Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene s

X
abgeschlossenes Systém n
systém, mezi nímž a okolím neprobíhá žádná výměna hmoty.
česky: systém uzavřený angl: closed system slov: uzavrený systém  2018
Auftriebskraft f
v dynamické meteorologii  označení pro vertikálně orientovanou sílu, která působí na vzduchovou částici proti směru síly zemské tíže. Za předpokladu hydrostatické rovnováhy je tato síla dána Archimédovým zákonem a je totožná s vertikální složkou síly tlakového gradientu. V tomto případě se obvykle používá přesnější označení hydrostatická (aerostatická) vztlaková síla. Viz též vztlak.
česky: síla vztlaková angl: buoyant force slov: sila vztlaková  2019
Drift der Radiosonde f
horizontální vzdálenost radiosondy od radiosondážní stanice v okamžiku měření. V kódu BUFR je poloha sondy v každé hladině dána uvedením rozdílu mezi zeměp. šířkou, resp. zeměp. délkou radiosondy a zeměp. šířkou, resp. zeměp. délkou místa, odkud byla sonda vypuštěna.
česky: snos radiosondy angl: radiosonde drift rus: снос радиозонда slov: znos rádiosondy  2018
Flugzeugwetterstation f
1. meteorologická stanice, která provádí letadlové meteorologické měření během letu letadla. Měří teplotu a vlhkost vzduchu, směr a rychlost větru, turbulenci a námrazu. Každé měření je doplněno údajem o čase, poloze a fázi letu. Výsledky měření jsou automaticky zpracovávány a v kódech AMDAR nebo BUFR předávány do příslušných met. center. Viz též sondáž ovzduší letadlová, pozorování meteorologické z letadel během letu.
2. letoun, výjimečně kluzák nebo vrtulník (případně meteodron) upravený speciálně pro letadlový průzkum počasí. Kromě met. měření a pozorování meteorologických prvků a jevů může být vybavený pro vypouštění klesavých radiosond nebo pro jiná speciální měření. Tento typ letadlové meteorologické stanice provádí vert. nebo horiz. letadlovou sondáž ovzduší lokálního charakteru.
česky: stanice meteorologická letadlová angl: aircraft meteorological station slov: lietadlová meteorologická stanica rus: самолетная метеорологическая станция, самолетная метеорологическая станция  1993-b3
isoliertes Systém n
systém, mezi nímž a okolím neprobíhá žádná výměna hmoty.
česky: systém uzavřený angl: closed system slov: uzavrený systém  2018
LA-Smog m
česky: smog losangeleský angl: Los Angeles smog slov: losangeleský smog 
London smog m
česky: smog londýnský angl: London smog slov: londýnsky smog 
London smog m
smog ve formě směsi kouře a mlhy. Vzniká v důsledku spalování uhlí s vysokým obsahem SO2, který smogu dodává redukční charakter. Typicky se vyskytuje v chladném půlroce, proto bývá též nazýván zimní. Jiné jeho označení jako tzv. londýnský smog odkazuje na časté smogové situace, které ještě v 50. letech 20. století postihovaly obzvlášť silně Londýn. Po katastrofální epizodě v prosinci 1952 zde byla přijata legislativní opatření k zeslabení této hrozby. Redukční smog zůstává vážným problémem v jiných zemích, např. v Číně.
česky: smog redukční angl: London smog, sulfurous smog slov: redukčný smog 
Ozon-Smog m
česky: smog losangeleský angl: Los Angeles smog slov: losangeleský smog 
photochemischer Smog m
syn. smog fotochemický – smog ve smyslu směsi vysoce reaktivních látek oxidačního charakteru typicky obsahující ozon a různé peroxyradikály vznikající fotochemicky (tj. za nutné účasti dostatečně intenzivního slunečního záření) z VOC. Pro vznik tohoto druhu smogu je nutná přítomnost dvou skupin tzv. prekurzorů, tzn. oxidů dusíku a VOC. Indikátorem oxidačního smogu je přízemní ozon, a zejména jeho zvýšené koncentrace. Na rozdíl od redukčního smogu není spojen s výskytem mlhy. Vzniká za teplého, slunečného počasí, proto bývá označován i jako letní smog. Poprvé byl popsán v kalifornském Los Angeles v 50. letech 20. století v souvislosti se silným znečištěním z automobilové dopravy, proto bývá méně vhodně označován jako losangeleský nebo kalifornský. Má významné negativní dopady na zdraví i vegetaci a ekosystémy. Viz též PANs.
česky: smog oxidační slov: fotochemický smog angl: photochemical smog  2014
Saffir-Simpson-Hurrikan-Skala f
nejrozšířenější stupnice k vyjádření síly větru v hurikánu, případně v jiné plně vyvinuté tropické cykloně, navržená H. S. Saffirem (1973) a R. H. Simpsonem (1974). Kritériem pro zařazení do jedné z pěti kategorií je maximální naměřený minutový průměr rychlosti větru při zemském povrchu. Od kategorie 3 mluvíme o silném hurikánu. Stupnice slouží k odhadu potenciálně způsobených škod. Dříve uváděné údaje o minimu tlaku vzduchu a výšce bouřlivého vzdutí pro jednotlivé kategorie byly vypuštěny, protože jejich hodnoty se v jednotlivých případech mohou od uváděného rozpětí podstatně lišit.
Kategorie Max. rychlost větru Způsobené škody
1 33–42 m.s–1 velmi malé
2 43–49 m.s–1 střední
3 50–58 m.s–1 rozsáhlé
4 59–69 m.s–1 mimořádné
5 70 m.s–1 a více katastrofální
česky: stupnice Saffirova–Simpsonova slov: Saffirova–Simpsonova stupnica angl: Saffir–Simpson Hurricane Wind Scale  2014
Saison f
syn. období roční – fáze roku podmíněná sezonalitou klimatu. Astronomické vymezení sezon je dáno okamžiky rovnodenností a slunovratů. Klimatické sezony jsou vymezovány s ohledem na průběh klimatických prvků: ve vyšších zeměpisných šířkách se podle teplotních poměrů vymezuje jaro, léto, podzim a zima, případně chladné a teplé pololetí; v tropických oblastech se případné sezony liší především množstvím srážek (období sucha, období dešťů). Fenologické sezony odpovídají etapám vývoje flóry a fauny během roku, přičemž jsou odděleny významnými fenologickými fázemi.
česky: sezona angl: season slov: sezóna rus: сезон  2014
saisonale Antizyklone
anticyklona, která se vyskytuje nad danou oblastí jen v některé sezoně. Nejtypičtějším příkladem sezonních anticyklon jsou kontinentální anticyklony, které mají charakter studených anticyklon. Z nich sibiřská anticyklona je horiz. velmi rozsáhlá a někdy zasahuje až nad vých. a stř. Evropu. Kanadská anticyklona je méně pravidelným útvarem a často se rozpadává na několik menších anticyklon. V letním období se na místě sezonních anticyklon mohou vyskytovat oblasti nižšího tlaku vzduchu.
česky: anticyklona sezonní angl: seasonal anticyclone slov: sezónna anticyklóna rus: сезонный антициклон  1993-a2
saisonale Zyklone f
česky: cyklona sezonní slov: sezónna cyklóna rus: сезонный циклон fr: dépression de mousson f  1993-a1
Saisonalität des Klimas f
charakteristická vlastnost většiny klimatických oblastí na Zemi, podmíněná změnami bilance záření během kalendářního roku a projevující se periodickým střídáním klimatických sezon. Projevuje se ročním chodem meteorologických prvků, přičemž mírou sezonality klimatu je jejich prům. roční amplituda. Pro tropy je rozhodující srážkový režim, v mimotropických oblastech dominuje vliv ročního chodu teploty vzduchu. Sezonalita klimatu zde roste se zeměpisnou šířkou a s kontinentalitou klimatu.
česky: sezonalita klimatu angl: climatic seasonality, seasonality of climate slov: sezonalita klímy  2014
Samum m
syn. hakím – oblastní název pro silný a horký pouštní vítr (zpravidla záp. směru). Vyskytuje se v sev. Africe, v Palestině, Jordánsku, Sýrii a na Arabském poloostrově. Teplota vzduchu při samumu dosahuje až 55 °C a relativní vlhkost vzduchu klesá i pod 10 %. Jeho náhlý výskyt může vyvolat zdravotní potíže i úmrtí, neboť lidský organismus se nestačí vysoké teplotě tak rychle přizpůsobit. Maximum výskytu samumu připadá na jaro a časné léto. Název samum znamená arabsky „jedovatý vítr“.
česky: samum angl: simm, simoom slov: sámum rus: самум  1993-a1
Sandsturm m
velké množství písku vyzdviženého do vzduchu silným větrem. Písečné bouře jsou typické pro oblasti s aridním klimatem a dostatkem nezpevněného materiálu. K jejich rozvoji může přispět přehřátí zemského povrchu, proto se v noci vyskytují méně často. Na rozdíl od prachové bouře bývá písečná bouře vertikálně méně mocná, obvykle dosahuje do výšky méně než 15 metrů. Hrubý písek a případně i štěrk se pohybuje saltací ve vrstvě desítek centimetrů při zemském povrchu, naopak jemný písek může být unášen na značné vzdálenosti, Během písečné bouře je výrazně snížena dohlednost, což vyvolává potíže v dopravě, dále může dojít k zavátí infrastruktury a případné vegetace. Viz též bouře prachová nebo písečná, vítr pouštní.
česky: bouře písečná angl: sandstorm fr: tempête de sable f  1993-a3
Sarma m
místní název větru, který má vlastnosti bóry. Má název podle řeky Sarmy, která se vlévá do Bajkalu a v jejímž ústí je tento vítr pozorován. Sarma vzniká při ústupu cyklony a začínajícím vlivu anticyklony v oblasti záp. od Bajkalského jezera čili na vých. okraji anticyklony s chladným prouděním sev. směrů. V důsledku konfigurace terénu i orientace údolí řeky Sarmy dosahuje rychlost větru až 40 m.s–1. V zimním období dochází pří sarmě k vytváření námrazy na lodích a na ostrově Olchon. Sarma se vyskytuje nejčastěji od října do prosince a její převládající směr je sz.
česky: sarma angl: sarma slov: sarma rus: сарма  1993-a1
Satellitenbild n
soubor digitálních dat naměřený radiometrem meteorologické družice, zpravidla nasnímaný současně ve více spektrálních kanálech, resp. jejich zobrazení formou zpracovaného digitálního snímku. Periodicita družicových snímků je závislá především na konkrétním typu družice, resp. přístroje – u geostacionárních družic je dána technickými parametry radiometru družice, přičemž se pohybuje od desítek sekund do desítek minut, u polárních družic závisí na periodicitě přeletů dané družice nad konkrétní oblastí a šířce pásu snímaného území (periodicita se pohybuje od cca 12 hodin do několika dní). Rozlišení, tzn. rozlišovací schopnost, závisí především na konstrukci radiometru družice a výšce její oběžné dráhy. Pro meteorologické využití je vysoce žádoucí, aby snímek byl k dispozici v co nejkratší době od svého pořízení (nasnímání).
česky: snímek družicový angl: satellite picture slov: družicová snímka rus: снимок со спутника, спутниковый снимок  1993-a3
Satellitenempfangsanlage f
zpravidla se jím rozumí uživatelský systém pro příjem a následné zpracování dat z meteorologické družice, provozovaný koncovým uživatelem (např. meteorologickou službou). Data mohou být přijímána buď přímo z družice, která je naměřila, nebo prostřednictvím telekomunikační družice po jejich předzpracování provozovatelem družice, popř. prostřednictvím Internetu.
česky: systém pro příjem a zpracování dat z meteorologických družic slov: systém pre príjem a spracovanie dát z meteorologických družíc  2014
satellitengestützten Blitzortungen
metoda detekce blesků pomocí přístrojů umístěných na meteorologických družicích. První pokusy o detekci blesků z družic byly realizovány přístroji umístěnými na družicích na nízkých oběžných drahách – předevšímna na družici TRMM (Tropical Rainfall Measuring Mission, vypuštěné v roce 1997) přístrojem Lightning Imaging Sensor. V současnosti (2014) jsou ve vývoji přístroje Geostationary Lightning Mapper (GLM) pro geostacionární družice GOES-R (předpokládaný start v roce 2015) a Lightning Imager (LI) pro Meteosaty třetí generace (MTG) s předpokládaným startem v roce 2018. Jak GLM, tak LI budou nepřetržitě snímat většinu zemského disku, viditelnou z dané družice, výboje blesků budou zaznamenávány v blízkém infračerveném oboru v čáře atomárního kyslíku 774,4 nm. Rozlišení přístroje (přesnost detekce) bude kolem 10 km, data budou poskytována v téměř reálném čase, efektivita detekce bude přibližně 90 % pro noční hodiny, resp. kolem 70 % pro denní hodiny. Vzhledem k povaze detekce (snímání v optickém oboru) tyto přístroje detekují celkovou bleskovou aktivitu, tj. nerozlišují mezi výboji mezi oblakem a zemí a mezioblačnými výboji.
česky: detekce blesků družicová angl: satellite lightning detection slov: družicová detekcia bleskov fr: détection optique des éclairs par satellite f, détection de la foudre par satellite f  2014
satellitengetragenes aktives Radiometer n
obecné označení pro družicové radiometry, které pro pořizování informací využívají zpětně odraženého umělého záření, generovaného přístrojem družice. Do této kategorie lze zahrnout např. družicové lidary, ale rovněž družicové oblačné či srážkové radary. Do jisté míry lze aktivní radiometr považovat za synonymum pro radar.
česky: radiometr družicový aktivní angl: satellite active radiometer slov: aktívny družicový rádiometer  2014
satellitengetragenes passives Radiometer n
obecné označení pro družicové radiometry, které pro pořizování informací využívají přirozené záření – odražené sluneční záření nebo tepelné záření vyzařované zemí, oblačností či plynnými složkami atmosféry.
česky: radiometr družicový pasivní angl: satellite passive radiometer slov: pasívny družicový rádiometer  2014
Satellitenmeteorologie f
specializovaná oblast meteorologie využívající družicová meteorologická měření. Jedná se spíš o charakteristiku způsobu získávání, zpracování a interpretace dat, než o samostatnou meteorologickou disciplínu.
česky: meteorologie družicová angl: satellite meteorology slov: družicová meteorológia rus: спутниковая метеорология  1993-a3
Satellitensondierung f
metoda snímání atmosféry multispektrálními (hyperspektrálními) družicovými radiometry, jejímž cílem je stanovení vertikálních profilů atmosféry – teploty, tlaku, koncentrací některých plynných složek atmosféry (např. vodní páry, ozonu, oxidu uhličitého), směru a rychlosti proudění, aj. Výstupy jsou využívány jako jeden ze vstupních zdrojů dat pro numerické modelování atmosféry, pro operativní monitorování instability atmosféry (v rámci nowcastingu), aj.
česky: sondáž atmosféry družicová angl: satellite sounding slov: družicová sondáž atmosféry rus: зондирование с помощью спутника  2014
Sattelpunkt m
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický angl: col, hyperbolic point, neutral point, saddle point slov: hyperbolický bod rus: гиперболическая точка, точка седловины fr: point-col m, point hyperbolique m, point neutre m, point-selle m  1993-a3
Sättigung f
v atm. podmínkách stav nasycené vodní páry; jde o rovnovážný stav systému vodní pára a kapalná voda, popř. vodní pára a led. Ve stavu nasycení tok molekul vody z povrchu kapalné vody, popř. ledu, do vodní páry odpovídá toku molekul vody z vodní páry do kapalné vody, popř. ledu. Viz též vzduch nasycený, vzduch přesycený, tlak nasycené vodní páry vzhledem k vodě, tlak nasycené vodní páry vzhledem k ledu.
česky: nasycení angl: saturation slov: nasýtenie rus: насыщение  1993-a3
Sättigungsadiabate f
křivka na termodynamickém diagramu, vyjadřující vztah mezi dvěma stavovými proměnnými (zpravidla mezi teplotou a tlakem) při adiabatickém dějinasyceném vzduchu, který může obsahovat i zkondenzovanou vodu v kapalné fázi. Protože rozdíl mezi nasycenou adiabatou a pseudoadiabatou je velmi malý, na termodynamickém diagramu se nasycené adiabaty nezakreslují a pro znázornění adiabatického děje v nasyceném vzduchu se používají pseudoadiabaty. V americké terminologii se nasycená adiabata označuje jako vlhká adiabata.
česky: adiabata nasycená angl: moist adiabat, saturated adiabatic , wet adiabat, wet adiabatic slov: nasýtená adiabata rus: влажная адиабата fr: adiabatique saturée f, adiabatique saturée f, pseudoadiabatique f, isoligne pseudoadiabatique f  1993-a3
Sättigungsdampfdruckkurve f
česky: křivka nasycených par slov: krivka nasýtených pár  2017
Sattigungsdefizit n
charakteristika vlhkosti vzduchu, která vyjadřuje, jaké množství vodní páry je třeba dodat do vzduchu, aby se stal nasyceným při konstantní teplotě. Většinou se definuje jako rozdíl tlaku nasycené vodní páry a skutečného tlaku vodní páry při dané teplotě, tzn. doplněk tlaku páry. Setkáme se však i s vyjádřením sytostního doplňku směšovacího poměru či měrné vlhkosti, který je stanoven při zachování teploty a tlaku vzduchu. Někdy se nesprávně zaměňuje za deficit teploty rosného bodu.
česky: doplněk sytostní angl: saturation deficit slov: sýtostný doplnok rus: дефицит влажности fr: rapport de mélange saturant m  1993-a3
sauerer Regen m
označení pro kapalné padající atm. srážky, které mají v důsledku antropogenního znečišťování ovzduší výrazně zvýšenou kyselost, tj. snížené pH. Kyselý déšť vzniká zejména rozpouštěním oxidů síry a dusíku ve srážkové vodě a představuje značné ekologické nebezpečí, poškozuje půdu a vegetaci, zamořuje povrchové vody, působí škody na architektonických objektech apod. Srážková voda má určitou přirozenou kyselost, způsobenou rozpuštěným oxidem uhličitým a dosahující hodnot pH 5,6 až 6,0, zatímco u kyselého deště může být pH sníženo až na hodnoty 3 až 4, v extrémních případech i menší. Termín kyselý déšť poprvé použil angl. chemik R. A. Smith, když ve 2. polovině 19. století popisoval znečištění ovzduší v Manchesteru. Viz též složení srážek chemické, chemie atmosféry.
česky: déšť kyselý angl: acid rain slov: kyslý dážď rus: кислотный дождь fr: pluie acide f  1993-a1
Saugheber m
1. na jednom konci uzavřená skleněná trubice tvořící součást rtuťového tlakoměru zahnutá do tvaru písmene „U“, která má stejný průřez v místech, kde se pohybuje horní a dolní hladina rtuti. Viz též nádobka tlakoměru;
2. trubice tvořící součást plovákového ombrografu zahnutá do tvaru obráceného písmene „U“, která slouží k jednorázovému rychlému výtoku vody z plovákové komory, jakmile její hladina dosáhne nastavené úrovně.
česky: násoska angl: siphon slov: násoska rus: сифон  1993-a1
Savannenklima n
Köppenově klasifikaci klimatu typ tropického dešťového klimatu, označovaný Aw, případně As, s celoročně vysokou teplotou a výrazným ročním chodem srážek, takže v nejsušším měsíci klesá jejich prům. měs. úhrn pod 60 mm. Vyznačuje se střídáním období sucha a období dešťů, které přichází zpravidla v létě dané polokoule v souvislosti s pohybem ekvatoriální deprese, případně i s výskytem letního monzunu. Roční chod teploty vzduchu je nevýrazný, s větší denní amplitudou v období sucha a s maximem teploty vzduchu před začátkem období dešťů. V Alisovově klasifikaci klimatu mu přibližně odpovídá subekvatoriální klima, jiní autoři je označují jako pasátové klima. Viz též klima monzunové.
česky: klima savany angl: savanna climate slov: savanová klíma rus: климат саванн  1993-b3
Scatterometer n
aktivní družicový radiometr, zaměřený na získávání informací o fyzikálních charakteristikách hladin moří a oceánů (především výška a orientace vln), a meteorologických podmínkách (směr a rychlost proudění) bezprostředně nad hladinou. Viz též altimetr.
česky: skaterometr angl: scatterometer slov: skaterometer  1993-a3
Schadstoffe m/pl
látky, které nepatří do složení čisté atmosféry a jsou do ovzduší emitovány z přirozených nebo antropogenních zdrojů v takovém množství, že v lokálním, regionálním nebo globálním měřítku mění fyz., popř. i chem. vlastnosti vzduchu. Mohou působit jako škodliviny v ovzduší, ale paušálně je nelze takto nazývat, neboť jejich případnou škodlivost nutno vztahovat nejen k danému receptoru, nýbrž i k jejich koncentraci, popř. synergickému působení s jinými znečisťujícími příměsemi Viz též znečišťování ovzduší, pachy.
česky: příměsi znečišťující angl: air contaminant, air pollutants slov: znečisťujúce prímesi rus: загрязняющие примеси  1993-a3
Schadstoffkonzentration f
množství znečisťujících látek v jednotce objemu vzduchu. U plynných znečišťujících látek musí být objem normován při teplotě 293 K a atmosférickém tlaku 101,3 kPa. U částic a látek, které se mají v částicích analyzovat (např. olovo), se objem odběru vzorků vztahuje k vnějším podmínkám, jako jsou teplota a atmosférický tlak v den měření. Vyjadřuje se buď v rozměru hmotnost na objem, zpravidla v µg.m–3, popř. mg.m–3, nebo v rozměru objemu na objem, tj. počtem objemových částí sledované plynné látky v miliónu objemových částí vzduchu (ppm = parts per million), při menších hodnotách koncentrace znečisťujících látek v miliardě částí vzduchu (ppb = part per billion; billion v amer. angličtině = miliarda). Jednotky ppm a ppb se používají především v anglosaské literatuře. Např. pro SO2 za standardních podmínek přibližně platí, že 1 ppb = 2,66 µg.m–3, 1 µg.m–3 = 0,38 ppb. V oblasti čistoty ovzduší se jako koncentrace znečisťující látky někdy fyz. nesprávně označuje hmotnost znečisťující látky obsažená v jednotce hmotnosti vzduchu. Směrnice Evropské unie, implementované do vnitrostátního práva členských států, stanovují nejvyšší přípustné koncentrace (NPK) znečišťujících látek v ovzduší a povolené počty jejich překročení. Viz též hygiena ovzduší, imise, měření znečištění ovzduší.
česky: koncentrace znečisťujících látek angl: concentration of harmful substances slov: koncentrácia znečiťujúcich látok rus: концентрация вредных примесей  1993-b3
Schäfchenwolken f/pl
lid. název pro drobné oblaky, uspořádané na obloze do charakteristických skupin nebo řad. Rozlišují se:
1) malé beránky, což jsou oblaky druhu Cc. Vyskytují se zejména při vertikální instabilitě atmosféry ve vrstvě svého výskytu a spolu s mírným poklesem tlaku vzduchu v místě pozorování jsou obvykle spojovány s blížící se atmosférickou frontou;
2) velké beránky, což jsou oblaky středního patra druhu Ac, a to zpravidla Ac un. Jejich výskyt bývá rovněž spojován se zhoršením počasí a s advekčním ochlazením. Výskyt beránků může být zejména ve večerních hodinách spojen také s rozpadem oblaků jiných druhů např. Cb a Cu. Viz též předpověď počasí podle místního pozorování.
česky: beránky angl: mackerel sky slov: barančeky, baránky, barance rus: барашки fr: ciel pommelé m  1993-a2
Schafkälte f
ochlazení ve stř. Evropě, které nastává dosti pravidelně v první polovině června v důsledku vzestupu tlaku vzduchu v oblasti Azorských ostrovů, a tím zesílení sz. složky proudění. Příliv chladnějšího mořského vzduchu se projevuje i zvýšenou srážkovou činností. Název této singularity pochází z něm. hovořících zemí a souvisí s tím, že v uvedeném období bývají čerstvě ostříhány ovce, které potom trpí chladem. Chladna ovčí jsou součástí delšího období chladnějšího deštivého počasí nazývaného medardovské počasí. Viz též muži ledoví.
česky: chladna ovčí rus: июньский «овечий холод» slov: ovčie chladno  1993-a1
Schalenkreuzanemometer n
anemometr využívající k měření rychlosti větru úhlovou rychlost otáčení rotoru, sestávajícího z misek rozmístěných symetricky kolem obvykle vertikální osy rotace. První miskový anemometr pochází z r. 1837 od W. Whewella a podstatně jej zlepšil irský přírodovědec J. T. R. Robinson v r. 1846. Základem systému miskového anemometru je rotor tvořený třemi nebo čtyřmi miskami, které jsou umístěny souhlasně vypouklými stranami vzhledem ke směru rotace na stejně dlouhých ramenech ve shodných úhlových vzdálenostech. Ve variantě 4 misek je rotor známý pod termínem Robinsonův kříž, dnes však převládá varianta se 3 miskami, která je podle současných poznatků výhodnější. Misky díky svému polokulovému nebo kuželovitému tvaru kladou proudícímu prostředí svojí dutou stranou přibližně čtyřnásobně větší odpor než vypouklou stranou, což způsobuje rotaci přístroje. Celé těleso rotoru musí být uloženo v kvalitních ložiskách, aby bylo lehce otočné s nízkým prahem citlivosti. Počet otáček rotoru za sekundu n závisí téměř lineárně na rychlosti větru v. Platí vztah:
v=a+bn+c n2, kde a je práh citlivosti, tj. rychlost větru, při níž se miskový kříž anemometru začíná otáčet (zpravidla 0,2 až 1,5 m.s–1), b je konstanta závislá na rozměrech a aerodyn. vlastnostech misek a c konstanta řádu 10–4. Rychlost větru se určí pomocí:
a) mech. počítadla zabudovaného v přístroji a stopek;
b) generátoru střídavého napětí, které je úměrné rychlosti rotace miskového systému;
c) el. impulzů vytvářených rotujícím systémem, které mají frekvenci úměrnou rychlosti větru a které se vyhodnocují prostřednictvím světelných, zvukových nebo el. signálů a chronometrického zařízení.
Miskový anemometr měří složku rychlosti větru kolmou na osu otáčení rotoru. Ta je standardně orientována vertikálně, a přístroj tak slouží k měření horizontální složky rychlosti větru. Pro měření směru větru je obvykle doplněn větrnou směrovkou. Spolu s ultrasonickými anemometry se jedná o nejrozšířenější typ anemometru.
česky: anemometr miskový angl: cup anemometer slov: miskový anemometer rus: чашечный анемометр fr: anémomètre à coupelles m, anémomètre de Robinson m  1993-a3
Schallausbreitung f
šíření zvukových vln v atmosféře, jehož rychlost c je dána vzorcem:
c=κRT,
kde κ značí Poissonovu konstantu, vyjadřující poměr měrného tepla vzduchu při stálém tlaku a při stálém objemu, R měrnou plynovou konstantu vzduchu a T teplotu vzduchu v K. Při teplotě 273 K, za bezvětří a v suchém vzduchu je c = 331,36 m.s–1. Protože měrná plynová konstanta vlhkého vzduchu je o něco větší než táž konstanta platná pro suchý vzduch a její hodnota poněkud roste s obsahem vodní páry ve vzduchu, zvětšuje se rychlost zvuku s růstem absolutní vlhkosti. Pro opravu rychlosti zvuku na vlhkost lze užít vzorce:
Δc=0,14cep,
v němž p značí tlak vzduchu a e tlak vodní páry. Vane-li vítr, je celková rychlost zvuku dána součtem rychlosti zvuku v klidném vzduchu a složky rychlosti proudění v daném směru, čehož se využívá u akustických anemometrů. Pro zvukové vlny lze aplikovat zákony odrazu a lomu i pojem zvukového paprsku (kolmice k vlnoploše) a definovat index lomu n = T–1/2. V obvyklém případě, kdy teplota vzduchu klesá s výškou, platí (n/z >0) a dráhy zvukových paprsků orientovaných šikmo vůči zemskému povrchu se zakřivují tak, že mají tvar poněkud vypuklý směrem dolů. Opačná situace nastává ve vrstvách s inverzí teploty vzduchu, kde(n/z <0) a zmíněné dráhy mají tvar vypuklý vzhůru. V tomto případě může nastat totální odraz zvukové vlny, která se pak vrací k zemi často v místech, kam už neproniká zvuk šířící se od svého zdroje přímo podél zem. povrchu a je tlumený na jeho nerovnostech. Tímto způsobem vzniká jev anomální slyšitelnosti a za vhodných podmínek může být v souvislosti se silnými zdroji zvuku (výbuchy apod.) pozorováno i několik pásem anomálníslyšitelnosti oddělených pásmy ticha, kdy zvuk je střídavě slyšitelný a neslyšitelný v kruhových oblastech, někdy jen v sektorech, okolo zdroje zvuku. Počátkem 20. století bylo šíření zvuku v atmosféře jednou z nepřímých metod výzkumu vysokých vrstev atmosféry.
česky: šíření zvuku v atmosféře angl: propagation of sound slov: šírenie zvuku v atmosfére rus: распространение звука  1993-a1
Schallgeschwindigkeit in der Atmosphäre f
česky: rychlost zvuku v atmosféře angl: speed of sound propagation in atmosphere slov: rýchlosť zvuku v atmosfére rus: скорость звукa в атмосфере  1993-a1
Schauer m
konvektivní srážka vyznačující se náhlým začátkem a koncem, rychlým kolísáním intenzity a obvykle krátkým trváním. Při přeháňkách dochází často k rychlému střídání velké oblačnosti s krátkým vyjasněním a dobrá dohlednost se v intenzivních srážkách značně snižuje. Jednotlivé přeháňky mají obvykle malý plošný rozsah. Přeháňky mohou být jak dešťové, tak sněhové, popř. dešťové se sněhem. V chladném ročním období v přeháňkách vypadávají často sněhové krupky, v létě někdy kroupy. Při špatných podmínkách pozorování oblohy lze podle přeháněk usuzovat na výskyt konvektivních oblaků. Naopak podle charakteru oblačnosti lze odlišit přeháňky (přeháňkové srážky) od občasných srážek. Viz též srážky konvektivní, srážky trvalé.
česky: přeháňka angl: shower slov: prehánka rus: ливень  1993-a2
schauerartiger Niederschlag m
česky: srážky přeháňkové angl: showery precipitation slov: prehánkové zrážky rus: ливневые осадки  1993-a1
Schauerniederschlag m
česky: srážky přeháňkové angl: showery precipitation slov: prehánkové zrážky rus: ливневые осадки  1993-a1
Scheinfront f
syn. pseudofronta – náhlá prostorová změna (skok) v horiz. rozložení teploty vzduchu, ojediněle též jiného meteorologického prvku. Obvykle zasahuje pouze tenkou přízemní vrstvu vzduchu u zemského povrchu. Vzniká na hranicích rozdílného aktivního povrchu (např. vodní hladina – led, vodní hladina – souš aj.), nebo v orograficky členitém terénu.
česky: fronta zdánlivá angl: pseudo front slov: zdanlivý front rus: мнимый фронт fr: pseudo-front m, pseudofront m  1993-a1
Scherspannung f
obecně tečná síla vztažená k jednotkové ploše. V meteorologii mají význam především složky tzv. Reynoldsova napětí, související s turbulentním přenosem hybnosti v mezní vrstvě atmosféry. Lze je vyjádřit ve tvaru
-ρvx2 ¯,-ρvy2 ¯,-ρvz2 ¯,-ρvx vy¯,-ρ vxvz ¯,-ρvy vz¯,-ρ vyvx ¯,-ρvz vx¯,-ρ vzvy¯,
kde ρ značí hustotu vzduchu a vx,v y,vz turbulentní fluktuace složek rychlosti proudění v trojrozměrném souřadnicovém systému tvořeném osami x, y, z. Těchto devět veličin představuje složky symetrického tenzoru druhého řádu a fyz. je lze interpretovat jako složky síly turbulentního tření působící v daném bodě na jednotkovou plochu orientovanou kolmo ke směru jednotlivých souřadnicových os. Viz též tření v atmosféře, síla tření.
česky: napětí tečné angl: shearing stress slov: dotykové napätie rus: напряжение сдвига  1993-a1
Scherungslinie f
čára, podél níž dochází k náhlé změně horiz. složek větru. Viz též střih větru.
česky: čára střihu větru angl: shear line slov: čiara strihu vetra rus: линия сдвига ветра fr: ligne de cisaillement f  1993-a1
Schichtenmethode f
metoda hodnocení stability teplotního zvrstvení ovzduší v horiz. vrstvě atmosféry o jednotkové tloušťce, kterou současně procházejí výstupné i kompenzující sestupné proudy. Metoda předpokládá, že hmotnosti vystupujícího a sestupujícího vzduchu jsou si rovny, změny teploty ve vystupujícím vzduchu probíhají podle nasycené adiabaty a v sestupujícím vzduchu přibližně podle suché adiabaty. Zahrnutí sestupných proudů způsobuje, že ve srovnání s metodou částice se zmenšuje rozdíl teploty mezi vystupujícím vzduchem a vzduchem v jeho okolí. Odhad horní hladiny konvekce stanovený metodou vrstvy obvykle lépe odpovídá skutečnosti než výsledek metody částice. Metoda vrstvy však vyžaduje odhad nebo znalost poměru plošného rozsahu výstupných a sestupných proudů. Nutnost znát tento parametr způsobuje, že provozní použití metody vrstvy není obvyklé. Viz též metoda vtahování.
česky: metoda vrstvy angl: layer method, slice method slov: metóda vrstvy rus: метод слоя  1993-a3
Schichtwolke f
oblak vyskytující se v horiz. rozsáhlé vrstvě. Jsou pro něj charakteristické výstupné rychlosti dosahující řádu 10–1 m.s–1. V řadě případů, např. v podinverzní vrstevnaté oblačnosti, jejíž vývoj je řízen radiačními procesy, jsou však hodnoty vertikální rychlosti zanedbatelné. Jako vrstevnaté označujeme oblaky druhu stratus, nimbostratus, altostratus a cirrostratus. Pojem vrstevnatý oblak není přesně vymezen a v mezinárodní morfologické klasifikaci oblaků se nepoužívá. Viz též oblak kupovitý.
česky: oblak vrstevnatý angl: stratiform cloud slov: vrstevnatý oblak rus: слоистообразное облако  1993-a3
Schichtwolke f
čes. překlad termínu stratus.
česky: sloha slov: sloha  1993-a1
Schimmern n
fotometeor projevující se jako zdánlivé chvění objektů pozorovaných nad prohřátým zemským povrchem. Vzniká krátkodobými změnami indexu lomu světla ve vzduchu a často může snižovat dohlednost. Viz též scintilace.
česky: chvění optické angl: shimmer slov: optické chvenie rus: оптическое дрожание атмосферы  1993-a2
Schirokko m
[široko] – v původním významu teplý již. nebo jv. vítr, vanoucí ze Sahary nad Sicílii a již. Itálii. V širším smyslu se jedná o pouštní vítr proudící ze Sahary nebo arabských pouští do oblasti Středozemního moře na přední straně cyklony postupující Středomořím k východu. Původně suchý a prašný vítr, který se nad mořem zvlhčuje, při dalším postupu na sever přináší mlhu a déšť (tzv. vlhký scirocco) a za horskými překážkami má ráz fénu. Suchý scirocco v zemích Předního východu má ráz katastrofálních suchovějů.
česky: scirocco angl: scirocco, sirocco slov: scirocco rus: сирокко  1993-a2
Schlackerwetter n
obecné označení pro počasí nepříznivé pro pobyt venku, vyznačující se padáním sněhu s deštěm, často za silnějšího nárazovitého větru. Nemá charakter odborného termínu.
česky: plískanice angl: sleet slov: čľapkanica rus: мокрый снег, слякоть  1993-a2
Schlagregen m
česky: déšť hnaný větrem slov: dážď hnaný vetrom rus: косой дождь, косохлёст  1993-a1
Schlagregen m
část padajících srážek, která má vlivem větru také horiz. složku pohybu. Pro jejich měření by bylo nutné použít speciální srážkoměry s vert. záchytnou plochou. Srážky hnané větrem se na stanicích v ČR neměří, jejich měření není požadováno doporučeními Světové meteorologické organizace.
česky: srážky hnané větrem slov: zrážky hnané vetrom rus: косой дождь  1993-a3
Schlammregen m
déšť, jehož kapky obsahují abnormálně velké množství jemných minerálních částic, zachycených při vzniku nebo pádu kapek v ovzduší znečištěném prachovou bouří.
česky: déšť bahnitý angl: mud rain slov: bahnitý dážď rus: грязевoй дождь fr: pluie de boue f, pluie boueuse f  1993-a1
schlechtes Wetter n
vžité lidové označení pro počasí s trvalými nebo občasnými atm. srážkami. Špatné počasí je často spjato s výskytem oblaků tvaru fractus (stratus fractus nebo cumulus fractus „špatného počasí“). Viz též počasí cyklonální, počasí frontální.
česky: počasí špatné angl: bad weather slov: škaredé počasie rus: плохая погода  1993-a1
schleifenförmige Rauchfahne f
jeden z tvarů kouřové vlečky, jenž je charakteristický hadovitým vzhledem vlečky ve vert. řezu. Je nejčastěji způsoben vert. konv. proudy a velkými turbulentnímí víry, zejména při instabilním zvrstvení vzduchu a při slabém až mírném horiz. proudění. U zdrojů znečišťování ovzduší se silným termickým vznosem kouřové vlečky se vyskytuje jen sporadicky.
česky: přemetáni kouřové vlečky angl: looping slov: horizontálne vírenie dymovej vlečky rus: волнообразный факел  1993-a3
SchlieĂźungsproblem n
nalezení způsobu uzavření systému Reynoldsových rovnic tím, že v nich vyjádříme korelace druhého řádu fluktuujících turbulentních částí složek okamžité rychlosti proudění. Tyto korelace určují tzv. Reynoldsova napětí. Problém lze obecně teoreticky řešit tak, že pro tyto druhé korelace odvodíme příslušné diferenciální (tzv. transportní) rovnice, avšak ty obsahují neznámé korelace třetího řádu. Postupujeme-li obdobně dále, lze nalézt obecné pravidlo, že pro určení korelací řádu n-tého potřebujeme znát korelace řádu n+1. Dospějeme tak k principiálně neuzavřené soustavě tzv. Kellerových–Friedmanových rovnic. Přijmeme-li pak na úrovni korelací určitého řádu jejich spekulativní (modelové) vyjádření, lze odtud v příslušném modelu odvodit všechny korelace nižších řádů. V tomto spočívá obecný princip tzv. RSM modelů, v nichž tedy řešíme příslušné transportní rovnice alespoň pro korelace druhého řádu. V praxi se však dnes problém uzávěru často řeší bez právě zmíněných transportních rovnic přímým vyjádřením Reynoldsových napětí prostřednictvím tzv. nularovnicových modelů, algebraických modelů, jednorovnicových modelů nebo dvourovnicových modelů.
česky: problém uzávěru angl: closure problem  2014
Schlüsselgruppe f
část alfanumerického meteorologického kódu. Je to skupina znaků, v tradičních alfanumerických kódech obvykle pětimístná. Skupiny kódu jsou od sebe oddělené jednou nebo více mezerami. Viz též tvar kódu.
česky: skupina kódu angl: code group slov: skupina kódu rus: группа кода  1993-a3
Schmelzgrenze f
hladina (výška) v atmosféře, ve které tají ledové krystalky a sněhové vločky při pádu k zemi. Odpovídá výšce izotermy 0 °C. Její poloha se mění s denní a roční dobou, v závislosti na zeměp. šířce a na vlastnostech vzduchové hmoty.
česky: hladina tání angl: melting level slov: hladina topenia rus: уровень таяния  1993-a3
Schmelzkurve f
křivka na fázovém diagramu, která představuje rozhraní mezi pevnou a kapalnou fází sledované látky (v met. mezi ledem a kapalnou vodou). Vychází z trojného bodu a určuje podmínky, za nichž je pevná a kapalná fáze v termodynamické rovnováze.
česky: křivka tání angl: melting phase boundary slov: krivka topenia  2017
Schmelzniveau n
hladina (výška) v atmosféře, ve které tají ledové krystalky a sněhové vločky při pádu k zemi. Odpovídá výšce izotermy 0 °C. Její poloha se mění s denní a roční dobou, v závislosti na zeměp. šířce a na vlastnostech vzduchové hmoty.
česky: hladina tání angl: melting level slov: hladina topenia rus: уровень таяния  1993-a3
Schmelzpunkt m
syn. teplota tání – teplota, při níž dochází k fázovému přechodu dané látky ze skupenství pevného do skupenství kapalného při rovinném fázovém rozhraní. Ohříváme-li pevnou látku, její teplota se zvyšuje až k bodu tání. Další ohřev již vyvolá tání a dodané teplo je spotřebováváno na latentní teplo tání, přičemž teplota tající látky zůstává zachována. Po úplném roztátí pevné fáze pak teplota vzniklé kapaliny při dalším ohřívání roste. Teplota tání závisí na tlaku. U většiny látek teplota tání s rostoucím tlakem roste, u ledu a několika dalších látek však s růstem tlaku klesá (viz regelace ledu). Čistý led při normálním tlaku má bod tání 0 °C (273,15 K). Při inverzní změně skupenství odpovídá bodu tání bod tuhnutí (bod mrznutí).
česky: bod tání angl: melting point slov: bod topenia rus: точка таяния fr: point de fusion m  1993-a3
Schmetterlingseffekt m
syn. efekt motýlí – pojem poprvé v daném smyslu použitý Edwardem Lorenzem 29. 12. 1972 v přednášce pro „Americkou asociaci pro pokrok ve vědě“. Šlo o symbolické vyjádření myšlenky, že v některých případech mohou být atmosférické děje natolik dynamické, že, obrazně řečeno, i třepetání motýlích křídel na určitém místě může vyvolat dramatickou odezvu v atmosféře třeba na druhé straně zeměkoule. Tato myšlenka se v daných souvislostech objevuje již od počátku 70. let minulého století, bezprostředně souvisí s fenoménem deterministického chaosu, není však vědeckou veřejností přijímána zcela bez výhrad. Později se objevil názor, že označení pro tento jev souvisí i s tím, že podoba křivek tzv. Lorenzova atraktoru vytváří systém připomínající rozevřená motýlí křídla. Tuto interpretaci však zřejmě nelze z originálních pramenů doložit. Viz též prostor fázový.
česky: efekt motýlích křídel angl: butterfly effect slov: efekt motýlích krídel  2017
Schmidt-Zahl f
poměr mezi kinematickou vazkostí vzduchu a koeficientem molekulární difuze dané pasivní příměsi. Používá se např. v souvislosti se zajištěním podobnostních kritérií ve fyzikálním modelování difuze pasivních příměsí v atmosféře.
česky: číslo Schmidtovo angl: Schmidt number slov: Schmidtovo číslo fr: nombre de Schmidt m  2014
Schmidt-Zahl f
poměr mezi kinematickou vazkostí vzduchu a koeficientem molekulární difuze dané pasivní příměsi. Používá se např. v souvislosti se zajištěním podobnostních kritérií ve fyzikálním modelování difuze pasivních příměsí v atmosféře.
česky: číslo Schmidtovo angl: Schmidt number slov: Schmidtovo číslo fr: nombre de Schmidt m  2014
Schnee m
jeden z hydrometeorů pevného skupenství vypadávající z oblaků a skládající se z ledových krystalků, z nichž je většina obvykle hvězdicovitě rozvětvena. Vypadává-li při teplotách vzduchu vyšších než 0 °C, mívá charakter mokrého sněhu nebo deště se sněhem. Sníh po dopadu na zem s teplotou pod 0 °C vytváří sněhovou pokrývku. Vypadávání sněhu se označuje též termínem sněžení. Viz též tvar ledových krystalků, akumulace sněhu, čára sněžná, chionosféra, bouře sněhová, sníh zvířený.
česky: sníh angl: snow slov: sneh rus: снег  1993-a3
Schneebrett n
dřevěná deska o rozměrech 30 × 30 cm, která slouží k určování výšky nového sněhu, což je výška sněhové vrstvy, která se na sněhoměrném prkénku vytvořila od posledního pozorovacího termínu. Výška nového sněhu se měří v místě pokud možno nerušeném větrem. Od sněhu očištěné prkénko se položí na sněhovou vrstvu a lehce zatlačí tak, aby jeho horní plocha byla ve stejné úrovni se sněhovou pokrývkou. Neleží-li na stanici souvislá sněhová pokrývka, klade se prkénko přímo na půdu. Místo, kde je prkénko položeno, je vhodné označit hůlkou. Viz též měření sněhové pokrývky.
česky: prkénko sněhoměrné angl: snow board slov: snehomerná doštička  1993-a3
Schneedecke f
vrstva sněhu nebo ledu, která přímo nebo nepřímo vznikla v důsledku tuhých srážek. Tento termín se vztahuje jak na celkovou sněhovou pokrývku, tak na nový sníh. Viz též měření sněhové pokrývky, hodnota sněhové pokrývky vodní, den se sněhovou pokrývkou.
česky: pokrývka sněhová angl: snow cover slov: snehová pokrývka rus: снежный покров  1993-a3
Schneedeckenmessung f
zjišťování výšky a vodní hodnoty sněhové pokrývky. U sněhové pokrývky se měří výška celkové sněhové pokrývky v klimatologickém termínu 7 h, na synoptických stanicích ještě také v termínu 06 UTC a 18 UTC. Měření se provádí pomocí sněhoměrné latě a na vybraných automatických meteorologických stanicích použitím ultrasonických nebo laserových senzorů. Výška nového sněhu se měří na sněhoměrném prkénku v klimatologickém termínu 7 h za období 24 hodin, na synoptických stanicích ČR také za 1 hodinu, pokud je výška nového sněhu 1 cm nebo více. U nesouvislé sněhové pokrývky se výška sněhové pokrývky neměří. Vodní hodnota sněhové pokrývky se měří sněhoměry a na vybraných meteorologických stanicích s použitím sněhového polštáře. Výška sněhové pokrývky se udává v cm, vodní hodnota sněhové pokrývky v mm vodního sloupce, nebo v kg.m–2 a ve stavebnictví také v kPa.
česky: měření sněhové pokrývky angl: measurement of snow cover slov: meranie snehovej pokrývky rus: измерение снежного покрова  1993-a3
Schneedichte f
hmotnost objem. jednotky sněhové pokrývky vyjádřená v kg.m–3, případně v poměru k hustotě vody. Hustota nově napadlého sněhu se pohybuje v závislosti na teplotě a větru od 50 do 150 kg.m–3, hustota starého ulehlého sněhu často přesahuje 400 kg.m–3.
česky: hustota sněhu angl: density of snow, snow density slov: hustota snehu rus: плотность снега  1993-a3
Schneefall m
srážka složená z ledových krystalků nebo sněhových vloček. Intenzita sněžení se hodnotí podle dohlednosti, popř. podle přírůstku výšky sněhové pokrývky před termínem pozorování nebo na základě radiolokačních měření. Rozlišujeme slabé, mírné silné a velmi silné sněžení v termínu pozorování a dále sněžení občasné a trvalé. Na území ČR se už od nadm. výšek kolem 1 300 m může vyskytnout sněžení v každém měsíci roku. Viz též den se sněžením.
česky: sněžení angl: snowfall slov: sneženie rus: снегопад  1993-a2
Schneefegen n
zvířený sníh, jehož částice jsou větrem zdviženy jen do malé výšky a unášeny při zemi, takže výrazně nesnižují vodorovnou dohlednost ve výšce očí pozorovatele (cca 150 cm).
česky: sníh nízko zvířený angl: drifting snow slov: nízko zvírený sneh rus: поземок  1993-a3
Schneefegen n
hydrometeor, který se vyskytuje při sněhové pokrývce a vysoké rychlosti větru, jenž sněhové částice unáší. Může nastávat při sněžení nebo nezávisle na něm. Zvířený sníh způsobuje změny v rozložení sněhové pokrývky a vznik sněhových akumulací. Podle výšky zdvihu rozlišujeme sníh nízko zvířený a sníh vysoko zvířený. Viz též vánice sněhová, prach nebo písek zvířený.
česky: sníh zvířený angl: drifting or blowing snow slov: zvírený sneh rus: поземок или снежная низовая метель  1993-a3
Schneegestöber n
lid. název pro husté sněžení. Viz též metelice, vánice sněhová.
česky: chumelenice slov: chumelica rus: метель, вьюга, метелица  1993-a1
Schneegrenze f
hranice vymezující území s celoročně možným výskytem sněhové pokrývky. Na sněžné čáře existuje rovnováha mezi přírůstkem spadlých tuhých srážek a úbytkem sněhové pokrývky během roku. Existuje dolní a horní sněžná čára. Pod dolní sněžnou čarou se sněhová pokrývka celoročně neudrží z teplotních příčin, nad horní sněžnou čarou, kde je množství srážek již malé, sněhová pokrývka zaniká sublimací v důsledku slunečního záření. Dolní a horní sněžná čára vymezují chionosféru. Praktický význam má dolní sněžná čára, která se zpravidla dělí na čáru sněžnou klimatickou a orografickou. Viz též čára firnová.
česky: čára sněžná angl: snow line slov: snežná čiara rus: снеговая линия fr: étage nival m, étage des neiges éternelles m  1993-a2
Schneegriesel m
název pro sněhová zrna, který byl používán před vydáním Mezinárodního atlasu oblaků v r. 1965. Někdy se ve stejném významu používal i termín krupice.
česky: krupice sněhová slov: snehová krupica rus: снежные зерна  1993-a1
Schneeinversion f
přízemní inverze teploty vzduchu, jež vzniká zpravidla při advekci relativně teplého vzduchu nad zemský povrch s tající sněhovou pokrývkou v důsledku spotřeby tepla na tání sněhu. Je typickým příkladem přízemní advekční inverze teploty vzduchu.
česky: inverze teploty vzduchu sněhová angl: snow inversion slov: snehová inverzia teploty vzduchu rus: снежная инверсия  1993-a3
Schneeklima n
Köppenově klasifikaci klimatu nejchladnější klimatické pásmo, označené písmenem E. Prům. měs. teplota vzduchu v nejteplejším měsíci nedosahuje 10 °C, což brání vývoji lesa. Typickým znakem je permafrost. Sněhové klima se dělí do dvou klimatických typů: klima tundry (ET) a klima trvalého mrazu (EF). V Alisovově klasifikaci klimatu mu přibližně odpovídá arktické klima a antarktické klima. Viz též klima nivální.
česky: klima sněhové angl: snow climate slov: snehová klíma rus: снежный климат  1993-b3
Schneekristalle m/pl
v met. nevhodné označení pro ledové krystalky různých tvarů a velikostí, které se vyskytují jednotlivě nebo po agregaci ve shlucích - sněhových vločkách. Jsou srážkovými elementy při sněžení. Viz též tvar ledových krystalků.
česky: krystalky sněhové angl: snow crystals slov: snehové kryštáliky rus: снежные кристаллы  1993-a3
Schneelawine f
rychlý sesuv sněhu a ledu o minimálním objemu 100 m3 po dráze delší než 50 m. Menší sesuvy označujeme jako sněhové splazy. Dochází k němu za určitých met. a topografických podmínek. Z met. podmínek patří mezi nejdůležitější intenzita a trvání sněžení, teplota vzduchu a větrné poměry, k topografickým podmínkám sklon a expozice svahu. Uvedené podmínky určují stabilitu sněhového profilu, tedy rozložení vrstev sněhové pokrývky, jejich strukturu a mech. a fyz. vlastnosti, důležité pro zachování rovnovážného stavu. Narušení rovnováhy vyvolává pohyb sněhových vrstev, které se vzájemně liší morfologicky a geneticky. Laviny dělíme podle tvaru dráhy na plošné a žlabové; podle formy odtrhu na laviny s čárovým odtrhem (deskové) a laviny s bodovým odtrhem; podle skluzného horizontu na povrchové a základové; podle vlhkosti sněhu v pásmu odtrhu na laviny ze suchého sněhu či laviny z mokrého sněhu; podle příčin vzniku na laviny samovolné a uměle vyvolané. K ochraně proti sněhovým lavinám se v současnosti stavějí na lavinových svazích lavinové zábrany v podobě zátarasů z betonu a oceli (pasivní ochrana). V případě, že lavina ohrožuje silnice, obydlí, turistické trasy či například sjezdovky, připraví specialisté řízený odstřel (aktivní ochrana). Při vstupu do lavinových katastrů se doporučuje základní lavinové vybavení (lavinový vyhledávač, sonda a lopata). Stupně lavinového nebezpečí (1. až 5.) vyhlašuje v ČR Horská služba na základě analýzy sněhového profilu. Lavinové katastry v ČR jsou v Krkonoších a Jeseníkách. Viz též vítr lavinový.
česky: lavina sněhová angl: snow avalanche, snow slide slov: snehová lavína rus: снежная лавина  1993-a3
Schneemesser m
přístroj na měření vodní hodnoty sněhové pokrývky a výšky celkové sněhové pokrývky. Používají se tyto základní metody měření:
1. Vodní hodnota sněhové pokrývky:
a) Vzorek sněhu se váží – používá se tzv. sněhoměr váhový, což je základní přístroj používaný v ČR na profesionálních stanicích, popř. na vybraných klimatologických stanicích, nebo polštář sněhový.
b) Odebraný vzorek se nechá roztát a změří se stejně jako kapalné srážky. V ČR se běžně používala nádoba srážkoměru a k ní příslušná skleněná odměrka.
2. Výška celkové sněhové pokrývky:
a) Používá se sněhoměrná tyč nebo lať.
b) Měření automatickými sněhoměry, v nichž se využívá odrazu nebo útlumu vyslaného paprsku (ultrasonická čidla, radioaktivní sněhoměry (gama zářiče), laserové senzory).
česky: sněhoměr angl: snow gauge, snow sampler, snow tube slov: snehomer rus: снегомер, снегоотборник  1993-b3
Schneepegel m
syn. tyč sněhoměrná – lať s centimetrovým dělením na měření celkové výšky sněhové pokrývky. Zapouští se svisle do země na místě, kde se netvoří závěje, na celé zimní období tak, aby nula měřítka byla v úrovni terénu. Čtení na sněhoměrné lati se provádí v klimatologických termínech, na synoptických stanicích v termínech 06:00 UTC a 18:00 UTC. Viz též měření sněhové pokrývky.
česky: lať sněhoměrná angl: snow stake slov: snehomerná tyč rus: снегомерная рейка  1993-a3
Schneeschreiber m
česky: chionograf slov: chionograf rus: хионограф  1993-a3
Schneesturm m
intenzivní sněžení nebo vysoko zvířený sníh, zpravidla způsobující značné akumulace sněhu. Nejzhoubnější účinky mají sněhové bouře na sv. USA, kde jsou jejich příčinou hluboké cyklony postupující přes již. části Nové Anglie. Za 1 až 2 dny může při sněhové bouři napadnout přes 1 m sněhu a závěje mohou dosahovat 10 až 12 m. Dochází ke ztrátám na životech a k hospodářským škodám, především v důsledku ochromení dopravy. Ze Sev. Ameriky pochází označení sněhové bouře spojené s vysokou rychlostí větru jako blizard, dalšími regionálními názvy jsou (bílý) buran, purga nebo burga.
česky: bouře sněhová angl: snowstorm slov: snehová búrka rus: снежная буря, снежный буран fr: blizzard m, tempête de neige f  1993-a3
Schneetag m
den se srážkami, v němž bylo pozorováno sněžení nebo padaly sněhově krupky, sněhová zrna, zmrzlý déšť nebo krupky, ledové jehličky nebo sníh s deštěm.
česky: den se sněžením angl: snow day slov: deň so snežením rus: день со снегопадом fr: jour de chute de neige m, jour avec chutes de neige m, jour de précipitations de neige m  1993-a2
Schneetreiben n
dříve používaný název pro větrem zvířený sníh.
česky: metelice slov: metelica rus: метелица  1993-a2
Schneetreiben n
zvířený sníh, jehož částice jsou zdviženy do značné výšky nad zemí a unášeny větrem, takže vodorovná dohlednost ve výšce očí pozorovatele je zpravidla velmi malá a může být snížená ještě ve výšce 1 km nad zemí.
česky: sníh vysoko zvířený angl: blowing snow slov: vysoko zvírený sneh rus: снeжная низовая метель  1993-a3
Schneeverwehung f
akumulace sněhu vytvořená zvířeným sněhem na návětří terénní nebo jiné překážky. Viz též jazyk sněhový, závěj sněhová.
česky: návěj sněhová angl: snow-drift slov: snehový návej rus: сугроб  1993-a2
Schneewehe f
akumulace sněhu vytvořená zvířeným sněhem na návětří terénní nebo jiné překážky. Viz též jazyk sněhový, závěj sněhová.
česky: návěj sněhová angl: snow-drift slov: snehový návej rus: сугроб  1993-a2
schönes Wetter n
vžité označení pro slunečné a suché počasí, zpravidla se slabým větrem, které je typické např. v létě pro centrální část anticyklony a hřebene vysokého tlaku vzduchu. Nemá charakter odb. termínu. Viz též počasí anticyklonální.
česky: počasí pěkné angl: fine weather slov: pekné počasie  1993-a1
Schönwetter n
vžité označení pro slunečné a suché počasí, zpravidla se slabým větrem, které je typické např. v létě pro centrální část anticyklony a hřebene vysokého tlaku vzduchu. Nemá charakter odb. termínu. Viz též počasí anticyklonální.
česky: počasí pěkné angl: fine weather slov: pekné počasie  1993-a1
Schönwetterelektrizität
atmosféra není dokonalý izolátor, ale je slabě el. vodivá v důsledku přítomnosti kladných nebo záporných atmosférických iontů. Tyto ionty vznikají působením radioakt. a kosmického záření. Radioakt. paprsky vyzařované radioakt. látkami v půdě však ovlivňují atmosférickou ionizaci jen do výšky stovek m, maximálně několika km nad zemí. Nad oceány je radioakt. záření asi o dva řády slabší než nad pevninou. Ve větších výškách (a nad oceány i v nižších hladinách) je ionizace zcela dominantně působena kosmickým zářením a vzrůstá rychle s výškou nad zemí, protože kosmické paprsky (nejprve primárního a posléze sekundárního kosmického záření) jsou v atmosféře progresivně zadržovány při průchodu k zemi. Elektrická vodivost vzduchu závisí na hustotě iontů a roste přibližně exponenciálně s výškou. Ve výšce 18 km je vodivost asi o dva řády vyšší než u země. Ve výšce 50 km nad zemí má vzduch tak vysokou vodivost, že může být považován za dobrý vodič. Elektrický náboj, který dosáhne této výše, se proto rovnoměrně rozdělí okolo zeměkoule. Modelově si lze s jistým zjednodušením představit, že atmosférave výšce nad 50 km a povrch Země tvoří jakoby dvě desky koncentrického kulového kondenzátoru. Za klidného ovzduší, tj. za jasné oblohy nebo při malé oblačnosti beze srážek, mlhy, silného větru apod., má zemský povrch záporný a atmosféra převažující kladný náboj. Elektrické pole v atmosféře se při tomto rozložení náboje považuje za kladné. Prům. el.gradient klidného ovzduší je u zemského povrchu asi 130 V.m–1, hustota náboje na povrchu země je přibližně1,1 . 10–9 C.m–2, takže celkový záporný náboj zemského povrchu je asi 0,5 miliónu C. Hustota elektrického proudu mezi povrchem země a horní vrstvou atmosféry se odhaduje při klidném ovzduší na 3.10–12 A.m–2, což pro celý zemský povrch představuje asi 1500 A. Tato hodnota však není dosahována v reálné atmosféře, neboť asi polovina Země je zahalena oblaky. Elektrická vodivost vzduchu vzrůstá s výškou, avšak vertikálně tekoucí elektrický proud zůstává s výškou prakticky konstantní, z čehož vyplývá, že el. gradient s výškou klesá, a je tudíž největší při zemi. Denní chod el. gradientu nad oceány, kde nedochází k místním rušivým vlivům, má charakteristický denní průběh s minimem cca 15 % pod prům. denní hodnotou 130 V ve 03:00 UTC a s maximem cca 20 % nad touto prům. hodnotou kolem 19:00 UTC, a to nezávisle na místě pozorování. Výpočty lze dokázat, že uvedený elektrický proud by za podmínek klidného ovzduší vedl k neutralizaci záporného náboje zemského povrchu asi za 5 min. Že tomu tak není, je způsobeno přenosem nábojů opačným směrem, záporných k zemi, kladných vzhůru. Tento přenos je vyvolán výboji z hrotů vysokých předmětů, zejména pod bouřkovými oblaky a výboji blesků v asi 1800 bouřkách, které se současně na Zemi stále vyskytují. Viz též elektřina bouřková, výboj hrotový.
česky: elektřina klidného ovzduší angl: fair-weather electricity, fine weather electricity slov: elektrina pokojného ovzdušia rus: электрическое поле атмосферы fr: électricité par beau temps f  1993-a3
Schrägsicht f
dohlednost ve směru odkloněném o určitý ostrý úhel od horiz. roviny. V letecké meteorologii se určuje z vyvýšeného bodu směrem k zemskému povrchu jako vzdálenost k nejdále viditelnému bodu na zemi. Šikmá dohlednost pozorovaná z kabiny letícího letadla ve směru přistání v závěrečné fázi letu je přistávací dohlednost. Šikmá dohlednost pozorovaná z letištní budovy Řízení letového provozu je věžová dohlednost.
česky: dohlednost šikmá angl: slant visibility, oblique visibility slov: šikmá dohľadnosť rus: косая видимость fr: visibilité oblique f  1993-b3
Schrumpfungsachse f
syn. osa kontrakce – čára ve výškovém deformačním poli, podél níž dochází k difluenci proudění. Čím izotermy svírají s osou stlačení větší úhel (max. 90°), tím vznikají ve směru osy stlačení lepší podmínky pro frontogenezi. Osa stlačení je kolmá k ose roztažení.
česky: osa stlačení angl: axis of contraction, axis of shrinking slov: os stlačenia rus: ось сжатия  1993-a3
Schubpannung f
obecně tečná síla vztažená k jednotkové ploše. V meteorologii mají význam především složky tzv. Reynoldsova napětí, související s turbulentním přenosem hybnosti v mezní vrstvě atmosféry. Lze je vyjádřit ve tvaru
-ρvx2 ¯,-ρvy2 ¯,-ρvz2 ¯,-ρvx vy¯,-ρ vxvz ¯,-ρvy vz¯,-ρ vyvx ¯,-ρvz vx¯,-ρ vzvy¯,
kde ρ značí hustotu vzduchu a vx,v y,vz turbulentní fluktuace složek rychlosti proudění v trojrozměrném souřadnicovém systému tvořeném osami x, y, z. Těchto devět veličin představuje složky symetrického tenzoru druhého řádu a fyz. je lze interpretovat jako složky síly turbulentního tření působící v daném bodě na jednotkovou plochu orientovanou kolmo ke směru jednotlivých souřadnicových os. Viz též tření v atmosféře, síla tření.
česky: napětí tečné angl: shearing stress slov: dotykové napätie rus: напряжение сдвига  1993-a1
Schubspannungsgeschwindigkeit f
česky: rychlost dynamická angl: friction velocity slov: dynamická rýchlosť rus: скорость трения  1993-a3
Schubspannungsgeschwindigkeit f
syn. rychlost dynamická – aerodyn. veličina používaná při studiu proudění nad drsným povrchem a definovaná vztahem
v=τρ,
kde τ je horiz. tečné napětí na zemském povrchu a ρ hustota vzduchu. Frikční rychlost se zvětšuje s rostoucí drsností povrchu a stř. rychlostí proudění. Frikční rychlost se někdy nevhodně označuje jako rychlost tření nebo třecí rychlost. Viz též profil větru vertikální.
česky: rychlost frikční slov: frikčná rýchlosť  1993-a3
Schubspannungsgeschwindigkeit f
česky: rychlost tření slov: rýchlosť trenia  1993-a3
Schwabe-Zyklus
syn. cyklus slunečních skvrn jedenáctiletý – fluktuace polarity magnetického pole Slunce s přibližně jedenáctiletou periodou. Projevuje se proměnou vyzařovacích charakteristik. Solární konstanta se mění v rámci cyklu přibližně o jedno promile. V řádu procent se mění intenzita dopadajícího záření v UV spektru. Cyklus má významný dopad na podmínky ve vyšších atmosférických vrstvách, v rámci střední atmosféry se projevuje anomáliemi v teplotě i cirkulaci a má vliv i na stabilitu zimní polární cirkulace.
česky: cyklus sluneční jedenáctiletý angl: solar cycle, sunspot cycle slov: Milankovičove cykly rus: солнечный цикл fr: cycle de 11 ans m, cycle solaire m, cycle solaire de 11 ans m  2015
Schwankung eines meteorologischen Elements f
obecně míra variability, definovaná jako aritmetický průměr abs. hodnot rozdílů po sobě následujících hodnot znaku. V klimatologii se používá především k vyjádření prům. kolísání meteorologických prvků v časových řadách. Rozlišuje se interdiurní, intermenzuální a interanuální proměnlivost meteorologického prvku.
česky: proměnlivost meteorologického prvku intersekvenční slov: intersekvenčná premenlivosť meteorologického prvku  1993-a1
schwarzer Sturm m
prachová bouře v černozemních oblastech (např. na Ukrajině, na jihu evropské části Ruska, v USA apod.). Černá bouře působí značné hospodářské škody, neboť poškozuje velmi úrodné půdy. Viz též suchověj.
česky: bouře černá angl: black storm slov: čierna búrka rus: черная буря fr: tempête de poussière (noire) f  1993-a3
Schwebstaub m
pevné částice antropogenního původu rozptýlené v atmosféře, jejichž rychlost sedimentace je natolik malá, že mohou ve vzduchu setrvávat po rel. dlouhou dobu (několik dnů i více) a dostávat se do značných vzdáleností od svých zdrojů. Velikost částic polétavého prachu je řádově 10–5 m a menší, nejvíce jsou zastoupeny částice s rozměry pod 10–6 m. Viz též popílek, spad prachu, měření znečištění ovzduší.
česky: prach poletavý angl: airborne dust slov: poletavý prach rus: взвешенная пыль  1993-a2
Schwefelregen m
déšť žlutě zabarvený částicemi pylu, popř. žlutavým prachem apod. Na našem území se žlutý déšť vyskytuje obvykle v jarních měsících, v období hromadného rozkvětu jehličnatých stromů, hlavně smrků a borovic. Množství pylu, které žlutý déšť podmiňuje, závisí na povětrnostním průběhu zimy a jara; sytěji zbarvený žlutý déšť se vyskytuje obvykle jednou za 4 až 5 let.
česky: déšť žlutý angl: sulphur rain slov: žltý dážď rus: серный дождь fr: pluie de sable f, pluie de soufre f  1993-a1
schwerer Hurrikan m
česky: hurikán silný slov: silný hurikán rus: интенсивный ураган  2014
schweres Ion n
česky: iont těžký angl: heavy ion, large ion slov: ťažký ión rus: тяжелый ион  1993-a1
Schwerkraft f
syn. síla tíhová – výslednice gravitační síly v gravitačním poli Země a odstředivé síly vzniklé následkem rotace Země kolem zemské osy. Směr síly zemské tíže tak není, kromě pólů a rovníku, totožný se směrem gravitační síly. Síla zemské tíže směřuje kolmo k ideální mořské hladině odpovídající teoretickému tvaru geoidu. Velikost síly zemské tíže nepatrně roste s rostoucí zeměp. šířkou a v dané zeměp. šířce nepatrně klesá s rostoucí nadmořskou výškou, což ovlivňuje velikost tíhového zrychlení. Viz též rovnice pohybová, vztlak.
česky: síla zemské tíže angl: gravity force slov: sila zemskej tiaže rus: сила земной тяжести  1993-a3
Schwerkraft f
česky: síla tíhová angl: gravity force slov: tiažová sila  2018
Schwimmbarograph m
tlakoměr s nádobkou, v níž je umístěn plovák. Plovákový barograf zaznamenává pohyby plováku v závislosti na změnách hladiny rtuti v nádobce. Staniční síť v České republice tento barograf nepoužívá.
česky: barograf plovákový angl: float barograph slov: plavákový barograf rus: барограф с поплавком fr: baromètre à siphon m, barographe à flotteur m, baromètre à flotteur m  1993-a3
Schwüle f
subj. nepříjemný pocit, vyvolaný kombinovaným účinkem teploty vzduchu, vlhkosti vzduchu a malé rychlosti větru na lidský organismus. Je do jisté míry opakem zchlazování, protože čím je menší zchlazování, tím je větší dusno. Dusno se charakterizuje buď pomocí izobarické ekvivalentní teploty (např. F. Linke považoval za začátek dusna 56 °C), nebo jen pomocí tlaku vodní páry. Za hranici dusna se obecně přijala hodnota tlaku vodní páry 18,8 hPa (dříve 14,08 torr). Podle K. Scharlana (1942) nastávají podmínky pro pocit dusna např. tehdy, když při relativní vlhkosti vzduchu r = 100 % je teplota vzduchu t = 16,5 °C, dále při r = 70 % a t = 22,2 °C, při r = 50 % a t = 27,9 °C, popř. při r = 30 % a t = 36,9 °C. Dusno vzniká nejčastěji v létě v dopoledních hodinách, zpravidla před konvektivní bouří (bouřkou z tepla). Viz též den dusný, teplota ekvivalentní.
česky: dusno angl: muggy, sultriness slov: dusno rus: духота, зной fr: temps lourd m  1993-a3
Schwülegrenze f
česky: hranice dusna angl: limit of muggy slov: hranica dusna rus: предел духоты  1993-a1
schwüler Tag m
den, v němž nastaly met. podmínky pro pocit dusna. U nás se za dusný den zpravidla považuje den, v němž tlak vodní páry ve 14 h dosáhl alespoň hodnoty 18,8 hPa. Viz též izohygroterma.
česky: den dusný angl: humid day, sultry day slov: dusný deň rus: душный день fr: jour à temps lourd m, jour de chaleur étouffante m, jour de chaleur accablante m  1993-a1
Scirocco m
[široko] – v původním významu teplý již. nebo jv. vítr, vanoucí ze Sahary nad Sicílii a již. Itálii. V širším smyslu se jedná o pouštní vítr proudící ze Sahary nebo arabských pouští do oblasti Středozemního moře na přední straně cyklony postupující Středomořím k východu. Původně suchý a prašný vítr, který se nad mořem zvlhčuje, při dalším postupu na sever přináší mlhu a déšť (tzv. vlhký scirocco) a za horskými překážkami má ráz fénu. Suchý scirocco v zemích Předního východu má ráz katastrofálních suchovějů.
česky: scirocco angl: scirocco, sirocco slov: scirocco rus: сирокко  1993-a2
Scirocco m
syn. scirocco.
česky: široko slov: široko  1993-a1
Scorer-Parameter m
veličina používaná pro diagnózu, popř. prognózu mechanické turbulence, nebo vlnového proudění za horskou překážkou. Ve zjednodušené podobě je definována vztahem:
l=(gv2 1θθz) 1/2,
kde g je velikost tíhového zrychlení, v velikost průmětu vektoru rychlosti větru na kolmici k ose horského hřebene, Θ potenciální teplota vzduchu a z vert. souřadnice. Scorerův parametr se určuje pro jednotlivé vrstvy ovzduší, přičemž tloušťka vrstvy se volí podle stupně „monotónnosti“ změny teploty vzduchu s výškou. Při použití aerol. údajů je nejvhodnější určit Scorerův parametr pro vrstvy mezi význačnými tepl. body (tepl. „zlomy“). Příznivé podmínky pro vlnové proudění nastávají při poklesu Scorerova parametru s výškou.
česky: parametr Scorerův angl: Scorer parameter slov: Scorerov parameter rus: параметр Скорера  1993-a3
Scorer-Parameter m
veličina používaná pro diagnózu, popř. prognózu mechanické turbulence, nebo vlnového proudění za horskou překážkou. Ve zjednodušené podobě je definována vztahem:
l=(gv2 1θθz) 1/2,
kde g je velikost tíhového zrychlení, v velikost průmětu vektoru rychlosti větru na kolmici k ose horského hřebene, Θ potenciální teplota vzduchu a z vert. souřadnice. Scorerův parametr se určuje pro jednotlivé vrstvy ovzduší, přičemž tloušťka vrstvy se volí podle stupně „monotónnosti“ změny teploty vzduchu s výškou. Při použití aerol. údajů je nejvhodnější určit Scorerův parametr pro vrstvy mezi význačnými tepl. body (tepl. „zlomy“). Příznivé podmínky pro vlnové proudění nastávají při poklesu Scorerova parametru s výškou.
česky: parametr Scorerův angl: Scorer parameter slov: Scorerov parameter rus: параметр Скорера  1993-a3
Seestation f
meteorologická stanice, která provádí měření a pozorování na prostředku plovoucím nebo zakotveném na moři, např. na lodi, bóji nebo těžní plošině. Mezi mořské met. stanice patří stanice meteorologické námořní, stanice meteorologické lodní a stanice na majákových lodích. Některé postupy při obsluze přístrojů, pozorování met. jevů a umísťování čidel na mořských met. stanicích jsou odlišné od postupů používaných na pozemních met. stanicích.
česky: stanice meteorologická mořská angl: sea station slov: morská meteorologická stanica rus: морская станция  1993-a3
Seewetterstation f
meteorologická stanice, která provádí měření a pozorování na prostředku plovoucím nebo zakotveném na moři, např. na lodi, bóji nebo těžní plošině. Mezi mořské met. stanice patří stanice meteorologické námořní, stanice meteorologické lodní a stanice na majákových lodích. Některé postupy při obsluze přístrojů, pozorování met. jevů a umísťování čidel na mořských met. stanicích jsou odlišné od postupů používaných na pozemních met. stanicích.
česky: stanice meteorologická mořská angl: sea station slov: morská meteorologická stanica rus: морская станция  1993-a3
Seewetterstation f
meteorologická stanice na stacionární meteorologické lodi, na majákové lodi nebo na těžní plošině, která provádí přízemní a aerol. měření, případně také oceánologická měření (vertikální profil teploty a slanosti mořské vody, znečištění moře apod.). Základním předpokladem je odpovídající tech., personální a komunikační vybavení a zachování stanovené polohy měření.
česky: stanice meteorologická námořní angl: ocean weather station slov: námorná meteorologická stanica rus: океаническая метеорологическая станция  1993-b3
Seewind m
slabší obdoba mořské brízy na jezerech nebo jiných velkých vodních nádržích. Výraznost jezerní brízy závisí nejen na velikosti, nýbrž i na hloubce vodní nádrže. Mělké nádrže se totiž v létě poměrně rychle ohřívají, a tím se zmenšuje rozdíl teplot mezi souší a povrchem vodní plochy. Jezerní bríza je pozorována např. na Oněžském a Ladožském jezeře, na Velkých jezerech Sev. Ameriky apod. Viz též cirkulace brízová.
česky: bríza jezerní angl: lake breeze slov: jazerná bríza rus: озерный бриз fr: brise de lac f  1993-a3
Seewind m
bríza vanoucí během dne od moře na pevninu, když je povrch moře chladnější než povrch pevniny. V tropických oblastech sahá od zemského povrchu často do výšky 1 500 m, zatímco v mírných zeměp. šířkách v létě nejvýše do 600 m. V zimě se ve stř. a vysokých šířkách prakticky nevyskytuje. V oblasti Baltského moře zasahuje tento vítr na pevninu 20 až 30 km od pobřežní čáry, v tropických oblastech až 100 km. Mořská bríza na pobřežích přispívá ke snížení teploty vzduchu v poledních a odpoledních hodinách, ke zvýšení vlhkosti vzduchu a vytváření typických pobřežních kupovitých oblaků. Viz též cirkulace brízová.
česky: bríza mořská angl: sea breeze slov: morská bríza rus: морской бриз fr: brise de mer f  1993-a3
Segelflugmeteorologie f
aplikace letecké meteorologie v bezmotorovém létání. Plachatřská meteorologie se zabývá především zákonitostmi procesů v ovzduší, které mají základní význam pro vznik vertikálních pohybů vzduchu vhodných k využití při letech kluzáků. Zahrnuje zejména rozbory podmínek konvekce, místních cirkulací, zejména svahových, popř. cirkulačních systémů, hlavně denních mořských vánků a proudění v horských závětrných vlnách. Viz též komín termický, termiky, konvekce termická, cirkulace brízová.
česky: meteorologie plachtařská angl: soaring meteorology slov: plachtárska meteorológia rus: планерная метеорология  1993-a3
Seiches pl
[séš] – viz vlny stojaté.
česky: seiche angl: seiche slov: seiche rus: сейшa  1993-a1
Seistan m
místní název větru v oblasti Sistan na jihovýchodě Íránu a v přilehlé části Afgánistánu. Seistan má obvykle sz. až sev. směr a vane na okraji monzunové cyklony se středem nad sev. Pákistánem. Vyskytuje se od konce května nebo počátku června téměř bez přestávky až do konce září; proto je seistan znám též jako „vítr 120 dní“. Může dosáhnout i rychlosti větší než 30 m.s–1, vzhledem k velké prašnosti může mít některé vlastnosti prachové nebo písečné bouře.
česky: seistan angl: seistan slov: seistan rus: систан  1993-a2
Seitenkeule der Antenne
sekundární maxima parazitního vyzařování antény mimo hlavní lalok, tj. ve směru mimo osu antény. Výkon vyzářený bočními laloky antény je jen malým procentem celkového výkonu (obvykle alespoň o 20 dB slabší než hlavní lalok), přesto v případě výskytu velmi silných nebo blízkých cílů mohou boční laloky působit odrazy zkreslující měření meteorologických cílů.
česky: lalok antény boční slov: bočný lalok antény rus: боковой лепесток ДН антенны  2014
seitliche Refraktion f
refrakce světelných paprsků působená horiz. nehomogenitami v poli hustoty vzduchu. Má značný význam např. při geodetických měřeních.
česky: refrakce boční angl: lateral refraction slov: bočná refrakcia rus: боковая рефракция, горизонтальная рефракция  1993-a1
Seklusion f
stadium v okluzním procesu, kdy ke spojení teplé a studené fronty při zemi nedojde nejdříve ve středu  frontální cyklony, ale v jisté vzdálenosti od něj. Sekluze znamená, že blízko týlové části okluzní fronty se vytvoří kapsa teplého vzduchu v nízkých hladinách, která je obklopena vzduchem chladnějším. Sekluze je ve vývoji cyklony výjimečným jevem, např. se může vyskytnout v průběhu orografické okluze, ovšem relativně často se vytváří v dospělém stadium vývoje hlubokých mořských mimotropických cyklon (jak bylo potvrzeno např. experimetnem ERICA). V současné literatuře se pojem sekluze vyskytuje v poněkud modifikovaném smyslu v souvislosti se Shapirovým–Keyserovým modelem cyklony.
česky: sekluze angl: seclusion slov: seklúzia rus: секклюзия  1993-a3
Sektoreinteilung der Zyklone f
proces v atmosféře, při němž z jedné cyklony vzniknou dvě, nebo více cyklon. K segmentaci cyklony dochází většinou tak, že na okraji staré cyklony, která se už vyplňuje, se vytvoří samostatná cyklona s uzavřenou cirkulací, jindy nastává segmentace cyklony při postupu mladé cyklony přes horskou překážku. Nově vzniklé cyklony se obyčejně vzájemně pohybují proti směru pohybu hodinových ručiček. O nepravé segmentaci cyklony se hovoří tehdy, když se rozsáhlá cyklona začíná vyplňovat, přičemž se rozpadá na několik samostatných cyklon, které se pak vyplňují nerovnoměrně. Cyklony, které vznikají segmentací, mají jednu, nebo více uzavřených izobar a jako celek jsou ohraničené dalšími izobarami, takže vytvářejí rozsáhlou oblast nízkého tlaku vzduchu.
česky: segmentace cyklony angl: segmentation of cyclone slov: segmentácia cyklóny rus: сегментация циклона  1993-a1
sekundäre Eisnukleation f
vznik ledových částic v oblacích, který neodpovídá heterogenní nukleaci ledu na ledových jádrech. Jde např. o vznik ledových fragmentů při tříštění primárních ledových krystalků nebo při explozivním mrznutí větších kapek. Souvislost s těmito procesy má tzv. Hallettův-Mossopův proces popsaný v roce 1974. Při něm dochází ke vzniku ledových fragmentů při mrznutí kapek, které jsou zachyceny ledovou krupkou. Vzhledem k tomu, že při leteckých měřeních koncentrace ledových částic u vrcholu oblaků byly zjištěny hodnoty, které řádové převyšují koncentraci ledových jader, označuje se proces sekundární nukleace také jako multiplikace nebo navýšení ledových částic v oblacích.
česky: nukleace ledu sekundární angl: ice enhancement, ice multiplication, secondary ice nucleation slov: sekundárna nukleácia ľadu rus: вторичное образование ледяных частиц, размножение ледяных частиц  2014
sekundäre Front f
atmosférická fronta oddělující různé části téže vzduchové hmoty. Obvykle se vyskytují podružné studené fronty, což jsou fronty uvnitř horizontálně nestejnorodého arktického vzduchu nebo vzduchu mírných šířek, za nimiž postupuje chladnější část této vzduchové hmoty. Často se vyskytují v týlu cyklony za hlavní frontou a mají oproti ní menší vert. rozsah. Zasahují pouze spodní, nanejvýš stř. troposféru.
česky: fronta podružná angl: secondary front slov: podružný front rus: вторичный фронт fr: front secondaire m  1993-a3
sekundäre Zirkulation f
česky: cirkulace druhotná slov: druhotná cirkulácia rus: вторичная циркуляция fr: circulation secondaire f  1993-a1
sekundäre Zirkulation f
syn. cirkulace druhotná – 1. podle H. C. Willeta atmosférická cirkulace v měřítku cyklon a anticyklon;
2. obecně jakákoli cirkulace, která je dynamicky indukovaná nebo je součástí silnější cirkulace zpravidla většího měřítka. Viz též cirkulace primární, cirkulace terciární.
česky: cirkulace sekundární angl: secondary circulation slov: sekundárna cirkulácia rus: вторичная циркуляция fr: circulation secondaire f  1993-a3
sekundärer Regenbogen m
1. syn. duha vedlejší;
2. v mn. č. označení pro podružné duhové oblouky, které se vyskytují na vnitřní straně duhy hlavní a na vnější straně duhy vedlejší. Jde o interferenční jev související s uplatněním optického principu minimální odchylky.
česky: duha sekundární angl: secondary rainbow slov: sekundárna dúha rus: вторичная радуга fr: arc secondaire m  1993-a3
sekundäres Aerosol n
atmosférický aerosol, jehož pevné nebo kapalné částice vznikají v atmosféře procesem nukleace z původně plynných látek. V literatuře se lze setkat i se synonymickým pojmem aerosoly nukleační, ve starší čes. tech. literatuře se vyskytuje i aerosoly kondenzační.
česky: aerosoly sekundární angl: secondary aerosols slov: sekundárne aerosoly rus: вторичные аэрозольные (взвешенные) частицы fr: aérosols secondaires  2014
sekundäres organisches Aerosol n
(SOA) – aerosolové částice, které vznikají v atmosféře cykly chemických reakcí, do nichž vstupují VOC jak přírodního (biogenního), tak antropogenního původu. Prvotními reakcemi jsou zde zejména reakce VOC s hydroxylovým radikálem OH*, ale uplatňují se též reakce s dalšími radikály, popř. s ozonem. Navazujícími cykly reakcí se vytvářejí organické sloučeniny se stále nižší volatilitou (těkavostí), až nakonec dojde k nukleaci, tj. vzniku částic typu Aitkenových jader. Jako součást sekundárních organických aerosolů se uplatňují látky typu PAN, hydroperoxidů a další typy organických sloučenin. Cesta vedoucí ke vzniku sekundárních organických aerosolů je z hlediska celkových transformací těkavých organických látek v atmosféře sice v řadě ohledů významná, ale kvantitativně spíše minoritní. Většinovou transformační cestou jsou pak homogenní reakce v plynné fázi, jejichž konečným produktem je formaldehyd HCHO.
česky: aerosoly organické sekundární angl: secondary organic aerosols slov: sekundárne organické aerosoly fr: aérosols organiques (biogéniques) secondaires pl  2014
Selbstreinigung der Atmosphäre f
soubor všech procesů, jejichž výsledkem je snižování množství znečišťujících příměsí v atmosféře. Zahrnuje procesy atmosférické depozice a chemické reakce v atmosféře. K procesům samočištění ovzduší nepatří šíření příměsí v atmosféře. Viz též znečištění ovzduší, znečišťování ovzduší.
česky: samočištění ovzduší angl: self-cleaning of air slov: samočistenie ovzdušia rus: самоочищение воздуха  1993-a3
selektive Absorption f
pohlcování krátkovlnného nebo dlouhovlnného záření určitých vlnových délek, působené výskytem absorpčních čar v absorpčním spektru jednotlivých plynných složek atmosféry. Příčinou vzniku absorpčních čar, popř. z nich složených absorpčních pásů, jsou změny kvantových stavů atomů a molekul. Z energ. hlediska se na selektivní absorpci záření podílí největší měrou vodní pára, dále ozon (hlavně v oblasti ultrafialového záření) a oxid uhličitý, který má výrazný absorpční pás v blízkosti vlnové délky 15 μm. Viz též koeficient absorpce, plyny skleníkové.
česky: absorpce záření selektivní angl: selective absorption slov: selektívna absorpcia žiarenia rus: избирательное поглощение fr: absorption sélective f  1993-a3
semiarides Klima n
česky: klima semiaridní angl: semiarid climate slov: semiaridná klíma rus: семиаридный климат  1993-b3
semigeostrophische Aproximation f
méně zjednodušující alternativa kvazigeostrofické aproximace, kde jsou lokální časová změna a gradient složek rychlosti větru nahrazeny lokální časovou změnou a gradientem složek rychlosti geostrofického větru. Semigeostrofická aproximace tedy předpokládá nulové zrychlení ve vert. směru a uvažuje advekci geostrofickými i ageostrofickými složkami proudění. Prostřednictvím specifické transformace souřadnic lze dosáhnout zjednodušeného tvaru základních rovnic, podobného jako v případě kvazigeostrofické aproximace. Semigeostrofická aproximace je vhodná pro analýzu atmosférických front a výrazných cyklonmezosynoptickém měřítku. Viz též vítr ageostrofický.
česky: aproximace semigeostrofická angl: semigeostrophic approximation slov: semigeostrofická aproximácia fr: approximation semi-géostrophique f, approximation quasi-géostrophique f  2014
semigeostrophische Aproximation f
méně zjednodušující alternativa kvazigeostrofické aproximace, kde jsou lokální časová změna a gradient složek rychlosti větru nahrazeny lokální časovou změnou a gradientem složek rychlosti geostrofického větru. Semigeostrofická aproximace tedy předpokládá nulové zrychlení ve vert. směru a uvažuje advekci geostrofickými i ageostrofickými složkami proudění. Prostřednictvím specifické transformace souřadnic lze dosáhnout zjednodušeného tvaru základních rovnic, podobného jako v případě kvazigeostrofické aproximace. Semigeostrofická aproximace je vhodná pro analýzu atmosférických front a výrazných cyklonmezosynoptickém měřítku. Viz též vítr ageostrofický.
česky: aproximace semigeostrofická angl: semigeostrophic approximation slov: semigeostrofická aproximácia fr: approximation semi-géostrophique f, approximation quasi-géostrophique f  2014
Sendeplan m
dříve použitelná tabulka udávající čas, druh a způsob vysílání meteorologických zpráv, meteorologických informací a podkladů, sestavená obvykle pro určitou část nebo úroveň světového telekomunikačního systému.
česky: rozvrh vysílací angl: schedule of transmission slov: vysielací rozvrh rus: расписание передач  1993-a3
Sensor m
syn. čidlo.
česky: senzor angl: sensor slov: senzor  2014
Sentinel m
družicové meteorologii program, resp. stejnojmenné evropské meteorologické družice, zaměřené na monitorování atmosféry a oceánů pro jiné primární účely než operativní předpověď počasí. Družice Sentinel jsou iniciovány Evropskou komisí a ESA pro operativní podporu programu Copernicus (GMES). Zahrnují, resp. budou zahrnovat celou škálu různě zaměřených družic, resp. přístrojů. Na přípravě některých z družic, resp. přístrojů Sentinel se podílí i organizace EUMETSAT.
česky: Sentinel angl: Sentinel slov: Sentinel  2014
serienabschliessende Antizyklone f
syn. anticyklona závěrečná – postupující anticyklona, která se vytváří mezi jednotlivými sériemi cyklon polární fronty. Zpočátku je uzavírající anticyklona termicky asymetrická. Přesouvá se nejčastěji na jihovýchod do nižších zeměp. šířek, přičemž se otepluje a mohutní a stává se málo pohyblivou kvazistacionární anticyklonou. Uzavírající anticyklony často přispívají k regeneraci slábnoucích subtropických anticyklon. V některých případech narušují převládající záp. proudění, hlavně ve stadiu své stabilizace a působí jako blokující anticyklony. Někteří autoři je nazývají též anticyklonami polárních vpádů.
česky: anticyklona uzavírající angl: terminating anticyclone slov: uzatvárajúca anticyklóna rus: заключительный антициклон  1993-a2
severe weather
lid. označení pro špatné počasí, především z hlediska pobytu člověka venku. Myslí se jím zejména deštivé, větrné a chladné počasí. V podobném významu se používá i výrazů nepohoda, plískanice, psota, slota. Viz též čas.
česky: nečas angl: foul weather slov: nečas rus: ненастье, непогода  1993-a1
Sferics f/pl
atmosfériky – elmag. rozruchy ve tvaru krátkých impulzů, šířící se v atmosféře převážně ve vert. rozsahu troposféry a stratosféry, jejichž původcem je el. bouřkový výboj. Intenzita sfériků na místě pozorování závisí na výšce a intenzitě původního výboje. Výrazné sfériky jsou svázány se studenými vzduchovými hmotami a studenými frontami. Jsou intenzivnější v létě než v zimě, ve dne než v noci a v nižších zeměp. šířkách než ve vysokých. Viz též pozemní detekce blesků.
česky: sfériky angl: atmospherics, sferics, spherics slov: sfériky rus: атмосферики  1993-a3
sferics pl
syn. sfériky.
česky: atmosfériky slov: atmosfériky rus: атмосферики  1993-a1
shelf cloud f
[šelf kloud] – oblak morfologicky patřící do zvláštnosti oblaků cauda, kam byl zařazen v roce 2017. Zpravidla se vyskytuje na čele postupující konvektivní bouře, resp. její gust fronty, výjimečně na čele studené fronty. Zviditelňuje rozhraní mezi studeným vzduchem vytékajícím z bouře a teplým vzduchem vtékajícím do bouře, podél něhož vytváří zpravidla zahnutý pás oblačnosti, často s klínovitým vzhledem na přední straně. Spodní základna shelf cloudu bývá značně turbulentní, zatímco svrchní část mívá zpravidla hladký, až laminární povrch. Při přechodu shelf cloudu často dochází k prudkému zhoršení počasí, nástupu srážek a zesílení větru i jeho nárazů. Na rozdíl od roll cloudu je shelf cloud propojený s oblačností mateřské bouře a může se vytvářet i ve více vrstvách nad sebou. V české odborné terminologii nebyl český termín zaveden a používá se termín převzatý z angličtiny.
česky: shelf cloud angl: shelf cloud slov: shelf cloud  2014
Showalter-Index m
index stability definovaný podle vzorce
SI=T500-TL,
kde T500 je teplota vzduchu v hladině 500 hPa a TL je teplota částice vzduchu adiabaticky zdvižená z hladiny 850 hPa do hladiny 500 hPa nejprve po suché adiabatě do nasycení a dále po nasycené adiabatě. Kladná hodnota Showalterova indexu značí stabilní zvrstvení, záporné hodnoty instabilní. Index formuloval A. K. Showalter v roce 1963.
česky: index Showalterův angl: Showalter index slov: Showalterov index rus: индекс Шоуолтера  2014
SI n
mezinárodně dohodnutá soustava jednotek fyzikálních veličin, která se skládá ze základních jednotek, odvozených jednotek a násobků a dílů jednotek. Některé ze sedmi základních jednotek (metr, kilogram, sekunda, kelvin, ampér, kandela, mol) se v meteorologii běžně používají. Odvozené jednotky se tvoří výhradně jako součiny a podíly jednotek základních. S vlastním názvem se v meteorologii používá odvozená jednotka pro tlak vzduchu (pascal) a teplotu (stupeň Celsia), bez vlastního názvu např. m.s–1 pro rychlost, kg.m–3 pro hustotu apod. Násobky a díly (výhradně dekadické) se tvoří pomocí předpon před jednotkami. Stále se používají tzv. vedlejší jednotky, které byly dříve pro svou všeobecnou rozšířenost a užitečnost řazeny do soustavy SI, přestože nebyly odvozeny ze základních jednotek. Soustava SI akceptuje používat souběžně s jednotkami SI tyto vedlejší jednotky: minuta, hodina, den, úhlový stupeň, úhlová minuta, (úhlová) vteřina, hektar, litr a tuna.
česky: soustava SI angl: international system of units, System International slov: sústava SI rus: международные единицы измерения СИ  2014
sibirische Antizyklone f
kontinentální anticyklona vytvářející se v zimních měsících nad stř. a sev. částí Eurasie. Střed sibiřské anticyklony leží v dlouhodobém průměru nad Mongolskem. V sibiřské anticykloně byl naměřen nejvyšší tlak vzduchu (na Zemi) redukovaný na hladinu moře. Sibiřská anticyklona netrvá po celou zimu, nýbrž se obnovuje v důsledku stabilizace postupujících anticyklon nad ochlazenou pevninu. Někdy zasahuje až do stř. Evropy, pokud její střed leží záp. od Uralu. Ze sibiřské anticyklony se někdy oddělují postupující anticyklony, které putují až nad Tichý oceán, kde způsobují regeneraci subtropické anticyklony. Sibiřské anticyklony patří k nejrozsáhlejším anticyklonám. Její vert. mohutnost je však malá, často nedosahuje ani výšky 2000 m, nad ní je výrazná inverze teploty vzduchu. Sibiřská anticyklona je sezonním akčním centrem atmosféry. Viz též anticyklona kvazistacionární, extrémy tlaku vzduchu.
česky: anticyklona sibiřská angl: Siberian anticyclone slov: sibírska anticyklóna rus: сибирский антициклон fr: anticyclone de Sibérie m  1993-a2
sich verlagernde Antizyklone f
syn. anticyklona putující – anticyklona, která se pohybuje ve směru řídícího proudění. Postupující anticyklona je zpravidla termicky asymetrická a vytváří se většinou za poslední cyklonou ze série cyklon polární fronty. Má tendenci směřovat do nižších zeměp. šířek, v nichž dochází k její stabilizaci, přičemž se postupně mění z nízké na vysokou a termicky symetrickou (teplou) anticyklonu. Postupující anticyklona se vytváří i mezi jednotlivými cyklonami ze série cyklon; v tom případě však zůstává většinou termicky asymetrická.
česky: anticyklona postupující angl: migratory anticyclone slov: postupujúca anticyklóna rus: подвижный антициклон fr: anticyclone migratoire m  1993-a3
sich verlagernde Zyklone f
syn. cyklona putující – frontální cyklona hlavně v prvých stadiích vývoje. Postupuje ve směru řídicího proudění s rychlostí rovnající se 0,6 až 0,8 rychlosti geostrofického větru zjištěného v hladině tohoto proudění. Nad Evropou činí rychlost postupujících cyklon v průměru kolem 30 km.h–1, max. až 100 km.h–1.
česky: cyklona postupující angl: migratory cyclone, moving cyclone slov: postupujúca cyklóna rus: подвижный циклон fr: cyclone migrateur m  1993-a2
Sichtflug m
let, který se uskutečňuje za vizuálního kontaktu s povrchem země a za met. podmínek rovných nebo lepších, než jsou stanoveny minimy pro dohlednost, vzdálenost od oblaků a od základny oblaků. Pro tyto lety platí speciální pravidla VFR (Visual flight rules). Lety VFR lze provádět jen do letové hladiny FL 195 (19 500 stop). Výjimky z tohoto pravidla mohou být schváleny Úřadem pro civilní letectví a lze je nalézt v publikaci Letecké informační služby ŘLP ČR s. p. AIP (Aeronautical Information Publication). Viz též podmínky meteorologické pro let za viditelnosti.
česky: let za viditelnosti povrchu Země angl: visual flight slov: let pri viditeľnosti zeme rus: визуальный полет  1993-a3
Sichtflugregeln f/pl
česky: pravidla pro let za viditelnosti (VFR) angl: visual flight rules slov: pravidlá pre let pri vidieteľnosti rus: правила визуального полета  1993-a1
Sichtmarke f
terénní předmět (budova, věž, skupina stromů apod.), který ve známé vzdálenosti od met. stanice výrazně vystupuje nad obzor a jenž se užívá jako orientační bod při zjišťování meteorologické dohlednosti.
česky: objekt pro zjišťování dohlednosti angl: visibility marker, visibility object slov: objekt pre zisťovanie dohľadnosti rus: ориентир видимости  1993-a1
Sichtmessung f
meteorologické měření za účelem zjišťování definované dohlednosti, jakou je např. meteorologická dohlednost, šikmá dohlednost, vertikální dohlednost, dohlednost dráhových světel aj. Vzdálenosti, na které jsou vidět definovaná světla za soumraku nebo v noci, lze převádět na hodnoty met. dohlednosti, která se vyjadřuje v m nebo v km. Pro přístrojová měření bývá použit měřič průzračnosti neboli transmisometr, popř. měřič dohlednosti, používající dopředný rozptyl světla v atmosféře neboli forward scatterometr. Viz též měření dráhové dohlednosti, pozorování meteorologické dohlednosti.
česky: měření dohlednosti angl: visibility measurement slov: meranie dohľadnosti rus: измерение видимости  1993-a3
Sichtweite f
1. podle definice Světové meteorologická organizace největší vzdálenost, na kterou lze vidět a rozeznat černý předmět vhodných rozměrů umístěný u země, pokud je pozorován za denního světla proti obloze horizontu, nebo který je možné vidět a rozeznat v noci, pokud je umělé osvětlení na úrovni normálního denního světla;
2. pro letecké účely je za dohlednost považována větší z:
(a) největší vzdálenosti, na kterou je možné spolehlivě vidět a rozeznat na světlém pozadí černý předmět vhodných rozměrů umístěný u země, a
(b) největší vzdálenosti, na kterou je možně spolehlivě rozeznat na neosvětleném pozadí světla o svítivosti přibližně 1 000 cd.
Tyto dvě vzdálenosti jsou odlišné v atm. podmínkách charakterizovaných stejným koeficientem zeslabení. Vzdálenost (a) objektivizuje meteorologický optický dosah a vzdálenost (b) kolísá v závislosti na intenzitě osvětlení pozadí.
česky: dohlednost angl: visibility slov: dohľadnosť rus: видимость, дальность видимости fr: visibilité f  1993-a3
Sichtweitenmessung f
meteorologické měření za účelem zjišťování definované dohlednosti, jakou je např. meteorologická dohlednost, šikmá dohlednost, vertikální dohlednost, dohlednost dráhových světel aj. Vzdálenosti, na které jsou vidět definovaná světla za soumraku nebo v noci, lze převádět na hodnoty met. dohlednosti, která se vyjadřuje v m nebo v km. Pro přístrojová měření bývá použit měřič průzračnosti neboli transmisometr, popř. měřič dohlednosti, používající dopředný rozptyl světla v atmosféře neboli forward scatterometr. Viz též měření dráhové dohlednosti, pozorování meteorologické dohlednosti.
česky: měření dohlednosti angl: visibility measurement slov: meranie dohľadnosti rus: измерение видимости  1993-a3
Sichtweitenmessung f
česky: měřič dohlednosti angl: visibility meter, visibility recorder slov: dohľadomer rus: измеритель видимости  1993-a1
Siedepunkt m
syn. teplota varu – teplota, při níž je tlak nasycené páry nad povrchem kapalné fáze dané látky roven vnějšímu tlaku, v atmosférických podmínkách tlaku vzduchu. Bod varu čisté vody je při normálním tlaku roven 100 °C (373,15 K). Tato teplota byla zvolena jako jeden ze dvou základních bodů při definování Celsiovy teplotní stupnice. S klesajícím tlakem vzduchu se bod varu vody snižuje. Této závislosti se využívá při měření nadm. výšek hypsometry. Viz též bod sublimace.
česky: bod varu angl: boiling point slov: bod varu rus: точка кипения fr: point d'ébullition m  1993-a3
sigma-Koordinaten f/pl
česky: soustava souřadnicová σ angl: σ coordinate system slov: súradnicová sústava σ  1993-a1
Sigma-System n
pravoúhlá soustava souřadnic, v níž osy x a y leží v hladině jednotkové hodnoty veličiny σ, která je definována vztahem:
σ=ppT pSpT
kde p je tlak vzduchu ve zvolené hladině, pS tlak vzduchu v úrovni zemského povrchu a pT tlak vzduchu na uvažované horní hranici atmosféry. Vert. osu označenou σ orientujeme ve směru největšího poklesu hodnot veličiny σ. Výhodou sigma-systému je snadné znázornění reliéfu zemského povrchu, neboť hladina σ = 1 je totožná se zemským povrchem. Z tohoto důvodu se sigma-systém často používá v numerické předpovědi počasí. Viz též z-systém, p-systém, theta-systém, soustava souřadnicová hybridní.
česky: sigma-systém, soustava souřadnicová σ angl: sigma system slov: sigma-systém rus: сигма-система  1993-a3
SIGMET-Meldung f
(Significant Meteorological Phenomena) – informace vydaná leteckou meteorologickou výstražnou službou týkající se výskytu nebo očekávaného výskytu určitých meteorologických jevů na trati, které mohou ovlivnit bezpečnost letového provozu. Informace SIGMET jsou předmětem mezinárodní výměny a vydávají se v souladu s postupy ICAO ve zkrácené otevřené řeči (anglické) vždy na jeden z následujících jevů: bouřky, tropická cyklona, silná turbulence, silná námraza, silná horská vlna, silná prachová vichřice, silná písečná vichřice, vulkanický popel a radioaktivní oblak. Období platnosti informací SIGMET je maximálně čtyři hodiny, v případě vulkanického popela a tropické cyklony je období platnosti šest hodin.
česky: informace SIGMET angl: SIGMET information slov: informácia SIGMET rus: информация SIGMET  2014
signifikante Flächen f/pl
hladiny uváděné ve zprávách PILOT a TEMP, v nichž podle aerologických měření nabývá teplota vzduchu, relativní vlhkost vzduchu, směr a rychlost větru hodnot, významných pro sestrojení křivek vertikálního profilu teploty, vlhkosti vzduchu a větru. Za význačné hladiny teploty se v troposféře považují zejména dolní a horní hranice inverzí teploty, resp. izotermií v případě, že tlakový rozdíl mezi základnou a horní hranicí těchto vrstev je alespoň 20 hPa, nebo je-li vrstva charakterizována významnou změnou vlhkosti vzduchu. Výběr dalších význačných hladin u teploty a vlhkosti vzduchu se provádí tak, aby se rozdíl změřené teploty a vlhkosti vzduchu nelišil od profilu zkonstruovaného pomocí význačných hladin o více než 1 °C do výšky hladiny 300 hPa, nebo první tropopauzy, o 2 °C nad touto výškou a o 15 % rel. vlhkosti v celém rozsahu měření vlhkosti. Pro výběr význačných hladin větru jsou rozhodující odchylky od vert. průběhu změřené rychlosti a směru větru o více než 10° u směru a 5 m.s–1 u rychlosti větru. Za význačnou hladinu se považuje i tropopauza, hladina maximálního větru, počáteční a nejvyšší bod měření. Jestliže se vert. průběh měřeného prvku vynáší do termodynamického diagramu pomocí lomené čáry, označují se význačné hladiny často jako zlomové body, popř. „zlomy".
česky: hladiny význačné angl: significant levels slov: význačné hladiny rus: характерные уровни  1993-a3
signifikante Wettererscheinungen f/pl
letecké meteorologii souborné označení pro následující jevy: bouřku, tropickou cyklonu, výrazné čáry instability, kroupy, mírnou a silnou turbulenci, mírnou a silnou námrazu na letadlech, významné závětrné vlny, rozsáhlé písečné nebo prachové bouře, namrzající déšť, popř. ledovku aj. Tyto jevy se někdy zkráceně označují jako význačné počasí. Viz též mapy význačného počasí, informace SIGMET, informace AIRMET, indikátory změny v přistávacích a letištních předpovědích.
česky: jevy počasí význačné angl: significant weather phenomena slov: význačné javy počasia rus: характерные явления погоды  1993-a3
signifikantes Wetter n
česky: počasí význačné angl: significant weather slov: význačné počasie rus: осoбыe явления погоды, характерная погода  1993-a1
Silberscheiben-Pyrheliometer nach Abbot n
pyrheliometr v minulosti používaný hlavně v USA. Využívá teplo, které pohltí Sluncem ozářený masivní stříbrný disk s černým nátěrem, umístěný v tubusu, jehož osa se při měření orientuje do směru dopadajících paprsků. Množství dopadajícího přímého slunečního záření se určí ze vzrůstu teploty disku změřené rtuťovým teploměrem pomocí konstanty určené individuálně pro každý přístroj. Uvedený pyrheliometr zkonstruoval amer. astronom C. G. Abbot v r. 1900.
česky: pyrheliometr se stříbrným diskem angl: Abbot silver disc pyrheliometer slov: Abbotov pyrheliometer so strieborným diskom rus: серебрянодисковый актинометр Аббота  1993-b3
Silur n
třetí geol. perioda paleozoika (prvohor) mezi ordovikem a devonem, zahrnující období před 444 – 419 mil. roků. Koncentrace kyslíku v atmosféře Země dosáhla několika procent, takže ozonová vrstva již byla natolik mocná, aby umožnila rostlinám kolonizovat souš.
česky: silur angl: Silurian slov: silur  2018
silvagenitus
označení jednoho ze zvláštních oblaků zavedené mezinárodní morfologickou klasifikací z roku 2017. Označení zvláštního oblaku silvagenitus se vztahuje na oblaky, které se vyvíjejí lokálně nad lesním porostem jako výsledek zvýšení vlhkosti vzduchu v důsledku evapotranspirace z lesního porostu. Označují se názvem vhodného druhu, popř. tvaru, odrůdy a zvláštnosti, následovaného označením silvagenitus, např. stratus silvagenitus.
česky: silvagenitus angl: silvagenitus slov: silvagenitus  2018
Singularität f
v původním významu podle A. Schmausse (1928) odchylka od hladké (idealizované) křivky dlouhodobého ročního chodu meteorologického prvku, zvláště teploty vzduchu a množství srážek; tato odchylka má být patrná ještě při uvažování průměrů za 100 let. V tomto smyslu se tedy jedná o jev přesně vázaný na určité kalendářní období. V širším smyslu nazýváme singularitou poměrně pravidelnou odchylku od ročního chodu počasí, podmíněnou zvýšeným výskytem určitých povětrnostních situací v dané části roku a v některé geogr. oblasti (tedy syn. pro meteorologickou pravidelnost).
Ve stř. Evropě je nejvýraznější singularitou medardovské počasí, popř. ovčí chladna, o něco méně výraznou pak babí léto. Tzv.. ledoví muži, kteří patří k nejznámějším výkyvům v roč. průběhu počasí, se na křivkách prům. roč. chodu teploty vzduchu za víceleté období výrazněji neprojevují vzhledem k značně nepravidelnému nástupu v jednotlivých rocích. Tradovaná existence vánoční oblevy. bývá v novějších pracích zpochybňována. Některé singularity jsou zachyceny v povětrnostních pranostikách.
 
česky: singularita angl: singularity slov: singularita rus: особенность  1993-a3
Siphon m
1. na jednom konci uzavřená skleněná trubice tvořící součást rtuťového tlakoměru zahnutá do tvaru písmene „U“, která má stejný průřez v místech, kde se pohybuje horní a dolní hladina rtuti. Viz též nádobka tlakoměru;
2. trubice tvořící součást plovákového ombrografu zahnutá do tvaru obráceného písmene „U“, která slouží k jednorázovému rychlému výtoku vody z plovákové komory, jakmile její hladina dosáhne nastavené úrovně.
česky: násoska angl: siphon slov: násoska rus: сифон  1993-a1
Skagerrak-Zyklone f
cyklona, vznikající v důsledku orografické cyklogeneze v závětří Skandinávského pohoří při sz. proudění.
česky: cyklona skagerrakská angl: Skagerrak cyclone slov: skagerrakská cyklóna rus: скагерракский циклон fr: dépression de Skagerrak f  1993-a3
Skala der atmosphärischen Wirbel f
střední rozměr vírů v atmosféře, který se mění v rozmezí řádově od 10–3 do 107 m. Nejmenší víry odpovídají tepelnému pohybu molekul se zanedbatelnou kinetickou energií, největší rozsáhlým tlakovým útvarům s velkou kinetickou energií. Podle rozměru těchto vírů rozlišujeme v meteorologii malé (mikro) měřítko 10–1 až 103 m, střední (mezo) měřítko 104 až 105m a velké (makro) měřítko 106 až 107m. Viz též makrometeorologie, mezometeorologie, mikrometeorologie, délka směšovací.
česky: měřítko vírů v atmosféře angl: atmospheric vortices scale slov: mierka vírov v atmosfére  1993-a1
Skalenklassifikation atmosphärischer Prozesse nach Orlanski f
klasifikace meteorologických procesů a jevů podle jejich charakteristických rozměrů navržená Orlanskim (1975). Meteorologické jevy o rozměru menším než 2 km se označují jako jevy mikroměřítka, jevy s charakteristickým rozměrem 2 km až 2 000 km jako jevy mezoměřítka (resp. mezosynoptického měřítka) a jevy o charakteristických rozměrech větších než 2 000 km jako jevy makroměřítka, resp. synoptického měřítka. Pro každou ze tří hlavních kategorií vymezuje klasifikace i jemnější dělení, viz tabulku.
Definice charakteristického prostorového měřítka podle Orlanskiho (1985)
Měřítko Rozsah rozměrů Příklady
mikro-γ < 20 m turbulence, vlečky, drsnost
mikro-β 20–200 m prachové víry, termály, brázda za lodí
mikro-α 200–2000 m tornádo, krátké gravitační vlny
mezo-γ 2–20 km bouřková konvekce, proudění ve složitém terénu, vlivy města
mezo-β 20–200 km noční jet v nízkých hladinách, shluky oblaků, mořská bríza
mezo-α 200–2 000 km atmosférické fronty, mimotropické cyklony, tropické cyklony
makro-β 2 000–20 000 km baroklinní vlny
makro-α > 20 000 km slapové vlny

Orlanskiho klasifikace meteorologických procesů se přenáší i do popisu procesů a jevů, které lze vystihnout modelem s danou rozlišovací schopností. Hovoříme pak o modelech příslušného měřítka. Klasifikace podle Orlanskiho je v současné době respektovanou a používanou klasifikací, i když i další autoři navrhli analogické klasifikace. Příkladem je i složitější klasifikace Fujity (1981).
česky: klasifikace meteorologických procesů podle Orlanskiho slov: klasifikácia meteorologických procesov podľa Orlanského rus: классификация Орланского  2014
Slowakische bioklimatologische Gesellschaft bei der Slowakischen Akademie der Wissenschaften f
vědecká společnost při SAV, sdružující zájemce o bioklimatologii v SR, popř. čestné členy ze zahraničí. Její náplní je vědecká činnost, výměna informací mezi pracovníky z různých pracovišť a popularizace bioklimatologie. SBkS vznikla v listopadu 1968 vyčleněním z Československé bioklimatologické společnosti při ČSAV v souladu se zákonem o čs. federaci. Jejím prvním předsedou byl prof. MUDr. Juraj Hensel.
česky: Slovenská bioklimatologická spoločnosť při SAV (SBkS) angl: Slovak Bioclimatological Society of the Slovak Academy of Sciences slov: Slovenská bioklimatologická spoločnosť pri SAV  1993-a3
Slowakische meteorologische Gesellschaft bei der Slowakischen Akademie der Wissenschaften f
vědecká společnost, sdružující zájemce o meteorologii v SR, popř. čestné členy ze zahraničí. SMS vznikla v roce 1960 jako součást Československé meteorologické společnosti při ČSAV, jejím prvním předsedou byl prof. RNDr. Mikuláš Konček, DrSc., člen korespondent ČSAV a SAV. Náplní SMS je podobně jako u ČMeS vědecká činnost, výměna informací mezi pracovníky z různých pracovišť a popularizace meteorologie. Ve své činnosti využívá různé formy přednáškové činnosti i akce s mezin. účastí. Je organizačně členěna do tří poboček (Bratislava, Banská Bystrica, Košice), sídlo je na SHMÚ.
česky: Slovenská meteorologická spoločnosť při SAV (SMS) angl: Slovak Meteorological Society of the Slovak Academy of Sciences slov: Slovenská meteorologická spoločnosť pri SAV  1993-a3
Slowakisches hydrometeorologisches Institut n
specializovaná organizace Ministerstva životního prostředí Slovenské republiky, vykonávající hydrologickou a meteorologickou službu na národní i mezinárodní úrovni; řídí se především zákonem 201/2009 Sb. o státní hydrologické službě a meteorologické službě. Monitoruje množství a jakost ovzduší a vod na území SR, archivuje, kontroluje, hodnotí a interpretuje data a informace o stavu a režimu atmosféry a hydrosféry, vytváří předpovědi a výstrahy. Provozuje Státní meteorologickou síť a Státní hydrologickou síť, síť na měření dávkového příkonu gama záření, dále provozuje meteorologické radary a sondážní aerologická měření ve vyšších vrstvách atmosféry. Poskytuje informace o počasí, klimatu a hydrologické situaci, vodních zdrojích a radioaktivitě životního prostředí. Vytváří a distribuuje předpovědi a výstrahy na nebezpečné hydrometeorologické situace, smog, ozon a radioaktivním zamoření pro vládu SR, státní správu a samosprávu, krizové řízení, veřejnost a další uživatele. Sleduje vývoj klimatického systému, koordinuje národní programy monitorování ovzduší a vod, poskytuje informace pro civilní letectví a Armádu SR. SHMÚ se podílí na výzkumu a vývoji a spolupracuje s vysokými školami na výchově odborníků. Je členem nebo zabezpečuje členství v mezinárodních organizacích: Světová meteorologická organizace (WMO), Evropská organizace pro využívání meteorologických družic (EUMETSAT), Evropské centrum pro střednědobé předpovědi počasí (ECMWF), Mezinárodní organizace pro civilní letectví (ICAO).
SHMÚ je pověřen výkonem funkce Regionálního instrumentálního centra WMO (ROC), dočasně provozuje regionální kancelář Mezinárodního centra pro hodnocení vod (IWAC) a zabezpečuje činnost regionální kanceláře Globálního partnerství v oblasti vod (GWP). Viz též meteorologie v ČR.
česky: Slovenský hydrometeorologický ústav (SHMÚ) angl: Slovak Hydrometeorological Institute slov: Slovenský hydrometeorologický ústav  1993-a3
Smog m
v současnosti obecně užívané označení pro různé druhy silného znečištění ovzduší nad rozsáhlejším územím, hlavně nad velkoměsty. Různé druhy smogu jsou tvořeny složitým komplexem látek, z nichž některé se v ovzduší účastní chem. reakcí, takže složení smogu není konstantní. V původním smyslu byla termínem smog označována směs kouře a mlhy (z angl. smoke – kouř, fog – mlha), vytvářející redukční smog, též označovaný jako londýnský nebo zimní. Druhým hlavním typem smogu je oxidační smog, nazývaný také fotochemický, losangeleský, kalifornský či letní. Viz též Smogový varovný a regulační systém.
česky: smog angl: smog slov: smog rus: смог  1993-a3
Smogwarnsystem n
vydávání informací o výskytu mimořádně vysokých imisí škodlivin v určité oblasti, které se provádí na základě pravidel uvedených v zákoně č. 201/2012 Sb. o ochraně ovzduší. Infomace jsou podkladem pro pasivní nebo aktivní nouzová opatření, jakými jsou např. zdravotní doporučení skupinám citlivých osob, regulace emisí, nebo zvýšení teploty exhalací, a tím i vznosu kouřové vlečky. Viz též smog.
česky: Smogový varovný a regulační systém (SVRS) slov: smogový výstražný regulačný systém rus: Всемирная система зональных прогнозов - ВСЗП  2014
Sodar n
syn. lokátor akustický – zařízení využívající rozptyl akustických vln vyvolaných turbulencí na nehomogenitách akust. indexu lomu v atmosféře. Vysílá intenzivní impulsy v oboru slyšitelných frekvencí a rozptýlený signál je přijímán citlivým směrovaným mikrofonem nebo soustavou mikrofonů. Z doby, průběhu a charakteru odezvy lze určit polohu a rozsah sledované cílové oblasti a usuzovat na charakter jevů, s nimiž je turbulence spojena (např. inverze teploty nebo vlhkosti vzduchu, střih větru apod.). Rozlišují se nejčastěji sodary monostatické (vysílač impulsů a přijímací mikrofony jsou na témže místě) a bistatické, kde je vysílač a přijímač oddělen. Starší provedení sodarů používala třísměrovou anténní soustavu uspořádanou tak, že jedna parabolická anténa byla vert. a dvě další směřovaly obvykle pravoúhle k sobě a šikmo vzhůru. Současné systémy mají anténní systém tvořen polem reproduktorů, k nimž je vysílaný impulz přiváděn s fázovým posuvem. To umožňuje vytvářet směrované svazky v různých rovinách a pod různými vertikálními úhly. Sodar využívá Dopplerova efektu pro vyhodnocení radiálních, vert. a horiz. složek proudění. Provoz sodaru je řízen počítačem, který zajišťuje optimální generování vysílaných svazků, prvotní zpracování přijatého signálu, výpočet složek proudění a odvozených statistických charakteristik. Označení sodar je akronym úplného angl. názvu sonic detection and ranging. Viz též sondáž ovzduší akustická, šíření zvuku v atmosféře, radiolokátor meteorologický dopplerovský.
česky: sodar angl: acdar, sodar slov: sodar rus: акдар, содар  1993-a3
Solaire m
[solér] – regionální název vých., popř. jv. větru, odvozený od směru východu Slunce. Používá se ve střední a již. Francii. Viz též solano.
česky: solaire angl: solaire slov: solaire  1993-a1
Solano m
regionální název jv., popř. vých. větru, vanoucího na jv. pobřeží Španělska v létě. Obvykle se jedná o „prodloužení“ scirocca, takže solano může být jak horký a vlhký, tak suchý a prašný vítr. Viz též solaire.
česky: solano angl: solano slov: solano  1993-a1
Solarigramm n
někdy používané nevhodné označení pro pyranogram.
česky: solarigram angl: pyranogram, solarigram slov: solarigram rus: соляриграмма  1993-a1
Solarigraph m
někdy používané nevhodné označení pro pyranograf.
česky: solarigraf angl: pyranograph, solarigraph slov: solarigraf rus: соляриграф  1993-a1
Solarimeter n
někdy používané nevhodné označení pro pyranometr.
česky: solarimetr angl: pyranometer, solarimeter slov: solarimeter rus: соляриметр  1993-a3
Solarimeter nach Moll-Gorczyński n
syn. solarimetr Molla a Gorczyňskiho – termoel. radiometr k měření globálního slunečního záření. Jeho čidlo v podobě termobaterie je chráněno dvěma koncentrickými skleněnými polokoulemi. Chladné spoje jsou zakryté pouzdrem přístroje a teplé pokryty černou absorpční vrstvou. Termobaterie je pravoúhle symetrická, takže je nutné dbát na přesnou orientaci přístroje. Tento typ pyranometru je nejčastěji používán pro dlouhodobá měření globálního a rozptýleného slunečního záření.
česky: pyranometr Molla a Gorczyňskiho angl: Moll-Gorczyński pyranometer slov: pyranometer Molla a Gorczyńského rus: соляриметр Молля-Горчинского  1993-a3
Solarklima n
syn. klima matematické – model klimatu, které by se vytvořilo na stejnorodé pevné Zemi bez atmosféry díky působení astronomických klimatických faktorů. Solární klima by bylo určeno jen množstvím dopadajícího záření Slunce v závislosti na zeměp. šířce, takže solární klimatická pásma by byla ohraničena rovnoběžkami: tropické pásmo mezi obratníky, mírná pásma od obratníků po polární kruhy, dále pak polární pásma. Východiskem pro popis solárního klimatu je roční pohyb Slunce po ekliptice. Viz též klima radiační, klima fyzické.
česky: klima solární angl: solar climate slov: solárna klíma rus: солярный климат (расчетный)  1993-b3
Solarkonstante f
syn. konstanta sluneční – celkové množství zářivé energie Slunce dopadající v celém spektru na horní hranici atmosféry Země za jednotku času na jednotku plochy, kolmou ke slunečním paprskům, a vztažené na stř. vzdálenost Země od Slunce. Na základě družicových měření je hodnota solární konstanty nejčastěji uváděna jako 1 366 W.m–2. Termín solární konstanta není zcela přesný, protože její hodnoty kolísají o několik desetin %, např. v důsledku sluneční aktivity. Dlouhodobé změny solární konstanty jsou pokládány za jednu z možných příčin globálních změn klimatu. Pro meteorologii je solární konstanta důležitým výchozím parametrem radiační bilance soustavy Země – atmosféra.
česky: konstanta solární angl: solar constant slov: solárna konštanta rus: солнечная постоянная  1993-a3
solenoidale Zirkulation f
málo užívané označení pro vířivé pohyby různých měřítek v zemské atmosféře, které jsou podmíněny existencí izobaricko-izosterických solenoidůbaroklinní atmosféře.
česky: cirkulace solenoidní angl: solenoidal circulation slov: solenoidná cirkulácia rus: соленоидальная циркуляция fr: circulation solénoïdale f  1993-a2
Sommer m
jedna z hlavních klimatických, příp. fenologických sezon ve vyšších zeměp. šířkách dané polokoule, vymezená např. takto:
1. období od letního slunovratu do podzimní rovnodennosti (astronomické léto);
2. trojice letních měsíců, na sev. polokouli červen, červenec a srpen (tzv. klimatologické léto);
3. období s prům. denními teplotami vzduchu 15 °C a vyššími (tzv. vegetační léto).
česky: léto angl: summer slov: leto rus: лето  1993-a3
Sommermonsun m
monzun podmíněný převládáním nižšího tlaku vzduchu nad velkými oblastmi pevnin v teplém pololetí, vanoucí zpravidla z moře na pevninu a přinášející sem monzunové srážky. Nástup monzunu a jeho konec, které se regionálně liší, vymezují hlavní období dešťů. Např. prům. datum jeho nástupu v Bombaji je 5. červen a konce 15. říjen.
česky: monzun letní angl: summer monsoon slov: letný monzún rus: летний муссон  1993-a3
Sommersmog m
česky: smog letní angl: summer smog slov: letný smog 
Sommersonnenwende
viz slunovrat.
česky: slunovrat letní angl: summer solstice  2019
Sommertag m
den, v němž maximální teplota vzduchu byla 25,0 °C nebo vyšší.
česky: den letní angl: warm day slov: letný deň rus: жаркий день fr: jour de chaleur m, jour chaud m  1993-a1
Sonderform von Wolken f
oblaky, které se tvoří nebo rostou jako důsledek lokálních přírodních faktorů nebo lidské činnosti. Mezinárodní morfologická klasifikace oblaků ve verzi z roku 2017 rozeznává zvláštní oblaky označené jako flammagenitus, homogenitus, homomutatus, cataractagenitus a silvagenitus. Tyto oblaky netvoří speciální druh oblaků a morfologicky se klasifikují přidáním označení zvláštního oblaku k označení jednoho z 10 definovaných druhů oblaku. Polární stratosférické oblaky včetně perleťových oblaků a noční svítící oblaky jsou v klasifikaci z roku 2017 uváděny jako samostatná skupina oblaků horní atmosféry.
česky: oblaky zvláštní angl: special clouds slov: zvláštne oblaky  2014
Sonderwettervorhersage f
předpověď počasí pro předem stanovené účely. Jedná se o letecké předpovědi počasí, zemědělsko-meteorologické předpovědi, předpovědi pro dopravu, stavebnictví, energetiku a jiné obory. Soustřeďuje se na předpověď těch meteorologických prvků a dějů, které jsou v daném oboru lidské činnosti zvláště důležité. Viz též předpověď počasí všeobecná.
česky: předpověď počasí speciální angl: special forecast slov: špeciálna predpoveď počasia rus: специализированный прогноз погоды  1993-a2
Sondierung der Atmosphäre f
získávání met. údajů v atmosféře pomocí met. přístrojů nesených balonem, letadlem, drakem, raketou apod. Tyto údaje byly v dřívější době registrovány meteorografy, dnes jsou většinou bezprostředně po získání telemetricky přenášeny na zem. Podle druhu dopravního prostředku rozeznáváme zejména radiosondáž, sondáž drakovou, letadlovou, raketovou atd., podle druhu měřených charakteristik komplexní meteorologickou radiosondáž, sondáž aktinometrickou, ozonometrickou apod., podle směru pohybu přístroje vert. a horiz. sondáž. Jiným způsobem sondáže je dálková detekce meteorologických jevů pomocí met. družic a radiolokátorů nebo pomocí signálů vysílaných ze zemského povrchu. Viz též měření meteorologických prvků v mezní vrstvě a volné atmosféře, sondáž atmosféry družicová, sondáž ovzduší akustická, windprofiler.
česky: sondáž ovzduší angl: sounding of atmosphere slov: sondáž ovzdušia rus: зондирование атмосферы  1993-a3
Sonnenaktivität f
česky: činnost sluneční angl: solar activity slov: slnečná činnosť rus: солнечная активность fr: activité solaire f  1993-a3
Sonnenaktivität f
soubor jevů, které probíhají ve sluneční atmosféře s periodickou intenzitou. Jsou to granule, supergranule, spikule, fakule a sluneční skvrny ve fotosféře, erupce v chromosféře, sluneční protuberance a erupce v koróně. Nejsnáze pozorovatelné jsou sluneční skvrny ve fotosféře. Pro interakci s ostatními tělesy sluneční soustavy a s meziplanetárním plazmatem jsou důležité zejména protonové erupce ve chromosféře. Sluneční aktivita se mění přibližně v jedenáctiletých i delších cyklech a ovlivňuje řadu procesů ve vysokých vrstvách zemské atmosféry, jako je atmosférická ionizace, vznik polární záře, magnetických bouří, apod. Tyto procesy zároveň druhotně ovlivňují nižší vrstvy zemské atmosféry a mohou tak působit i na počasí a živé organizmy na Zemi. Mohou také výrazně ovlivnit funkčnost kosmických a pozemských technologických zařízení (např. družice, radiokomunikační zařízení, trafostanice, plynovody, apod.) Viz též číslo Wolfovo, erupce chromosférická.
česky: aktivita sluneční angl: solar activity slov: slnečná aktivita rus: солнечная активность fr: activité solaire f  1993-b3
Sonnenaktivität f
soubor jevů, které probíhají ve sluneční atmosféře s periodickou intenzitou. Jsou to granule, supergranule, spikule, fakule a sluneční skvrny ve fotosféře, erupce v chromosféře, sluneční protuberance a erupce v koróně. Nejsnáze pozorovatelné jsou sluneční skvrny ve fotosféře. Pro interakci s ostatními tělesy sluneční soustavy a s meziplanetárním plazmatem jsou důležité zejména protonové erupce ve chromosféře. Sluneční aktivita se mění přibližně v jedenáctiletých i delších cyklech a ovlivňuje řadu procesů ve vysokých vrstvách zemské atmosféry, jako je atmosférická ionizace, vznik polární záře, magnetických bouří, apod. Tyto procesy zároveň druhotně ovlivňují nižší vrstvy zemské atmosféry a mohou tak působit i na počasí a živé organizmy na Zemi. Mohou také výrazně ovlivnit funkčnost kosmických a pozemských technologických zařízení (např. družice, radiokomunikační zařízení, trafostanice, plynovody, apod.) Viz též číslo Wolfovo, erupce chromosférická.
česky: aktivita sluneční angl: solar activity slov: slnečná aktivita rus: солнечная активность fr: activité solaire f  1993-b3
Sonneneinstrahlung f
v meteorologii nejednoznačný pojem používaný ve více významech. Např.:
1. ozáření určitého místa přímým slunečním zářením. Doby astronomicky možného oslunění (bez ohledu na oblačnost) se zakreslují pomocí izolinií do map oslunění;
2. v bioklimatologii někdy syn. insolace;
3. v humánní bioklimatologii expozice těla přímému slunečnímu záření.
česky: oslunění angl: insolation slov: oslnenie rus: инсоляция  1993-a1
Sonnenfleckenrelativzahl f
česky: číslo relativní angl: relative sunspot number slov: relatívne číslo rus: относительное число солнечных пятен fr: nombre relatif de taches m, nombre relatif de Wolf m  1993-a3
Sonnenfleckenzyklus
syn. cyklus slunečních skvrn jedenáctiletý – fluktuace polarity magnetického pole Slunce s přibližně jedenáctiletou periodou. Projevuje se proměnou vyzařovacích charakteristik. Solární konstanta se mění v rámci cyklu přibližně o jedno promile. V řádu procent se mění intenzita dopadajícího záření v UV spektru. Cyklus má významný dopad na podmínky ve vyšších atmosférických vrstvách, v rámci střední atmosféry se projevuje anomáliemi v teplotě i cirkulaci a má vliv i na stabilitu zimní polární cirkulace.
česky: cyklus sluneční jedenáctiletý angl: solar cycle, sunspot cycle slov: Milankovičove cykly rus: солнечный цикл fr: cycle de 11 ans m, cycle solaire m, cycle solaire de 11 ans m  2015
Sonnengegenpunkt m
bod na nebeské sféře ležící opačným směrem na přímce směřující od stanoviště pozorovatele ke Slunci. Při poloze Slunce nad (pod) obzorem se antisolární bod nalézá pod (nad) obzorem. Viz též protisvit, oblouky protisluneční, duha.
česky: bod antisolární angl: antisolar point slov: antisolárny bod rus: антисолярная точка fr: point antisolaire m, point subanthélique m  1993-a3
Sonnensäule f
česky: sloup sluneční angl: sun pillar slov: slnečný stĺp rus: солнечный столб  1993-a1
Sonnenschein m
v meteorologii zkrácené označení pro trvání slunečního svitu.
česky: svit sluneční angl: sunshine slov: slnečný svit rus: солнечное сияние  1993-a1
Sonnenscheinautograph m
syn. heliograf – přístroj zaznamenávající trvání slunečního svitu. Nejrozšířenějším typem slunoměru byl v minulosti Campbellův-Stokesův slunoměr tvořený skleněnou koulí, v jejímž ohnisku je umístěn papírový registrační pásek dělený po hodinách a propalovaný slunečními paprsky. S postupnou automatizací meteorologických měření jsou stále častěji používány různé typy elektronických slunoměrů, které fungují většinou na principu stínění fotoelektrických diod nebo termoelektrických článků.
česky: slunoměr angl: sunshine recorder, heliograph slov: slnkomer rus: гелиограф  1993-a3
Sonnenscheindauer f
česky: délka slunečního svitu angl: duration of sunshine, sunshine duration slov: dĺžka slnečného svitu rus: продолжительность солнечного сияния fr: durée d'ensoleillement f, durée d'insolation f  1993-a1
Sonnenscheindauer f
časový interval, po který svítilo slunce, vyjádřený zpravidla v pravém slunečním čase, např. od 10.45 do 11.32 h. Viz též trvání slunečního svitu.
česky: doba slunečního svitu angl: sunshine duration slov: doba slnečného svitu rus: продолжительность солнечного сияния fr: durée d'ensoleillement f, durée d'insolation f  1993-a1
Sonnenscheinregistrierung f
záznam slunoměru.
česky: heliogram angl: sunshine record slov: heliogram rus: гелиограмма fr: héliogramme m  1993-a1
Sonnenscheinschreiber m
syn. slunoměr.
česky: heliograf angl: heliograph slov: heliograf rus: гелиограф fr: héliographe m  1993-a1
Sonnenwende (Sonnwende)
okamžik, kdy Slunce dosáhne v rámci svého zdánlivého ročního pohybu po ekliptice maximální úhlové vzdálenosti od světového rovníku neboli deklinace, která při současném sklonu zemské osy činí cca 23,44°. Letní (zimní) slunovrat nastává v současnosti na severní (jižní) polokouli nejčastěji 21. června, může se však vyskytnout i o den dříve nebo později. Obdobně je tomu na severní (jižní) polokouli se zimním (letním) slunovratem s nejčastějším výskytem 21. prosince. Ve dni s letním slunovratem vystupuje Slunce na daném místě během roku nejvýše nad obzor, při slunovratu zimním pak nejníže nad obzor, popř. klesá v polárních oblastech nejhlouběji pod obzor. Slunovrat má zásadní význam při členění roku na jednotlivé sezony, přičemž letní slunovrat odděluje astronomické léto od astronomického jara, zimní slunovrat astronomickou zimu od astronomického podzimu. S dobou zejména kolem letního slunovratu je spojena řada zajímavých atmosférických jevů, např. výskyt nočních svítících oblaků nebo tzv. bílé noci ve vyšších zeměpisných šířkách.
česky: slunovrat angl: solstice  2019
Southern Oscillation f
cyklické zesilování a zeslabování Walkerovy cirkulace v atmosféře tropického Tichomoří. Tato oscilace se projevuje současným výskytem opačných anomálií tlaku vzduchu ve vých., resp. záp. části této oblasti, což umožňuje kvantifikaci této oscilace pomocí indexu jižní oscilace. Při záporné fázi dosahuje tlak vzduchu ve vých. části podnormálních hodnot a v záp. části vyšších hodnot oproti normálu, což vede k zeslabení pasátů. Naopak nárůst rozdílu tlaku vzduchu mezi vých. a záp. Tichomořím při kladné fázi jižní oscilace způsobuje zesílení pasátů. Záporná fáze jižní oscilace souvisí s jevem El Niño, kladná fáze s jevem La Niña; po objevení tohoto vztahu bylo počátkem 80. let 20. století zavedeno souborné označení ENSO.
česky: oscilace jižní angl: Southern Oscillation slov: južná oscilácia rus: южноe колебание  2014
Southern Oscillation Index m
(SOI) – ukazatel aktuální fáze jižní oscilace a jeden z indikátorů ENSO, založený na porovnání tlaku vzduchu redukovaného na hladinu moře na Tahiti ve Francouzské Polynésii (pT) a v australském Darwinu (pD). Má více variant; např. NOAA používá vztah
SOI=(pT p¯TσT pDp¯D σD)1σTD,
kde aktuální měsíční průměry tlaku vzduchu redukovaného na hladinu moře jsou standardizovány dlouhodobým průměrem a směrodatnou odchylkou od průměru (σT a σD) v daném kalendářním měsíci, načež je jejich rozdíl normován směrodatnou odchylkou hodnot pT od pD pro daný kalendářní měsíc (σTD).
česky: index jižní oscilace angl: Southern Oscillation Index slov: index južnej oscilácie rus: индекс южного колебания  2014
sozio-ökonomische Dürre f
sucho definované pomocí ekonomických ukazatelů, kdy poptávka po nejrůznějších produktech a službách nemůže být uspokojena v důsledku nedostatku vody. Bývá vyvoláno meteorologickým, agronomickým nebo hydrologickým suchem, podstatnou roli však hrají i antropogenní faktory, jako rychlost socioekonomického vývoje, vodohospodářská opatření apod.
česky: sucho socioekonomické angl: socio-economic drought slov: socioekonomické sucho  2014
Spaltung des konvektiven Sturm f
proces, při kterém se jedna konvektivní buňka rozdělí na dvě buňky se vzájemně opačně rotujícími vzestupnými proudy, resp. mezocyklonami. Tento proces je podmíněn prostředím se silnou instabilitou a silným vertikálním střihem větru ve spodních vrstvách bouře. V ideálním případě, kdy nedochází ke stáčení směru větru s výškou, může dojít k vytvoření páru osově symetrických supercel, z nichž jedna rotuje anticyklonálně a druhá cyklonálně. Cyklonálně rotující supercela se pak většinou odklání vpravo od šíření původních cel a anticyklonálně rotující supercela vlevo. V běžnějších případech stáčení směru větru s výškou dochází k zesílení jedné ze supercel a zániku druhé supercely. V prostředí s pravotočivým stáčením střihu větru vzniká pouze cyklonálně rotující supercela, která se šíří vpravo od původního šíření cel, v prostředí s levotočivým stáčením střihu větru vzniká anticyklonálně rotující supercela, která se šíří vlevo od původního šíření cel.
česky: štěpení konvektivní bouře angl: convective storm splitting slov: štiepenie konvektívnej búrky  2014
SPECI m
česky: SPECI angl: SPECI slov: SPECI  2014
Spektralband n
spojitý interval elmag. spektra vymezený dvěma vlnovými délkami (frekvencemi, vlnočty).
česky: pásmo spektrální angl: spectral band slov: spektrálne pásmo rus: спектральная полоса  1993-a1
Spektralbereich m
označení části spektrálního pásma, ve kterém se měří elektromagnetiké záření nějakým konkrétním přístrojem, např. radiometrem. Je technicky definován použitým rozsahem spektrálního pásma a technickými parametry použitého senzoru přístroje umožňujícími kalibraci dat.
česky: kanál spektrální angl: spectral channel slov: spektrálny kanál rus: спектральный канал  1993-a2
Spektralkanal m
označení části spektrálního pásma, ve kterém se měří elektromagnetiké záření nějakým konkrétním přístrojem, např. radiometrem. Je technicky definován použitým rozsahem spektrálního pásma a technickými parametry použitého senzoru přístroje umožňujícími kalibraci dat.
česky: kanál spektrální angl: spectral channel slov: spektrálny kanál rus: спектральный канал  1993-a2
Spektroradiometer n
přístroj k měření spektrální intenzity toku dopadajícího záření v různých vlnových oblastech elektromagnetického záření. Spektroradiometry se používají většinou při pozemních i družicových měřeních obsahu a rozložení jednotlivých složek a parametrů zemské atmosféry.
česky: spektroradiometr angl: Spectrometer slov: spektrorádiometer rus: спектрометр  2014
spezifische Gaskonstante f
konstanta úměrnosti ve stavové rovnici daného ideálního plynu. Je vlastností plynu a lze ji vyjádřit vztahem R = R* / m, kde R* je univerzální plynová konstanta a m značí relativní (poměrnou) molekulovou hmotnost plynu. Pro suchý vzduch platí Rd = 287,04 J.kg–1.K–1 a pro vodní páru je Rv = 461,5 J.kg–1.K–1. Ve stavové rovnici pro vlhký vzduch používáme hodnotu Rd a teplotu nahrazujeme hodnotou teploty virtuální. Viz též teplo měrné, Mayerův vztah.
česky: konstanta plynová měrná angl: specific gas constant slov: merná plynová konštanta rus: удельная газовая постоянная  1993-a3
spezifisches Volumen n
objem jednotky hmotnosti látky. Udává se v m3.kg–1 a je převrácenou hodnotou hustoty látky. V meteorologii se setkáváme zejména s měrným objemem vzduchu.
česky: objem měrný angl: specific volume slov: merný objem rus: удельный объем  1993-a3
spissatus
(spi) [spisátus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Označuje závojovitý oblak, který je opticky tak hustý, že se proti Slunci zdá šedavý. Označení spissatus se používá u druhu cirrus.
česky: spissatus angl: spissatus slov: spissatus rus: плотные облака  1993-a2
spontane Konvektion f
syn. konvekce vnořená – konvektivní pohyby vznikající v libovolné hladině (výšce) nad zemským povrchem v instabilních vrstvách atmosféry. Pokud dojde k jejímu vývoji v prostředí srážkové vrstevnaté oblačnosti, hovoříme o vnořené konvekci, která se může projevit lokálním zesílením srážek.
česky: konvekce spontánní angl: spontaneous convection slov: spontánna konvekcia  1993-a3
spontane Kristallisation f
proces spontánního mrznutí přechlazených kapiček v atmosféře homogenní nukleací ledu. Probíhá bez zjevné přítomnosti ledových jader a ostatních příměsí uvnitř přechlazených kapek. Spontánní krystalizace může podle pozorování nastat v oblacích při poklesu teploty pod –40 °C, někteří autoři však nevylučují možnost existence čisté přechlazené vody i při teplotách ještě nižších (–65 °C až –70 °C).
česky: krystalizace spontánní angl: spontaneous freezing slov: spontánna kryštalizácia rus: самопроизвольная кристаллизация, спонтанная кристаллизация  1993-a3
spontane Nukleation f
syn. nukleace spontánní – ve fyzice oblaků a srážek označuje nukleaci vody a ledu, která probíhá spontánně, náhodnými kolizemi molekul nebo podkritických molekulárních shluků ve vodní páře nebo vodě, bez účasti kondenzačních a ledových jader. Za běžných podmínek v atmosféře k homogenní nukleaci nedochází; přítomnost kondenzačních a ledových jader zajišťuje přednostní uplatnění heterogenní nukleace. Hodnoty přesycení vodní párou, které odpovídají detekovatelné rychlosti homogenní nukleace a klesají s rostoucí teplotou, jsou řádu 102 %. Viz též nukleace heterogenní.
česky: nukleace homogenní angl: homogeneous nucleation, spontaneous nucleation slov: homogénna nukleácia rus: гомогенная нуклеация, спонтанная нуклeация  1993-b3
Sprühregen m
poměrně stejnoměrné, husté kapalné srážky, složené výhradně z velmi malých kapiček o průměru menším než 500 µm. Mrholení nejčastěji vypadává z hustých vrstev oblaku druhu stratus, dosahujícího někdy až k zemi. Zvláště v chladné roční době se často vyskytuje po přechodu teplé frontyteplém sektoru cyklony. Mrholení patří mezi hydrometeory. Viz též déšť, mrholení mrznoucí.
česky: mrholení angl: drizzle slov: mrholenie rus: морось  1993-a2
Sprühregen mit Glatteisbildung m
česky: mrholení namrzající angl: freezing drizzle slov: namŕzajúce mrholenie rus: замерзающая морось  2014
Sprühregentropfen m
kapka vody o průměru menším než 500 µm vypadávající z oblaků nebo z mlhy na zemský povrch. Viz též mrholení.
česky: kapka mrholení angl: drizzle droplet slov: kvapka mrholenia rus: капля мороси  1993-a3
squall line f
silná forma čáry instability s výskytem více či méně lineárně uspořádaných silnějších konvektivních bouří. Jednotlivé bouře mohou být zcela oddělené bezoblačným prostorem, nebo jsou naopak propojeny, vzájemně interagují, a vytvářejí tak organizovaný mezosynoptický konvektivní systém. Squall line se často vyskytuje před studenou frontou a výjimečně i za ní. Bývá za ni rovněž považována konvekce tzv. dryline, vyskytující se na severoamerických Velkých pláních. Pokud se squall line vyskytuje před studenou frontou, mohou být doprovodné projevy počasí daleko výraznější než na samotné frontě. Do češtiny se někdy nepřesně překládá jako obecnější pojem čára instability nebo nevhodně jako čára húlav.
česky: squall line angl: squall line slov: squall line rus: линия шквалов  2014
St. Helena-Antizyklone f
syn. anticyklona jihoatlantická – teplá, vysoká a kvazipermanentní anticyklona nad již. částí Atlantského oceánu se středem často v oblasti ostrova Svaté Heleny. Rozkládá se v subtropických šířkách mezi Jižní Amerikou a již. Afrikou. V období léta na již. polokouli se přesouvá jižněji, v období zimy severněji. Svatohelenská anticyklona patří mezi permanentní akční centra atmosféry.
česky: anticyklona svatohelenská angl: South Atlantic anticyclone slov: svätohelenská anticyklóna rus: антициклон острова Святой Елены, южноaтлантический антициклон fr: anticyclone de Sainte-Hélène m, anticyclone de l'Atlantique Sud m  1993-a3
St.-Elms-Feuer n
syn. světlo Eliášovo – označení pro hrotový výboj, který se projevuje viditelným světelným zářením, někdy i zvukově (praskotem). Vzniká nejčastěji pod cumulonimbem na přirozených nebo umělých hrotech (např. na špičkách věží, na stožárech a komínech lodí) nebo na vrcholcích hor a stromů. V historických pojednáních se např. popisuje výskyt ohně svatého Eliáše na stěžních Kolumbových plachetnic a v Cézarových zápiscích na hrotech kopí římských vojsk. Vzácně se stává, že toto světelné záření je viditelné za bouřky okolo naježených vousů a vlasů osob na vrcholcích hor. Český název jevu chybně navozuje souvislost se starozákonním prorokem Eliášem. Cizojazyčné ekvivalenty však vesměs obsahují jméno Elmo, což neodpovídá jménu Eliáš, nýbrž představuje jednu ze dvou variant italského překladu jména Erasmus (Elmo, Erasmo). Jde o Erasma z Antiochie, uváděného též jako Erasmus z Formie, křesťanského světce a mučedníka z doby římského císaře Diokleciána. Ten byl zejména ve středomořské oblasti uctíván námořníky a vzýván při bouřích jako ochránce před úderem blesku do lodi (nejčastěji do stěžně), což souviselo s legendárně popisovanou událostí v jeho životě.
česky: oheň svatého Eliáše angl: St. Elmo's fire slov: oheň svätého Eliáša rus: огонь св. Эльма  1993-a3
stabile Luftmasse f
vzduchová hmota, která má alespoň ve spodní části stabilní zvrstvení, tj. vert. teplotní gradient menší než nasyceně adiabatický. Ve stabilní vzduchové hmotě se často vyskytují inverze teploty, izotermie a jen malá turbulence. Při dostatečné vlhkosti vzduchu v ní vznikají mlhy nebo nízké vrstevnaté oblaky, hlavně v chladné části roku. Viz též hmota vzduchová instabilní.
česky: hmota vzduchová stabilní angl: stable air mass slov: stabilná vzduchová hmota rus: устойчивая воздушная масса , устойчивая масса воздуха  1993-a3
Stabilisierung der Antizyklone f
méně často používané označení pro proces, během něhož postupující anticyklona, která obyčejně uzavírá sérii cyklon, ztrácí pohyb a mohutní. Izobary se přitom stávají stále symetričtějšími vůči jejímu středu a zvětšuje se její vert. rozsah. Viz též mohutnění anticyklony.
česky: stabilizace anticyklony angl: stabilization of anticyclone slov: stabilizácia anticyklóny  1993-a3
Stabilitätsindex m
čís. vyjádřená míra stability vert. teplotního zvrstvení atmosféry. Indexy stability zpravidla hodnotí kombinovaný vliv teploty a vlhkosti vzduchu ve vybraných hladinách nebo vrstvách. Využívají se zejména pro předpověď vývoje konv. jevů, zejména vývoje přeháněk a bouřek. Výhodou indexů stability je jednoduchost výpočtu, která umožňuje stanovení indexů na základě údajů získaných radiosondážním měřením. V současné době se řada indexů stanoví i z výsledků modelu numerické předpovědi počasí. Mezi nejznámější indexy stability patří Faustův index, K-index, Lifted index, Showalterův index, SWEAT index, Total Totals index. Hodnota indexu stability roste s růstem vertikální stability atmosféry. Pokud se index vyjádří ve tvaru, kdy jeho hodnota roste s růstem vertikální instability atmosféry, označuje se také jako index instability.
česky: index stability angl: stability index, convective index slov: index stability rus: индекс устойчивости (неустойчивости)  1993-a3
Stabilitätsmaß f
dynamické meteorologii veličina definovaná vztahem Γ = γ - γd pro nenasycený vzduch a Γ = γ - γs pro vzduch nasycený vodní párou (γ, γd, γs po řadě značí vertikální teplotní gradient, suchoadiabatický teplotní gradient a nasyceně adiabatický gradient). Míra stability charakterizuje stabilitní poměry v atmosféře a používá se zejména v prognostických modelech atmosféry. Viz též stabilita atmosféry.
česky: míra stability angl: stability degree slov: miera stability rus: мера устойчивости  1993-a1
Stabilitätsparameter m
kvantit. vyjádření stabilitních podmínek, tj. stability nebo instability teplotního zvrstvení atmosféry. V širším smyslu mezi stabilitní parametry patří např. vert. teplotní gradient, Bruntova-Vaisalova frekvence a dále parametry, které zahrnují nejen termické, ale i dynamické charakteristiky stavu atmosféry, tj. parametry typu Richardsonova čísla, nebo pro přízemní vrstvu atmosféry poměr z/L, kde z je výška nad zemským povrchem a L je Obuchovova délka. Viz též vertikální instabilita atmosféry, klasifikace stabilitní.
česky: parametr stabilitní angl: stability parameter slov: parameter stability rus: параметр устойчивости  1993-a3
Stadtklima n
klima velkých měst a průmyslových aglomerací, které se vytváří za spolupůsobení specifického aktivního povrchu měst, antropogenní produkce tepelné energie a průmyslové, dopravní i jiné činnosti ve městech. Aktivní povrch měst je tvořen střechami a stěnami budov, vozovkami s umělým povrchem, malou plochou zeleně a jeho vlastnosti závisí i na typu zástavby, šířce ulic apod. Od klimatu přilehlého venkovského okolí se městské klima zpravidla liší nižší prům. rychlostí větru, vytvářením tepelného ostrova města (projevuje se vyššími denními i roč. průměry teploty vzduchu), nižší relativní vlhkostí vzduchu, sníženou dohledností a podstatně vyššími emisemi znečišťujících látek, které unikají do atmosféry z různých zdrojů znečištění (tepelné elektrárny, teplárny, továrny, domácí topeniště, spalovací motory aj.). Větší znečištění ovzduší ve městech se projevuje snížením slunečního záření. Městským klimatem se zabývá klimatologie měst. Viz též smog, znečištění ovzduší tepelné.
česky: klima městské angl: urban climate slov: mestská klíma rus: городской климат  1993-b2
Städtklimatologie f
syn. klimatologie urbanistická – část mezoklimatologie a mikroklimatologie aplikovaná na problémy velkých měst a průmyslových aglomerací. Její součástí je i klimatologie mezní vrstvy atmosféry a klimatologie znečištění ovzduší. Z hlediska mezoklimatu jde o interakci města nebo průmyslové oblasti jako celku s okolím, z hlediska mikroklimatu o části města, jako náměstí, ulice, dvory, např. v úzké součinnosti s bioklimatologií o hodnocení pohody ve venkovních prostorech zástavby apod. Do městské klimatologie zasahují i otázky hygieny ovzduší měst. Městská klimatologie je jednou z pomocných vědních disciplín pro urbanismus, tj. nauku o městě. Viz též klima městské.
česky: klimatologie měst angl: polisclimatology, urban climatology slov: mestská klimatológia rus: климатология городов  1993-a3
Stadtklimatologie f
česky: klimatologie urbanistická angl: urban climatology slov: urbanistická klimatológia rus: городскaя климатология, климатология городов  1993-a1
Standardatmosphäre f
model atmosféry, vypočtený na základě rovnice hydrostatické rovnováhy za předpokladu, že vzduch je ideální plyn. Standardní atmosféra udává hypotetické vert. rozložení tlaku, teploty a hustoty suchého vzduchu v atmosféře během celého roku ve středních zeměp. šířkách. Různé modely standardní atmosféry používají odlišné hodnoty zákl. prvků (tlak, teplota a hustota vzduchu, vertikální gradient teploty, plynová konstanta a tíhové zrychlení) a různý počet a výškový rozsah modelových vrstev. V letecké meteorologii je dohodnuto používat mezinárodní standardní atmosféru ICAO.
česky: atmosféra standardní angl: standard atmosphere slov: štandardná atmosféra rus: стандартная атмосфера fr: atmosphère standard f  1993-a3
Standardbeobachtungstermin m
čas, ke kterému se vztahují meteorologická měření a pozorování, určený WMO.
česky: čas pozorování standardní angl: standard time of observation slov: štandardný čas pozorovania rus: стандартный срок наблюдения fr: heure standard d'observation f  1993-a3
Standarddruckfläche f
izobarická hladina vybraná mezinárodní dohodou pro popis podmínek v atmosféře. Za standradní jsou zvoleny hladiny 1 000, 925, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20 a 10 hPa. Údaje o výšce hladin a hodnotách jednotlivých prvků v nich měřených jsou předávány povinně ve zprávách TEMP a TEMP SHIP. Ve zprávách PILOT a PILOT SHIP se uvádějí hodnoty směru a rychlosti větru ve standardních izobarických hladinách 850 až 10 hPa. Výše položené synoptické stanice (v ČR ve výšce nad 550 m. n. m.) uvádějí ve zprávách SYNOP výšku stanovené standardní izobarické hladiny místo tlaku vzduchu redukovaného na hladinu moře.
česky: hladina izobarická standardní angl: standard isobaric surface, standard pressure level slov: štandardná izobarická hladina rus: стандартная изобарическая поверхность  1993-b3
standarde Radioatmosphäre f
model atmosféry používaný při řešení úloh spojených s výpočty efektivního dosahu radiolokace objektů, radiokomunikačních spojů, při projekci radiolokačních, spojových a jiných zařízení. V modelu standardní radioatmosféry klesá teplota vzduchu s výškou o 6,5 °C na 1 km, tlak vzduchu klesá s výškou podle barometrické formule a tlak vodní páry e podle empirického vztahu A. Ch. Chrgiana
eh=e0exp[ h(bhc)],
kde h je výška v km a konstanty b a c závisejí na roční době v rozmezí 0,1112 ≤ b ≤ 0,2181; 0,0286 ≤ c ≤ 0,0375. Index lomu elektromagnetického vlnění ve vzduchu n je pro troposférické výšky lineárně závislý na h a pro stř. zeměp. šířky platí
dn/dh= 4,0.106km1.
Dále se ve standardní atmosféře zavádí efektivní poloměr Země místo skutečného poloměru Země a vztah poloměru zakřivení paprsku vzhledem k zakřivení Země s ohledem na atmosférickou refrakci. Hodnoty stavových veličin pro standardní radioatmosféru jsou tabelovány.
česky: radioatmosféra standardní angl: standard radioatmosphere slov: štandardná rádioatmosféra  1993-a2
Standardkoordinatensystem n
pravoúhlá relativní souřadnicová soustava, v níž osa x směřuje na východ, osa y na sever a osa z vzhůru. Osy x a y přitom leží v rovině tečné k ideálnímu zemskému povrchu. Viz též soustava souřadnicová přirozená.
česky: soustava souřadnicová standardní angl: standard coordinate system slov: štandardná súradnicová sústava  1993-a2
Standardpyrheliometer n
pyrheliometr, který je používán jako referenční etalon pro kalibraci krátkovlnných radiometrů (provozní pyrheliometry, pyranometry). Standardní pyrheliometry slouží především jako národní, regionální a světové referenční přístroje reprezentující mezinárodní pyrheliometrickou stupnici. Národním etalonem pro měření slunečního záření v ČR je absolutní dutinový pyrheliometr typ HF č. 30497 (výrobce Eppley Laboratories, USA) udržovaný v ČHMÚ. Přístroj je v pravidelných intervalech porovnáván vůči světovému standardu ve Světovém radiačním středisku WMO v Davosu, Švýcarsko.
česky: pyrheliometr standardní angl: standard pyrheliometer slov: štandardný pyrheliometer  1993-a3
Stärke der Front f
kvalitativně posuzovaná charakteristika a tendence dějů probíhajících na atmosférické frontě včetně frontogeneze a frontolýzy. Opírá se zpravidla o velikost změn hodnot meteorologických prvků a průběh povětrnostních jevů při přechodu fronty.
česky: intenzita fronty angl: intensity of front slov: intenzita frontu rus: интенсивность фронта  1993-a1
Stärke des Erdblitzes f
vyjadřuje plošnou hustotu výbojů blesku do země za jednu bouřkovou událost, den s bouřkou nebo rok. V tech. praxi se udává prům. hustota úderů na 1 km2 za rok, odvozená z dlouhodobého pozorování. Hustota se zjišťuje nejčastěji počítači výbojů blesku. Mapy intenzity výbojů blesku do země jsou nejvhodnějším výchozím podkladem pro stanovení pravděpodobnosti úderu blesku do objektu.
česky: intenzita výbojů blesku do země angl: ground discharge rate slov: intenzita výbojov blesku do zeme rus: интенсивность разрядов молний в землю  1993-a2
Stärke des Wolkenblitzes f
vyjadřuje plošnou hustotu výbojů blesku mezi oblaky za jednu bouřkovou událost, den s bouřkou nebo za rok. V tech. praxi se udává prům. hustota výbojů na 1 km2 za rok, odvozená z dlouhodobého pozorování.
česky: intenzita výbojů blesku mezi oblaky angl: cloud to cloud lightning intensity slov: intenzita výbojov blesku medzi oblakmi rus: интенсивность разрядов молний между облаками  1993-a2
starker Abwind m
[daunbé(r)st] – extrémně silný sestupný proud u konvektivní bouře, který je příčinou vzniku ničivých divergujících větrů u zemského povrchu. Horiz. průměr tohoto jevu se pohybuje v rozmezí metrů až desítek kilometrů. Downburst je vázán na konvektivní oblaky, ne však vždy nutně druhu cumulonimbus. Podle horiz. rozsahu ničivých větrů se downburst dělí na macroburstmicroburst. Pro termín downburst, převzatý z angličtiny, se občas používá čes. termín propad studeného vzduchu.
česky: downburst angl: downburst slov: downburst rus: нисходящий порыв fr: rafale descendante f  1993-a3
Starkregen m
lid. výraz pro silný déšť. Nejčastěji se jedná o déšť přívalový.
česky: liják angl: rain gush slov: lejak rus: ливень  1993-a3
Startwettervorhersage f
letecká předpověď počasí obsahující informace o met. podmínkách nad vzletovou a přistávací dráhou nebo systémem vzletových a přistávacích drah letiště. Jde nejméně o předpověď směru, rychlosti a nárazů přízemního větru, předpověď teploty vzduchu a tlaku vzduchu redukovaného na hladinu moře podle standardní atmosféry (QNH). Předpověď pro vzlet se vydává v otevřené řeči nebo ve formě zkratek Mezinárodní organizace civilního letectví v období 3 hodiny před plánovaným časem vzletu.
česky: předpověď pro vzlet angl: take-off forecast slov: predpoveď pre vzlet rus: прогноз погоды для взлета  1993-b3
Statik der Atmosphäre f
část meteorologie zabývající se prostorovým rozložením stavových veličin v atmosféře, tj. rozložením tlaku, teploty a hustoty vzduchu. Přitom se předpokládá, že atmosféra je nepohyblivá vůči zemskému tělesu. Do statiky atmosféry patří mimo jiné problémy hydrostatické rovnováhy a stability teplotního zvrstvení. Viz též dynamika atmosféry.
česky: statika atmosféry angl: statics of atmosphere slov: statika atmosféry  1993-a1
Station für Messungen in der atmosphärischen Grenzschicht f
met. stanice provádějící měření v mezní vrstvě atmosféry. Rozsah měření je dán technikou a zaměřením stanice, např. může být použito vysokého stožáru, met. balonu, upoutané sondy, nepřímých letounových měření apod. Většinou měření této stanice navazuje na měření synoptické stanice nebo stanice se speciálním zaměřením a bývá nejčastěji využíváno ve spojitosti s výzkumem šíření příměsí v ovzduší a provozem zdrojů těchto škodlivin. Viz též měření meteorologické stožárové, stanice meteorologická na letadlech, stanice aerologická.
česky: stanice měřící v mezní vrstvě atmosféry angl: boundary layer station slov: stanica merajúca v hraničnej vrstve atmosféry  1993-a1
Station mit ehrenamtlichen Beobachtern f
někdy používané pracovní označení meteorologické stanice, jejímiž pozorovateli jsou zacvičení dobrovolní spolupracovníci met. institucí, tedy osoby, které nejsou stálými zaměstnanci těchto institucí a zpravidla nemají ani met. odb. vzdělání. Viz též stanice profesionální.
česky: stanice dobrovolnická angl: voluntary observer station slov: dobrovoľnícka stanica  1993-a1
stationäre Antizyklone
česky: anticyklona stacionární angl: stationary anticyclone slov: stacionárna anticyklóna rus: стационарный антициклон fr: anticyclone stationnaire  1993-a1
stationäre Front f
teor. model atmosférické fronty, která nemění svou polohu v prostoru. Vzduchové hmoty se pohybují přesně horizontálně bez výkluzných prvků po obou stranách frontálního rozhraní, rovnoběžně s ním, mají však vzájemně opačný směr pohybu. Reálné fronty nejsou stacionární, mohou být nanejvýš frontami kvazistacionárními.
česky: fronta stacionární angl: stationary front slov: stacionárny front rus: стационарный фронт fr: front stationnaire m  1993-a1
stationäre Wolke f
někdy používané označení pro orografický oblak, který se prakticky nepohybuje vzhledem k zemskému povrchu, i když se v hladině jeho vzniku vyskytuje silné proudění vzduchu.
česky: oblak stacionární angl: standing cloud slov: stacionárny oblak rus: стоячее облако  1993-a3
stationäres Aktionszentrum n
syn. centrum atmosféry akční trvalé – akční centrum atmosféry, které je patrné na klimatologických mapách během celého roku. Poloha, rozsah a intenzita permanentních akčních center se nicméně do určité míry mění, a proto bývají označována i jako centra kvazipermanentní nebo semipermanentní. Takovými akčními centry jsou rovníková deprese, oceánské subtropické anticyklony (např. azorská anticyklona) a cyklony nad oceány ve vysokých zeměpisných šířkách (např. islandská cyklona).
česky: centrum atmosféry akční permanentní angl: permanent atmospheric center of action slov: permanentné akčné centrum atmosféry rus: постоянный центр действия fr: centre d'action de caractère permanent m  1993-a3
stationäres Aktionszentrum n
česky: centrum atmosféry akční trvalé angl: permanent atmospheric center of action slov: stále akčné centrum atmosféry rus: постоянный центр действия fr: centre d'action de caractère permanent m  1993-a1
Stationskennziffer f
označení met. stanice čísly nebo písmeny, které nahrazuje nebo doplňuje její název při předávání zpráv o počasí. Číselné označení WMO se skládá z dvoumístného oblastního indikativu a trojmístného indikativu stanice. Oblastní indikativ může být společný pro několik menších zemí (např. oblastní indikativ 11 je určen pro Rakousko, Českou republiku a Slovensko). Vlastní indikativ stanice je určen pro Českou republiku v rozsahu 400–799 (např. Praha-Ruzyně má 518, takže úplné WMO označení je 11518).Oblastní indikativy i indikativy stanic přiděluje Světová meteorologická organizace. Písmenné označení stanice CCCC (směrovací značka ICAO) se používá při předávání met. zpráv určených k zabezpečení letectví. Skládá se ze čtyř písmen, z nichž první dvě udávají stát (Česká republika má přiděleno LK) a další dvě označují letiště (např. Praha-Ruzyně má PR). Směrovací značky ICAO přiděluje Mezinárodní organizace pro civilní letectví (ICAO).
česky: indikativ stanice angl: station designator, station index number, station number slov: indikatív stanice rus: индекс станции (международный, местный), номер станции, числовой индекс станции  1993-a3
Stationskreis m
kroužek na synoptické mapě, který je situován v místě meteorologické stanice a kolem něhož se zakreslují mezinárodně dohodnutým způsobem výsledky met. pozorování na této stanici. Poloha horských meteorologických stanic je vyznačena čtverečkem. Viz též model staniční.
česky: kroužek staniční angl: middle part of surface plotting model slov: staničný krúžok rus: кружок станции  1993-a1
Stationsmodell n
konvenčně uspořádaný zákres meteorologických prvků na synoptické mapě kolem staničního kroužku. Podle charakteru a měřítka synoptické mapy se používají různé typy staničních modelů. U některých met. prvků se ve staničním modelu zakresluje jen jejich výskyt pomocí symbolů, např. druh oblaků a meteorů, u jiných se do mapy vyznačuje jejich hodnota číselně nebo graficky. Staniční model se někdy slang. označuje jako „pavouk“.
česky: model staniční angl: surface plotting model slov: staničný model rus: модель станции  1993-a2
statische Grundgleichung f
česky: rovnice statiky atmosféry základní angl: principal static's equation slov: základná rovnica statiky atmosféry rus: основное уравнение статики атмосферы  1993-a1
statische Stabilität der Atmosphäre f?
česky: stabilita atmosféry statická angl: atmospheric static stability slov: statická stabilita atmosféry  2014
statistische Turbulenzmodelle n/pl
modely, jež vycházejí z fyzikálně ne zcela výstižného předpokladu, že turbulentní proudění má náhodnou povahu, a je tedy možno na ně aplikovat klasické statistické metody, při nichž je východiskem nalezení vhodných středních hodnot charakteristik uvažovaného proudění. Problémy definování a interpretace příslušných středních hodnot jsou potom zásadními otázkami struktury, vývoje a aplikací těchto modelů. Obecně jsou tyto modely tvořeny rovnicemi s vhodně formulovanými okrajovými, event. počátečními podmínkami, kdy právě zmíněné střední hodnoty vystupují v roli hledaných neznámých.
česky: modely turbulence statistické angl: statistical models of turbulence slov: statické modely turbulencie  2014
statistische Vorhersage f
předpověď meteorologických prvků a jejich kombinací, popř. meteorologických polí, vycházející ze znalostí statist. vlastností souborů met. prvků, vypracovávaná metodami mat. statistiky a teorie pravděpodobnosti. Ke statistické předpovědi počasí se často využívá např. metod regresní analýzy a faktorové analýzy. Statistická předpověď počasí může být součástí předpovědi počasí numerické nebo synoptické, dnes se však uplatňuje především při předpovědi počasí dlouhodobé.
česky: předpověď počasí statistická angl: statistical forecast slov: štatistická predpoveď počasia  1993-a3
Staubausfall m
syn. spad prašný – hmotnost prachu, který se usadí na jednotku plochy za jednotku času. Nejčastěji se udává v t.km–2.rok–1. Velikost spadu prachu je v rozhodující míře určena velkými částicemi s velkými pádovými rychlostmi, tedy s krátkou dobou výskytu v ovzduší. Spad prachu má proto význam spíše jako ukazatel komfortu pro účely zdravotnictví a hygieny ovzduší než jako kritérium znečištění ovzduší.
česky: spad prachu angl: dust fall slov: spád prachu rus: выпадение пыли  1993-a2
Staubniederschlag m
syn. spad prašný – hmotnost prachu, který se usadí na jednotku plochy za jednotku času. Nejčastěji se udává v t.km–2.rok–1. Velikost spadu prachu je v rozhodující míře určena velkými částicemi s velkými pádovými rychlostmi, tedy s krátkou dobou výskytu v ovzduší. Spad prachu má proto význam spíše jako ukazatel komfortu pro účely zdravotnictví a hygieny ovzduší než jako kritérium znečištění ovzduší.
česky: spad prachu angl: dust fall slov: spád prachu rus: выпадение пыли  1993-a2
Staubsturm m
velké množství prachu vyzdviženého do vzduchu silným větrem a unášeného zpravidla na velké vzdálenosti od zdroje. Prachové bouře mají značný horiz. i vert. rozsah. Vzdušný proud unášející pevný materiál se může pohybovat rychlostí desítek km.h–1, šířka proudu může dosahovat až několik stovek kilometrů, výška při silné turbulenci i několik kilometrů.
Prachové bouře jsou na rozdíl od častějších písečných bouří typické pro semiaridní klima, kde pedosféra obsahuje dostatek malých částic, které mohou být při výskytu sucha a omezeném vegetačním krytu větrem vyzdviženy. Vzhledem ke schopnosti větru unášet částice prachu v suspenzi může docházet k přenosu prachu na vzdálenost až tisíců kilometrů, kde je ukládán jako jemná navátina (tohoto eolického původu jsou i nánosy spraše na našem území). Během jedné prachové bouře se přenášejí často až milióny tun částic na ploše o velikosti tisíců km2. Prachové bouře tak působí značné hospodářské škody, neboť vyvolávají jednak odvátí ornice s osivem nebo i s malými rostlinami, jinde naopak dochází k zavátí vegetace, komunikací, studní apod. Během prachové bouře je navíc výrazně snížena dohlednost, což vyvolává potíže v dopravě. Prachové bouře mají různá místní označení, např. černý buran, černý blizard apod. Viz též bouře prachová nebo písečná, bouře černá, suchověj, seistan.
česky: bouře prachová angl: dust storm slov: prachová búrka rus: пыльная буря fr: tempête de poussière f  1993-a3
Staubteufel m
česky: rarášek angl: dust devil slov: rarášok rus: пыльный вихрь  1993-a2
Staubwirbel m
česky: rarášek angl: dust devil slov: rarášok rus: пыльный вихрь  1993-a2
Staubzähler m
syn. konimetr – přístroj nebo pomůcka pro měření spadu prachu nebo obsahu poletavého prachu v atmosféře. Větší částice prachu jsou zachycovány do sedimentačních nádob zčásti naplněných záchytným roztokem, které jsou umístěny v prašné lokalitě, nejčastěji na sloupech ve výši několika metrů nad zemí. Malé prachové částice neboli poletavý prach jsou nejčastěji zachycovány na filtr, přes který je prosáván definovaný objem vzduchu. Filtr může být pevný a je exponován po dobu několika hodin až dní. Zachycené množství prachu je pak zjišťováno váhově (gravimetricky), popř. opticky měřením zákalu filtru. Pohyblivý filtrační pás, přes který je prosáván vzduch, umožňuje průběžné měření poletavého prachu sledováním opt. zákalu filtru nebo měřením útlumu záření beta zachyceného prašnou stopou. Dříve bylo často užíván rovněž Aitkenův počítač jader, který však měří mimo poletavý prach i ostatní složky atmosférického aerosolu. Viz též měření znečištění ovzduší.
česky: prachoměr angl: dust counter, nuclei counter slov: prachomer rus: пылемер  1993-a2
Staurohranemometer n
anemometr založený na principu Pitotovy trubice, v němž se využívá tlakového rozdílu vytvářeného v aerodyn. trubici k vyvolání zdvihu plováku speciálního manometru. Tlakový rozdíl Δp závisí na rychlosti větru v a hustotě vzduchu ρ podle vztahu
Δp=k.ρv22
kde k je bezrozměrná konstanta, jejíž velikost závisí na vlastnostech aerodyn. trubice. Zdvih plováku je v převážné části stupnice lineárně úměrný přírůstku rychlosti větru. Dinesův anemometr je vhodný k měření krátkodobých fluktuací rychlostí větru. Tvoří součást univerzálního anemografu, který byl v Česku do konce 90. let 20. století hojně používán. První anemometr tohoto typu zkonstruoval angl. meteorolog W. H. Dines v r. 1890. Viz též anemometr tlakový.
česky: anemometr Dinesův angl: Dines anemometer, pressure tube anemometer slov: Dinesov anemometer rus: анемометр Дайнса fr: anémomètre à tube (de pression) m, anémomètre de Dines m  1993-a2
Stefan-Boltzmann-Konstante f
česky: konstanta Stefanova–Boltzmannova angl: Stefan and Boltzmann constant slov: Stefanova–Boltzmannova konštanta  2016
Steppenklima n
Köppenově klasifikaci klimatu mírnější typ suchého klimatu, označovaný BS; dále se dělí na horké (BSh) a chladné (BSk). Obecně se klima stepi vyznačuje nedostatkem srážek pro přirozený výskyt lesa, naopak vyhovuje travním porostům. Může být též označeno jako semiaridní klima. Potřeba závlah je limitujícím faktorem pro intenzivní zemědělské využití stepních oblastí, což platí především v případě výskytu agronomického sucha. V různých částech Země má step místní názvy, např. v Jižní Americe pampa, v Severní Americe prérie. Vlivem lidské činnosti se step rozšířila i do některých oblastí, kde tento biom neodpovídá klimatických podmínkám (např. maďarská pusta).
česky: klima stepi angl: steppe climate slov: stepná klíma rus: климат степей  1993-b3
steuernde Fläche f
hladina s dostatečně výrazným, ustáleným a co do směru nepříliš plošně proměnlivým přenosem vzduchu ve stř. troposféře, v jehož směru se v podstatě přemísťují přízemní tlakové útvary (odtud řídící proudění). Za hladinu řídícího proudění se obvykle považuje hladina, ve které leží osa výškové frontální zóny. V létě to bývá hladina okolo 500 hPa, v zimě okolo 700 hPa. Viz též proudění řídící.
česky: hladina řídícího proudění angl: steering level slov: hladina riadiaceho prúdenia rus: уровень ведущего потока  1993-a2
steuernde Strömung f
málo zakřivené ustálené proudění vzduchu ve stř. troposféře, v jehož směru se všeobecně přemísťují nízké tlakové útvary. Za směr řídícího proudění se v synop. praxi považuje směr izohyps na mapách absolutní topografie hladin 500 nebo 700 hPa. Při subj. předpovědi přízemního tlakového pole se obvykle předpokládalo, že rychlost přesunu tlakových útvarů je přibližně rovna 0,8 rychlosti geostrofického větru v hladině 700 hPa nebo 0,6 rychlosti v hladině 500 hPa. Ve skutečnosti se rychlost přesunu mění v dosti širokých mezích a závisí na typu tlakového útvaru a jeho vývojovém stadiu. V současné době se jedná již o zastaralý pojem spojený s klasickými synoptickými metodami předpovědi počasí.
česky: proudění řídící angl: steering flow slov: riadiace prúdenie rus: ведущий поток  1993-a3
Stokes-Parameter m
bezrozměrný parametr, který se v meteorologii používá především v teorii koalescence vodních kapek o různých velikostech. Většinou se uvádí ve tvaru:
2ρwr2 | vRvr |/9μR,
kde vR, resp. vr značí velikost pádové rychlosti kapek o poloměru R, resp. r (r << R), ρw hustotu vody a μ koeficient dynamické vazkosti vzduchu. Výraz 2ρwr2/9μ, vyjadřuje čas, za který klesne na 1/e původní hodnoty (e je základ přirozených logaritmů) rychlost pohybu sférické částice, o dostatečně malém poloměru r a hustotě ρw, na niž působí pouze síla odporu prostředí daná Stokesovým zákonem. Viz též vzorec Stokesův.
česky: parametr Stokesův angl: Stokes parameter slov: Stokesov parameter rus: параметр Стокса  1993-a1
Stokes-Parameter m
bezrozměrný parametr, který se v meteorologii používá především v teorii koalescence vodních kapek o různých velikostech. Většinou se uvádí ve tvaru:
2ρwr2 | vRvr |/9μR,
kde vR, resp. vr značí velikost pádové rychlosti kapek o poloměru R, resp. r (r << R), ρw hustotu vody a μ koeficient dynamické vazkosti vzduchu. Výraz 2ρwr2/9μ, vyjadřuje čas, za který klesne na 1/e původní hodnoty (e je základ přirozených logaritmů) rychlost pohybu sférické částice, o dostatečně malém poloměru r a hustotě ρw, na niž působí pouze síla odporu prostředí daná Stokesovým zákonem. Viz též vzorec Stokesův.
česky: parametr Stokesův angl: Stokes parameter slov: Stokesov parameter rus: параметр Стокса  1993-a1
Störungsmethode f
syn. metoda poruch – metoda založená na aplikaci tzv. poruchového počtu. Fyz. veličiny podle ní rozkládáme na část stacionární (časově zprůměrovanou) a poruchovou neboli perturbační (časově rychle proměnnou). V meteorologii se s použitím perturbační metody setkáváme zejména v souvislosti s atm. turbulencí, turbulentním přenosem, vlnovými ději apod.
česky: metoda perturbační angl: perturbation method slov: perturbačná metóda rus: метод возмущений  1993-a3
stossartiger Blitzentladungsstrom m
jednorázový impulz záporné nebo kladné polarity velmi krátkého trvání (několik desítek nebo stovek µs), který se vyznačuje vysokou amplitudou proudu blesku od 102 do 3.105 A.
česky: proud bleskového výboje rázový angl: lightning current slov: rázový prúd bleskového výboja rus: ударный ток грозового разряда  1993-a1
Strahlstrom m
česky: jet stream angl: jet stream slov: jet stream rus: струйное течение  1993-a1
Strahlstrom m
syn. jet stream [džet strím] – silné proudění vzduchu ve tvaru zploštělé trubice s kvazi horiz. osou max. rychlosti proudění vzduchu, zpravidla 1–2 km pod tropopauzou, jež je charakterizováno nejen velkými rychlostmi, nýbrž i výraznými horiz. a vert. střihy směru větru. Podle definice WMO je tryskové proudění vymezeno izotachou 30 m.s–1, horiz. střihem větru alespoň 5 m.s–1 na 100 km a vert. střihem větru 5 až 10 m.s–1 na 1 km. Horiz. rozměry podél osy tryskového proudění jsou tisíce km a vert. rozměry jsou jednotky km. Je strukturně spojeno s planetární výškovou frontální zónou. Tryskové proudění se vyskytuje i ve stratosféře a mezosféře. Poprvé bylo toto proudění prokázáno za 2. svět. války nad Tichým oceánem při letech nad Japonskem. V literatuře se uvádějí rychlosti tryskového proudění až přes 500 km.h–1. Nad územím ČR byly naměřeny hodnoty okolo 300 km.h–1. Viz též klasifikace tryskového proudění geografická.
česky: proudění tryskové angl: jet stream slov: dýzové prúdenie  1993-a2
Strahlstromachse f
jedna ze základních popisných charakteristik tryskového proudění odpovídající proudnici největší rychlosti. Osa tryskového proudění mění svou polohu v závislosti na různých podmínkách. V našich zeměpisných šířkách bývá nejčastěji ve výšce 9 až 13 km, tedy 1 až 2 km pod tropopauzou. Udává se však, že až 20 % případů výskytu tryskového proudění je charakterizovaných osou tryskového proudění nad tropopauzou.
česky: osa tryskového proudění angl: axis of jet stream slov: os dýzového prúdenia rus: ось струйного течения  1993-a2
Strahlströmung f
syn. jet stream [džet strím] – silné proudění vzduchu ve tvaru zploštělé trubice s kvazi horiz. osou max. rychlosti proudění vzduchu, zpravidla 1–2 km pod tropopauzou, jež je charakterizováno nejen velkými rychlostmi, nýbrž i výraznými horiz. a vert. střihy směru větru. Podle definice WMO je tryskové proudění vymezeno izotachou 30 m.s–1, horiz. střihem větru alespoň 5 m.s–1 na 100 km a vert. střihem větru 5 až 10 m.s–1 na 1 km. Horiz. rozměry podél osy tryskového proudění jsou tisíce km a vert. rozměry jsou jednotky km. Je strukturně spojeno s planetární výškovou frontální zónou. Tryskové proudění se vyskytuje i ve stratosféře a mezosféře. Poprvé bylo toto proudění prokázáno za 2. svět. války nad Tichým oceánem při letech nad Japonskem. V literatuře se uvádějí rychlosti tryskového proudění až přes 500 km.h–1. Nad územím ČR byly naměřeny hodnoty okolo 300 km.h–1. Viz též klasifikace tryskového proudění geografická.
česky: proudění tryskové angl: jet stream slov: dýzové prúdenie  1993-a2
Strahlung f
syn. záření.
česky: radiace angl: radiation slov: radiácia  1993-a1
Strahlungs-Konvektions-Modell n
(RCM) – modely klimatu vycházející z předpokladu tzv. čistě radiační rovnováhy, při které jsou změny teploty ve sledovaných vrstvách atmosféry dány výslednicí toků slunečního a dlouhovlnného záření. Vycházejí z jisté modelové představy o vert. rozložení radiačně aktivních složek atmosféry (CO2, vodní páry, oblačnosti, atmosférického aerosolu, O3 apod.) a jejich radiačních vlastností. Při výpočtech teploty ve spodní troposféře se používá tzv. konv. přizpůsobení, jehož princip spočívá v tom, že v blízkosti zemského povrchu se kromě zářivých toků uvažují i konv. toky tepla. Uvedené modely se používají zejména ke studiu vlivu antropogenního znečištění ovzduší stopovými látkami na klima.
česky: modely klimatu radiačně – konvekční angl: radiative-convective models slov: radiačno-konvekčné modely klímy  1993-b1
Strahlungsabkühlung f
izobarické snižování teploty aktivního povrchu země a přilehlé vrstvy vzduchu v důsledku záporné bilance záření. K radiačnímu ochlazování též dochází ve vrstvách vzduchu, které obsahují zvýšené množství vodní páry, popř. kondenzační produkty, neboť vodní pára i kondenzační produkty intenzivně vyzařují dlouhovlnné záření. Radiační ochlazení bývá příčinou radiačních mlh nebo mrazíků, a to zejména v noci, kdy tepelné ztráty způsobené vyzařováním nejsou kompenzovány příkonem slunečního záření.
česky: ochlazování radiační angl: radiational cooling, radiative cooling slov: radiačné ochladzovanie rus: радиационное охлаждение  1993-a1
Strahlungsabsorption f
česky: pohlcování záření angl: absorption of radiation slov: pohlcovanie žiarenia rus: поглощение радиации  1993-a1
strahlungsaktive Gase n/pl
česky: plyny radiačně aktivní angl: radiatively active gases slov: radiačno aktívné plyny  2015
Strahlungsbilanz der Atmosphäre f
rozdíl množství záření pohlceného a vyzářeného atmosférou. Vztahuje se buď ke sloupci atmosféry o jednotkovém horiz. průřezu a výšce rovné tloušťce atmosféry, nebo k celé atmosféře Země. Protože atmosféra pohlcuje sluneční záření poměrně málo, má pro radiační bilanci atmosféry podstatný význam pohlcování dlouhovlnného záření a vlastní záření atmosféry. Radiační bilance atmosféry je vždy záporná a takto vzniklý deficit v tepelné bilanci atmosféry je kompenzován uvolňováním tepla při fázových přechodech a turbulentní výměnou tepla mezi zemským povrchem a atmosférou. Viz též bilance radiační.
česky: bilance atmosféry radiační angl: radiation balance of the atmosphere slov: bilancia žiarenia atmosféry rus: радиационный баланс атмосферы fr: bilan radiatif de la Terre m  1993-a2
Strahlungsbilanz der Erdoberfläche f
rozdíl množství globálního slunečního záření absorbovaného jednotkou plochy zemského povrchu a efektivního vyzařování zemského povrchu. Okamžité hodnoty radiační bilance zemského povrchu mohou být kladné i záporné, přičemž přechod od kladné bilance k záporné a naopak (v denním chodu) se zpravidla pozoruje při výškách Slunce 10 až 15° nad obzorem. Radiační bilance zemského povrchu je energ. základem bytí a vývoje organické přírody, klimatickým faktorem, podílí se na režimu oceánských a kontinentálních vod, na utváření fyzicko-geogr. poměrů na zemském povrchu aj. Viz též bilance záření.
česky: bilance radiační zemského povrchu angl: radiation balance of the Earth's surface slov: radiačná bilancia zemského povrchu rus: радиационный баланс земной поверхности fr: bilan radiatif à la surface de la Terre m  1993-a1
Strahlungsbilanz des Systems Erde-Atmosphaere
rozdíl množství slunečního záření vstupujícího do zemské atmosféry a záření Země, tj. záření povrchu Země a atmosféry Země unikajícího do světového prostoru. Protože soustava tvořená Zemí a její atmosférou si nevyměňuje s okolním prostorem významnější měrou teplo jinak než prostřednictvím radiačního přenosu je bilance radiační soustavy Země-atmosféra též tepelnou bilancí tohoto systému.
česky: bilance radiační soustavy Země-atmosféra angl: radiation balance of the Earth-atmosphere system slov: radiačná bilancia sústavy Zem–atmosféra rus: радиационный баланс системы Земля-атмосфера fr: bilan radiatif du système Terre-atmosphère m  1993-a1
Strahlungsbilanz f
česky: bilance radiační angl: net radiation, radiation balance slov: radiačná bilancia rus: радиационный баланс fr: bilan de rayonnement solaire m, rayonnement net m, bilan de rayonnement total m  1993-a1
Strahlungsbilanz f
syn. bilance radiační – rozdíl záření směřujícího dolů a záření směřujícího nahoru, vztažený k určité hladině, vrstvě nebo sloupci atmosféry, k zemskému povrchu, popř. k celé soustavě Země-atmosféra. Kladné hodnoty bilance záření znamenají při radiačním přenosu energie energ. zisk pro danou hladinu nebo soustavu, záporné hodnoty energ. ztrátu. Vztahuje-li se bilance záření k různým časovým obdobím (např. den, měsíc, rok), označuje se zpravidla názvem denní, měs., roční úhrn bilance záření. Podle vlnových délek se někdy člení na krátkovlnnou, tzv. bilanci slunečního záření; a dlouhovlnnou, tzv. bilanci zemského zářeni. Jestliže sledujeme odděleně bilance záření zemského povrchu, atmosféry nebo soustavy Země-atmosféra, používáme označení radiační bilance zemského povrchu, atmosféry nebo soustavy Země-atmosféra. Bilance záření se měří bilancometry a vyjadřuje se ve W.m–2 jako intenzita záření, popř. J.m–2 jako množství záření. Viz též bilance tepelná, záření Země.
česky: bilance záření angl: net radiation, radiation balance slov: bilancia žiarenia rus: радиационный баланс fr: bilan radiatif m, rayonnement net m  1993-a1
Strahlungsbilanzmesser m
přístroj pro měření rozdílu celkového záření (0,3 až 100 μm) dopadajícího na horní a spodní stranu vodorovného čidla z prostorového úhlu 2π. Čidlo je nejčastěji tvořeno dvojicí tenkých černých kovových destiček, vzájemně propojených diferenční termobaterií, která měří rozdíl teplot obou destiček. Tento rozdíl je úměrný radiační bilanci záření. Použitý indikátor napětí musí mít posunutou nulu, aby bylo možné měřit kladná i záporná napětí termočlánku. Bilancometry v trvalém provozu mají chráněna čidla tenkými (0,1 mm) polyetylenovými polokoulemi známými jako lupolen-H.
česky: bilancometr angl: net pyrradiometer, radiation balance meter slov: bilancometer rus: балансомер, сумарный пиранометр fr: bilan mètre m, pyrradiomètre m  1993-a1
Strahlungsdiagramm n
česky: diagram radiační angl: radiation chart slov: radiačný diagram fr: diagramme de rayonnement m, diagramme d'émission m  1993-a1
Strahlungsdiagramm n
nevhodně diagram radiační – nomogram umožňující, na základě znalosti teploty zemského povrchu a aerologických údajů o vertikálním profilu teploty i vlhkosti vzduchu, rychle přibližně vyhodnocovat velikost vert. toků dlouhovlnného záření v úrovni zemského povrchu a v různých hladinách atmosféry, zjišťovat efektivní a zpětné záření i např. radiační ochlazování ve zvolených vrstvách atmosféry. K nejznámějším radiačním nomogramům patří nomogramy Elsasserův, Möllerův, Yamamotův apod. Z dnešního hlediska jde již o prostředek zastaralý, ale značného historického významu.
česky: nomogram radiační angl: radiation chart slov: radiačný nomogram rus: радиационная номограмма  1993-a3
Strahlungsenergie f
viz záření.
česky: energie zářivá angl: radiant energy slov: energia žiarenia rus: лучистая энергия, энергия излучения, энергия электромагнитной радиации fr: énergie radiante f, énergie rayonnante f  1993-a1
Strahlungsfeld n
prostorové rozložení záření pocházejícího z jednoho nebo více zdrojů. Pole záření, v jehož libovolném bodu nezávisí hodnota intenzity na směru zvoleného paprsku, nazýváme izotropním. V případě, že rozložení záření je prostorově konstantní, mluvíme o homogenním poli záření. Pro meteorologii jsou významná zejména pole přímého a rozptýleného slunečního záření, spolu s polem dlouhovlnného záření.
česky: pole záření angl: radiation field slov: pole žiarenia rus: поле радиации  1993-a1
Strahlungshaushalt m
česky: bilance radiační angl: net radiation, radiation balance slov: radiačná bilancia rus: радиационный баланс fr: bilan de rayonnement solaire m, rayonnement net m, bilan de rayonnement total m  1993-a1
Strahlungshaushalt m
syn. bilance radiační – rozdíl záření směřujícího dolů a záření směřujícího nahoru, vztažený k určité hladině, vrstvě nebo sloupci atmosféry, k zemskému povrchu, popř. k celé soustavě Země-atmosféra. Kladné hodnoty bilance záření znamenají při radiačním přenosu energie energ. zisk pro danou hladinu nebo soustavu, záporné hodnoty energ. ztrátu. Vztahuje-li se bilance záření k různým časovým obdobím (např. den, měsíc, rok), označuje se zpravidla názvem denní, měs., roční úhrn bilance záření. Podle vlnových délek se někdy člení na krátkovlnnou, tzv. bilanci slunečního záření; a dlouhovlnnou, tzv. bilanci zemského zářeni. Jestliže sledujeme odděleně bilance záření zemského povrchu, atmosféry nebo soustavy Země-atmosféra, používáme označení radiační bilance zemského povrchu, atmosféry nebo soustavy Země-atmosféra. Bilance záření se měří bilancometry a vyjadřuje se ve W.m–2 jako intenzita záření, popř. J.m–2 jako množství záření. Viz též bilance tepelná, záření Země.
česky: bilance záření angl: net radiation, radiation balance slov: bilancia žiarenia rus: радиационный баланс fr: bilan radiatif m, rayonnement net m  1993-a1
Strahlungsinversion f
teplotní inverze vznikající jako důsledek vyzařování tepla ze zemského povrchu, z povrchu sněhu nebo ledu, z horní vrstvy oblaků apod. Nejobvyklejšími přízemními radiačními inverzemi jsou noční inverze teploty vzduchu. V zimě, kdy je obecně malý příkon slunečního záření k zemskému povrchu, se však přízemní radiační inverze mohou vytvářet i v denních hodinách. Méně často vznikají radiační inverze při vyzařování oblačné nebo velmi vlhké, popř. znečištěné vrstvy vzduchu v atmosféře, kdy se teplotní inverze vytváří bezprostředně nad touto vrstvou jako radiační inverze výšková.
česky: inverze teploty vzduchu radiační angl: radiation inversion slov: radiačná inverzia teploty vzduchu rus: радиационная инверсия  1993-a3
Strahlungsklima n
model klimatu utvářeného pouze radiačními faktory klimatu. Na Zemi se mu nejvíce blíží klima oblastí s malou intenzitou hydrologického cyklu a malou oblačností, tedy především klima pouště. Termín je někdy používán též ve smyslu solární klima. Viz též klima fyzické.
česky: klima radiační angl: radiation climate slov: radiačná klíma rus: радиационный климат  1993-b3
Strahlungsnebel m
mlha z vyzařování mlha vzniklá izobarickým radiačním ochlazováním vzduchu od aktivního povrchu, jehož teplota se snižuje následkem efektivního vyzařování. Tímto způsobem vznikají mlhy především v noci, v zimním období se někdy udržují po celý den. Častější jsou mlhy přízemní než mlhy vysoké. Viz též klasifikace mlh Willettova, mlha advekční.
česky: mlha radiační angl: radiation fog slov: radiačná hmla rus: радиационный туман  1993-a3
Strahlungsnebel m
česky: mlha z vyzařování angl: radiation fog slov: hmla z vyžarovania rus: радиационный туман  1993-a1
Strahlungsschutz m
zpravidla plastové, polouzavřené stínítko sloužící jako ochrana jednoho nebo několika pod ním umístěných meteorologických přístrojů před rušivými účinky záření a srážek, které však umožňuje dostatečnou přirozenou ventilaci čidel přístrojů. Nahrazuje dříve používanou meteorologickou budku.
česky: kryt radiační angl: radiation screen slov: radiačný kryt  2014
Strahlungstransport m
přenos energie elektromagnetickým zářením v zemské atmosféře. V meteorologii je znám především v souvislosti s vyhodnocováním radiační bilance zemského povrchu nebo částí atmosféry jako radiační přenos krátkovlnný (sluneční záření) a dlouhovlnný (infračervené – tepelné záření). Viz též výměna radiační.
česky: přenos radiační angl: radiative transfer slov: radiačný prenos rus: перенос радиации  1993-a3
Strahlungsübertragung f
přenos energie elektromagnetickým zářením v zemské atmosféře. V meteorologii je znám především v souvislosti s vyhodnocováním radiační bilance zemského povrchu nebo částí atmosféry jako radiační přenos krátkovlnný (sluneční záření) a dlouhovlnný (infračervené – tepelné záření). Viz též výměna radiační.
česky: přenos radiační angl: radiative transfer slov: radiačný prenos rus: перенос радиации  1993-a3
stratiforme Wolken f/pl
česky: oblačnost vrstevnatá angl: stratiform clouds slov: vrstevnatá oblačnosť rus: слоистообразная облачность  1993-a1
stratiformis
(str) [stratiformis] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má vzhled rozsáhlé horiz. plochy nebo vrstvy. Užívá se u druhů altocumulus, stratocumulus, zřídka i cirrocumulus.
česky: stratiformis angl: stratiformis slov: stratiformis rus: слоистообразныe облака  1993-a2
Stratocumulus m
(Sc) [stratokumulus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Tvoří jej šedé nebo bělavé, menší, popř. větší skupiny nebo vrstvy oblaků, které mají téměř vždy tmavá místa. Oblak se skládá z částí podobných dlaždicím, oblázkům, valounům apod., má vzhled nevláknitý, s výjimkou zvláštního případu s virgou. Jednotlivé části spolu souvisejí nebo mohou být oddělené. Zdánlivá velikost jednotlivých částí Sc je větší než 5° prostorového úhlu. Sc patří k vodním nebo smíšeným oblakům nízkého patra. Mohou z něho vypadávat slabší srážky dosahující zemského povrchu. Vzniká při vlnových pohybech nebo transformací z jiných druhů oblaků, zejména druhu stratus nebo z kupovité oblačnosti. Sc je často příznakem rozpadu oblačnosti. Sc lze dále klasifikovat podle tvaru jako stratiformis, lenticularis, castellanus, nebo volutus a podle odrůdy jako translucidus, perlucidus, opacus, duplicatus, undulatus, radiatus a lacunosus. Zvláštnostmi Ac mohou být virga a mamma. Termín Sc zavedl něm. meteorolog L. F. Kämtz v letech 1840–1841. Český překlad Sc je slohová kupa, nespr. slohokupa.
česky: stratocumulus angl: Stratocumulus slov: stratocumulus rus: слоистокучевыe облака  1993-a2
Stratopause f
vrstva atmosféry Země oddělující stratosféru a mezosféru. Leží ve výšce kolem 50 km. Teplota se zde pohybuje kolem 270 K (0 °C).
česky: stratopauza angl: stratopause slov: stratopauza rus: стратопауза  1993-a3
Stratosphäre f
část atmosféry Země v průměrné výšce 10 až 50 km, tj. mezi tropopauzou a stratopauzou. V její spodní části, do výšek 20 až 25 km, se teplota vzduchu s výškou nepatrně zvyšuje, odtud vzhůru roste. Maxima (v průměru kolem 0 °C) dosahuje teplota v blízkosti stratopauzy. Růst teploty s výškou je působen přítomností ozonu, který pohlcuje sluneční ultrafialové záření s vlnovou délkou 242 nm a silně se zahřívá. Rychlost proudění ve stratosféře s výškou nejprve klesá, dosahuje minima kolem 22 až 25 km, potom opět roste. Ve stratosféře také pozorujeme náhlé sezonní střídání převládajícího směru proudění ze záp. na vých. a opačně. Ve výškách kolem 25 km pozorujeme perleťové oblaky.
Jako stratosféra byla původně označována vrstva vzduchu nad troposférou až do výšek 80 až 100 km. Později byla uvedená vrstva rozdělena do dvou vrstev, z nichž svrchní byla nazvána mezosféra. Teplotní vlastnosti stratosféry objevili v r. 1902 nezávisle na sobě něm. meteorolog R. Assmann a franc. meteorolog L. P. Teisserenc de Bort, který název stratosféra také navrhl. Viz též oscilace kvazidvouletá, monzun stratosférický, oteplení stratosférické.
česky: stratosféra angl: stratosphere slov: stratosféra rus: стратосферa  1993-a3
stratosphärische Erwärmung f
atmosférický jev spojený se změnami severního cirkumpolárního víru, který způsobuje výrazné oteplení stratosféry a zvýšení koncentrace stratosférického ozonu. Stratosférické oteplení poprvé pozoroval R. Sherhag v Berlíně v r. 1952. Může se projevit jako:
1. Silné stratosférické oteplení (z angl. sudden warming major), které nastává při celkovém rozpadu severního cirkumpolárního víru, nebo při jeho rozdělení působením troposférických planetárních vln. V důsledku tohoto procesu se, v hladině 10 mb a v zeměp. šířkách nad 60° s. š. západní zonální cirkulace změní na východní a oteplení stratosféry může dosahovat během několika dnů až 50–60 K. Na již. polokouli nebylo dosud silné stratosférické oteplení pozorováno.
2. Slabé stratosférické oteplení (z angl. sudden warming minor), které je stejný jev jako silné stratosférické oteplení, dochází však pouze k časově omezenému zeslabení severního cirkumpolárního víru, nikoliv k jeho rozpadu, a západní cirkulace se nemění na východní.
3. Konečné stratosférické oteplení (z angl. sudden warming final), což je označení pro postupné oteplení stratosféry při přechodu od zimní k letní cirkulaci v polárních a subpolárních oblastech, spojené s přirozeným zánikem severního cirkumpolárního víru. Stadium ustálení teploty se obvykle váže na konec března a začátek dubna.
česky: oteplení stratosférické angl: stratospheric warming slov: stratosférické oteplenie rus: стратосферное потепление  1993-a3
stratosphärischer Monsun m
občas se vyskytující nevhodné označení pro sezonní změnu směru proudění ve stratosféře (ve výškách nad 20 km). V zimě ve všech zeměp. šířkách vanou záp. větry kolem chladné polární cyklony, zatímco v létě, kdy teplota a tlak vzduchu klesá směrem od pólu k rovníku, vznikají vých. větry kolem teplé polární anticyklony. Příčinou tohoto jevu jsou solární klima a radiační vlastnosti ozonu, nesouvisí tedy nijak s monzunovou cirkulací.
česky: monzun stratosférický angl: stratospheric monsoon slov: stratosférický monzún rus: стратосферный муссон  1993-a3
stratosphärischer Strahlstrom m
tryskové proudění záp. směru ve stratosféře a spodní mezosféře vyskytující se v zimním období. Souvisí s radiačním ochlazováním a se vznikem výškové cyklony v polární oblasti během polární noci. Stratosférické tryskové proudění se vyskytuje v poměrně širokém pásmu, avšak nejvýraznější bývá v zimě okolo 70° sev. zeměp. šířky s osou ve výšce asi 50 km a označuje se též jako tryskové proudění na okraji polární noci. V letním období je toto tryskové proudění vystřídáno větry vých. směru, kterým se obvykle nedá přisoudit charakter tryskového proudění. K stratosférickému tryskovému proudění obvykle počítáme i rovníkové tryskové proudění, které se vyskytuje ve spodní stratosféře, popř. může zasahovat i do horní troposféry.
česky: proudění tryskové stratosférické angl: stratospheric jet stream slov: stratosferické dýzové prúdenie  1993-a1
Stratus m
(St) – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Tvoří jej šedá oblačná vrstva s dosti jednotvárnou základnou, z níž může vypadávat mrholení, popř. ledové jehličky nebo sněhová zrna. Prosvítá-li vrstvou St slunce, jsou jeho obrysy obvykle zřetelné. St vyvolává halové jevy jen výjimečně při velmi nízkých teplotách. Někdy má podobu roztrhaných chuchvalců. St je v teplé polovině roku zpravidla vodním oblakem, v zimě často obsahuje i ledové krystalky. Patří k oblakům nízkého patra a vzniká především pod výškovými inverzemi teploty vzduchu nebo v důsledku ochlazení vzduchu od podkladu. Svými mikrostrukturálními ani makrostrukturálními parametry se obvykle neliší od mlhy. St lze dále klasifikovat podle tvaru jako nebulosus nebo fractus a podle odrůdy jako translucidus, opacus nebo undulatus. Zvláštností St je praecipitatio. Termín St navrhl Angličan L. Howard v r. 1803; v dnešním významu ho poprvé užili H. M. Hildebrandsson a R. Abercromby v r. 1887. Český překlad St je sloha.
česky: stratus angl: Stratus slov: stratus rus: слоистыe облака  1993-a2
Streckenvorhersage f
česky: předpověď pro let nebo trať slov: predpoveď pre let alebo trať  1993-a1
strenges Klima n
česky: klima drsné angl: severe climate slov: drsná klíma rus: суровый климат  1993-b2
Streufunktion f
prostorové rozložení intenzity záření rozptýleného určitou částicí nebo souborem částic. Vyjadřuje se pomocí rozptylového diagramu.
česky: indikatrice rozptylová angl: indicatrix of diffusion, scattering indicatrix slov: rozptylová indikatrica rus: индикатриса рассеяния  1993-a2
Streuindikatrix f
prostorové rozložení intenzity záření rozptýleného určitou částicí nebo souborem částic. Vyjadřuje se pomocí rozptylového diagramu.
česky: indikatrice rozptylová angl: indicatrix of diffusion, scattering indicatrix slov: rozptylová indikatrica rus: индикатриса рассеяния  1993-a2
Streukoeffizient m
charakteristika schopnosti daného prostředí rozptylovat záření. Rozlišujeme objemový a hmotový koeficient rozptylu. Objemový koeficient rozptylu je číselně roven množství zářivé energie rozptýlené z paprsku jednotkové intenzity na dráze jednotkové délky. Vynásobením objemového koeficientu rozptylu převrácenou hodnotou hustoty rozptylujícího prostředí dostaneme hmotový koeficient rozptylu. V meteorologii se setkáváme s koeficientem rozptylu slunečního záření, jehož hodnota závisí na vlnové délce. S ohledem na tuto závislost se koeficient rozptylu obvykle udává jen pro určitou dostatečně úzkou část spektra slunečního záření, takže lze hovořit o spektrálním, popř. monochromatickém koeficientu rozptylu. Viz též koeficient absorpce, koeficient extinkce, rozptyl Rayleighův, rozptyl Mieův.
česky: koeficient rozptylu angl: scattering coefficient slov: koeficient rozptylu rus: коэффициент рассеяния  1993-a1
Streulicht n
česky: světlo rozptýlené angl: scattered light slov: rozptýlené svetlo rus: рассеянное световое излучение, рассеянный свет  1993-a1
Streulichtdiagramm n
česky: diagram rozptýleného světla angl: light scattering diagram, scattering indicatrix slov: diagram rozptýleného svetla rus: диаграмма рассеяния светa, диаграмма рассеянного света fr: diagramme de diffusion de la lumière m, diagramme de diffusion lumineuse m  1993-a1
Streulichtdiagramm n
syn. diagram rozptýleného světla prostorový – diagram používaný při studiu různých problémů atmosférické optiky, který zobrazuje rozptylovou indikatrici. Střed diagramu leží v geometrickém středu částice rozptylující záření (nebo ve středu souboru takových částic). V každém směru se z něho vynáší na polopřímku množství záření rozptylovaného do jednotkového prostorového úhlu, jehož osou je zmíněná polopřímka. Protože se v atmosféře zpravidla setkáváme s rozptylem válcově symetrickým vzhledem ke směru rozptylovaných paprsků, zakresluje se obvykle pouze řez rozptylovým diagramem, který obsahuje rozptylovaný paprsek. Předpokladem této válcové symetrie je nulová polarizace světla před uvažovaným rozptylem, čemuž vcelku dobře vyhovují paprsky přímého slunečního záření. Viz též rozptyl elektromagnetického vlnění v atmosféře.
česky: diagram rozptylový angl: scattering indicatrix slov: rozptylový diagram rus: диаграмма диффузии fr: diagramme de diffusion m  1993-a1
Streuung der Beimengungen in der Luft f
zmenšování koncentrace znečišťujících látek působené především turbulentní difuzí. Největší význam pro rozptyl znečišťujících příměsí v atmosféře mají turbulentní víry o rozměrech blízkých rozměrům vlečky nebo oblaku příměsi. Víry značně větší přenášejí vlečku (oblak) jako celek, víry značně menší způsobují mísení vzduchu uvnitř vlečky (oblaku) a v obou případech málo přispívají k rozptylu příměsí. Úroveň znečištění ovzduší je kromě rozptylu příměsí ovlivňována procesy samočištění ovzduší. Viz též vlečka kouřová, model Suttonův.
česky: rozptyl příměsí v ovzduší angl: diffusion of air pollutants slov: rozptyl prímesí v ovzduší rus: рассеяние примесей в атмосфере  1993-a2
Streuung der Strahlung f
česky: rozptyl záření angl: scattering of radiation slov: rozptyl žiarenia rus: рассеяние радиации  1993-a1
Streuung von elektromagnetischen Wellen in der Atmosphäre f
elektromagnetické vlnění (záření) je v atmosféře rozptylováno jak molekulami vzduchu (molekulární rozptyl), tak aerosolovými částicemi (vodními kapičkami, ledovými krystalky, prachovými částicemi atd.). Nejrozšířenější teorií tohoto rozptylu je Mieova teorie (G. Mie, 1908), řešící problém rozptylu na částicích sférického tvaru. Nejjednodušším případem Mieovy teorie je Rayleighův rozptyl, vyžadující, aby:
a) 2πr / λ << 1, kde r je poloměr rozptylujících částic a λ vlnová délka rozptylovaného záření;
b) rozptylující částice byly el. nevodivé.
Při Rayleighově rozptylu je množství rozptýleného elmag. záření přímo úměrné převrácené hodnotě čtvrté mocniny vlnové délky a rozptylová indikatrice má symetrický tvar. Rozptýlené paprsky, svírající se směrem pův. paprsku úhel π / 2, jsou zcela polarizovány. Ve směru původního paprsku a ve směru k němu přesně opačném je polarizace rozptýlených paprsků nulová, ve všech ostatních směrech pak částečná. Rozptyl světla na molekulách vzduchu vyhovuje, kromě určitých menších odchylek týkajících se polarizace, velmi dobře teor. Rayleighovu rozptylu. Pro popis rozptylu světla na aerosolových částicích obsažených ve vzduchu, které jsou podstatně větší ve srovnání s rozměry molekul, musíme použít obecné Mieovy teorie, neboť pro ně není splněna podmínka a) a často ani podmínka b). Pole rozptýleného světla pak podle obecné Mieovy teorie vyjadřujeme jako superpozici pole vyzařování el. a magnetického dipólu, kvadrupólu a vyšších multipólů, zatímco u Rayleighova rozptylu uvažujeme pouze el. dipól. Rozptyl světla na částicích atmosférického aerosolu, na rozdíl od molekulárního rozptylu, nezávisí na vlnové délce a rozptylová indikatrice má tvar silně protažený ve směru původního paprsku. V oblasti rádiových vln, používaných např. při radiolokaci, které mají ve srovnání se světlem podstatně větší vlnovou délku, bývá podmínka a) často splněna i pro oblačné částice. Potom lze i v této oblasti vlnových délek použít zákonů Rayleighova rozptylu. Rozšíření Mieovy teorie na částice tvaru např. rotačního elipsoidu se někdy využívá v radiolokační meteorologii, neboť velké vodní kapky a ledové částice oblaků a srážek nejsou sférického tvaru. V souvislosti s rozptylem elektromagnetického vlnění na různých typech atmosférických aerosolů se dnes používají i různé modely složitějšího rozptylu na obecně nesférických částicích. Viz též efekt Mieův.
česky: rozptyl elektromagnetického vlnění v atmosféře angl: scattering of electromagnetic waves in atmosphere slov: rozptyl elektromagnetického vlnenia v atmosfére rus: рассеяние электромагнитных волн в атмосфере  1993-a3
Stromfunktion f
skalární funkce Ψ, popisující pole nedivergentního rovinného proudění tekutiny. V dynamické meteorologii se používá pro popis vírového horiz. proudění v atmosféře a je definovaná až na aditivní konstantu vztahy
vx=Ψy, vy=Ψx,
kde vx a vy značí horiz. složky rychlosti proudění v kartézské souřadnicové soustavě (x, y, z). V mechanice tekutin se lze někdy setkat s alternativním vyjádřením, které má opačné znaménko. Z definice proudové funkce plyne, že její izolinie odpovídají proudnicím. Proudová funkce se používá mimo jiné při inicializaci vstupních datmodelu numerické předpovědi počasí.
česky: funkce proudová angl: streamfunction slov: prúdová funkcia rus: функция потока, функция тока fr: fonction de courant f  1993-a3
Stromlinie f
čára v poli pohybu kapaliny nebo plynu, v meteorologii obvykle v poli větru, v jejímž každém bodě má rychlost proudění v daném okamžiku směr tečny. Nemění-li se pole větru s časem, tj. při stacionárním proudění, jsou proudnice totožné s trajektoriemi vzduchových částic. Hustota proudnic je úměrná rychlosti proudění. Proudnice popisují pohybové pole v atmosféře, které úzce souvisí s tlakovým polem. Na výškových met. mapách proudnice zhruba odpovídají izohypsám. Viz též mapa kinematická.
česky: proudnice angl: streamline slov: prúdnica rus: линия тока  1993-a2
Strömung f
viz též vítr.
česky: proudění angl: flow slov: prúdenie rus: течение  1993-a1
Strömungsdivergenz f
divergence ve standardní souřadnicové soustavě je dána vztahem
D=vx x+vy y+vz z,
kde vx, vy, vz jsou složky vektoru rychlosti proudění příslušející souřadným osám x, y, z. Veličinu
DH=vx x+vy y,
nazýváme horiz. divergencí. Při DH > 0 mluvíme o divergentním proudění, v opačném případě při DH < 0 mluvíme o konvergentním proudění. Zápornou divergenci, resp. zápornou horiz. divergenci též nazýváme konvergencí, resp. horiz. konvergencí. Pro označení divergence rychlosti proudění v se v literatuře nejčastěji užívá symbol ∇.v nebo div v, analogicky ∇H v nebo divH v jde-li o horiz. divergenci. V p-systému musíme místo horiz. divergence používat divergenci izobarickou, kterou obvykle značíme ∇pv nebo divp v. Divergence proudění má značný význam pro mechanismus tlakových změn v atmosféře, nenulová horiz. (v p-systému izobarická) divergence je spojena s vertikálními pohyby ve vzduchové hmotě a podílí se tak mimo jiné na vytváření podmínek pro vznik a vývoj oblačnosti. Viz též rovnice divergence.
česky: divergence proudění angl: divergence of wind slov: divergencia prúdenia rus: дивергенция ветра fr: divergence du vent f, divergence des vents f  1993-a3
Strömungsgeschwindigkeit f
česky: rychlost proudění angl: velocity of flow, velocity of streaming slov: rýchlosť prúdenia  1993-a1
Strömungskonvergenz f
česky: konvergence proudění angl: convergence of wind slov: konvergencia prúdenia rus: конвергенция тока  1993-a1
Sturm m
obecný termín pro jakékoliv výrazné vybočení (zesílení) přírodních jevů či prvků (nejen meteorologických) z normálu. V meteorologii jde např. o termíny konvektivní bouře, tropická bouře, prachová bouře, sněhová bouře, větrná bouře; mimo meteorologii jsou běžné např. termíny sluneční bouře, geomagnetická bouře, aj. Anglický ekvivalent storm se v angličtině používá také pro označení desátého stupně Beaufotovy stupnice větru (silná vichřice) a jako synonymum pro hlubokou cyklonu.
česky: bouře angl: storm slov: búrka rus: буря fr: tempête f  2014
Sturm m
obecný termín pro jakékoliv výrazné vybočení (zesílení) přírodních jevů či prvků (nejen meteorologických) z normálu. V meteorologii jde např. o termíny konvektivní bouře, tropická bouře, prachová bouře, sněhová bouře, větrná bouře; mimo meteorologii jsou běžné např. termíny sluneční bouře, geomagnetická bouře, aj. Anglický ekvivalent storm se v angličtině používá také pro označení desátého stupně Beaufotovy stupnice větru (silná vichřice) a jako synonymum pro hlubokou cyklonu.
česky: bouře angl: storm slov: búrka rus: буря fr: tempête f  2014
Stüve-Diagramm n
druh termodynamického diagramu používaný k vyhodnocování aerologických měření a při analýze termodyn. stavu atmosféry. Na ose x je vynesena lineární stupnice teploty vzduchu T po 1 °C v rozsahu +40 až –80 °C, na ose y tlak vzduchu v exponenciální závislosti pκ (κ = 0,286) v rozsahu od 1050 hPa do 10 hPa. Suché adiabaty svírají s izotermami úhel 45°, nasycené adiabaty jsou mírně obloukovitě zakřiveny. Izolinie měrné vlhkosti neboli izogramy (g.kg–1) jsou zakresleny čárkovaně jako nejvíce vzpřímené křivky. Stüveho diagram dále obsahuje stupnici pro vynášení relativní vlhkosti vzduchu, stupnici výšky a jiné pomocné stupnice.
Pravoúhlý souřadnicový systém teploty a tlaku vzduchu s většinou přímkových nebo málo zakřivených dalších izolinií, jakož i úhel mezi adiabatami a izotermami blízký 45°, umožňují výhodně analyzovat pomocí Stüveho diagramu teplotní zvrstvení atmosféry; Stüveho diagram je proto v met. službách často používaným aerologickým diagramem, přestože není energetickým diagramem. Jeho autorem je něm. meteorolog G. Stüve (1888–1935). Stüveho diagram se někdy slangově nazývá „Stüvegram“.
česky: diagram Stüveho angl: Stüve diagram slov: Stüveho diagram rus: диаграмма Штюве fr: diagramme de Stüve m  1993-a2
Stüve-Diagramm n
česky: Stüvegram angl: Stüve diagram slov: Stüvegram  1993-a1
subarktisches Klima n
Alisovově klasifikaci klimatu přechodné klimatické pásmo, kde v letní polovině roku převládá vzduch mírných šířek, v zimní polovině roku pak arktický vzduch. V Köppenově klasifikaci klimatu mu přibližně odpovídá nejchladnější část boreálního klimatu.
česky: klima subarktické angl: subarctic climate slov: subarktická klíma rus: субарктический климат  1993-b3
Subatlantikum n
viz holocén.
česky: subatlantik angl: subatlantic slov: subatlantik  1993-a3
Subboreal n
viz holocén.
česky: subboreál angl: subboreal slov: subboreál  1993-a3
Sublimation f
fázový přechod z pevného skupenství do skupenství plynného, v meteorologii zpravidla přechod ledu do plynné fáze vody – vodní páry. Ve starší literatuře se termín sublimace užívá i u opačného fázového přechodu, tj. růstu ledu přímo z vodní páry a někdy se v tomto případě setkáváme i s nevhodným termínem desublimace. V současné odborné literatuře převažuje v tomto případě termín depozice.
česky: sublimace angl: sublimation slov: sublimácia rus: сублимация  1993-a3
Sublimationskerne m
částice umožňující vznik stabilních zárodků ledových krystalků heterogenní nukleací ledu z vodní páry, tzn. při přímém fázovém přechodu vodní páry na led. Místo termínu sublimační jádra se nyní často používá termín depoziční jádra. Úloha jader depozice se zdůrazňuje zejména ve starší literatuře z oboru fyziky oblaků a srážek. V současné době se předpokládá, že v troposféře a stratosféře vznikají ledové částice především mrznutím přechlazených vodních kapek. Heterogenní nukleace ledu na depozičních jádrech je významnější ve vrstevnatých oblacích než v oblacích konvektivních, kde převažují procesy probíhající při mrznutí kapek. Viz též jádra ledová.
česky: jádra sublimační angl: sublimation nuclei slov: sublimačné jadrá rus: ядра сублимации  1993-a3
Sublimationskurve f
křivka na fázovém diagramu, která představuje rozhraní mezi plynnou a pevnou fází sledované látky (v met. mezi vodní párou a ledem). Vychází z trojného bodu a určuje podmínky, za nichž je pevná a plynná fáze v termodynamické rovnováze.
česky: křivka sublimační angl: sublimation phase boundary slov: krivka sublimačná  2017
Subsatellitenpunkt m
průsečík spojnice družice a středu Země se zemským povrchem, označovaný též jako nadir družice. Posloupnost poddružicových bodů daná pohybem družice po její dráze kolem Země vytváří průmět dráhy na zemský povrch, označovaný jako trajektorie družice.
česky: bod poddružicový angl: subsatellite point slov: poddružicový bod rus: подспутниковая точка fr: point nadir m, nadir du satellite m  1993-a2
Subsatellitenpunkt m
průsečík spojnice družice a středu Země se zemským povrchem, označovaný též jako nadir družice. Posloupnost poddružicových bodů daná pohybem družice po její dráze kolem Země vytváří průmět dráhy na zemský povrch, označovaný jako trajektorie družice.
česky: bod poddružicový angl: subsatellite point slov: poddružicový bod rus: подспутниковая точка fr: point nadir m, nadir du satellite m  1993-a2
Subsidenz der Luft f
syn. sesedání vzduchu, pohyby vzduchu subsidenční – pomalé sestupné pohyby ve vzduchové hmotě, jejichž rychlost je zpravidla řádově 10–2 m.s–1 nebo méně. Subsidence vzduchu patří k jevům synoptického měřítka, vzniká z dyn. příčin a může mít velký význam pro vývoj podmínek počasí. Působí adiabatické oteplování vzduchu, např. sestupné pohyby o velikosti 2.10–2 m.s–1 působící po dobu 24 h a při vertikálním teplotním gradientu –0,5 K na 100 m zvýší teplotu dané hladiny o téměř 10 K, rozpouštění již vzniklé oblačnosti, tlumí konvekci apod. Subsidence vzduchu se vyskytuje především v předním sektoru a centrální oblasti vysokých anticyklon nebo v zesilujících hřebenech vysokého tlaku vzduchu. V důsledku subsidence vzduchu dochází ke vzniku subsidenčních inverzí teploty.
česky: subsidence vzduchu angl: subsidence of air slov: subsidencia vzduchu rus: оседание воздуха  1993-a2
Substratosphäre f
starší a dnes již nepoužívané označení pro tropopauzu, navržené N. Shawem r. 1912. S. P. Chromov (1940) užívá termínu substratosféra pro několik spodních kilometrů stratosféry, včetně tropopauzy.
česky: substratosféra angl: substratosphere slov: substratosféra  1993-a2
subsynoptische Skala f
obecné označení pro charakteristické rozměry atm. procesů a jevů, které mají menší charakteristické horiz. rozměry (a kratší dobu trvání) než procesy a jevy tzv. synoptického měřítka. Viz též měřítko mezosynoptické, klasifikace meteorologických procesů podle Orlanskiho.
česky: měřítko subsynoptické angl: subsynoptic scale slov: subsynoptická mierka rus: субсиноптический масштаб  1993-a3
subtropische Antizyklone f
vysoká, teplá a kvazipermanentní anticyklona vyskytující se v subtropických zeměp. šířkách, a to většinou nad oceány. Všechny subtropické anticyklony jsou akčními permanentními centry atmosféry. Podle převládající geogr. polohy rozlišujeme subtropickou anticyklonu azorskou, bermudskou, havajskou, svatohelenskou, mauricijskou a jihopacifickou. Subtropické anticyklony jsou součástí subtropického pásu vysokého tlaku vzduchu na sev. a již. polokouli. Viz též anticyklona dynamická.
česky: anticyklona subtropická angl: subtropical anticyclone slov: subtropická anticyklóna rus: субтропический антициклон fr: anticyclone subtropical m  1993-a2
subtropische Zyklone f
cyklona, která se může vyskytnout nad oceány až po zhruba 50° zeměp. šířky a vykazovat přitom znaky mimotropické i tropické cyklony. Při jejím vzniku a vývoji totiž dochází ke kombinaci fyzikálních mechanizmů, kdy důležitým zdrojem energie pro cyklogenezi je jak uvolnění baroklinní instability, tak uvolnění latentního tepla kondenzace. Typicky se jedná o transformovanou, původně mimotropickou cyklonu putující z pásma západních větrů do nižších zeměp. šířek, může však vzniknout i transformací tropické cyklony. Na rozdíl od mimotropické cyklony nemá subtropická cyklona vazbu na atmosférické fronty. Oproti tropické cykloně jsou v ní pásy konvektivních bouří méně symetricky uspořádány kolem středu cyklony; maximální rychlost větru je dosahována dále od středu (cca 100 až 200 km) a nedosahuje síly orkánu. Pokud však přesáhne hodnotu 17 m.s-1, která v případě tropické cyklony vymezuje tropickou bouři, dostává jméno ze seznamu určeného tropickým cyklonám. Nad tropickými oceány s vysokou teplotou povrchu moře a malým horiz. teplotním gradientem se subtropická cyklona může transformovat na tropickou cyklonu. Z hlediska mechanizmů cyklogeneze i projevů počasí, které souvisejí s výskytem konvektivních bouří velmi silné intenzity, se subtropická cyklona podobá medikánu, který je však místně specifickým útvarem.
česky: cyklona subtropická angl: sub-tropical cyclone, subtropical cyclone slov: subtropická cyklóna fr: cyclone subtropical m, dépression subtropicale f  2014
subtropischer Hochdruckgürtel m
pás vyššího tlaku vzduchu, vyjádřený na klimatologických mapách, který se táhne kolem Země na obou polokoulích mezi 20 a 40° z. š. a v němž se vyskytují jednotlivé subtropické anticyklony. Zatímco na již. polokouli je zřetelný po celý rok, na severní polokouli jej v letním období přerušují oblasti nižšího tlaku nad kontinenty. Viz též šířky koňské.
česky: pás vysokého tlaku vzduchu subtropický angl: subtropical high pressure belt slov: subtropický pás vysokého tlaku vzduchu rus: субтропический пояс высокого давления  1993-a3
subtropischer Strahlstrom m
tryskové proudění v horní troposféře, jehož osa bývá v zimě přibližně na 30. a v létě na 40. až 45. rovnoběžce sev. polokoule, většinou ve výšce izobarické hladiny 200 hPa. Nejvyšší rychlosti proudění se vyskytují nad vých. pobřežím kontinentů sev. polokoule a nad přilehlým mořem. Na rozdíl od mimotropického tryskového proudění není subtropické tryskové proudění vázáno na frontální zónu a je nejlépe vyvinuto v zimě. Subtropické tryskové proudění má obdobu i na již. polokouli. Viz též proudění tryskové tropické.
česky: proudění tryskové subtropické angl: subtropical jet stream slov: subtropické dýzové prúdenie rus: субтропическое струйное течение  1993-a1
subtropisches Klima n
Alisovově klasifikaci klimatu přechodné klimatické pásmo, kde v letní polovině roku převládá tropický vzduch, v zimní polovině roku pak vzduch mírných šířek. V Köppenově klasifikaci klimatu se zčásti kryje s mírným dešťovým klimatem, při západních březích pevnin s typem Cs se suchým létem, označovaným i jako středomořské klima. Při východním pobřeží pevniny může být ovlivněno mimotropickým monzunem, viz klima monzunové. Ve vnitrozemí se subtropické klima vyznačuje značnou kontinentalitou klimatu a lze ho řadit k chladnému suchému klimatu podle W. Köppena.
česky: klima subtropické angl: subtropical climate slov: subtropická klíma rus: субтропический климат  1993-b3
Suchowei m
oblastní název suchého a teplého výsušného větru ve stepích a polopouštích Ukrajiny, evropské části Ruska a Kazachstánu. Při suchověji teplota vzduchu dosahuje i 35 až 40 °C, relativní vlhkost vzduchu klesá až na 10 % a ani v nočních hodinách nestoupá nad 50 %. Suchověj se nejčastěji vyskytuje v květnu, kdy je nebezpečný pro vegetaci, zvl. pro polní plodiny, v souvislosti se zvýšeným výparem. V období, kdy jsou pole bez vegetačního krytu, se při suchověji dostává do ovzduší prach a mohou vznikat prachové bouře.
česky: suchověj angl: sukhovei slov: suchovej rus: суховей  1993-a2
südatlantische Antizyklone f
syn. anticyklona jihoatlantická – teplá, vysoká a kvazipermanentní anticyklona nad již. částí Atlantského oceánu se středem často v oblasti ostrova Svaté Heleny. Rozkládá se v subtropických šířkách mezi Jižní Amerikou a již. Afrikou. V období léta na již. polokouli se přesouvá jižněji, v období zimy severněji. Svatohelenská anticyklona patří mezi permanentní akční centra atmosféry.
česky: anticyklona svatohelenská angl: South Atlantic anticyclone slov: svätohelenská anticyklóna rus: антициклон острова Святой Елены, южноaтлантический антициклон fr: anticyclone de Sainte-Hélène m, anticyclone de l'Atlantique Sud m  1993-a3
südpazifische Antizyklone f
subtropická kvazipermanentní anticyklona na již. polokouli v jv. části Tichého oceánu záp. od Chile.
česky: anticyklona jihopacifická angl: South Pacific anticyclone slov: juhopacifická anticyklóna rus: южнотихоокеанский антициклон fr: anticyclone de l'île de Pâques m, anticyclone du Pacific Sud m  1993-a3
Summe der negativen Temperaturen f
charakteristika teplotního režimu místa nebo oblasti v chladném roč. období počítaná obvykle jako součet všech záporných denních průměrů teploty zaznamenaných během mrazového období. Charakteristika se používá k vyjádření tuhosti zimy.
česky: suma záporných teplot angl: accumulated negative temperatures, sum of cold temperatures slov: záporná teplotná suma rus: сумма отрицательных температур  1993-a3
Summe der Temperaturen f
charakteristika teplotního režimu místa nebo oblasti, která se v meteorologii používá buď k porovnání teplotních poměrů různých míst ve stejném období nebo na jedné stanici k porovnání teplotních poměrů v jednotlivých letech. Stanovuje se jako:
1. součet teploty vzduchu, obvykle průměrné denní teploty zaznamenané za zvolené období, např. součet všech denních průměrů teploty vzduchu za vegetační období;
2. součet odchylek teploty vzduchu od referenční teploty za zvolené období. V teplém ročním období se zpravidla počítají součty odchylek teploty převyšující referenční teplotu, tj. např. 5, 10, nebo 15 °C, v zimním období sumy záporné teploty. Má praktické uplatnění v zemědělství, klimatologii, klimatologické rajonizaci a tech. praxi.
česky: suma teplot angl: accumulated temperatures, sum of temperatures slov: teplotná suma, suma teplôt rus: сумма температур  1993-a3
Superrefraktion f
jev vyskytující se v radiometeorologii za přítomnosti vrstvy s rychlým úbytkem měrné vlhkosti vzduchu s výškou a zároveň s výraznou inverzí teploty, kde gradient indexu lomu elektromagnetických vln s výškou je ∂n / ∂z < –15,7 . 10–8 m–1. V této vrstvě dochází k zakřivení elmag. vln směrem k zemskému povrchu (poloměr křivosti je menší než poloměr Země). Následně lze pozorovat jevy anomálního šíření eletromagnetických vln (též označované jako anaprop) s viditelností předmětů obvykle skrytých pod radiohorizontem. Jedná se o mikrovlnnou analogii svrchního zrcadlení. Viz též refrakce atmosférická, typy refrakce elektromagnetických vln.
česky: superrefrakce angl: superrefraction slov: superrefrakcia rus: сверхрефракция  1993-a3
Superzelle f
konvektivní bouře většinou velmi silné intenzity, která zpravidla sestává z jediné dominantní, velmi výrazné konvektivní buňky. Ta je udržována v činnosti až po dobu několika hodin jediným mohutným vzestupným konvektivním proudem, zpravidla silně rotujícím kolem své vertikální osy a dosahujícím vert. rychlosti až 50–60 m.s–1. Definice supercely se průběžně vyvíjí v souvislosti s rostoucím poznáním a detekčními možnostmi. V současné době je supercela definována výskytem dlouhotrvajícího vzestupného konv. proudu a s ním spojené mezocyklony, která se vyskytuje ve středních hladinách výstupného proudu a kterou lze detekovat meteorologickým dopplerovským radiolokátorem. Supercely s výstupným proudem rotujícím cyklonálně (resp. anticyklonálně) se na sev. polokouli stáčí vpravo (resp. vlevo) od původního směru pohybu. Kromě vzestupného proudu je supercela tvořena také dvěma sestupnými proudy, předním a zadním sestupným proudem. Silně organizovaná struktura proudění je příčinou specifických projevů supercely, jako je výskyt tornád, silného krupobití včetně vývoje obřích krup i prudkého nárazovitého větru. Horizontálními rozměry se supercela od běžných konv. bouří lišit nemusí. Supercely se vyvíjejí v prostředí se silným střihem větru, kde horizontální vorticita generovaná střihem větru se ve výstupném proudu transformuje na vorticitu vertikální.
Při radiolokačních pozorováních je pro supercelu charakteristická uzavřená oblast snížené radiolokační odrazivosti (BWER) a hákovité echo. Tyto oblasti se nacházejí v místě vzestupného proudu, který je natolik intenzivní, že se v něm tvoří pouze drobné oblačné částice, obtížně zachytitelné radiolokátorem. Na přítomnost supercely lze nepřímo usuzovat i na základě specifického vzhledu oblačnosti bouře při pohledu ze zemského povrchu, obzvláště při výskytu wall cloudu. V zahraniční literatuře se kromě tzv. klasické supercely (z angl. Classic Supercell, CS), jejíž vlastnosti se neliší od výše popsaného koncepčního modelu, uvádějí dvě odvozené kategorie supercel. Jde o slabě srážkové supercely (z angl. low precipitating, LP) a mohutně srážkové (z angl. high precipitating, HP) supercely. V LP supercele převládá vzestupný proud nad proudy sestupnými a podstatná část srážek se vypaří, než dopadne na povrch země. HP supercela produkuje velké množství srážek především v oblasti hákovitého echa a na své zadní straně. Vzhledem k vypařování srážkových částic mohou být oba její sestupné proudy velmi intenzivní. Viz též štěpení konvektivní bouře.
česky: supercela angl: supercell, supercell storm slov: supercela rus: сверхячейка  1993-a3
Supralateralbogen m
poměrně častý halový jev v podobě duhově zbarveného oblouku přimykajícího se shora k velkému halu (pokud je viditelné) a rozevírajícího se dolů. Dosti často se vyskytuje spolu s cirkumzenitálním obloukem, jehož se dotýká nad Sluncem. Vytváří se pouze při polohách Slunce do 32° nad obzorem a s rostoucí výškou Slunce se poněkud více rozevírá. Vzniká dvojitým lomem paprsků při průchodu šestibokými ledovými krystalky s horizontální orientací při úhlu lomu 90°.
česky: oblouk supralaterální angl: supralateral arc slov: supralaterálny oblúk rus: супралатеральная дуга  2014
Suttonsches Modell n
klasický model rozptylu používaný v minulosti při numerických odhadech koncentrací znečišťujících látek v okolí bodových kontinuálních zdrojů znečišťování ovzduší, zpravidla vysokých komínů. Model byl publikován koncem 40. let 20. století. Je založen na těchto zjednodušujících předpokladech:
a) proudění je horizontální a prostorově konstantní;
b) počátek souřadnicového systému klademe na zemský povrch do paty uvažovaného komínu a kladný směr souřadnicové osy x ztotožňujeme se směrem proudění;
c) ve směru osy x je daná příměs přenášena prouděním, zatímco ve směrech os y a z difunduje působením turbulence;
d) rozložení koncentrace znečišťujících příměsí v rovinách kolmých na osu x je popsáno dvourozměrným normálním rozložením s maximem koncentrace v ose kouřové vlečky a se směrodatnými odchylkami σy, popř. σz (ve směrech osy y, popř. z), pro něž se též používá označení koeficient laterální disperze, popř. koeficient vertikální disperze;
e) neuvažujeme sedimentaci příměsi na zemském povrchu, její vymývání a zanikání chem. reakcemi.
Viz též model rozptylový gaussovský.
česky: model Suttonův angl: Sutton model slov: Suttonov model rus: модель Саттона  1993-a2
symmetrische Instabilität f
druh baroklinní instability, kdy uvažujeme symetrické pole proudění, v němž horizontální střih větru ve směru proudění je nulový. Symetrická instabilita může zesilovat vychýlení vzduchové částice z rovnovážné polohy i v případě absence jak vertikální instability atmosféry, tak inerční instability uplatňující se v horiz. směru. Nutnou podmínkou je větší sklon izentropických ploch S k horiz. rovině než ploch konstantní měrné hybnosti geostrofického větruabsolutní souřadnicové soustavě mg. K uvolnění symetrické instability dojde při vychýlení vzduchové částice šikmo mezi plochy mg a S. Tento děj bývá označován jako šikmá konvekce. Může hrát důležitou roli při vzniku srážkových pásů v blízkosti atmosférických front. Význam symetrické instability při tvorbě srážek v mírných zeměpisných šířkách narůstá v chladné polovině roku.
Další alternativní nutné podmínky pro symetrickou instabilitu, které se obvykle uvádějí v literatuře, jsou hodnota Richardsonova čísla menší než jedna nebo hodnota potenciální vorticity menší než nula (platí pro severní polokouli).
česky: instabilita symetrická angl: symmetric instability slov: symetrická instabilita rus: симметричная неустойчивость  2014
Synergie der Luftverschmutzung f
česky: synergismus znečištění ovzduší angl: synergism of air pollution slov: synergizmus znečistenia ovzdušia  1993-a1
SYNOP
Synoptik f
slang. označení pro synoptickou meteorologii.
česky: synoptika angl: synoptics slov: synoptika rus: синоптика  1993-a1
Synoptiker m
vžité označení pro meteorologa pracujícího v met. předpovědní službě. Je odvozeno od přídavného jména synoptický (česky souhledný). Viz též mapa synoptická, meteorologie synoptická, metoda synoptická.
česky: synoptik angl: forecaster slov: synoptik rus: синоптик  1993-a1
synoptische Analyse f
detailní studium stavu atmosféry, vyjádřeného rozložením tlaku vzduchu, vzduchových hmot, atmosférických front a povětrnostních podmínek v určité oblasti na synoptických mapách. Viz též analýza synoptických map.
česky: analýza synoptická angl: synoptic analysis slov: synoptická analýza rus: синоптический анализ fr: analyse synoptique f  1993-a2
synoptische Beobachtung f
meteorologické pozorování prováděné v synoptických termínech v síti meteorologických stanic na pevninách i mořích. Údaje získané těmito pozorováními se v zakódované formě přenášejí světovým telekomunikačním systémem do meteorologických center. Podle termínu pozorování se rozlišuje hlavní a vedlejší synoptické pozorování. Některé met. stanice konají měření i v hodinových synoptických termínech. Viz též zpráva o přízemních meteorologických pozorováních z pozemní stanice (SYNOP).
česky: pozorování synoptické angl: synoptic observation slov: synoptické pozorovanie rus: синоптическое наблюдение  1993-a3
synoptische Beobachtung zu Hauptterminen
česky: pozorování synoptické hlavní angl: synoptic observation at main standard times slov: hlavné synoptické pozorovanie rus: синоптическое наблюдение в основной срок  1993-a1
synoptische Beobachtung zu Zwischenterminen
česky: pozorování synoptické vedlejší angl: synoptic observation at intermediate standard times slov: vedľajšie synoptické pozorovanie rus: синоптическое наблюдение в промежуточный срок  1993-a3
synoptische Bodenstation f
pozemní nebo mořská meteorologická stanice, na níž se v synoptických termínech konají synoptická pozorování. Synoptické stanice měří nebo pozorují teplotu, vlhkost a tlak vzduchu, tlakovou tendenci, dohlednost , směr a rychlost větru, stav a průběh počasí, množství srážek, množství a druh oblačnosti, výšku základen oblačnosti a extrémy teploty. Přízemní synoptické stanice na pevnině udávají také trvání slunečního svitu, stav půdy, výšku sněhové pokrývky a speciální jevy. Mořské přízemní synoptické stanice uvádějí rovněž teplotu moře, směr pohybu vln, periodu vlnění, výšku vln, námrazu a led na moři, meteorologické stanice na pohybující se lodi také kurz a rychlost lodi. Zprávy jsou předávány v kódech SYNOP, SHIP nebo BUFR.
česky: stanice synoptická přízemní angl: surface synoptic station slov: prízemná synoptická stanica rus: наземная синоптическая станция  1993-a3
synoptische Klimatologie f
část dynamické klimatologie zabývající se cirkulačními podmínkami geneze klimatu. Klima se vysvětluje zejména četnostmi synoptických typů a jejich povětrnostními projevy v daných oblastech. Základem synopticko-klimatologického zpracování jsou typizace povětrnostních situací. Vypočítané klimatické charakteristiky typů povětrnostních situací se také využívají v předpovědní praxi.
česky: klimatologie synoptická angl: synoptic climatology slov: synoptická klimatológia rus: синоптическая климатология  1993-a1
synoptische Meteorologie f
obor meteorologie, jenž studuje atm. děje synoptického měřítka, které jsou synchronně pozorovány na zvoleném území a sledovány především pomocí synoptických map. Jejím hlavním cílem je analýza a předpověď počasí. I když synop. (povětrnostní) mapy umožňují sledovat vznik, vývoj a přemísťování cyklon a anticyklon, vzduchových hmot a atmosférických front především plošně, systém synop. map z různých izobarických hladin spolu s aerologickými diagramy a vertikálními řezy atmosférou a informacemi z met. radiolokátorů a družic umožňují studovat atm. jevy a děje prostorově. Vznik synoptické meteorologie souvisel s využitím telegrafu pro rychlou výměnu zpráv o počasí v polovině 19. století, kdy se začaly poprvé sestavovat povětrnostní mapy z širších oblastí na základě aktuálních informací. V souvislosti s numerickými předpověďmi počasí došlo ke značnému sblížení synoptické meteorologie a dynamické meteorologie. Viz též metoda synoptická, škola meteorologická norská, škola meteorologická chicagská.
česky: meteorologie synoptická angl: synoptic meteorology slov: synoptická meteorológia rus: синоптическая метеорология  1993-a3
synoptische Methode f
metoda rozboru a předpovědi atm. procesů a jimi podmíněného počasív určitém prostoru (oblasti) pomocí synoptických map a jiných pomocných materiálů. Kvalit. stupni ve vývoji metody synoptické byly izobarická metoda, metoda izalobar a frontologická metoda. Metodu synoptickou poprvé použil – ještě bez označení termínu „synoptická“ – při studiu povětrnostních dějů většího měřítka něm. meteorolog H. W. Brandes v letech 1816-1820. V souvislosti s nástupem numerické předpovědi počasí ustoupila do pozadí a má dnes jen význam doplňkový. Viz též meteorologie synoptická izobarická, analýza frontální, analýza synoptická.
česky: metoda synoptická angl: synoptic method slov: synoptická metóda rus: синоптический метод  1993-a2
synoptische Situation f
česky: situace synoptická angl: synoptic situation slov: synoptická situácia rus: синоптическая ситуация  1993-a1
synoptische Skala f
charakteristické horizontální měřítko velkoprostorových atm. jevů, které jsou vizualizací procesů studovaných na synoptických mapách. Obvykle hovoříme o synoptických jevech či procesech. Horiz. rozměr synoptických jevů činí řádově 102 až 103 km, což odpovídá rozměrům tlakových útvarů, tj. cyklon, anticyklon, brázd nízkého tlaku vzduchu, hřebenů vysokého tlaku vzduchu apod., dále oblastí výskytu jednotlivých vzduchových hmot, hlavních atmosférických front apod. Viz též měřítko mezosynoptické, měřítko subsynoptické, klasifikace meteorologických procesů podle Orlanskiho.
česky: měřítko synoptické angl: synoptic scale slov: synoptická mierka rus: синоптический масштаб  1993-a3
synoptische Station f
zkrácené označení přízemní synoptické stanice. Podle terminologie Světové meteorologické organizace do sítě synoptických stanic patří nejen přízemní synoptické stanice, ale i stanice aerologické.
česky: stanice synoptická angl: synoptic station slov: synoptická stanica rus: синоптическая станция  1993-a3
synoptische Wettervorhersage f
předpověď budoucího rozložení tlaku vzduchu, vzduchových hmotatmosférických front a meteorologických prvků prováděná synoptickou metodou. Synoptická předpověď počasí využívala především poznatků tzv. norské meteorologické školy. Tato metoda předpovědi závisela též na osobní zkušenosti, popř. intuici svého tvůrce (synoptika) a v tomto smyslu je jejím protějškem předpověď objektivní. V současné době je v praxi nahrazena numerickou předpovědí počasí. Viz též meteorologie synoptická.
česky: předpověď počasí synoptická angl: synoptic weather forecast slov: synoptická predpoveď počasia rus: синоптический прогноз погоды  2014
System zum Empfang und Verarbeitung von Satellitendaten n
zpravidla se jím rozumí uživatelský systém pro příjem a následné zpracování dat z meteorologické družice, provozovaný koncovým uživatelem (např. meteorologickou službou). Data mohou být přijímána buď přímo z družice, která je naměřila, nebo prostřednictvím telekomunikační družice po jejich předzpracování provozovatelem družice, popř. prostřednictvím Internetu.
česky: systém pro příjem a zpracování dat z meteorologických družic slov: systém pre príjem a spracovanie dát z meteorologických družíc  2014
Szenario der Klimaänderung n
podmíněná předpověď vývoje kliamtu, jejímž cílem je odhadnout vývoj, rychlost a směr klimatických změn na Zemi, ke kterým by mohlo dojít při splnění určitých podmínek (např. určité trajektorie vývoje koncentrací skleníkových plynů). Vychází z mat. modelů klimatu, v nichž se uvažují jak přírodní, tak antropogenní faktory klimatu. V současné době se běžně zpracovávají scénáře změn klimatu na několik nejbližších desetiletí až cca 100 let, v závislosti na scénáři vývoje koncentrací skleníkových plynů, způsobu využívání půdy a podobně.
česky: scénář změn klimatu slov: scenár klimatickej zmeny  1993-a3
Szintillation f
jev podobný optickému chvění, který se projevuje rychlými změnami (často pulzacemi) intenzity světla hvězd nebo pozemských světelných zdrojů. Patří mezi fotometeory. V češtině se též setkáváme s pojmem mihotání.
česky: scintilace angl: scintillation slov: scintilácia, trblietanie rus: сверкание, сцинтилляция  1993-a3
Wintersmog m
česky: smog zimní angl: winter smog slov: zimný smog 
Wintersonnenwende
viz slunovrat.
česky: slunovrat zimní angl: winter solstice  2019
podpořila:
spolupracují: