m.s–1 nebo 89 až 102 km.h–1. Odpovídá desátému stupni Beaufortovy stupnice větru.
česky: vichřice silná; slov: silná víchrica; něm: schwerer Sturm m; rus: сильный шторм  1993-a3
Storm Relative Environmental Helicity
(Storm Relative Environmental Helicity – SREH) – helicita vyjádřená v souřadnicové soustavě vztažené ke konvektivní bouři; při jejím výpočtu se uvažuje vertikální profil horizontální složky rychlosti větru a vektor pohybu bouře. Pro výpočet SREH se běžně používá vertikální profil od zemského povrchu do výšky 3 km nebo k horní hranici konvektivně efektivní vrstvy. Např. při integraci do 3 km výšky se vypočte podle vzorce
SREH=03km (v-c) (k×vz)dz,
kde je v vektor rychlosti větru, c vektor pohybu bouře a k jednotkový vektor orientovaný ve směru vert. osy. Helicita dosahuje vyšších hodnot, pokud oblast relativního vtoku vzduchu do bouře je vlivem vertikálního střihu větru charakterizována horizontální vorticitou s významnou složkou ve směru proudění. Graficky je SREH reprezentována plochou na hodografu určenou vektory větru relativními k pohybu bouře. SREH se používá v předpovědi silných konvektivních bouří, považuje se za míru tendence supercel rotovat.
česky: helicita relativní; slov: relatívna helicita  2019
storm surge
česky: vzdutí bouřlivé; slov: búrlivé vzdutie; něm: Sturmflut f; rus: штормовой нагон  2020
storm surge
syn. vzdutí bouřlivé – zvýšení hladiny oceánu v prostoru tropické nebo hluboké mimotropické cyklony. Je vyvoláno především konfluentním prouděním vzduchu ve spodních hladinách, v menší míře i snížením tlaku vzduchu uvnitř cyklony. Vzdutí výrazně narůstá v blízkosti pobřeží v důsledku hromadění větrem hnané vody, a to především v hlubokých zálivech či ústích řek, kde může dosáhnout i několika metrů. Při odhadu dosahu mořské vody je třeba dále uvažovat i výšku mořských vln. V případě plochého pobřeží je vzdutí moře v tzv. nebezpečném půlkruhu tropické cyklony jejím nejnebezpečnějším projevem. Viz též příliv zvýšený bouří, meteotsunami.
česky: vzdutí způsobené bouří; slov: vzdutie spôsobené búrkou; něm: Sturmflut f; rus: штормовой нагон воды  2019
storm tide
obzvlášť velké zvýšení hladiny oceánu, k němuž dochází na pobřeží zasaženém tropickou nebo hlubokou mimotropickou cyklonou v době astronomického přílivu, takže dochází k souběhu přílivu se vzdutím způsobeným bouří.
česky: příliv zvýšený bouří; slov: příliv zvýšený bouří; rus: штормовой прилив  2019
storm tide
česky: příliv bouřlivý; slov: búrlivý príliv; rus: штормовой прилив  2020
stratiform cloud
oblak vyskytující se v horiz. rozsáhlé vrstvě. Jsou pro něj charakteristické výstupné rychlosti dosahující řádu 10–1 m.s–1. V řadě případů, např. v podinverzní vrstevnaté oblačnosti, jejíž vývoj je řízen radiačními procesy, jsou však hodnoty vertikální rychlosti zanedbatelné. Jako vrstevnaté označujeme oblaky druhu stratus, nimbostratus, altostratus a cirrostratus. Pojem vrstevnatý oblak není přesně vymezen a v mezinárodní morfologické klasifikaci oblaků se nepoužívá. Viz též oblak kupovitý.
česky: oblak vrstevnatý; slov: vrstevnatý oblak; něm: Schichtwolke f; rus: слоистообразное облако  1993-a3
stratiform clouds
česky: oblačnost vrstevnatá; slov: vrstevnatá oblačnosť; něm: stratiforme Wolken f/pl; rus: слоистообразная облачность  1993-a1
stratiform precipitation
druh padajících srážek, které se tvoří ve vrstevnatých oblacích, zpravidla druhu nimbostratus nebo altostratus. Z hlediska časové proměnlivosti intenzity srážek je označujeme též jako srážky trvalé. Oproti konvektivním srážkám zasahují stratiformní srážky zpravidla rozsáhlejší území. Viz též klasifikace srážek, srážky cyklonální.
Termín pochází z angl. označení vrstevnatých oblaků, přičemž označení vrstevnaté srážky není vhodné.
česky: srážky stratiformní  2021
stratiformis
(str) [stratiformis] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má vzhled rozsáhlé horiz. plochy nebo vrstvy. Užívá se u druhů altocumulus, stratocumulus, zřídka i cirrocumulus.
Termín se skládá ze slova stratus a lat. komponentu -formis odvozeného od forma „tvar, podoba“.
česky: stratiformis; slov: stratiformis; něm: stratiformis; rus: слоистообразныe облака  1993-a2
Stratocumulus
(Sc) [stratokumulus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Tvoří jej šedé nebo bělavé, menší, popř. větší skupiny nebo vrstvy oblaků, které mají téměř vždy tmavá místa. Oblak se skládá z částí podobných dlaždicím, oblázkům, valounům apod., má vzhled nevláknitý, s výjimkou zvláštního případu s virgou. Jednotlivé části spolu souvisejí nebo mohou být oddělené. Zdánlivá velikost jednotlivých částí Sc je větší než 5° prostorového úhlu. Sc patří k vodním nebo smíšeným oblakům nízkého patra. Mohou z něho vypadávat slabší srážky dosahující zemského povrchu. Vzniká při vlnových pohybech nebo transformací z jiných druhů oblaků, zejména druhu stratus nebo z kupovité oblačnosti. Sc je často příznakem rozpadu oblačnosti. Sc lze dále klasifikovat podle tvaru jako stratiformis, lenticularis, castellanus, nebo volutus a podle odrůdy jako translucidus, perlucidus, opacus, duplicatus, undulatus, radiatus a lacunosus. Zvláštnostmi Ac mohou být virga a mamma.
Termín zavedl něm. meteorolog L. F. Kämtz v roce 1840; skládá se ze slov stratus a cumulus. Do češtiny se v minulosti překládal jako slohová kupa, nesprávně slohokupa.
česky: stratocumulus; slov: stratocumulus; něm: Haufenschichtwolke f, Stratocumulus m; rus: слоистокучевыe облака  1993-a2
stratonull
podle H. E. Landsberga hladina oddělující spodní a horní stratosféru. Je definována jako hladina s min. horizontálním gradientem teploty vzduchu. V zimě ji lze ztotožnit s minimem ve vert. profilu záp. složek rychlosti proudění, v létě nebývá tímto způsobem identifikovatelná. Její výška závisí na synoptické situaci, ve stř. zeměp. šířkách se pohybuje kolem 25 km.
Termín se skládá ze zkráceniny slova stratosféra a angl. null „nula; nulový“ (z lat. nullus „žádný“).
česky: stratonull; slov: stratonull; něm: Nullschicht f  1993-a1
stratopause
vrstva atmosféry Země oddělující stratosféru a mezosféru. Leží ve výšce kolem 50 km. Teplota se zde pohybuje kolem 270 K (0 °C).
Termín zavedl britský přírodovědec S. Chapman v r. 1950 pro označení horní hranice stratosféry v jeho pojetí; dnešní význam byl kodifikován WMO v r. 1962. Byl vytvořen zkrácením slova stratosféra a z lat. pausa „přerušení, ukončení“
česky: stratopauza; slov: stratopauza; něm: Stratopause f; rus: стратопауза  1993-a3
stratosphere
část atmosféry Země ležící v průměrné výšce 10 až 50 km, tj. mezi tropopauzou a stratopauzou. Stratosféru vymezujeme při vertikálním členění atmosféry podle průběhu teploty vzduchu s výškou; v její spodní části, do výšek 20 až 25 km, se teplota vzduchu s výškou nepatrně zvyšuje, odtud vzhůru roste. Maxima (v průměru kolem 0 °C) dosahuje teplota v blízkosti stratopauzy. Růst teploty s výškou je působen přítomností ozonu, který pohlcuje sluneční ultrafialové záření s vlnovou délkou 242 nm a silně se zahřívá. Rychlost proudění ve stratosféře s výškou nejprve klesá, dosahuje minima kolem 22 až 25 km, potom opět roste. Ve stratosféře také pozorujeme náhlé sezonní střídání převládajícího směru proudění ze záp. na vých. a opačně. Ve výškách kolem 25 km pozorujeme perleťové oblaky.
Jako stratosféra byla původně označována vrstva vzduchu nad troposférou až do výšek 80 až 100 km. Později byla uvedená vrstva rozdělena do dvou vrstev, z nichž svrchní byla nazvána mezosféra. Teplotní vlastnosti stratosféry objevili v r. 1902 nezávisle na sobě něm. meteorolog R. Assmann a franc. meteorolog L. P. Teisserenc de Bort. Viz též oscilace kvazidvouletá, monzun stratosférický, oteplení stratosférické.
Termín zavedl franc. meteorolog L. P. Teisserenc de Bort v r. 1908 současně s termínem troposféra. Po rozšíření měření do vyšších hladin navrhli v r. 1942 H. Flohn a R. Penndorf úpravu jeho použití pro vrstvu atmosféry až do 80 km, tedy včetně dnešní mezosféry; oproti tomu britský přírodovědec S. Chapman jím v r. 1950 označoval pouze izotermní vrstvu nad troposférou. Dnešní význam byl kodifikován WMO v r. 1962. Termín se skládá z lat. stratus „rozprostřený“ (příčestí minulé slovesa sternere „rozprostřít“) nebo stratum „vrstva“ (téhož původu) a řec. σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“). Vyjadřuje tím skutečnost, že stratosféra má charakter vertikálně málo promíchávané vrstvy.
česky: stratosféra; slov: stratosféra; něm: Stratosphäre f; rus: стратосферa  1993-a3
stratospheric fountain
označení specifické oblasti anomálně chladné tropické tropopauzy, kde se ve vybrané roční době dostává podstatné množství vzduchu z troposféry do stratosféry. Pojem zavedli Reginald Newella a Sharon Gould-Stewar, kteří ukázali na významný přenos do stratosféry v oblasti západního tropického Tichého oceánu během zimního období na severní hemisféře a rovněž v oblasti jihovýchodní Asie během letního monzunu. Aktualizovaná měření ukázala, že vzduch se dostává z troposféry do stratosféry během celého roku. Tento přenos ale vykazuje roční chod, a ačkoli není limitován pouze na určitý region, je významný zejména ve výše uvedených oblastech.
česky: fontána stratosférická; slov: stratosférická fontána; fr: fontaine stratosphérique f, fontaines stratosphériques pl (f); rus: стратосферный фонтан  2015
stratospheric jet stream
tryskové proudění záp. směru ve stratosféře a spodní mezosféře vyskytující se v zimním období. Souvisí s radiačním ochlazováním a se vznikem výškové cyklony v polární oblasti během polární noci. Stratosférické tryskové proudění se vyskytuje v poměrně širokém pásmu, avšak nejvýraznější bývá v zimě okolo 70° sev. zeměp. šířky s osou ve výšce asi 50 km a označuje se též jako tryskové proudění na okraji polární noci. V letním období je toto tryskové proudění vystřídáno větry vých. směru, kterým se obvykle nedá přisoudit charakter tryskového proudění. K stratosférickému tryskovému proudění obvykle počítáme i rovníkové tryskové proudění, které se vyskytuje ve spodní stratosféře, popř. může zasahovat i do horní troposféry.
česky: proudění tryskové stratosférické; slov: stratosferické dýzové prúdenie; něm: stratosphärischer Strahlstrom m  1993-a1
stratospheric monsoon
občas se vyskytující nevhodné označení pro sezonní změnu směru proudění ve stratosféře (ve výškách nad 20 km). V zimě ve všech zeměp. šířkách vanou záp. větry kolem chladné polární cyklony, zatímco v létě, kdy teplota a tlak vzduchu klesá směrem od pólu k rovníku, vznikají vých. větry kolem teplé polární anticyklony. Příčinou tohoto jevu jsou solární klima a radiační vlastnosti ozonu, nesouvisí tedy nijak s monzunovou cirkulací.
česky: monzun stratosférický; slov: stratosférický monzún; něm: stratosphärischer Monsun m; rus: стратосферный муссон  1993-a3
stratospheric warming
epizoda vzestupu teploty vzduchu ve stratosféře polárních a subpolárních oblastí, související se změnami cirkumpolárního víru a růstem koncentrace stratosférického ozonu. Rozlišujeme náhlá stratosférická oteplení a sezónní, tzv. finální oteplení, k nimž dochází začátkem jara při zániku stratosférického cirkumpolárního víru a přechodu na letní uspořádání cirkulace ve stratosféře.
česky: oteplení stratosférické; slov: stratosférické oteplenie; něm: Stratosphärenerwärmung f; rus: стратосферное потепление  1993-a3
Stratus
(St) – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Tvoří jej šedá oblačná vrstva s dosti jednotvárnou základnou, z níž může vypadávat mrholení, popř. ledové jehličky nebo sněhová zrna. Prosvítá-li vrstvou St slunce, jsou jeho obrysy obvykle zřetelné. St vyvolává halové jevy jen výjimečně při velmi nízkých teplotách. Někdy má podobu roztrhaných chuchvalců. St je v teplé polovině roku zpravidla vodním oblakem, v zimě často obsahuje i ledové krystalky. Patří k oblakům nízkého patra a vzniká především pod výškovými inverzemi teploty vzduchu nebo v důsledku ochlazení vzduchu od podkladu. Svými mikrostrukturálními ani makrostrukturálními parametry se obvykle neliší od mlhy. St lze dále klasifikovat podle tvaru jako nebulosus nebo fractus a podle odrůdy jako translucidus, opacus nebo undulatus. Zvláštností St je praecipitatio.
Termín navrhl Angličan L. Howard v r. 1803; v dnešním významu ho poprvé užili H. M. Hildebrandsson a R. Abercromby v r. 1887. Pochází z lat. stratus „rozprostřený, rozložený“ (příčestí minulého slovesa sternere „rozprostřít, rozložit“); Howard zde zvolil příčestí místo podstatného jména stratum, které se již v meteorologii používalo v jiném významu a které by vedle dalších termínů zavedených Howardem pro klasifikaci oblaků (cirrus, cumulus a nimbus) vybočovalo svou koncovkou. Do češtiny se termín v minulosti překládal jako sloha.
česky: stratus; slov: stratus; něm: Stratus m; rus: слоистыe облака  1993-a2
streak lightning
blesk, jehož viditelná část kanálu blesku není rozvětvena. Tento charakter mají častěji blesky mezi oblakem a zemí než blesky mezi oblaky. Kladné blesky mezi oblakem a zemí se převážně nevětví. Viz též blesk rozvětvený.
česky: blesk čárový; slov: čiarový blesk; něm: Linienblitz m; fr: éclair rectiligne m; rus: линейная молния  1993-a3
streamfunction
skalární funkce Ψ, popisující pole nedivergentního rovinného proudění tekutiny. V dynamické meteorologii se používá pro popis vírového horiz. proudění v atmosféře a je definovaná až na aditivní konstantu vztahy
vx=Ψy, vy=Ψx,
kde vx a vy značí horiz. složky rychlosti proudění v kartézské souřadnicové soustavě (x, y, z). V mechanice tekutin se lze někdy setkat s alternativním vyjádřením, které má opačné znaménko. Z definice proudové funkce plyne, že její izolinie odpovídají proudnicím. Proudová funkce se používá mimo jiné při inicializaci vstupních datmodelu numerické předpovědi počasí.
česky: funkce proudová; slov: prúdová funkcia; něm: Stromfunktion f; fr: fonction de courant f; rus: функция потока, функция тока  1993-a3
streamline
čára v poli pohybu kapaliny nebo plynu, v meteorologii obvykle v poli větru, v jejímž každém bodě má rychlost proudění v daném okamžiku směr tečny. Nemění-li se pole větru s časem, tj. při stacionárním proudění, jsou proudnice totožné s trajektoriemi vzduchových částic. Hustota proudnic je úměrná rychlosti proudění. Proudnice popisují pohybové pole v atmosféře, které úzce souvisí s tlakovým polem. Na výškových met. mapách proudnice zhruba odpovídají izohypsám. Viz též mapa kinematická.
česky: proudnice; slov: prúdnica; něm: Stromlinie f; rus: линия тока  1993-a2
streamwise vorticity
složka horizontální vorticity ve směru vtékání vzduchu do konvektivní bouře. Tato složka vorticity je důležitá pro přímý vznik supercel a potažmo tornád, neboť se ve výstupném proudu transformuje na vertikální vorticitu. Vznik supercel tak není podmíněn štěpením konvektivních bouří jako v případě příčné vorticity.
česky: vorticita proudová  2024
strengthening of an anticyclone
syn. zesilování anticyklony – stadium vývoje anticyklony, v němž zesiluje anticyklonální cirkulace a které se na synoptické mapě projevuje vzestupem tlaku vzduchu nebo geopotenciálu ve středu anticyklony. Mohutnění anticyklony začíná objevením první uzavřené izobary nebo izohypsy a končí dosažením nejvyšší hodnoty tlaku vzduchu nebo geopotenciálu. Může trvat několik dnů. Viz též slábnutí anticyklony.
česky: mohutnění anticyklony; slov: mohutnenie anticyklóny; něm: Verstärkung der Antizyklone f; rus: усиление антициклона  1993-a3
stroke of lightning
souhrn průvodních jevů při zasažení zemského povrchu, objektů na zemi nebo v atmosféře, např. letadla, bleskem. V tech. praxi se např. zjišťuje hustota úderů blesku do země, počet úderů blesku do el. vedení, pravděpodobnost úderu blesku do objektu apod.
česky: úder blesku; slov: úder blesku; něm: Blitzschlag m; rus: удар молнии  1993-a1
strong breeze
vítr o prům. rychlosti 10,8 až 13,8 m.s–1 nebo 39 až 49 km.h–1. Odpovídá šestému stupni Beaufortovy stupnice větru. Ve výkazech met. pozorování je jako silný vítr uváděn vítr o prům. rychlosti větru 10,8 až 17,1 m.s–1. V době, kdy stanice nebyly vybaveny větroměrnými přístroji, byl jako silný vítr uváděn vítr odpovídající 6. až 7. stupni Beaufortovy stupnice.
česky: vítr silný; slov: silný vietor; něm: starker Wind m; rus: сильный ветер  1993-a3
strong gale
1. vítr o prům. rychlosti 20,8 až 24,4 m.s–1 nebo 75 až 88 km.h–1. Odpovídá devátému stupni Beaufortovy stupnice větru.
2. hovorové označení pro větrnou bouři.
česky: vichřice; slov: víchrica; něm: Sturm m; rus: шторм  1993-a3
Stüve diagram
druh aerologického diagramu, v němž je na horizontální ose lineárně vynášena teplota vzduchu T (obvykle v rozsahu +40 až –80 °C) a na vertikální ose tlak vzduchu p v exponenciální závislosti pκ, kde κ = 0,286 je podíl měrné plynové konstanty suchého vzduchu a měrného tepla suchého vzduchu při stálém tlaku. Suché adiabaty svírají s izotermami úhel přibližně 45°, pseudoadiabaty jsou mírně obloukovitě zakřiveny. Izolinie měrné vlhkosti neboli izogramy nasyceného vzduchu (g.kg–1) jsou představovány vzpřímenými křivkami mírně se odklánějícími doleva od vertikálně mířících izoterem. Stüveho diagram může dále obsahovat stupnici pro vynášení relativní vlhkosti vzduchu, stupnici výšky a jiné pomocné stupnice.
Přestože Stüveho diagram není energetickým diagramem, je často používán vzhledem k pravoúhlému souřadnicovému systému teploty a tlaku vzduchu s většinou přímkových nebo málo zakřivených izolinií. Jeho autorem je něm. meteorolog G. Stüve (1888–1935). V odb. slangu je Stüveho diagram nazýván též „Stüvegram“.
česky: diagram Stüveho; slov: Stüveho diagram; něm: Stüve-Diagramm n; fr: diagramme de Stüve m; rus: диаграмма Штюве  1993-a3
Stüve diagram
česky: Stüvegram; slov: Stüvegram; něm: Stüve-Diagramm n  1993-a1
sub-surface temperature
silniční meteorologii teplota vozovky v různých hloubkách pod jejím povrchem. Na rozdíl od půdní teploty se podpovrchová teplota měří např. v různých konstrukčních vrstvách vozovek, tedy ve štěrkových, písečných, asfaltových anebo betonových vrstvách.
česky: teplota podpovrchová  2022
sub-tropical cyclone
cyklona, která se může vyskytnout nad oceány až po zhruba 50° zeměp. šířky a vykazovat přitom znaky mimotropické i tropické cyklony. Při jejím vzniku a vývoji totiž dochází ke kombinaci fyzikálních mechanizmů, kdy důležitým zdrojem energie pro cyklogenezi je jak uvolnění baroklinní instability, tak uvolnění latentního tepla kondenzace. Typicky se jedná o transformovanou, původně mimotropickou cyklonu putující z pásma západních větrů do nižších zeměp. šířek, může však vzniknout i transformací tropické cyklony. Na rozdíl od mimotropické cyklony nemá subtropická cyklona vazbu na atmosférické fronty. Oproti tropické cykloně jsou v ní pásy konvektivních bouří méně symetricky uspořádány kolem středu cyklony; maximální rychlost větru je dosahována dále od středu (cca 100 až 200 km) a nedosahuje síly orkánu. Pokud však přesáhne hodnotu 17 m.s-1, která v případě tropické cyklony vymezuje tropickou bouři, dostává jméno ze seznamu určeného tropickým cyklonám. Nad tropickými oceány s vysokou teplotou povrchu moře a malým horizontálním teplotním gradientem se subtropická cyklona může transformovat na tropickou cyklonu. Z hlediska mechanizmů cyklogeneze i projevů počasí, které souvisejí s výskytem konvektivních bouří velmi silné intenzity, se subtropická cyklona podobá medikánu, který je však místně specifickým útvarem.
česky: cyklona subtropická; slov: subtropická cyklóna; něm: subtropische Zyklone f; fr: cyclone subtropical m, dépression subtropicale f  2014
subarctic climate
Alisovově klasifikaci klimatu přechodné klimatické pásmo, kde v letní polovině roku převládá vzduch mírných šířek, v zimní polovině roku pak arktický vzduch. V Köppenově klasifikaci klimatu mu přibližně odpovídá nejchladnější část boreálního klimatu.
česky: klima subarktické; slov: subarktická klíma; něm: subarktisches Klima n; rus: субарктический климат  1993-b3
subatlantic
viz holocén.
Termín se skládá z lat. sub „pod“ a slova atlantik.
česky: subatlantik; slov: subatlantik; něm: Subatlantikum n  1993-a3
subboreal
viz holocén.
Termín se skládá z lat. sub „pod“ a slova boreál.
česky: subboreál; slov: subboreál; něm: Subboreal n  1993-a3
subgeostrophic wind
vítr, jehož rychlost je menší než rychlost geostrofického větru odpovídající danému horiz. tlakovému gradientu.
česky: vítr subgeostrofický; slov: subgeostrofický vietor; něm: subgeostrophischer Wind m; rus: субгеострофический ветер  1993-a1
subgradient wind
vítr, jehož rychlost je menší než rychlost gradientového větru odpovídající danému horiz. tlakovému gradientu a zakřivení izobar nebo izohyps.
česky: vítr subgradientový; slov: subgradientový vietor; rus: субградиентный ветер  1993-a1
subhelic arc
velmi vzácný halový jev v podobě světelného oblouku vystupujícího z obzoru v blízkosti infralaterálního oblouku šikmo vzhůru k parhelickému kruhu.
česky: oblouk subhelický; slov: subhelický oblúk  2016
subhumid climate
česky: klima subhumidní; slov: subhumidná klíma; rus: субгумидный климат  1993-b3
subinversion fog
syn. mlha vysoká.
česky: mlha podinverzní; slov: podinverzná hmla; rus: подинверсионный туман  2018
sublimation
fázový přechod z pevného skupenství do skupenství plynného, v meteorologii zpravidla přechod ledu do plynné fáze vody – vodní páry. Ve starší literatuře se termín sublimace užívá i u opačného fázového přechodu, tj. růstu ledu přímo z vodní páry a někdy se v tomto případě setkáváme i s nevhodným termínem desublimace. V současné odborné literatuře převažuje v tomto významu termín depozice.
Termín pochází z lat. sublimatio „zvednutí do výše“, ve středověku též „odpařování teplem, sublimace“, odvozeného od slovesa sublimare „zdvihat, zvedat do výše“, později i „zjemnit látku odpařením“ (od sublimis „jsoucí vysoko, ve výši“).
česky: sublimace; slov: sublimácia; něm: Sublimation f; rus: сублимация  1993-a3
sublimation nuclei
česky: jádra sublimační; slov: sublimačné jadrá; něm: Sublimationskerne m; rus: ядра сублимации  1993-a3
sublimation phase boundary
křivka na fázovém diagramu, která představuje rozhraní mezi plynnou a pevnou fází sledované látky (v meteorologii mezi vodní párou a ledem). Vychází z trojného bodu a určuje podmínky, za nichž je pevná a plynná fáze v termodynamické rovnováze.
česky: křivka sublimační; slov: krivka sublimačná; něm: Sublimationskurve f  2017
sublimation point
teplota, při níž je tlak nasycené páry nad povrchem pevné fáze dané látky roven vnějšímu tlaku, v atmosférických podmínkách tlaku vzduchu. V meteorologii se jedná o hodnotu teploty, při níž hodnota tlaku nasycené vodní páry vzhledem k ledu odpovídá tlaku vzduchu. Za podmínek obvyklých v troposféře není bod sublimace ledu dosažen. Ve starší české meteorologické literatuře se bod sublimace někdy nesprávně vyskytuje ve smyslu teplota bodu ojínění. Viz též bod varu.
česky: bod sublimace; slov: bod sublimácie; něm: Reifpunkt m; fr: température de sublimation f; rus: точка инея  1993-a3
subsatellite point
průsečík spojnice družice a středu Země se zemským povrchem, označovaný též jako nadir družice. V tomto bodě mají přístroje na meteorologické družici vždy nejvyšší rozlišení. Posloupnost poddružicových bodů daná pohybem družice po její dráze kolem Země vytváří průmět dráhy na zemský povrch, označovaný jako trajektorie družice.
česky: bod poddružicový; slov: poddružicový bod; něm: Subsatellitenpunkt m, Subsatellitenpunkt m; fr: point nadir m, nadir du satellite m; rus: подспутниковая точка  1993-a2
subsidence inversion
syn. inverze teploty vzduchu sesedáním – výšková teplotní inverze způsobená sesedáním neboli subsidencí vzduchu z vyšších vrstev atmosféry do nižších. Vývoj subsidenční inverze je důsledkem další stabilizace původně stabilní vrstvy vzduchu při jejím adiabatickém sestupu. Subsidenční inverze se mohou vyskytovat nad rozsáhlými územími, je-li dobře vyvinut mechanizmus subsidenčních pohybů vzduchu, především v anticyklonách nebo v blízkosti os hřebenů vysokého tlaku vzduchu. Tyto inverze představují významný faktor podílející se na zhoršování rozptylových podmínek v oblastech vysokého tlaku vzduchu, v létě za slunečného anticyklonálního počasí často omezují vznik nebo vert. vývoj kupovité oblačnosti apod.
česky: inverze teploty vzduchu subsidenční; slov: subsidenčná inverzia teploty vzduchu; něm: Absinkinversion f; rus: инверсия оседания  1993-a3
subsidence of air
syn. sesedání vzduchu, pohyby vzduchu subsidenční – pomalé sestupné pohyby ve vzduchové hmotě, jejichž rychlost je zpravidla řádově 10–2 m.s–1 nebo méně. Subsidence vzduchu patří k jevům synoptického měřítka, vzniká z dyn. příčin a může mít velký význam pro vývoj podmínek počasí. Působí adiabatické oteplování vzduchu, např. sestupné pohyby o velikosti 2.10–2 m.s–1 působící po dobu 24 h a při vertikálním teplotním gradientu –0,5 K na 100 m zvýší teplotu dané hladiny o téměř 10 K, rozpouštění již vzniklé oblačnosti, tlumí konvekci apod. Subsidence vzduchu se vyskytuje především v předním sektoru a centrální oblasti vysokých anticyklon nebo v zesilujících hřebenech vysokého tlaku vzduchu. V důsledku subsidence vzduchu dochází ke vzniku subsidenčních inverzí teploty.
česky: subsidence vzduchu; slov: subsidencia vzduchu; něm: Absinken der Luft n, Subsidenz der Luft f; rus: оседание воздуха  1993-a2
substratosphere
hist. a nejednoznačný termín pro část atmosféry na pomezí troposféry a stratosféry.
Termín se skládá z lat. sub- „pod“ a slova stratosféra.
česky: substratosféra; slov: substratosféra; něm: Substratosphäre f  1993-a2
subsynoptic scale
obecné označení pro charakteristické rozměry atm. procesů a jevů, které mají menší charakteristické horiz. rozměry (a kratší dobu trvání) než procesy a jevy tzv. synoptického měřítka. Viz též měřítko mezosynoptické, klasifikace meteorologických procesů podle Orlanskiho.
česky: měřítko subsynoptické; slov: subsynoptická mierka; něm: subsynoptische Skala f; rus: субсиноптический масштаб  1993-a3
subtropical anticyclone
vysoká, teplá a kvazipermanentní anticyklona vyskytující se v subtropických zeměp. šířkách, a to většinou nad oceány. Všechny subtropické anticyklony jsou permanentními akčními centry atmosféry. Podle převládající geogr. polohy rozlišujeme subtropickou anticyklonu azorskou, bermudskou, havajskou, svatohelenskou, mauricijskou a jihopacifickou. Subtropické anticyklony jsou součástí subtropického pásu vysokého tlaku vzduchu na sev. a již. polokouli. Viz též anticyklona dynamická.
česky: anticyklona subtropická; slov: subtropická anticyklóna; něm: subtropische Antizyklone f; fr: anticyclone subtropical m; rus: субтропический антициклон  1993-a2
subtropical calms
pásmo bezvětří nebo slabých proměnlivých větrů v subtropickém pásu vysokého tlaku vzduchu nad oceány na obou polokoulích, vyskytující se mezi pasáty a pásmem západních větrů (přibližně mezi 30 až 35° N a 30 až 35° S). Posunují se na sever a na jih asi o 5° v závislosti na výšce Slunce během roku. Subtropické tišiny jsou oblastmi s ustáleným, nad pevninou suchým a horkým počasím. Někdy se pro subtropické tišiny používal termín „pásmo kalmů". Viz též šířky koňské.
česky: tišiny subtropické; slov: subtropické tíšiny; něm: subtropische Kalmen f/pl; rus: субтропические штили  1993-a3
subtropical climate
Alisovově klasifikaci klimatu přechodné klimatické pásmo, kde v letní polovině roku převládá tropický vzduch, v zimní polovině roku pak vzduch mírných šířek. V Köppenově klasifikaci klimatu se zčásti kryje s mírným dešťovým klimatem, při západních březích pevnin s typem Cs se suchým létem, označovaným i jako středomořské klima. Při východním pobřeží pevniny může být ovlivněno mimotropickým monzunem, viz klima monzunové. Ve vnitrozemí se subtropické klima vyznačuje značnou kontinentalitou klimatu a lze ho řadit k chladnému suchému klimatu podle W. Köppena.
česky: klima subtropické; slov: subtropická klíma; něm: subtropisches Klima n; rus: субтропический климат  1993-b3
subtropical cyclone
cyklona, která se může vyskytnout nad oceány až po zhruba 50° zeměp. šířky a vykazovat přitom znaky mimotropické i tropické cyklony. Při jejím vzniku a vývoji totiž dochází ke kombinaci fyzikálních mechanizmů, kdy důležitým zdrojem energie pro cyklogenezi je jak uvolnění baroklinní instability, tak uvolnění latentního tepla kondenzace. Typicky se jedná o transformovanou, původně mimotropickou cyklonu putující z pásma západních větrů do nižších zeměp. šířek, může však vzniknout i transformací tropické cyklony. Na rozdíl od mimotropické cyklony nemá subtropická cyklona vazbu na atmosférické fronty. Oproti tropické cykloně jsou v ní pásy konvektivních bouří méně symetricky uspořádány kolem středu cyklony; maximální rychlost větru je dosahována dále od středu (cca 100 až 200 km) a nedosahuje síly orkánu. Pokud však přesáhne hodnotu 17 m.s-1, která v případě tropické cyklony vymezuje tropickou bouři, dostává jméno ze seznamu určeného tropickým cyklonám. Nad tropickými oceány s vysokou teplotou povrchu moře a malým horizontálním teplotním gradientem se subtropická cyklona může transformovat na tropickou cyklonu. Z hlediska mechanizmů cyklogeneze i projevů počasí, které souvisejí s výskytem konvektivních bouří velmi silné intenzity, se subtropická cyklona podobá medikánu, který je však místně specifickým útvarem.
česky: cyklona subtropická; slov: subtropická cyklóna; něm: subtropische Zyklone f; fr: cyclone subtropical m, dépression subtropicale f  2014
subtropical high pressure belt
pás vyššího tlaku vzduchu, vyjádřený na klimatologických mapách, který se táhne kolem Země na obou polokoulích mezi 20 a 40° z. š. a v němž se vyskytují jednotlivé subtropické anticyklony. Zatímco na již. polokouli je zřetelný po celý rok, na severní polokouli jej v letním období přerušují oblasti nižšího tlaku nad kontinenty. Viz též šířky koňské.
česky: pás vysokého tlaku vzduchu subtropický; slov: subtropický pás vysokého tlaku vzduchu; něm: Rossbreiten f/pl, subtropischer Hochdruckgürtel m; rus: субтропический пояс высокого давления  1993-a3
subtropical jet stream
tryskové proudění v horní troposféře, jehož osa bývá v zimě přibližně na 30. a v létě na 40. až 45. rovnoběžce sev. polokoule, většinou ve výšce izobarické hladiny 200 hPa. Nejvyšší rychlosti proudění se vyskytují nad vých. pobřežím kontinentů sev. polokoule a nad přilehlým mořem. Na rozdíl od mimotropického tryskového proudění není subtropické tryskové proudění vázáno na frontální zónu a je nejlépe vyvinuto v zimě. Subtropické tryskové proudění má obdobu i na již. polokouli. Viz též proudění tryskové tropické.
česky: proudění tryskové subtropické; slov: subtropické dýzové prúdenie; něm: subtropischer Strahlstrom m; rus: субтропическое струйное течение  1993-a1
sudden ionospheric disturbance
syn. jev Dellingerův – náhlá změna fyz. stavu nižší ionosféry ve výšce 60 až 80 km. Vzniká prudkým zesílením ionizace ionosférické vrstvy D, které je vyvoláno zvětšením ultrafialového záření při chromosférické erupci na Slunci. Projeví se náhlým vymizením příjmu vzdálených krátkovlnných rádiových stanic na polokouli osvětlené Sluncem. Jev trvá několik desítek minut až několik hodin. Uvedenou poruchu poprvé popsal J. H. Dellinger v r. 1935.
česky: porucha ionosférická náhlá; slov: náhla ionosférická porucha; něm: plötzliche ionosphärische Störung f; rus: внезапное ионосферное возмущение  1993-a3
sudden stratospheric warming
česky: ohřev stratosférický náhlý; slov: náhle stratosférické oteplenie; něm: plötzliche Stratosphärenerwärmung f; fr: réchauffement stratosphérique soudain; rus: внезапное стратосферное потепление  2020
sudden stratospheric warming
syn. ohřev stratosférický náhlý – prudké zvýšení teploty vzduchu ve stratosféře až o 50 °C během několika dnů, k němuž dochází v důsledku významného narušení cirkumpolárního víru prostřednictvím planetárních vln. Náhlé stratosférické oteplení ovlivňuje podmínky v celé stratosféře (nejen v polárních, ale i v rovníkových oblastech), dále v troposféře, mezosféře, a dokonce i v ionosféře.
Rozeznáváme dvě kategorie náhlých stratosférických oteplení. Slabé oteplení se objevuje na severní i jižní polokouli často několikrát během chladného půlroku. Nastává při  časově omezeném zeslabení, nikoli však rozpadu cirkumpolárního víru. Na severní polokouli pak přibližně jednou za dva roky dojde i k tzv. hlavnímu neboli silnému oteplení, jehož klíčovým znakem je na 60° sev. šířky v izobarické hladině 10 hPa (ve výšce asi 33 km) změna zimní západní cirkulace na východní. Cirkumpolární vír se může také rozdělit na dva samostatné víry. Na jižní polokouli je hlavní stratosférické oteplení pozorováno pouze výjimečně (např. v roce 2002), neboť antarktický cirkumpolární vír je oproti arktickému stabilnější díky menšímu vlnovému působení pevnin a hor ve středních a vyšších zeměpisných šířkách jižní polokoule. Po odeznění náhlého stratosférického oteplení se obnovuje zimní západní cirkulace.
Stratosférické oteplení poprvé pozoroval R. Scherhag v Berlíně v r. 1952, odtud zast. označení tohoto jevu jako berlínský fenomén.
česky: oteplení stratosférické náhlé; slov: náhle stratosférické oteplenie; něm: plötzliche Stratosphärenerwärmung f; fr: réchauffement stratosphérique soudain; rus: внезапное стратосферное потепление  2018
sudden wind shift
náhlá změna směru větru v horiz. směru nebo s výškou, způsobená především termodynamickými nebo orografickými vlivy. S výškou pozorujeme stočení větru zejména na hranicích inverzí teploty vzduchu a na frontálních plochách, v horiz. směru na atmosférických frontách, na mořském pobřeží, na orografických překážkách, pod oblaky druhu cumulonimbus apod. Obdobně mluvíme o stočení větru i v časovém smyslu, např. při přechodu fronty přes dané místo. Viz též střih větru, stáčení větru.
česky: stočení větru; slov: stočenie vetra; něm: Windsprung m; rus: поворот ветра  1993-a2
sukhovei
oblastní název suchého a teplého výsušného větru ve stepích a polopouštích Ukrajiny, evropské části Ruska a Kazachstánu. Při suchověji teplota vzduchu dosahuje i 35 až 40 °C, relativní vlhkost vzduchu klesá až na 10 % a ani v nočních hodinách nestoupá nad 50 %. Suchověj se nejčastěji vyskytuje v květnu, kdy je nebezpečný pro vegetaci, zvl. pro polní plodiny, v souvislosti se zvýšeným výparem. V období, kdy jsou pole bez vegetačního krytu, se při suchověji dostává do ovzduší prach a mohou vznikat prachové bouře.
Termín pochází z rus. суховей téhož významu.
česky: suchověj; slov: suchovej; něm: Suchowei m; rus: суховей  1993-a2
sulfurous smog
smog ve formě směsi kouře a mlhy. Vzniká v důsledku spalování uhlí s vysokým obsahem SO2, který smogu dodává redukční charakter. Typicky se vyskytuje v chladném půlroce, proto bývá též nazýván zimní. Jiné jeho označení jako tzv. londýnský smog odkazuje na časté smogové situace, které ještě v 50. letech 20. století postihovaly obzvlášť silně Londýn. Po katastrofální epizodě v prosinci 1952 zde byla přijata legislativní opatření k zeslabení této hrozby. Redukční smog zůstává vážným problémem v jiných zemích, např. v Číně.
česky: smog redukční; slov: redukčný smog; něm: London smog m; rus: сернистый смог  2019
sulphur rain
déšť žlutě zabarvený částicemi pylu, popř. žlutavým prachem apod. Na našem území se žlutý déšť vyskytuje obvykle v jarních měsících, v období hromadného rozkvětu jehličnatých stromů, hlavně smrků a borovic. Množství pylu, které žlutý déšť podmiňuje, závisí na povětrnostním průběhu zimy a jara; sytěji zbarvený žlutý déšť se vyskytuje obvykle jednou za 4 až 5 let. Viz též déšť bahnitý, déšť krvavý.
česky: déšť žlutý; slov: žltý dážď; něm: Schwefelregen m; fr: pluie de sable f, pluie de soufre f; rus: серный дождь  1993-a1
sultriness
subj. nepříjemný pocit, vyvolaný kombinovaným účinkem teploty vzduchu, vlhkosti vzduchu a malé rychlosti větru na lidský organismus. Je do jisté míry opakem zchlazování, protože čím je menší zchlazování, tím je větší dusno. Dusno se charakterizuje buď pomocí izobarické ekvivalentní teploty (např. F. Linke považoval za začátek dusna 56 °C), nebo jen pomocí tlaku vodní páry. Za hranici dusna se obecně přijala hodnota tlaku vodní páry 18,8 hPa (dříve 14,08 torr). Podle K. Scharlana (1942) nastávají podmínky pro pocit dusna např. tehdy, když při relativní vlhkosti vzduchu r = 100 % je teplota vzduchu t = 16,5 °C, dále při r = 70 % a t = 22,2 °C, při r = 50 % a t = 27,9 °C, popř. při r = 30 % a t = 36,9 °C. Dusno vzniká nejčastěji v létě v dopoledních hodinách, zpravidla před konvektivní bouří (bouřkou z tepla). Viz též den dusný, teplota pocitová.
Termín je odvozen od slovesa dusit, které se vyvinulo z praslovanského *dušiti, z něhož pocházejí např. slova duch, dech a vzduch. Doslova jsou to tedy „podmínky, kdy člověk těžce dýchá“.
česky: dusno; slov: dusno; něm: Schwüle f; fr: temps lourd m; rus: духота, зной  1993-a3
sultry day
charakteristický den, v němž nastaly met. podmínky pro pocit dusna. V Česku se za dusný den zpravidla považuje den, v němž tlak vodní páry ve 14 h dosáhl alespoň hodnoty 18,8 hPa. Viz též izohygroterma.
česky: den dusný; slov: dusný deň; něm: schwüler Tag m; fr: jour à temps lourd m, jour de chaleur étouffante m, jour de chaleur accablante m; rus: душный день  1993-a2
sum of cold temperatures
charakteristika teplotního režimu místa nebo oblasti v chladném roč. období počítaná obvykle jako součet všech záporných denních průměrů teploty zaznamenaných během mrazového období. Charakteristika se používá k vyjádření tuhosti zimy.
česky: suma záporných teplot; slov: záporná teplotná suma; něm: Summe der negativen Temperaturen f; rus: сумма отрицательных температур  1993-a3
sum of temperatures
charakteristika teplotního režimu místa nebo oblasti, která se v meteorologii používá buď k porovnání teplotních poměrů různých míst ve stejném období nebo na jedné stanici k porovnání teplotních poměrů v jednotlivých letech. Stanovuje se jako:
1. součet teploty vzduchu, obvykle průměrné denní teploty zaznamenané za zvolené období, např. součet všech denních průměrů teploty vzduchu za vegetační období;
2. součet odchylek teploty vzduchu od referenční teploty za zvolené období. V teplém ročním období se zpravidla počítají součty odchylek teploty převyšující referenční teplotu, tj. např. 5, 10, nebo 15 °C, v zimním období sumy záporné teploty. Má praktické uplatnění v zemědělství, klimatologii, klimatologické rajonizaci a tech. praxi.
česky: suma teplot; slov: teplotná suma, suma teplôt; něm: Temperatursumme f, Summe der Temperaturen f; rus: сумма температур  1993-a3
summary kinematic chart
druh kinematické mapy, na kterou se zakreslují smluvenými znaky středy cyklon a anticyklon, jejich trajektorie, demarkační čáry aj. Podklady se získávají z analyzovaných přízemních či výškových map za období několika po sobě jdoucích dnů. Tato mapa umožňuje jednoduše znázorňovat synop. procesy ve vhodně vybraných časových obdobích a v různých výškových hladinách, upřesňovat synoptické typy a vybírat metodou analogů povětrnostní situace pro předpověď počasí, vymezovat přirozená synoptická období a přestavbu povětrnostní situace.
česky: mapa kinematická souborná; slov: súborná kinematická mapa; rus: сводная кинематическая карта  1993-a3
summer
jedna z hlavních klimatických, příp. fenologických sezon ve vyšších zeměp. šířkách dané polokoule, vymezená např. takto:
1. období od letního slunovratu do podzimní rovnodennosti (astronomické léto);
2. trojice letních měsíců, na sev. polokouli červen, červenec a srpen (tzv. klimatologické léto);
3. období s prům. denními teplotami vzduchu 15 °C a vyššími (tzv. vegetační léto).
česky: léto; slov: leto; něm: Sommer m; rus: лето  1993-a3
summer day
mezinárodně rozšířený charakteristický den, v němž maximální teplota vzduchu dosáhla hodnoty 25,0 °C nebo vyšší. Toto vymezení je užíváno v Česku i v dalších zemích, v mezinárodní komunitě se nicméně za letní den považuje teprve den s překročením této prahové hodnoty. Podmnožinou letních dní jsou horké, popř. velmi horké dny.
česky: den letní; slov: letný deň; něm: Sommertag m; fr: jour de chaleur m, jour chaud m; rus: летний день  1993-a3
summer monsoon
monzun podmíněný převládáním nižšího tlaku vzduchu nad velkými oblastmi pevnin v teplém pololetí, vanoucí zpravidla z moře na pevninu a přinášející sem monzunové srážky. Nástup monzunu a jeho konec, které se regionálně liší, vymezují hlavní období dešťů. Např. prům. datum jeho nástupu v Bombaji je 5. červen a konce 15. říjen.
česky: monzun letní; slov: letný monzún; něm: Sommermonsun m; rus: летний муссон  1993-a3
summer smog
česky: smog letní; slov: letný smog; něm: Sommersmog m; rus: летний смог  2019
summer solstice
viz slunovrat.
česky: slunovrat letní; slov: letný slnovrat; něm: Sommersonnenwende; rus: летнее солнцестояние  2019
sun dog
syn. paslunce – velmi častý halový jev v podobě světelných skvrn nalézajících se na parhelickém kruhu vně malého hala. Jsou obvykle výrazněji duhově zbarveny, s červeným okrajem na straně bližší Slunci. Při poloze Slunce na obzoru by se parhelia nalézala na malém halu, s rostoucí výškou Slunce nad obzorem se od malého hala bočně vzdalují v rozsahu několika úhlových stupňů. Vznikají dvojitým lomem slunečních paprsků při průchodu šestibokými ledovými krystalky při lámavém úhlu 60° a vert. poloze hlavní krystalové osy.
česky: parhelium; slov: parhélium; něm: Nebensonne f; rus: ложное солнце, паргелий  1993-a3
sun pillar
česky: sloup sluneční; slov: slnečný stĺp; něm: Sonnensäule f; rus: солнечный столб  1993-a1
sunshine
v meteorologii zkrácené označení pro trvání slunečního svitu.
česky: svit sluneční; slov: slnečný svit; něm: Sonnenschein m; rus: солнечное сияние  1993-a1
sunshine duration
česky: délka slunečního svitu; slov: dĺžka slnečného svitu; něm: Sonnenscheindauer f; fr: durée d'ensoleillement f, durée d'insolation f; rus: продолжительность солнечного сияния  1993-a1
sunshine duration
časový interval, po který svítilo slunce, vyjádřený zpravidla v pravém slunečním čase, např. od 10.45 do 11.32 h. Viz též trvání slunečního svitu.
česky: doba slunečního svitu; slov: doba slnečného svitu; něm: Sonnenscheindauer f; fr: durée d'ensoleillement f, durée d'insolation f; rus: продолжительность солнечного сияния  1993-a1
sunshine duration
časový interval, během něhož je intenzita přímého slunečního záření dopadajícího na jednotku plochy zemského povrchu kolmé k paprskům větší, než 120 W.m–2. Závisí nejen na délce světlého dne, která je dána zeměp. š. a roční dobou, ale také na výskytu oblačnosti a na překážkách v okolí místa měření. Udává se v hodinách, popř. desetinách hodiny za den, měsíc nebo rok. Trvání slunečního svitu se měří slunoměry s přesností na 0,1 h. Trvání slunečního svitu patří k zákl. klimatickým prvkům. Kromě skutečného trvání slunečního svitu zjišťovaného slunoměrem se v klimatologii dále uvádí astronomicky možné trvání slunečního svitu a efektivně možné trvání slunečního svitu. Viz též svit sluneční, trvání slunečního svitu relativní.
česky: trvání slunečního svitu; slov: trvanie slnečného svitu; něm: Sonnenscheindauer f; rus: продолжительность солнечного сияния  1993-a3
sunshine record
záznam slunoměru.
Termín vznikl odvozením od termínu heliograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. slov ἥλιος [hélios] „Slunce“ a γράμμα [gramma] „písmeno, zápis“; tj. doslova „záznam o slunci“.
česky: heliogram; slov: heliogram; něm: Sonnenscheinregistrierung f; fr: héliogramme m; rus: гелиограмма  1993-a1
sunshine recorder, heliograph
syn. heliograf – přístroj zaznamenávající trvání slunečního svitu. Nejrozšířenějším typem slunoměru byl v minulosti Campbellův-Stokesův slunoměr tvořený skleněnou koulí, v jejímž ohnisku je umístěn papírový registrační pásek dělený po hodinách a propalovaný slunečními paprsky. S postupnou automatizací meteorologických měření jsou stále častěji používány různé typy elektronických slunoměrů, které fungují většinou na principu stínění fotoelektrických diod nebo termoelektrických článků.
česky: slunoměr; slov: slnkomer; něm: Sonnenscheinautograph m; rus: гелиограф  1993-a3
sunspot
přechodně existující oblast ve sluneční fotosféře s teplotou nižší vůči okolí o 1500 – 2000 K. Skvrny vznikají při zvýšené sluneční aktivitě v důsledku silné koncentrace slunečního magnetického pole, které zabraňuje proudění a tím omezuje přenos tepelné energie z vnitřních částí slunečního tělesa. Nejtemnější (nejchladnější) středová část skvrny se nazývá umbra. Bývá lemována méně tmavou vláknitou částí skvrny, tzv. penumbrou, která u malých skvrn může být méně zřetelná nebo může zcela chybět. Rozměry skvrn dosahují od několika stovek km až po desítky tisíc km. Doba trvání skvrn se pohybuje od několika hodin (u nejmenších z nich) po několik dnů, u největších skvrn pak až po několik měsíců. Velké skvrny se často objevují ve skupinách, popř. v komplexech až o několika desítkách menších i větších skvrn. Výskyt slunečních skvrn je rozsáhle sledovaným a populárním projevem sluneční aktivity, který je nejčastěji charakterizován pomocí tzv. Wolfova čísla. Viz též fakule.
česky: skvrna sluneční; slov: slnečná škvrna; něm: Sonnenfleck m; fr: tache solaire f; rus: солнечoе пятнo  1993-a3
sunspot cycle
fluktuace polarity magnetického pole Slunce s přibližně jedenáctiletou periodou. Cyklus se projevuje proměnami počtu slunečních skvrn i charakteristik záření Slunce. Výkyvy solární konstanty v rámci cyklu dosahují přibližně jedno promile, v řádu jednotek procent se mění intenzita ultrafialového záření. Cyklus má významný dopad na podmínky ve vyšších vrstvách zemské atmosféry, v rámci střední atmosféry se projevuje anomáliemi v teplotě i cirkulaci a má vliv i na stabilitu zimního cirkumpolárního víru. Viz též číslo Wolfovo.
česky: cyklus sluneční jedenáctiletý; slov: slnečný cyklus; něm: elf jähriger Sonnenzyklus m, Schwabe-Zyklus m; fr: cycle de 11 ans m, cycle solaire m, cycle solaire de 11 ans m; rus: солнечный цикл  2015
Sun´s corona
vnější vrstva sluneční atmosféry nad chromosférou. Je tvořena žhavými plyny (plazmatem), unikajícími ze Slunce do vesmírného prostoru. Vysoká teplota těchto plynů (v řádu milionů K)  není prozatím plně vysvětlena, ale zřejmě je výsledkem spolupůsobení několika mechanizmů včetně útlumu rázových vln z povrchu Slunce v jeho koroně a přeměn energie akumulované v magnetickém poli Slunce. Viz též vítr sluneční.
česky: koróna sluneční; slov: slnečná koróna; něm: Sonnenkorona f; fr: couronne solaire f; rus: солнечная корона  2020
super adiabatic turbulence
méně vhodné označení pro termickou turbulenci, vytvořenou v důsledku vertikální instability atmosféry.
česky: turbulence nadadiabatická; slov: nadadiabatická turbulencia; rus: сверхадиабатическая турбулентность  1993-a1
super typhoon
označení pro mimořádně silný tajfun, v němž desetiminutový (v USA minutový) průměr rychlosti přízemního větru dosahuje hodnoty nejméně 67 m.s–1. Viz též extrémy tlaku vzduchu.
Termín se skládá z angl. předpony super-, která má u podstatných jmen význam „vynikající, předčící ostatní“ (z lat. předložky super „nad, nahoře, přes“; srov. superman), a ze slova tajfun.
česky: supertajfun; slov: supertajfún; něm: besonders starker Taifun m; rus: интенсивный тайфун  1993-a3
superadiabatic lapse rate
syn. superadiabatický – vertikální teplotní gradient v atmosféře y = –∂T / ∂z, jehož velikost převyšuje hodnotu adiabatického gradientu. Obvykle se pod pojmem nadadiabatický vert. gradient teploty rozumí vert. teplotní gradient větší, než je hodnota suchoadiabatického gradientu, tj. změna teploty větší než 1 K na 100 m. Viz též gradient autokonvekční.
česky: gradient teplotní nadadiabatický; slov: nadadiabatický teplotný gradient; něm: überadiabatischer Temperaturgradient m; fr: gradient thermique superadiabatique m; rus: сверхадиабатический градиент температуры  1993-a2
superadiabatic lapse rate
česky: gradient teplotní superadiabatický  2024
supercell
konvektivní bouře většinou velmi silné intenzity, která sestává z jediné dominantní, velmi výrazné konvektivní buňky. Ta je udržována v činnosti až po dobu několika hodin jediným mohutným výstupným konvektivním proudem, rotujícím kolem své vertikální osy a dosahujícím vert. rychlosti až 50–60 m.s–1. Definice supercely se průběžně vyvíjí v souvislosti s rostoucím poznáním a detekčními možnostmi. V současné době je supercela definována výskytem dlouhotrvajícího výstupného konv. proudu a s ním spojené mezocyklony, která se vyskytuje ve středních hladinách výstupného proudu a kterou lze detekovat meteorologickým dopplerovským radarem. Supercely s výstupným proudem rotujícím cyklonálně (resp. anticyklonálně) se na sev. polokouli stáčí vpravo (resp. vlevo) od původního směru pohybu. Kromě výstupného proudu je supercela tvořena také dvěma sestupnými proudy, předním a zadním sestupným proudem. Silně organizovaná struktura proudění je příčinou specifických projevů supercely, jako je výskyt tornád, silného krupobití včetně vývoje obřích krup i prudkého nárazovitého větru. Horizontálními rozměry se supercela od běžných konv. bouří lišit nemusí. Supercely se vyvíjejí v prostředí se výrazným vertikálním střihem větru, kde horiz. vorticita generovaná střihem větru se ve výstupném proudu transformuje na vorticitu vertikální.
Při radiolokačních pozorováních je pro supercelu charakteristická uzavřená oblast snížené radarové odrazivosti (BWER) a hákovité echo. Tyto oblasti se nacházejí v místě výstupného proudu, který je natolik intenzivní, že se v něm tvoří pouze drobné oblačné částice, obtížně zachytitelné radarem. Na přítomnost supercely lze nepřímo usuzovat i na základě specifického vzhledu oblačnosti bouře při pohledu ze zemského povrchu, obzvláště při výskytu wall cloudu. V zahraniční literatuře se kromě tzv. klasické supercely (z angl. Classic Supercell, CS), jejíž vlastnosti se neliší od výše popsaného koncepčního modelu, uvádějí dvě odvozené kategorie supercel. Jde o slabě srážkové supercely (z angl. low precipitating, LP) a mohutně srážkové (z angl. high precipitating, HP) supercely. V LP supercele převládá výstupný proud nad proudy sestupnými a podstatná část srážek se vypaří, než dopadne na povrch země. HP supercela produkuje velké množství srážek především v oblasti hákovitého echa a na své zadní straně. Vzhledem k vypařování srážkových částic mohou být oba její sestupné proudy velmi intenzivní. Viz též štěpení konvektivní bouře.
Termín poprvé (s uvozovkami) použil brit. meteorolog K. A. Browning v r. 1962 pro označení obzvlášť ničivé buňky v rámci konvektivní bouře, která zasáhla město Wokingham 9. července 1959. Skládá se z angl. předpony super-, která má u podstatných jmen význam „vynikající, předčící ostatní“ (z lat. předložky super „nad, nahoře, přes“; srov. superman), a ze slova cela.
česky: supercela; slov: supercela; něm: Superzelle f; rus: сверхячейка  1993-a3
supercell storm
konvektivní bouře většinou velmi silné intenzity, která sestává z jediné dominantní, velmi výrazné konvektivní buňky. Ta je udržována v činnosti až po dobu několika hodin jediným mohutným výstupným konvektivním proudem, rotujícím kolem své vertikální osy a dosahujícím vert. rychlosti až 50–60 m.s–1. Definice supercely se průběžně vyvíjí v souvislosti s rostoucím poznáním a detekčními možnostmi. V současné době je supercela definována výskytem dlouhotrvajícího výstupného konv. proudu a s ním spojené mezocyklony, která se vyskytuje ve středních hladinách výstupného proudu a kterou lze detekovat meteorologickým dopplerovským radarem. Supercely s výstupným proudem rotujícím cyklonálně (resp. anticyklonálně) se na sev. polokouli stáčí vpravo (resp. vlevo) od původního směru pohybu. Kromě výstupného proudu je supercela tvořena také dvěma sestupnými proudy, předním a zadním sestupným proudem. Silně organizovaná struktura proudění je příčinou specifických projevů supercely, jako je výskyt tornád, silného krupobití včetně vývoje obřích krup i prudkého nárazovitého větru. Horizontálními rozměry se supercela od běžných konv. bouří lišit nemusí. Supercely se vyvíjejí v prostředí se výrazným vertikálním střihem větru, kde horiz. vorticita generovaná střihem větru se ve výstupném proudu transformuje na vorticitu vertikální.
Při radiolokačních pozorováních je pro supercelu charakteristická uzavřená oblast snížené radarové odrazivosti (BWER) a hákovité echo. Tyto oblasti se nacházejí v místě výstupného proudu, který je natolik intenzivní, že se v něm tvoří pouze drobné oblačné částice, obtížně zachytitelné radarem. Na přítomnost supercely lze nepřímo usuzovat i na základě specifického vzhledu oblačnosti bouře při pohledu ze zemského povrchu, obzvláště při výskytu wall cloudu. V zahraniční literatuře se kromě tzv. klasické supercely (z angl. Classic Supercell, CS), jejíž vlastnosti se neliší od výše popsaného koncepčního modelu, uvádějí dvě odvozené kategorie supercel. Jde o slabě srážkové supercely (z angl. low precipitating, LP) a mohutně srážkové (z angl. high precipitating, HP) supercely. V LP supercele převládá výstupný proud nad proudy sestupnými a podstatná část srážek se vypaří, než dopadne na povrch země. HP supercela produkuje velké množství srážek především v oblasti hákovitého echa a na své zadní straně. Vzhledem k vypařování srážkových částic mohou být oba její sestupné proudy velmi intenzivní. Viz též štěpení konvektivní bouře.
Termín poprvé (s uvozovkami) použil brit. meteorolog K. A. Browning v r. 1962 pro označení obzvlášť ničivé buňky v rámci konvektivní bouře, která zasáhla město Wokingham 9. července 1959. Skládá se z angl. předpony super-, která má u podstatných jmen význam „vynikající, předčící ostatní“ (z lat. předložky super „nad, nahoře, přes“; srov. superman), a ze slova cela.
česky: supercela; slov: supercela; něm: Superzelle f; rus: сверхячейка  1993-a3
supercooled cloud
vodní oblak, jehož teplota je nižší než 0 °C. Viz též voda přechlazená.
česky: oblak přechlazený; slov: prechladený oblak; něm: unterkühlte Wolke f; rus: переохлажденное облако  1993-a2
supercooled fog
česky: mlha přechlazená; slov: prechladená hmla; něm: unterkühlter Nebel m; rus: переохлажденный туман  1993-a3
supercooled rain
déšť tvořený kapkami přechlazené vody. Způsobuje mrznoucí déšť a vznik ledovky.
česky: déšť přechlazený; slov: prechladený dážď; něm: unterkühlter Regen m; fr: pluie surfondue f; rus: переохлажденный дождь  1993-a3
supercooled water
kapalná fáze vody přítomná v atmosféře při teplotách vzduchu nižších než 0 °C. Většina oblačných a mlžných kapek zůstává v kapalném stavu i za teploty hluboko pod bodem mrznutí; existence přechlazených kapek v oblacích je prokázána až do teploty cca –42 °C. Přechlazené kapky jsou při teplotě pod 0 °C nestabilní a dostanou-li se do kontaktu s ledovou částicí, rychle mrznou. Proces mrznutí přechlazených kapiček vody v atmosféře usnadňují i ledová jádra. Běžná existence přechlazených vodních kapek v oblacích souvisí s tlakovými poměry v blanách povrchového napětí vody při jejich velkém zakřivení. Přechlazené mohou být i dešťové kapky či kapky mrholení, což vede ke vzniku mrznoucího deště, resp. mrznoucího mrholení. Viz též mlha přechlazená, oblak přechlazený, teorie vzniku srážek Bergeronova–Findeisenova, ozrnění ledových krystalků.
česky: voda přechlazená; slov: prechladená voda; něm: unterkühltes Wasser n; rus: переохлажденная вода  1993-a3
supergeostrophic wind
vítr, jehož rychlost převyšuje rychlost geostrofického větru odpovídající danému horiz. tlakovému gradientu.
česky: vítr supergeostrofický; slov: supergeostrofický vietor; něm: supergeostrophischer Wind m; rus: сверхгеострофический ветер  1993-a1
supergradient wind
vítr, jehož rychlost převyšuje rychlost gradientového větru odpovídající danému horiz. tlakovému gradientu a zakřivení izobar nebo izohyps.
česky: vítr supergradientový; slov: supergradientový vietor; rus: сверхградиентный ветер  1993-a1
superior mirage
viz zrcadlení.
česky: zrcadlení svrchní; slov: vrchné zrkadlenie; něm: Luftspiegelung nach oben f; rus: верхний мираж  1993-a1
supernumerary bows
úzké barevné oblouky, které se vyskytují uvnitř hlavní nebo vně vedlejší duhy; častěji se objevují u vedlejší duhy. Jde o interferenční jev související s uplatněním optického principu minimální odchylky. Někteří autoři používají pro duhové podružné oblouky méně vhodného označení „duhy sekundární“. Duhové podružné oblouky jsou jedním z fotometeorů.
česky: oblouky duhové podružné; slov: podružné dúhové oblúky; něm: Nebenregenbogen m; rus: дополнительная радуга, побочная допольнительная радуга  1993-a3
supernumerary rainbows
úzké barevné oblouky, které se vyskytují uvnitř hlavní nebo vně vedlejší duhy; častěji se objevují u vedlejší duhy. Jde o interferenční jev související s uplatněním optického principu minimální odchylky. Někteří autoři používají pro duhové podružné oblouky méně vhodného označení „duhy sekundární“. Duhové podružné oblouky jsou jedním z fotometeorů.
česky: oblouky duhové podružné; slov: podružné dúhové oblúky; něm: Nebenregenbogen m; rus: дополнительная радуга, побочная допольнительная радуга  1993-a3
superrefraction
jev vyskytující se v radiometeorologii za přítomnosti vrstvy s rychlým úbytkem měrné vlhkosti vzduchu s výškou a zároveň s výraznou inverzí teploty, kde gradient indexu lomu elektromagnetických vln s výškou je ∂n / ∂z < –15,7 . 10–8 m–1. V této vrstvě dochází k zakřivení elmag. vln směrem k zemskému povrchu (poloměr křivosti je menší než poloměr Země). Následně lze pozorovat jevy anomálního šíření eletromagnetických vln (též označované jako anaprop) s viditelností předmětů obvykle skrytých pod radiohorizontem. Jedná se o mikrovlnnou analogii svrchního zrcadlení. Viz též refrakce atmosférická, typy refrakce elektromagnetických vln.
Termín se skládá z angl. předpony super-, která má u podstatných jmen význam „vynikající, předčící ostatní“ (z lat. předložky super „nad, nahoře, přes“; srov. superman), a slova refrakce.
česky: superrefrakce; slov: superrefrakcia; něm: Superrefraktion f; rus: сверхрефракция  1993-a3
supersaturated air
1. vzduch, který obsahuje více vodní páry, než odpovídá stavu nasycení nad rovinným povrchem čisté vody při dané teplotě. V oblacích a v mlze dosahuje přesycení řádově setiny až desetiny procenta relativní vlhkosti vzduchu, v extrémních případech, v mohutných výstupných proudech bouřkových oblaků, kolem 1 %. Dokonalým očištěním vzduchu od všech částic, které mohou působit jako kondenzační jádra, lze v labor. podmínkách dosáhnout přesycení vzduchu až stovky procent;
2. ve fyzice oblaků a srážek se pojmu přesycený vzduch používá i v souvislosti s rozdílným tlakem nasycené vodní páry nad různými povrchy kapalné vody a ledu. Vzhledem k tomu, že tlak nasycené vodní páry nad ledem je za jinak stejných podmínek vždy nižší než nad vodou, může se ve smíšených oblacích vytvořit stav, kdy vzduch je vůči kapkám přechlazené vody nenasycený, zatímco vůči ledovým částicím přesycený. Podobně v důsledku rozdílného tlaku nasycené vodní páry nad různě zakřiveným vodním povrchem může být vzduch nenasycen vůči maličkým kapičkám, zatímco vzhledem k velkým kapkám nebo rovnému fázovému rozhraní je přesycen. Podle Raoultova zákona vyvolává rozpuštění určité látky snížení tlaku nasycené vodní páry nad roztokem, a proto např. vůči kapičkám solných roztoků může být přesycený i vzduch nenasycený vůči čisté vodě. Pojem přesycený vzduch se v meteorologii běžně užívá, jde však o terminologické zjednodušení (terminologickou zkratku). Věcně korektní by mělo být: vzduch obsahující přesycenou vodní páru. Viz též teorie vzniku srážek Bergeronova–Findeisenova.
česky: vzduch přesycený; slov: presýtený vzduch; něm: übersättigte Luft f; rus: перенасыщенный воздух  1993-a3
supersaturated vapor
pára, jejíž tlak (hustota) je vyšší než u nasycené páry o téže teplotě. V meteorologické literatuře jde zpravidla o vodní páru nad rovinným povrchem vody nebo ledu. Přesycená pára je termodynamicky nestabilní a v atmosféře může reálně existovat za situace, kdy nejsou přítomny žádné zárodky vodních kapiček nebo ledových částic a jsou odstraněna účinná kondenzační a depoziční jádra. Prakticky to lze realizovat v laboratorních podmínkách v uzavřených komorách s účinně přefiltrovaným vzduchem, snižujeme-li teplotu vzduchu, takže hodnota tlaku nasycené vodní páry klesá.
česky: pára přesycená; slov: presýtená para; něm: übersättigter Dampf m  2017
supersaturation
česky: přesycení; slov: presýtenie; něm: Übersättigung f; rus: перенасыщение  1993-a1
supplementary feature of a cloud
doplňující kategorie mezinárodní morfologické klasifikace oblaků, která si všímá zvláštních detailů ve tvaru oblaků, jejich výčnělků, útržků apod. Týž oblak se může vyznačovat několika zvláštnostmi. V současné době rozeznáváme celkem 11 zvláštností oblaků. Ke zvláštnostem označeným jako incus, mamma, virga, praecipitatio, arcus a tuba byly v roce 2017 přidány zvláštnosti označené jako asperitas, cauda, cavum, fluctus a murus.
česky: zvláštnost oblaku; slov: zvláštnosť oblaku; něm: Wolkensonderform f; fr: particularité supplémentaire de nuage; rus: дополнительная особенность облака  1993-a3
supplementary meteorological observation
meteorologické pozorování prováděné mimo pevně stanovené pozorovací termíny, např. měření vodní hodnoty sněhové pokrývky v jiný než stanovený den, kterým je pondělí (např. v případě předpovídaného rychlého tání sněhu s možností vzestupu hladin vodních toků).
česky: pozorování meteorologické doplňkové; slov: doplnkové meteorologické pozorovanie; něm: meteorologische Ergänzungsbeobachtung f; rus: дополнительное метеорологическое наблюдение  1993-a3
supplementary ship station
meteorologická stanice na pohybující se lodi, která je vybavena jen nejnutnějšími spolehlivými met. přístroji a předává kódované zprávy o přízemních met. pozorováních.
česky: stanice meteorologická lodní doplňková; slov: lodná doplnková meteorologická stanica; něm: Ergänzungs-Schiffsstation f; rus: дополнительная судовая станция  1993-a3
supralateral arc
poměrně častý halový jev v podobě duhově zbarveného oblouku přimykajícího se shora k velkému halu (pokud je viditelné) a rozevírajícího se dolů. Dosti často se vyskytuje spolu s cirkumzenitálním obloukem, jehož se dotýká nad Sluncem. Vytváří se pouze při polohách Slunce do 32° nad obzorem a s rostoucí výškou Slunce se poněkud více rozevírá. Vzniká dvojitým lomem paprsků při průchodu šestibokými ledovými krystalky s horizontální orientací při úhlu lomu 90°.
česky: oblouk supralaterální; slov: supralaterálny oblúk; něm: Supralateralbogen m; rus: супралатеральная дуга  2014
surface chart
v meteorologii synoptická mapa sestavená z údajů sítě přízemních meteorologických stanic v hlavních a vedlejších synoptických termínech. Údaje zakreslené v přízemní mapě se však nevztahují přímo k zemskému povrchu, protože čidla met. přístrojů jsou umístěna v různé předepsané výšce nad povrchem; tlak vzduchu zaznamenávaný na přízemní mapě je redukován na hladinu moře, zakreslené oblaky se vyskytují v různých výškách nad zemským povrchem apod. Stav a průběh počasí je na přízemní mapě zaznamenán dohodnutým způsobem, a to buď čís. hodnotami meteorologických prvků (např. teplota a tlak vzduchu), v šifrách (vodorovná dohlednost, výška nejnižších oblaků), nebo v symbolech (druh oblaků, rychlost větru, oblačnost). Údaje z met. stanic jsou na přízemní mapě uspořádány kolem staničních kroužků podle staničního modelu.
Analyzovaná přízemní mapa (v současné době se může částečně jednat i o analýzu objektivní pomocí výpočetní techniky) obsahuje zákresy atm. frontizobar, izalobar, oblasti výskytu atm. srážek, mlh a bouřek a jsou v ní vyznačeny středy cyklon a anticyklon. Tlakové pole zobrazené na přízemní mapě lze orientačně považovat za absolutní topografii 1 000 hPa. Viz též analýza synoptických map, měření srážek, měření teploty vzduchu, měření tlaku vzduchu, redukce tlaku vzduchu na dohodnutou hladinu, mapa výšková.
česky: mapa přízemní; slov: prízemná mapa; něm: Bodenkarte f; rus: приземная карта  1993-a3
surface front
1. atmosférická fronta dosahující až na zemský povrch a projevující se tam ostrými změnami meteorologických prvků. Termín se používá jako protějšek fronty výškové;
2. atm. fronta nevelkého vert. rozsahu, obvykle do výšky 1 km až 3 km nad zemským povrchem. Viz též klasifikace atmosférických front.
česky: fronta přízemní; slov: prízemný front; něm: Bodenfront f; fr: front au sol m; rus: приземный фронт  1993-a1
surface inversion
teplotní inverze začínající bezprostředně od zemského povrchu. Z hlediska příčin svého vzniku patří zpravidla k radiačním, popř. advekčním inverzím teploty vzduchu. Viz též inverze teploty výšková.
česky: inverze teploty vzduchu přízemní; slov: prízemná inverzia teploty vzduchu; něm: Bodeninversion f; rus: приземная инверсия  1993-a2
surface layer model
teor. schémata přízemní vrstvy atmosféry zahrnující určité zjednodušující předpoklady o jejích vlastnostech, zejména o vert. rozložení meteorologických prvků a veličin. Základem jsou funkce popisující závislost bezrozměrných gradientů meteorologických veličin na stabilitě (angl. flux-gradient relationships). Používají se různé empirické tvary univerzálních funkcí, principiálně to mohou být i funkce odvozené z teorie. Integrujeme-li univerzální funkce v gradientovém tvaru podél vertikály, získáme vertikální profily příslušných veličin v závislosti na stabilitě. Ty se používají např. pro parametrizaci přízemní vrstvy atmosféry v numerických modelech.Viz též modely mezní vrstvy atmosféry.
česky: modely přízemní vrstvy atmosféry; slov: model prízemnej vrstvy atmosféry; něm: Modell der bodennahen Grenzschicht n, Modell der Prandtl-Schicht n; rus: модел приземного слоя атмосферы  1993-a3
surface layer of atmosphere
syn. podvrstva atmosféry přízemní, vrstva konstantního toku – nejspodnější část mezní vrstvy atmosféry o tloušťce zpravidla několika desítek m, v níž se dyn. a termodyn. vlivy zemského povrchu projevují zvláště výrazně a závislost vert. toků hybnosti, tepla a vodní páry na výšce lze obvykle zanedbat. Vert. gradienty složek větru, teploty a dalších meteorologických prvků dosahují v této vrstvě zpravidla max. hodnot. Ve starším pojetí se jako přízemní vrstva atmosféry označovala vrstva 1 až 2 km nad zemským povrchem. Viz též modely přízemní vrstvy atmosféry, hranice přízemní vrstvy atmosféry.
česky: vrstva atmosféry přízemní; slov: prízemná vrstva atmosféry; něm: bodennahe Luftschicht f; rus: приземный слой атмосферы, слой постоянного потока  1993-a3
surface meteorological observation
meteorologické pozorování prováděné pozorovatelem ze zemském povrchu bez přístrojů nebo pomocí met. přístrojů, jejichž čidla jsou pevně spojena se zemí. Viz též pozorování aerologické.
česky: pozorování meteorologické přízemní; slov: prízemné meteorologické pozorovanie; něm: bodennahe meteorologische Beobachtung f; rus: наземное метеорологическое наблюдение  1993-a1
surface meteorological station
meteorologická stanice provádějící měření v přízemní vrstvě atmosféry. Teplota a vlhkost vzduchu se měří ve výšce 2 m nad zemí, srážky 1 až 2 m nad zemí, vítr 10 m nad zemí apod. Přízemní met. stanice může být z hlediska umístění meteorologickou stanicí pozemní nebo mořskou.
česky: stanice meteorologická přízemní; slov: prízemná meteorologická stanica; něm: meteorologische Bodenstation f; rus: наземная метеорологическая станция  1993-a3
surface ozone
část troposférického ozonu vyskytující se v přízemní vrstvě atmosféry. Jedná se o sekundární znečišťující látku, která nemá v atmosféře vlastní významný zdroj. Vzniká v důsledku řady komplikovaných fotochemických reakcí z prekurzorů, kterými jsou především NOx a VOC z přirozených i antropogenních zdrojů. Ve zvýšených koncentracích se vytváří za slunných letních dnů. Jde o tzv. letní znečišťující příměs s maximálními koncentracemi vyskytujícími se v období duben až září. Prostorové rozložení přízemního ozonu je velmi rozdílné v závislosti na umístění emisních zdrojů a na meteorologických podmínkách. Je indikátorem fotochemického neboli oxidačního smogu. Vzhledem ke svým silným oxidačním schopnostem je ozon toxický a má negativní vliv na biosféru.
Referenční metodou pro měření koncentrací přízemního ozonu je UV–absorbance. Imisní limit pro ochranu lidského zdraví je stanoven jako denní maximum klouzavého osmihodinového průměru koncentrace 120 µg.m–3, tolerovaný počet překročení je ve 25 dnech v průměru za 3 roky. Cílový imisní limit pro ochranu vegetace a ekosystémů je stanoven na základě expozičního indexu AOT40 a je roven 18 000 µg.m–3.h v průměru za 5 let.
česky: ozon přízemní; slov: prízemný ozón; něm: bodennahes Ozon n; rus: приземный озон  2014
surface plotting model
konvenčně uspořádaný zákres meteorologických prvků na synoptické mapě kolem staničního kroužku. Podle charakteru a měřítka synoptické mapy se používají různé typy staničních modelů. U některých met. prvků se ve staničním modelu zakresluje jen jejich výskyt pomocí symbolů, např. druh oblaků a meteorů, u jiných se do mapy vyznačuje jejich hodnota číselně nebo graficky. Staniční model se někdy slang. označuje jako „pavouk“. Viz též šipka větru.
česky: model staniční; slov: staničný model; něm: Stationsmodell n; rus: модель станции  1993-a2
surface roughness
charakteristika nerovností aktivního povrchu, vystupujících jako činitel brzdící proudění vzduchu v přízemní vrstvě atmosféry. Kvantit. je určována parametrem drsnosti z0. Někdy se tento parametr uvádí jako drsnost malých měřítek, která je v přízemní vrstvě vyvolána rostlinným porostem, nerovnostmi půdy, malými objekty apod. Drsnost velkých měřítek v mezní vrstvě atmosféry, pro kterou se zavádějí jiné kvantit. charakteristiky, je způsobována vert. členitým terénem, velkými objekty aj. Viz též stáčení větru v mezní vrstvě atmosféry.
česky: drsnost povrchu; slov: drsnosť povrchu; něm: Oberflächenrauigkeit f, Rauigkeit der Oberfläche f; fr: rugosité de surface f, rugosité surfacique f; rus: шероховатость подстилающей поверхности  1993-a1
surface sublayer of atmosphere
česky: podvrstva atmosféry přízemní; slov: prízemná podvrstva atmosféry; rus: приземный слой воздуха  2019
surface sublayer of atmosphere
syn. podvrstva atmosféry přízemní, vrstva konstantního toku – nejspodnější část mezní vrstvy atmosféry o tloušťce zpravidla několika desítek m, v níž se dyn. a termodyn. vlivy zemského povrchu projevují zvláště výrazně a závislost vert. toků hybnosti, tepla a vodní páry na výšce lze obvykle zanedbat. Vert. gradienty složek větru, teploty a dalších meteorologických prvků dosahují v této vrstvě zpravidla max. hodnot. Ve starším pojetí se jako přízemní vrstva atmosféry označovala vrstva 1 až 2 km nad zemským povrchem. Viz též modely přízemní vrstvy atmosféry, hranice přízemní vrstvy atmosféry.
česky: vrstva atmosféry přízemní; slov: prízemná vrstva atmosféry; něm: bodennahe Luftschicht f; rus: приземный слой атмосферы, слой постоянного потока  1993-a3
surface synoptic station
pozemní nebo mořská meteorologická stanice, na níž se v synoptických termínech konají synoptická pozorování. Synoptické stanice měří nebo pozorují teplotu, vlhkost a tlak vzduchu, tlakovou tendenci, dohlednost , směr a rychlost větru, stav a průběh počasí, množství srážek, množství a druh oblačnosti, výšku základen oblačnosti a extrémy teploty. Přízemní synoptické stanice na pevnině udávají také trvání slunečního svitu, stav půdy, výšku sněhové pokrývky a speciální jevy. Mořské přízemní synoptické stanice uvádějí rovněž teplotu moře, směr pohybu vln, periodu vlnění, výšku vln, námrazu a led na moři, meteorologické stanice na pohybující se lodi také kurz a rychlost lodi. Zprávy jsou předávány v kódech SYNOP, SHIP nebo BUFR.
česky: stanice synoptická přízemní; slov: prízemná synoptická stanica; něm: synoptische Bodenstation f; rus: наземная синоптическая станция  1993-a3
surface temperature
syn. teplota přízemní – 
1. teplota vzduchu měřená ve výšce 5 cm nad zemí nebo nad povrchem sněhové pokrývky.
2. v aerologii teplota vzduchu ve výšce 2 m nad zemí, na rozdíl od teploty vzduchu měřené aerol. prostředky v mezní vrstvě atmosféry a ve volné atmosféře.
česky: teplota vzduchu přízemní; slov: prízemná teplota vzduchu; něm: bodennahe Lufttemperatur f; rus: температура воздуха у земной поверхности  1993-a3
surface wind
v meteorologii vítr měřený na met. stanici v dohodnuté výšce nad zemským povrchem, obvykle ve výšce 10 m (v letectví v souladu s předpisem L3–Meteorologie standardně ve výšce 10±1 m), v níž je rušivý vliv místních překážek a terénu na proudění již výrazně menší než v těsné blízkosti povrchu. Měření přízemního větru by mělo být prováděno na otevřeném prostranství v místě bez vlivu okolních překážek. Za minimální vzdálenost od překážek se považuje desetinásobek jejich výšky, doporučuje se však větší vzdálenost, zejména od překážek z převládajících směrů větru.
česky: vítr přízemní; slov: prízemný vietor; něm: Bodenwind m; rus: ветер у земли, приземный ветер  1993-a3
suspended particles
1. obecně pevné a kapalné částice rozptýlené a volně se vznášející v plynném prostředí,  popř. pevné částice v kapalném prostředí. V případě atmosféry označujeme tuto suspenzi jako atmosférický aerosol.
2. dnes již neaktuální označení pro aerosolové částice v legislativě týkající se ochrany čistoty ovzduší. Starší legislativa stanovovala imisní limit pro celkovou koncentraci suspendovaných částic (TSP). Metody odběru vysokoobjemovými vzorkovači neměly jasně danou horní mez aerodynamického průměru zachytávaných částic. Literatura uvádí tuto horní mez v rozmezí 20–50 µm (USA), resp. 50–100 µm (Evropa). Stávající česká legislativa (zákon č. 201/2012 Sb. o ochraně ovzduší) již s pojmem suspendované částice nepracuje a hovoří pouze o částicích PM10 a PM2,5.
česky: částice suspendované; slov: suspendovaná častica  2015
suspended particulate matter (SPM)
1. obecně pevné a kapalné částice rozptýlené a volně se vznášející v plynném prostředí,  popř. pevné částice v kapalném prostředí. V případě atmosféry označujeme tuto suspenzi jako atmosférický aerosol.
2. dnes již neaktuální označení pro aerosolové částice v legislativě týkající se ochrany čistoty ovzduší. Starší legislativa stanovovala imisní limit pro celkovou koncentraci suspendovaných částic (TSP). Metody odběru vysokoobjemovými vzorkovači neměly jasně danou horní mez aerodynamického průměru zachytávaných částic. Literatura uvádí tuto horní mez v rozmezí 20–50 µm (USA), resp. 50–100 µm (Evropa). Stávající česká legislativa (zákon č. 201/2012 Sb. o ochraně ovzduší) již s pojmem suspendované částice nepracuje a hovoří pouze o částicích PM10 a PM2,5.
česky: částice suspendované; slov: suspendovaná častica  2015
sustained wind speed
rychlost větru stanovená jako průměrná velikosti vektoru větru za stanovený časový úsek. Podle doporučení WMO se určuje desetiminutová rychlost větru, např. v USA se používá rychlost větru minutová, v letecké meteorologii též dvouminutová.
česky: rychlost větru n-minutová  2021
Sutcliffe development theory
kvantitativní vyjádření vývoje tlakového pole v atmosféře publikované v roce 1947 R. C. Sutcliffem. Tato teorie vychází z aplikace rovnice vorticity ve dvou hladinách atmosféry, např. v izobarických hladinách 1 000 hPa a 500 hPa. Sutcliffeova vývojová teorie je jedním z významných mezníků v rozvoji dynamické meteorologie.
česky: teorie vývojová Sutcliffeova; slov: Sutcliffeova vývojová teória; něm: Entwicklungstheorie nach Sutcliffe f; rus: теория развития Сатклифа  1993-a1
Sutton model
klasický model rozptylu používaný v minulosti při numerických odhadech koncentrací znečišťujících látek v okolí bodových kontinuálních zdrojů znečišťování ovzduší, zpravidla vysokých komínů. Model byl publikován koncem 40. let 20. století. Je založen na těchto zjednodušujících předpokladech:
a) proudění je horizontální a prostorově konstantní;
b) počátek souřadnicového systému klademe na zemský povrch do paty uvažovaného komínu a kladný směr souřadnicové osy x ztotožňujeme se směrem proudění;
c) ve směru osy x je daná příměs přenášena prouděním, zatímco ve směrech os y a z difunduje působením turbulence;
d) rozložení koncentrace znečišťujících příměsí v rovinách kolmých na osu x je popsáno dvourozměrným normálním rozložením s maximem koncentrace v ose kouřové vlečky a se směrodatnými odchylkami σy, popř. σz (ve směrech osy y, popř. z), pro něž se též používá označení koeficient laterální disperze, popř. koeficient vertikální disperze;
e) neuvažujeme sedimentaci příměsi na zemském povrchu, její vymývání a zanikání chem. reakcemi.
Viz též model rozptylový gaussovský.
česky: model Suttonův; slov: Suttonov model; něm: Suttonsches Modell n; rus: модель Саттона  1993-a2
SWEAT index
index stability, který je definován jako
SWEAT=20( TT-49)+12T D850+2V850+V500 +125[ sin(ΔV500-850 )+0,2 ],
kde TT je index Total Totals, TD850 je teplota rosného bodu v hladině 850 hPa, V850 resp. V500 jsou rychlosti větru v uzlech v hladinách 850 hPa resp. 500 hPa, a ΔV500–850 je rozdíl hodnot směru větru v hladinách 850 a 500 hPa. Pokud je hodnota indexu TT nižší než 49, je první člen definován jako nulový a pokud je teplota rosného bodu v hladině 850 hPa záporná, je druhý člen definován jako nulový. Poslední člen je definován jako nulový, pokud nejsou splněny všechny tyto podmínky:
1) směr větru v hladině 850 hPa je v rozmezí 130–250°,
2) směr větru v hladině 500 hPa je v rozmezí 210–310°,
3) rozdíl směrů větrů v pátém členu je kladný,
4) rychlost větru v hladině 850 hPa nebo 500 hPa se rovná nebo přesahuje 15 uzlů.
Žádný člen rovnice pak není záporný. Hodnoty indexu SWEAT nad 300 značí možnost výskytu silných konvektivních bouří.
česky: index SWEAT; slov: index SWEAT; rus: индекс угрозы суровой погоды - SWEAT индекс  2014
swinging plate anemometer
anemometr, jehož čidlem je lehká deska, orientovaná kolmo na směr proudění a jejíž výchylka od svislice je úměrná rychlosti větru. Má nelineární stupnici. V současné meteorologické praxi není tento princip používán. Viz též anemometr Wildův.
česky: anemometr s výkyvnou deskou; slov: anemometer s doskou; něm: Druckplattenanemometer n; fr: anémomètre à plaque m; rus: анемометр с пластинкой, флюгер Вильда  1993-a3
symbolic letter
písmeno nebo skupina písmen, které ve tvaru kódu reprezentují jednotlivé met. veličiny.
česky: písmeno symbolické; slov: písmeno symbolické  2014
symmetric instability
druh baroklinní instability, kdy uvažujeme symetrické pole proudění, v němž horizontální střih větru ve směru proudění je nulový. Symetrická instabilita může zesilovat vychýlení vzduchové částice z rovnovážné polohy i v případě absence jak vertikální instability atmosféry, tak inerční instability uplatňující se v horiz. směru. Nutnou podmínkou je větší sklon izentropických ploch S k horiz. rovině než ploch konstantní měrné hybnosti geostrofického větruabsolutní souřadnicové soustavě mg. K uvolnění symetrické instability dojde při vychýlení vzduchové částice šikmo mezi plochy mg a S. Tento děj bývá označován jako šikmá konvekce. Může hrát důležitou roli při vzniku srážkových pásů v blízkosti atmosférických front. Význam symetrické instability při tvorbě srážek v mírných zeměpisných šířkách narůstá v chladné polovině roku.
Další alternativní nutné podmínky pro symetrickou instabilitu, které se obvykle uvádějí v literatuře, jsou hodnota Richardsonova čísla menší než jedna nebo hodnota potenciální vorticity menší než nula (platí pro severní polokouli).
česky: instabilita symetrická; slov: symetrická instabilita; něm: symmetrische Instabilität f, dynamische Instabilit; rus: симметричная неустойчивость  2014
synergism of air pollution
česky: synergismus znečištění ovzduší; slov: synergizmus znečistenia ovzdušia; něm: Synergie der Luftverschmutzung f  1993-a1
SYNOP
Termín vznikl zkrácením slova synoptický.
česky: SYNOP; slov: SYNOP; něm: SYNOP  2014
synoptic analysis
detailní studium stavu atmosféry, vyjádřeného rozložením tlaku vzduchu, vzduchových hmot, atmosférických front a povětrnostních podmínek v určité oblasti na synoptických mapách. Viz též analýza synoptických map.
česky: analýza synoptická; slov: synoptická analýza; něm: synoptische Analyse f; fr: analyse synoptique f; rus: синоптический анализ  1993-a2
synoptic chart
syn. mapa povětrnostní – meteorologická mapa, na které se zaznamenávají pomocí čís. hodnot, šifer nebo symbolů výsledky pozorování synoptických nebo aerologických stanic z téhož synoptického termínu. Synoptické mapy se zpravidla dělí na mapy přízemní a výškové a na hlavní a pomocné. Mívají měřítko od 1:2,5 mil. do 1:30 mil.a z kartografických zobrazení se používá především kuželové a azimutální. Synoptické mapy, které se v předpovědních centrech sestavují a analyzují několikrát denně, jsou základem rozboru počasí a pomocným nástrojem při předpovědi počasí. První synoptickou mapu publikoval něm. meteorolog H. W. Brandes (1826) na základě historického materiálu z r. 1783. Teprve vynález telegrafu a jeho využití v meteorologii v polovině 19. století umožnily kreslení synoptických map z údajů meteorologického pozorování z téhož dne. Termín synoptická mapa poprvé použil angl. meteorolog R. Fitz Roy koncem 50. let 19. století. Viz též kreslení povětrnostních mapanalýza synoptických map, metoda synoptická, meteorologie synoptická.
česky: mapa synoptická; slov: synoptická mapa; něm: Wetterkarte f; rus: синоптическая карта  1993-a3
synoptic chart analysis
operace, které se provádějí na synoptických mapách. Na přízemních mapách představuje obvykle konstrukci izobar a izalobar, zakreslení atmosférických front, ohraničení oblastí srážek, popřípadě dalších význačných jevů, jako jsou bouřky, mlhy, húlavy atd. Na výškových mapách spočívá analýza synoptických map v konstrukci izohyps absolutní či relativní topografie a izoterem příslušné izobarické hladiny, popřípadě izotach. Na mapách tzv. doplňujících charakteristik (mapy doby slunečního svitu, množství srážek, nočních minimálních teplot, denních maximálních teplot apod.) se konstruují izolinie příslušných prvků. Účelem analýzy synoptických map je co nejpřesnější zjištění a zobrazení fyz. stavu atmosféry a podmínek počasí pro diagnostické a prognostické účely. Viz též analýza frontální, analýza počasí, analýza synoptická, analýza tlakového pole, kreslení povětrnostních map.
česky: analýza synoptických map; slov: analýza synoptických máp; něm: Wetterkartenanalyse f; fr: analyse des cartes de surface / des cartes isobariques/météorologiques f; rus: анализ синоптической карты  1993-a2
synoptic climatology
část dynamické klimatologie zabývající se cirkulačními podmínkami geneze klimatu. Klima se vysvětluje zejména četnostmi synoptických typů a jejich povětrnostními projevy v daných oblastech. Základem synopticko-klimatologického zpracování jsou typizace povětrnostních situací. Vypočítané klimatické charakteristiky typů povětrnostních situací se také využívají v předpovědní praxi.
česky: klimatologie synoptická; slov: synoptická klimatológia; něm: synoptische Klimatologie f; rus: синоптическая климатология  1993-a1
synoptic hour
jednotná doba pozorování na synoptických stanicích stanovená podle světového času (UTC) s cílem, aby pozorování na celé Zemi byla konána současně. Synoptické termíny se dělí na hlavní, tj. 00, 06, 12 a 18 UTC, vedlejší, tj. 03, 09, 15 a 21 UTC a hodinové, tj. 01, 02, 04, 05, 07, 08, 10, 11, 13, 14, 16, 17, 19, 20, 22 a 23 UTC. Na aerologických stanicích jsou hlavní termíny 00 a 12 UTC, vedlejší termíny 06 a 18 UTC. Na základě pozorování v synoptických termínech se sestavují příslušné meteorologické zprávy a zpracovávají povětrnostní mapy.
česky: termín synoptický; slov: synoptický termín; něm: synoptischer Termin m; rus: синоптический срок  1993-a3
synoptic meteorology
obor meteorologie, jenž studuje atm. děje synoptického měřítka, které jsou synchronně pozorovány na zvoleném území a sledovány především pomocí synoptických map. Jejím hlavním cílem je analýza a předpověď počasí. I když synop. (povětrnostní) mapy umožňují sledovat vznik, vývoj a přemísťování cyklon a anticyklon, vzduchových hmot a atmosférických front především plošně, systém synop. map z různých izobarických hladin spolu s aerologickými diagramy a vertikálními řezy atmosférou a informacemi z met. radarů a družic umožňují studovat atm. jevy a děje prostorově. Vznik synoptické meteorologie souvisel s využitím telegrafu pro rychlou výměnu zpráv o počasí v polovině 19. století, kdy se začaly poprvé sestavovat povětrnostní mapy z širších oblastí na základě aktuálních informací. V souvislosti s numerickými předpověďmi počasí došlo ke značnému sblížení synoptické meteorologie a dynamické meteorologie. Viz též metoda synoptická, škola meteorologická norská, škola meteorologická chicagská.
česky: meteorologie synoptická; slov: synoptická meteorológia; něm: synoptische Meteorologie f; rus: синоптическая метеорология  1993-a3
synoptic method
metoda rozboru a předpovědi atm. procesů a jimi podmíněného počasív určitém prostoru (oblasti) pomocí synoptických map a jiných pomocných materiálů. Kvalit. stupni ve vývoji metody synoptické byly izobarická metoda, metoda izalobar a frontologická metoda. Metodu synoptickou poprvé použil – ještě bez označení termínu „synoptická“ – při studiu povětrnostních dějů většího měřítka něm. meteorolog H. W. Brandes v letech 1816-1820. V souvislosti s nástupem numerické předpovědi počasí ustoupila do pozadí a má dnes jen význam doplňkový. Viz též meteorologie synoptická izobarická, analýza frontální, analýza synoptická.
česky: metoda synoptická; slov: synoptická metóda; něm: synoptische Methode f; rus: синоптический метод  1993-a2
synoptic observation
meteorologické pozorování prováděné v synoptických termínech v síti meteorologických stanic na pevninách i mořích. Údaje získané těmito pozorováními se v zakódované formě přenášejí v rámci Globálního telekomunikačního systému do meteorologických center. Podle termínu pozorování se rozlišuje hlavní a vedlejší synoptické pozorování. Některé met. stanice konají měření i v hodinových synoptických termínech. Viz též zpráva o přízemních meteorologických pozorováních z pozemní stanice (SYNOP).
česky: pozorování synoptické; slov: synoptické pozorovanie; něm: synoptische Beobachtung f; rus: синоптическое наблюдение  1993-a3
synoptic observation at intermediate standard times
česky: pozorování synoptické vedlejší; slov: vedľajšie synoptické pozorovanie; něm: synoptische Beobachtung zu Zwischenterminen; rus: синоптическое наблюдение в промежуточный срок  1993-a3
synoptic observation at main standard times
česky: pozorování synoptické hlavní; slov: hlavné synoptické pozorovanie; něm: synoptische Beobachtung zu Hauptterminen; rus: синоптическое наблюдение в основной срок  1993-a1
synoptic report
meteorologická zpráva o výsledcích met. měření a pozorování v synoptických termínech pozorování a kódovaná podle mezinárodního kódu.
česky: zpráva synoptická; slov: synoptická správa; něm: synoptische Meldung; rus: синоптическая сводка  1993-a3
synoptic scale
charakteristické horizontální měřítko velkoprostorových atm. jevů, které jsou vizualizací procesů studovaných na synoptických mapách. Obvykle hovoříme o synoptických jevech či procesech. Horiz. rozměr synoptických jevů činí řádově 102 až 103 km, což odpovídá rozměrům tlakových útvarů, tj. cyklon, anticyklon, brázd nízkého tlaku vzduchu, hřebenů vysokého tlaku vzduchu apod., dále oblastí výskytu jednotlivých vzduchových hmot, hlavních atmosférických front apod. Viz též měřítko mezosynoptické, měřítko subsynoptické, klasifikace meteorologických procesů podle Orlanskiho.
česky: měřítko synoptické; slov: synoptická mierka; něm: synoptische Skala f; rus: синоптический масштаб  1993-a3
synoptic situation
česky: situace synoptická; slov: synoptická situácia; něm: synoptische Situation f; rus: синоптическая ситуация  1993-a1
synoptic situation catalogue
zákl. dokument o typizaci povětrnostních situací. Kromě zásad a metodiky typizace obsahuje podrobný popis jednotlivých synoptických typů, zvláště jejich cirkulační charakteristiku, údaje o jejich výskytu a trvání, průběh počasí v jednotlivých typech apod. Součástí katalogu povětrnostních situací jsou přízemní a výškové synoptické mapy, popř. schematické kinematické mapy ze dnů s typickou situací. Doplňkem katalogu povětrnostních situací bývá kalendář povětrnostních situací. Ve stř. Evropě je nejrozšířenější Katalog der Großwetterlagen Europas, jehož autory jsou P. Hess a H. Brezowsky (1952), v ČR Katalog povětrnostních situací pro území ČSSR (HMÚ, 1968). V polovině 90. let došlo k rozšíření českého katalogu o pět dalších situací a díky tomu jsou nyní u nás typizovány všechny dny.
česky: katalog povětrnostních situací; slov: katalóg poveternostných situácií; něm: Katalog der Grosswetterlagen m; rus: каталог синоптических положений  1993-a2
synoptic situations calendar
přehled o výskytu povětrnostních situací v dané oblasti za určité období. Pro jednotlivé dny jsou uvedeny zkratkami, popř. značkami synoptické typy stanovené na základě určité typizace povětrnostních situací, záznamy o přestavbě povětrnostních situací apod. Některé typizace neuvádějí povětrnostní situace ve dnech, v nichž je situace nevyhraněná. Nejdelší kalendář povětrnostních situací, používaný ve stř. Evropě, vychází z typizace povětrnostních situací Evropy P. Hessa a H. Brezowského; začíná r. 1881 a je průběžně doplňován a publikován. V ČR je vypracován kalendář povětrnostních situací pracovníky předpovědní služby podle typizace povětrnostních situací HMÚ, počínaje r. 1946. V letech 1946–1990 byl sestavován jednotný kalendář pro celé území tehdejšího Československa, od roku 1991 je sestavován po vzájemné konzultaci meteorologů z ČHMÚ a SHMÚ zvlášť pro území České republiky a zvlášť pro území Slovenské republiky a každoročně je doplňován a publikován na webu ČHMÚ. Druhý československý kalendář povětrnostních situací, zpracovaný podle typizace povětrnostních situací M. Končeka a F. Reina, byl publikován za období 1950–1971. Viz též katalog povětrnostních situací.
česky: kalendář povětrnostních situací; slov: kalendár poveternostných situácií; něm: Kalender der Grosswetterlagen m; rus: календарь синоптических положений (ситуаций)  1993-a3
synoptic station
zkrácené označení přízemní synoptické stanice. Podle terminologie Světové meteorologické organizace do sítě synoptických stanic patří nejen přízemní synoptické stanice, ale i stanice aerologické.
česky: stanice synoptická; slov: synoptická stanica; něm: synoptische Station f; rus: синоптическая станция  1993-a3
synoptic type
typ celkové povětrnostní situace, využívaný při synopticko–klimatologických studiích a v předpovědní službě. Vyjadřuje generalizované rozložení tlaku vzduchu, vzduchových hmot a proudění vzduchu v konkrétní geogr. oblasti, které podmiňuje charakteristické počasí v závislosti na roč. době. Klasifikace synoptického typu se provádí podle cíle, kterému má sloužit, podle polohy a velikosti sledovaného území, délky zpracovávaného období apod. Viz též typizace povětrnostních situací.
česky: typ synoptický; slov: synoptický typ; něm: synoptische Lage f; rus: синоптический тип  1993-a1
synoptic weather forecast
předpověď budoucího rozložení tlaku vzduchu, vzduchových hmotatmosférických front a meteorologických prvků prováděná synoptickou metodou. Synoptická předpověď počasí využívala především poznatků tzv. norské meteorologické školy. Tato metoda předpovědi závisela též na osobní zkušenosti, popř. intuici svého tvůrce (synoptika) a v tomto smyslu je jejím protějškem předpověď objektivní. V současné době je v praxi nahrazena numerickou předpovědí počasí. Viz též meteorologie synoptická.
česky: předpověď počasí synoptická; slov: synoptická predpoveď počasia; něm: synoptische Wettervorhersage f; rus: синоптический прогноз погоды  2014
synoptics
slang. označení pro synoptickou meteorologii.
Termín synoptický pochází z řec. συνοπτικός [synoptikos] „mající ucelený pohled“, odvozeného od σύνοψις [synopsis] „ucelený pohled“ (ze σύν [syn] „s, společně“ a ὄψις [opsis] „pohled, vidění; zrak“, srov. optika).
česky: synoptika; slov: synoptika; něm: Synoptik f; rus: синоптика  1993-a1
System International
mezinárodně dohodnutá soustava jednotek fyzikálních veličin, která se skládá ze základních jednotek, odvozených jednotek a násobků a dílů jednotek. Některé ze sedmi základních jednotek (metr, kilogram, sekunda, kelvin, ampér, kandela, mol) se v meteorologii běžně používají. Odvozené jednotky se tvoří výhradně jako součiny a podíly jednotek základních. S vlastním názvem se v meteorologii používá odvozená jednotka pro tlak vzduchu (pascal) a teplotu (stupeň Celsia), bez vlastního názvu např. m.s–1 pro rychlost, kg.m–3 pro hustotu apod. Násobky a díly (výhradně dekadické) se tvoří pomocí předpon před jednotkami. Stále se používají tzv. vedlejší jednotky, které byly dříve pro svou všeobecnou rozšířenost a užitečnost řazeny do soustavy SI, přestože nebyly odvozeny ze základních jednotek. Soustava SI akceptuje používat souběžně s jednotkami SI tyto vedlejší jednotky: minuta, hodina, den, úhlový stupeň, úhlová minuta, (úhlová) vteřina, hektar, litr a tuna.
česky: soustava SI; slov: sústava SI; něm: internationales Einheitensystem n, SI n; rus: международные единицы измерения СИ  2014
system of coordinates
česky: systém souřadnicový; slov: súradnicová sústava; něm: Koordinatensystem n; rus: относительная система  2024
σ coordinate system
česky: soustava souřadnicová σ; slov: súradnicová sústava σ; něm: sigma-Koordinaten f/pl  1993-a1
podpořila:
spolupracují: