Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene p

X
atmospheric physics
1. syn. meteorologie v užším slova smyslu;
2. souhrnné označení pro fyzikální vědy o atmosféře.
Viz též meteorologie fyzikální.
česky: fyzika atmosféry; slov: fyzika atmosféry; něm: Physik der Atmosphäre f; fr: physique de l'atmosphère f, physique atmosphérique f; rus: физика атмосферы  1993-a3
p coordinate system
syn. p-systém.
česky: soustava souřadnicová p; slov: súradnicová sústava p; něm: p-Koordinaten f/pl, p-Koordinatensystem n; rus: барическая система координат  1993-a1
p system
viz p-systém.
česky: systém p; slov: systém p; něm: p-System n, p-Koordinaten f/pl  1993-a1
p system
syn. soustava souřadnicová p – pravoúhlá souřadnicová soustava se zobecněnou vertikální souřadnicí, kde tato souřadnice vyjadřuje tlak vzduchu. Kvazihorizontální osy x a y leží ve zvolené izobarické hladině a vert. osa je orientována ve směru poklesu tlaku vzduchu. Výhoda této soustavy proti z–systému spočívá v tom, že řada rovnic používaných v meteorologii má jednodušší tvar, neboť používá hydrostatickou aproximaci. P–systém se používá zejména při popisu dějů synoptického měřítka, zpracování výsledků aerologických měření a jejich zakreslování do výškových map a aerologických diagramů. Viz též sigma-systém, soustava souřadnicová hybridní.
Termín obsahuje symbol „p“ označující tlak jako fyzikální veličinu.
česky: p-systém; slov: p-systém; něm: p-System n, p-Koordinaten f/pl; rus: барическая система координат, изобарическая система координат, система координат-p  1993-a3
Pacific Decadal Oscillation
(PDO) – oscilace popsaná v 90. letech 20. století, typická změnami teploty povrchu moře a tlaku vzduchu v severním Tichomoří a ovlivňující kolísání klimatu Severní Ameriky v chladné části roku. Na rozdíl od ENSO zde tyto znaky vykazují větší perzistenci, takže jednotlivé fáze PDO trvají několik desetiletí. Kladná (teplá) fáze se vyznačuje chladnější vodou v centrální části severního Tichého oceánu a teplejší vodou při pobřeží Severní Ameriky, při záporné (studené) fázi je tomu naopak. Kolísání teploty mořské vody souvisí s periodickými změnami aleutské cyklony, jejíž prohloubení při kladné fázi PDO provází kladná anomálie tlaku vzduchu nad pevninskou částí USA.
česky: oscilace dekádní pacifická; slov: dekádna pacifická oscilácia; něm: pazifische Dekaden-Oszillation f  2014
Pacific high
syn. anticyklona severopacifická – teplá, vysoká a kvazipermanentní anticyklona v tropech a subtropech sev. části Tichého oceánu, patřící mezi permanentní akční centra atmosféry. Havajská anticyklona dostala název podle Havajských ostrovů, v jejichž blízkosti se většinou vyskytuje její střed. Často, zejména v chladném pololetí, se z ní odděluje samostatná anticyklona v záp. části Pacifiku a mezi nimi se vytváří tzv. druhá pacifická polární fronta.
česky: anticyklona havajská; slov: havajská anticyklóna; něm: Hawaii-Antizyklone f; fr: anticyclone d'Hawaï m, anticyclone du Pacifique Nord m; rus: гавайский антициклон  1993-a3
paleoclimate
klima v geol. minulosti, studované v rámci paleoklimatologie na základě tzv. proxy dat. V souladu s aktuální geologickou stratigrafií můžeme rozlišovat klima jednotlivých eonů (viz hadaikum, archaikum, proterozoikum, fanerozoikum), ér (viz paleozoikum, mezozoikum, kenozoikum), period (viz kambrium, ordovik, silur, devon, karbon, perm, trias, jura, křída, paleogén, neogén, kvartér), epoch (viz pleistocén, holocén) a dalších jednotek. Bez ohledu na změny klimatu zůstávala hlavním rysem jeho rozložení na Zemi zonalita klimatu, i když velikost a poloha klimatických pásem se v průběhu času měnila. Viz též geneze klimatu, teorie paleoklimatu, klima historické.
Termín se skládá z řec. παλαιός [palaios] „starý, dávný“ a slova klima.
česky: paleoklima; slov: paleoklíma; něm: Paläoklima n; rus: палеоклимат  1993-a3
paleoclimatology
vědní obor, zabývající se rekonstrukcí a interpretací paleoklimatu. Změny klimatu v geol. minulosti se snaží vysvětlit pomocí teorií paleoklimatu. K jejich ověření využívá tzv. proxy dat, přičemž se opírá o poznatky dalších disciplín, např. sedimentologie, paleontologie a geochemie; při studiu klimatu kvartéru a především holocénu se uplatňují i geomorfologie a archeologie. Viz též dendroklimatologie, klimatologie historická.
Termín se skládá z řec. παλαιός [palaios] „starý, dávný“ a slova klimatologie.
česky: paleoklimatologie; slov: paleoklimatológia; něm: Paläoklimatologie f; rus: палеоклиматология  1993-a3
Paleogene
syn. paleogén.
česky: třetihory starší; slov: staršie treťohory; něm: Paläogen n  2018
Paleogene
syn. třetihory starší – nejstarší geol. perioda kenozoika, zahrnující období před 66 – 23 mil. roků. Viz též terciér.
Termín zavedl v r. 1866 něm. mineralog a geolog C. F. Naumann (nebo r. 1865 rak. paleontolog M. Hörnes); skládá se z řec. παλαιός [palaios] „starý“ a komponentu -γενής [-genés] s významem „narozený v určitém stavu“.  Řec. παλαιός „starý“ zde vyjadřuje, že měl paleogén označovat starší část terciéru (oproti neogénu).
česky: paleogén; slov: paleogén; něm: Paläogen n  2018
Paleozoic
syn. paleozoikum.
česky: prvohory; slov: prvohory; něm: Paläozoikum n  2018
Paleozoic
syn. prvohory – nejstarší geol. éra v rámci fanerozoika, navazující na proterozoikum a zahrnující období před 541 – 252 mil. roků. Do této éry spadá šest period: kambrium, ordovik, silur, devon, karbon a perm. Pro paleozoikum je typické postupné spojování kontinentů provázené rozsáhlými fázemi orogeneze, až nakonec spojením Laurasie a Gondwany vznikla jednotná Pangea.
Termín pochází z angl. Paleozoic, které r. 1838 zavedl brit. geolog A. Sedgwick; skládá se z řec. παλαιός [palaios] „starý“ a ζωή [zóé] „život“.
česky: paleozoikum; slov: paleozoikum; něm: Paläozoikum n  2018
Palmer Drought Severity Index
(PDSI) – velmi rozšířený index sucha, navržený W. C. Palmerem (1965) k hodnocení meteorologického sucha. Kromě deficitu srážek uvažuje i další složky hydrologické bilance, přičemž bere v úvahu rozdílné typy půdy. Zohledněna je i bilance předchozích měsíců, takže pomocí PDSI vymezené epizody sucha vykazují jistou perzistenci bez ohledu na případná přechodná zeslabení sucha. Hodnoty PDSI jsou standardizovány, což umožňuje porovnat intenzitu sucha v oblastech s různým klimatem. Při extrémním suchu klesá hodnota indexu pod –4; kladné hodnoty PDSI naopak reprezentují vlhké období.
česky: index intenzity sucha Palmerův; slov: Palmerov index intenzity sucha  2014
pampero
studený nárazovitý vítr jz. směrů na pampách v Argentině a Uruguayi, obvykle vázaný na přechod čar instability s projevem studené fronty. Je často doprovázen bouřkovými lijáky s náhlým poklesem teploty. Vyskytuje se při vpádech studeného vzduchu z již. polárních oblastí, a je tedy obdobou severoamerického větru norther.
Termín je přejat ze španělštiny, jeho základem je slovo pampa.
česky: pampero; slov: pampero; něm: Pampero m, Pampero m; rus: памперо  1993-a1
pannus
(pan) [pánus]– jeden z průvodních oblaků podle mezinárodní morfologické klasifikace oblaků. Jsou to útržky nebo roztrhané cáry oblaků, které někdy tvoří souvislou vrstvu; objevují se pod jinými oblaky, s nimiž se mohou spojit. Vyskytují se nejčastěji u druhů altostratus, nimbostratus, cumulus a cumulonimbus.
Termín je přejat z lat. pannus „kus látky, cár".
česky: pannus; slov: pannus; něm: pannus, pannus; rus: клочья  1993-a2
papagayo
silný sv. padavý vítr z And na tichomořském pobřeží Nicaragui a Guatemaly. Vzniká při přechodu chladných vzduchových hmot (vítr „el norte“) přes horská pásma Střední Ameriky a přináší tzv. pěkné počasí. Nejčastěji se vyskytuje v lednu a v únoru, kdy často trvá 3 až 4 dny. Má charakter bóry.
Termín je přejat ze španělštiny. Byl vytvořen z části názvu Golfo de Papagayo „Záliv Papagayo“ (doslova: „Záliv papoušků“) na severozápadě Kostariky.
česky: papagajo; slov: papagajo; něm: Papagajo Wind m; rus: папагаио  1993-a1
parallel measurement
měření základních meteorologických prvků v jedné lokalitě různými přístroji nebo v různých časových intervalech. Souběžné měření se provádí hlavně při zásadních změnách přístrojového vybavení na meteorologických stanicích pro zjištění kvality nově instalovaných způsobů měření nebo pro budoucí výpočet homogenity klimatologických řad.
česky: měření souběžná; slov: súbežné meranie; rus: параллельные (одновременные) измерения  2014
parametrization
souhrnné označení pro simulaci efektu fyzikálních procesů energetického a hydrologického cyklu atmosféry, jejichž prostorová a časová měřítka jsou menší, než může model atmosféry popsat. Termín parametrizace se kromě podchycení nerozlišených fyzikálních procesů používá též pro simulaci procesů diabatických, nevratných, a pro popis výměny hybnosti, tepla a vlhkosti mezi atmosférou a jejím okolím (Země, vesmír). Výsledkem parametrizace jsou matematické vztahy, které popisují vliv procesů na prognostické proměnné modelu atmosféry a také popisují jejich interakci s dalšími proměnnými, např. modelu zemského povrchu. To, které procesy jsou v modelu atmosféry parametrizovány, tak obecně závisí na jeho rozlišení. Typicky se parametrizují: radiační přenos v atmosféře; výměna hybnosti, tepla a vlhkosti s povrchem a jejich další vertikální transport efekty suché a vlhké turbulence; srážkové procesy, konvekce a s ní spojené srážky a transport hybnosti, tepla a vlhkosti; dynamické účinky nerozlišené orografie.
česky: parametrizace v meteorologii; slov: parametrizácia v meteorológii; něm: Parametrisierung f, Parametrisierung f; rus: параметризация  1993-a3
paranthelion
Termín se skládá z řec. παρα- [para-] „vedle, po straně“ a slova antihélium.
česky: paranthelium; slov: paranthélium; něm: Nebengegensonne f; rus: парантгелий  1993-a1
parantiselena
Termín se skládá z řec. παρα- [para-] „vedle, po straně“ a slova antiselenium.
česky: parantselenium; slov: parantselénium; něm: Nebengegenmond m; rus: парантиселена  1993-a1
paraselene
zvlášť jasné světelné skvrny na paraselenickém kruhu, který patří k halovým jevům. Jde o souborné označení pro paraselenia neboli paměsíce, parantselenia neboli boční měsíce a antiselenium neboli protiměsíc.
česky: měsíc nepravý; slov: nepravý mesiac; rus: ложная луна, парселена  1993-a1
paraselene
Termín se skládá z řec. παρα- [para-] „vedle, po straně“ a σελήνη [seléné] „Měsíc“.
česky: paraselenium; slov: paraselénium; něm: Nebenmond m; fr: parasélène; rus: параселена  1993-a1
paraselenic circle
fotometeor, projevující se jako bílý horiz. kruh, který má stejnou výšku nad obzorem jako Měsíc. Je obdobou kruhu parhelického, je však vyvolán měsíčním světlem. Světelná ohniska na paraselenickém kruhu jsou označována paraselenium (paměsíc), parantselenium (boční měsíc) a antiselenium (protiměsíc). Paraselenický kruh patří mezi halové jevy. Někdy bývají na obloze patrné pouze jeho části. Viz též měsíc nepravý.
česky: kruh paraselenický; slov: paraselenický kruh; něm: Nebenmondkreis m; rus: параселенный круг  1993-a1
parcel method
metoda hodnocení stabilitních podmínek ve vztahu k pohybující se vzduchové částici. Nejčastěji se takto hodnotí vertikální stability atmosféry, přičemž se porovnávají hodnoty adiabatického teplotního gradientu a vertikálního teplotního gradientu v dané hladině nebo vrstvě atmosféry. Metoda částice předpokládá adiabatickou změnu teploty při vert. pohybu vzduchové částice. Tlak vzduchu v částici se okamžitě přizpůsobuje tlaku vzduchu v okolí, které je v hydrostatické rovnováze. Zrychlení vert. pohybu vzduchové částice lze vyjádřit vztahem
adv dt=gT-TT,
kde g značí tíhové zrychlení, T' teplotu částice a T teplotu okolního vzduchu. Při instabilním teplotním zvrstvení atmosféry je hodnota zrychlení kladná, při indiferentním nulová a stabilnímu zvrstvení odpovídá hodnota záporná. Viz též rovnice hydrostatické rovnováhy, metoda vrstvy, metoda vtahování, CAPE.
česky: metoda částice; slov: metóda častice; něm: Parcel-Methode f; rus: метод частицы  1993-a3
parhelic circle
syn. kruh horizontální, kruh vedlejších sluncí – fotometeor, projevující se jako bílý horiz. kruh, který má stejnou úhlovou výšku nad horizontem jako Slunce. V některých bodech parhelického kruhu bývají pozorovány světlé nebo dokonce duhově zářící skvrny. Tato světelná ohniska jsou nejčastěji v blízkosti průsečíků s malým halem, tzv. parhelia (paslunce), občas ve vzdálenosti 120° od Slunce, tzv. paranthelia (boční slunce) a velmi zřídka naproti Slunci, tzv. antihelium (protislunce). Parhelia někdy spojují s malým halem Lowitzovy oblouky. Parhelický kruh patří mezi halové jevy a vzniká odrazem světelných (slunečních) paprsků na vertikálně orientovaných stěnách ledových krystalků. Někdy bývají na obloze patrné pouze jeho části. Viz též slunce nepravé, kruh paraselenický.
česky: kruh parhelický; slov: parhelický kruh; něm: parhelischer Ring m; rus: круг ложных солнц, паргелический круг  1993-a3
parhelion
syn. paslunce – velmi častý halový jev v podobě světelných skvrn nalézajících se na parhelickém kruhu vně malého hala. Jsou obvykle výrazněji duhově zbarveny, s červeným okrajem na straně bližší Slunci. Při poloze Slunce na obzoru by se parhelia nalézala na malém halu, s rostoucí výškou Slunce nad obzorem se od malého hala bočně vzdalují v rozsahu několika úhlových stupňů. Vznikají dvojitým lomem slunečních paprsků při průchodu šestibokými ledovými krystalky při lámavém úhlu 60° a vert. poloze hlavní krystalové osy.
česky: parhelium; slov: parhélium; něm: Nebensonne f; rus: ложное солнце, паргелий  1993-a3
Parry arc
jeden z méně častých halových jevů v podobě světelného oblouku nalézajícího se nad malým halem. S výškou Slunce nad obzorem mění svoji polohu i tvar.
česky: oblouk Parryho; slov: Parryho oblúk; něm: Parry-Bogen m; rus: дуга Парри  2014
partial pressure
česky: tlak dílčí; slov: parciálny tlak; něm: Partialdruck m; rus: парциальное давление  1993-a2
partial pressure
syn. tlak dílčí – tlak vyvolaný jednou ze složek směsi plynů. Podle Daltonova zákona se plyny ve směsi chovají tak, jako kdyby každý existoval samostatně a celkový tlak směsi je součtem parciálních tlaků jednotlivých plynů. V meteorologii se nejčastěji uvádí parciální tlak vodní páry nebo ozonu.
česky: tlak parciální; slov: parciálny tlak; něm: Partialdruck m  1993-a2
particle equivalent diametr
ve fyzice oblaků a srážek charakteristika velikosti vodních kapek a ledových částic užívaná zejména při matematickém modelování nebo parametrizaci mikrofyzikálních procesů v atmosféře. Ekvivalentní průměr vodní kapky odpovídá průměru koule o stejném objemu, jako má reálná kapka. Umožňuje vzít v úvahu nesférický tvar větších kapek. Ledové částice (ledové krystaly, sněhové vločky, krupky a kroupy) zpravidla nemají sférický tvar. Jejich ekvivalentní průměr odpovídá průměru sférické vodní kapky, která by vznikla táním ledové částice. Kromě ekvivalentního průměru užíváme často i ekvivalentní poloměr částic. Velikost ledových částic často charakterizujeme také největším geometrickým rozměrem částice. Viz též rozdělení velikosti oblačných kapekrozdělení velikosti dešťových kapek, průměr aerodynamický.
česky: průměr částic ekvivalentní; slov: ekvivalentný priemer častíc  2014
particle equivalent radius
česky: poloměr částic ekvivalentní; slov: ekvivalentný polomer častíc; něm: äquivalenter Teilchenradius m  2015
pascal
základní jednotka pro tlak v soustavě SI. Označuje se Pa a je definována jako síla 1 N působící kolmo na plochu jednoho metru čtverečního. Pro meteorologické účely je tato jednotka malá, v meteorologii se proto nejčastěji užívá jednotka stokrát větší, tj. hektopascal (hPa). Má to zároveň praktickou výhodu, neboť hektopascal je číselně roven jednotce tlaku milibar (mbar), která se dříve běžně používala v meteorologii. Viz též měření tlaku vzduchu.
česky: pascal; slov: pascal; něm: Pascal n; rus: паскаль  1993-a2
passage of a front
přesun atmosférické fronty, která odděluje dvě vzduchové hmoty, přes určité místo, přesněji průchod frontální čáry daným místem. Přechod fronty je doprovázen změnou hodnot meteorologických prvků, zvláště teploty a vlhkosti vzduchu, směru a rychlosti větru, tlaku vzduchu, oblačnosti, dohlednost, atm. srážek aj. Rychlost a velikost změny met. prvků závisejí především na druhu a výraznosti fronty, na rychlosti jejího postupu, na denní a roční době a na orografických podmínkách. K uvedeným změnám může dojít v průběhu několika minut, ale i hodin. Změna teploty vzduchu při přechodu fronty dosahuje v našich zeměpisných šířkách v extrémních případech 15 až 20 °C, většinou však jen několika stupňů. Průběh počasí při přechodu fronty bývá značně rozdílný, v ojedinělých případech prochází fronta i za jasné oblohy.
česky: přechod fronty; slov: prechod frontu; něm: Frontdurchgang m  1993-a2
passive pollutant
vžité označení plynné atmosférické příměsi, která je do atmosféry emitována přírodními nebo antropogenními procesy a nemá přitom vůči okolnímu vzduchu převýšení svého energetického (tepelného) obsahu, takže na ni nepůsobí vztlak. Viz též příměs aktivní, příměs znečišťující.
česky: příměs pasivní; slov: pasívna prímes; něm: passive Beimengung f; rus: пассивная примесь  1993-a3
passive radio detection
metoda radiolokace, využívající k získání informace o radiolokačním cíli elmag. záření generované samotným cílem. Většinou se využívá více přijímacích antén na různých místech, aby bylo možné pomocí triangulačních metod určit polohu cíle. Pasivní radiolokace se používá při rádiové komunikaci letadel, v meteorologii např. k pozemní detekci blesků. Viz též radiolokace aktivní primární, radiolokace aktivní sekundární.
česky: radiolokace pasivní; slov: pasívna rádiolokácia; něm: passive Funkortung f; rus: пассивная радиолокация  1993-a3
past weather
charakteristické počasí, které se vyskytlo na met. stanici v určeném časovém intervalu před synoptickým termínem. Průběh počasí se vztahuje na období posledních 6 hodin ve zprávách z hlavních synop. termínů, na období posledních 3 hodin ve zprávách z vedlejších synop. termínů a na období poslední hodiny ve zprávách z hodinových synop. termínů. Průběh počasí se předepsaným způsobem zakresluje na synoptických mapách do staničního modelu. Viz též stav počasí.
česky: průběh počasí; slov: priebeh počasia; něm: Wetterverlauf m; rus: прошедшая погода  1993-a3
pastagram
málo používaný druh aerologického diagramu se souřadnicovými osami S a Zp. Souřadnice S je definována vztahem:
S=TTpTp,
kde T je změřená teplota v hladině o tlaku p a Tp teplota této hladiny ve standardní atmosféře. Druhá souřadnice Zp je výška hladiny p ve standardní atmosféře.
Diagram i jeho označení navrhl amer. meteorolog J. C. Bellamy v r. 1945. Termín se skládá z počátečních písmen veličin vynášených na obě osy, totiž Pressure Altitude a Specific Temperature Anomaly, dále pak z řec. γράμμα [gramma] „písmeno, zápis“.
česky: pastagram; slov: pastagram; něm: Pastagramm n; rus: пастаграмма  1993-a2
Peclet number
bezrozměrná charakteristika používaná v teorii přenosu tepla v tekutině (v meteorologii ve vzduchu). Je definována výrazem
Pc=lVa,
kde l značí vhodně zvolenou délku, V charakteristickou rychlost a a je koeficient teplotní vodivosti. Pecletovo číslo lze též vyjádřit jako součin čísla Reynoldsova a čísla Prandtlova. Viz též kritéria podobnostní.
česky: číslo Pecletovo; slov: Pecletovo číslo; něm: Peclet-Zahl f; fr: nombre de Péclet m; rus: число Пекле  1993-a1
pedosphere
nesouvislý půdní obal Země, který vznikl zvětrávacími a půdotvornými procesy z nejvrchnějších částí zemské kůry a z organických látek. Tyto procesy jsou ovlivňovány klimatem, takže současné rozmístění půd vypovídá o klimatu Země v době jejich vzniku. Zonalita klimatu způsobuje existenci zonálních půd; naopak při vzniku azonálních půd hrají podstatnější roli jiné faktory, především složení matečné horniny. Pedosféra je sférou průniku vrchní litosféry, přízemní vrstvy atmosféry, hydrosféry a biosféry. Viz též klima půdní, vzduch půdní, kvartér.
Termín se skládá z řec. πέδον [pedon] „půda, zem“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: pedosféra; slov: pedosféra; něm: Pedosphäre f; rus: почвенная оболочка Земли  1993-a3
penetration of Cb into stratosphere
proniknutí vrcholků oblačnosti konvektivních bouří do spodní stratosféry. Meteorologická radarová a družicová měření prokázala, že tropopauza není limitující horní hranicí vertikálního vývoje oblaků druhu cumulonimbus (Cb). Proniknutí vrcholků Cb o 3 až 5 km nad tropopauzu bylo prokázáno i ve stř. zeměp. šířkách. Meteorologická radiolokační měření na území ČR zaznamenala vrcholky Cb až ve výšce 16 km nad zemí.
česky: průnik cumulonimbů do stratosféry; slov: prienik kumulonimbov do stratosféry; něm: Eindringen des Cumulonimbus in die Stratosphäre n; rus: проницание кучеводождевых облаков в стратосферу  1993-b2
pennant
symbol, znázorňující na synoptických mapách a grafech, např. aerologických diagramech, rychlost větru 25 m.s–1. Užívá se místo hodnoty pěti opeření šipky větru. Má tvar plného rovnostranného trojúhelníku.
česky: praporek větru; slov: zástavka vetra; něm: Windfahne f; rus: вымпел, флажок  1993-a1
pentad
pětidenní období, které se často využívá při podrobnějším rozboru chodu meteorologických prvků (chodu srážek, teploty aj. prvků po pentádách). První pentáda je období od 1. do 5. ledna, poslední pentáda je od 27. do 31. prosince, na rok připadá 73 pentád. V přestupném roce je pentáda na konci února nahrazena hexádou (šestidenním obdobím). V praxi je běžně zaměňováno za období pěti po sobě následujících dnů začínajících 1., 6., 11., 16., 21. a 26. dne v každém měsíci (poslední pentáda končí posledním dnem v měsíci). Viz též dekáda.
Do meteorologie zavedl použití pentád k zobrazení chodu teploty vzduchu H. W. Dove (1854). Termín pochází z řec. πεντάς [pentas] „pětice“.
česky: pentáda; slov: pentáda; něm: Pentade f; rus: пентада  1993-a2
peplopause
horní hranice peplosféry.
Termín zavedl německý meteorolog K. Schneider-Carius v r. 1950. Skládá se z řec. πέπλος [peplos] „oděv“ a lat. pausa „přerušení, ukončení“, viz peplosféra.
česky: peplopauza; slov: peplopauza; něm: Peplopause f; rus: пеплопауза  1993-a2
peplosphere
vrstva atmosféry Země, která sahá od zemského povrchu do výše 1,5 až 2 km. Je definovánajako vrstva, pro niž je charakteristický častý výskyt inverzí teploty vzduchu, které zmenšují prům. vertikální teplotní gradient ve srovnání s výše ležícími vrstvami troposféry. Horní hranice peplosféry se označuje jako peplopauza. Z prostorového hlediska odpovídá peplosféra přibližně mezní vrstvě atmosféry.
Termín zavedl německý meteorolog K. Schneider-Carius v r. 1950. Termín se skládá z řec. πέπλος [peplos] „oděv“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“); obrazně tím vyjadřuje polohu této vrstvy při povrchu Země.
česky: peplosféra; slov: peplosféra; něm: Peplosphäre f; rus: пеплосфера  1993-a2
perfect gas
česky: plyn dokonalý; slov: ideálny plyn; něm: ideales Gas n; rus: идеальный газ  2019
perfect gas
syn. plyn dokonalý – plyn, jehož stavové veličiny přesně splňují stavovou rovnici
pρ=RT
v níž p značí tlak, ρ hustotu, R měrnou plynovou konstantu a T teplotu v K. Plyny tvořící atmosféru Země, včetně vodní páry, pokud není nasycená, lze s velmi dobrým přiblížením považovat za plyny ideální. Viz též zákon Amagatův–Leducův, zákon Avogadrův, zákon Boyleův–Mariotteův, zákon Daltonův.
česky: plyn ideální; slov: ideálny plyn; něm: ideales Gas n; rus: идеальный газ  1993-b2
perfect prog
(metoda PP) –  starší metoda postprocessingu využívající statistických vztahů mezi měřenými hodnotami veličin předpověditelných prognostickým modelem atmosféry a zvolených meteorologických prvků. Na rozdíl od metody model output statistics (MOS) se tedy ve vícerozměrných statistických modelech používají jako prediktory i prediktanty pouze hodnoty vycházející z měření nebo pozorování různých veličin. Zjištěné vztahy se potom aplikují na hodnoty příslušných veličin spočítaných modelem numerické předpovědi počasí nebo klimatickým modelem, přičemž se pro tyto účely předpokládá jejich dokonalá (perfektní) předpověď. Z tohoto důvodu jsou výstupy metody PP méně přesné než výstupy MOS.
česky: metoda perfektní předpovědi  2024
perfect prognosis method
(metoda PP) –  starší metoda postprocessingu využívající statistických vztahů mezi měřenými hodnotami veličin předpověditelných prognostickým modelem atmosféry a zvolených meteorologických prvků. Na rozdíl od metody model output statistics (MOS) se tedy ve vícerozměrných statistických modelech používají jako prediktory i prediktanty pouze hodnoty vycházející z měření nebo pozorování různých veličin. Zjištěné vztahy se potom aplikují na hodnoty příslušných veličin spočítaných modelem numerické předpovědi počasí nebo klimatickým modelem, přičemž se pro tyto účely předpokládá jejich dokonalá (perfektní) předpověď. Z tohoto důvodu jsou výstupy metody PP méně přesné než výstupy MOS.
česky: metoda perfektní předpovědi  2024
pergelisol
syn. permafrost.
česky: půda dlouhodobě zmrzlá; slov: dlhodobo zamrznutá pôda; něm: Dauerfrostboden m, Permafrostboden m; rus: вечная мерзлота  1993-a3
perhumid climate
česky: klima perhumidní; slov: perhumidná klíma; rus: пергумидный климат  1993-b3
periglacial climate
klima oblastí v předpolí kontinentálního nebo horského ledovce, které má podobné vlastnosti jako klima tundry. Dochází zde ke střídavému mrznutí a tání povrchové vrstvy permafrostu. Převládá mrazové zvětrávání hornin, důležitá je i činnost větru. Termín se používá především v paleoklimatologii. Na území ČR se periglaciální klima vyskytovalo v glaciálech při rozšíření kontinentálního ledovce.
česky: klima periglaciální; slov: periglaciálná klíma; něm: Periglazialklima n; rus: перигляциальный климат  1993-b3
perihelion
syn. perihelium.
česky: přísluní; slov: príslnie; něm: Perihel n; rus: перигелий  2019
perihelion
syn. přísluní – bod na oběžné dráze Země kolem Slunce s minimální vzdáleností od jeho středu. Při současné excentricitě oběžné dráhy Země kolem Slunce je tato vzdálenost cca 147 mil. km, což má za následek zesílení slunečního záření dopadajícího na Zemi o přibližně 3,5 % oproti jeho intenzitě při střední vzdálenosti obou těles (149,6 mil. km). V současné fázi precese zemské osy prochází Země periheliem 3. nebo 4. ledna, což způsobuje zkrácení a relativní zmírnění zimy na severní polokouli oproti situaci v opačné fázi precesního cyklu. Viz též afelium.
česky: perihelium; slov: perihelium; rus: перигелий  2019
period
časový interval mezi pravidelně se opakujícími výskyty jevu v důsledku jeho periodicity. V meteorologii a klimatologii se někdy pojem perioda používá nevhodně i ve významech období, cyklus, chod aj.
Termín pochází z řec. περίοδος [periodos] „oběh“ (z předpony περι- [peri] „kolem“ a slova ὁδός [hodos] „cesta“).
česky: perioda; slov: perióda; něm: Periode f; rus: период  1993-a3
periodicity
v meteorologii vlastnost časové řady meteorologického prvku nebo jevu opakovat po uplynutí časového intervalu (periody) posloupnost hodnot (jevů), které se v tomto intervalu vyskytly. Meteorologicky reálnými jsou periodicita denní, daná změnami bilance záření během jedné otočky Země kolem osy, a roční, daná změnami radiační bilance během jednoho oběhu Země kolem Slunce. Tyto periodicity lze zjistit prakticky u všech met. prvků. Další periodicity, např. čtyřdenní, osmidenní, jedenáctiletá apod., jejichž příčiny jsou méně pravidelné a výrazné, bývají vyjádřeny v časových řadách méně zřetelně. Viz též rytmy povětrnostní.
Termín pochází ze slova periodický, viz perioda.
česky: periodicita; slov: periodicita; něm: Periodizität f; rus: периодичность  1993-a2
perlucidus
(pe) [perlúcidus] – jedna z odrůd oblaku podle mezinárodní morfologické klasifikace oblaků. Je charakterizována jako menší nebo větší oblačné skupiny nebo vrstvy, které mají zřetelné, někdy i velmi malé mezery, jimiž lze vidět Slunce, Měsíc, modrou oblohu nebo oblaky ve větších výškách. Vyskytuje se u druhů altocumulus a stratocumulus. Odrůda perlucidus může být zároveň také translucidus nebo opacus.
Termín byl zaveden v r. 1951. Byl přejat z lat. perlucidus „velmi jasný, průsvitný“.
česky: perlucidus; slov: perlucidus; něm: perlucidus; rus: раздельные облакa  1993-a2
permafrost
syn. permafrost.
česky: půda dlouhodobě zmrzlá; slov: dlhodobo zamrznutá pôda; něm: Dauerfrostboden m, Permafrostboden m; rus: вечная мерзлота  1993-a3
permafrost
syn. půda dlouhodobě zmrzlá – vrstva půdy a hornin s teplotou celoročně nižší než 0 °C. Je součástí kryosféry. Současný rozsah permafrostu je zčásti pozůstatkem glaciálů (fosilní permafrost), zčásti důsledkem současného klimatu (recentní permafrost). Podmínkami pro jeho vznik jsou prům. roč. teplota vzduchu pod bodem mrazu a dlouhá, studená a suchá zima. Tyto podmínky jsou splněny téměř ve všech oblastech se sněhovým klimatem a v kontinentálních oblastech s boreálním klimatem. Hloubka promrznutí může být i více než 1 000 m, přičemž závisí na teplotním režimu zim, výšce sněhové pokrývky i na geol. a geomorf. podmínkách. Tzv. činná vrstva na povrchu permafrostu periodicky rozmrzá, přičemž její mocnost v různých oblastech (desítky centimetrů až několik metrů) závisí mj. na délce a teplotním režimu léta. Viz též promrzání půdy.
Termín navrhl S. W. Muller v r. 1943. Vytvořil ho zkrácením angl. spojení permanently frozen ground „trvale zmrzlá půda (zem)“.
česky: permafrost; slov: permafrost; něm: Dauerfrostboden m, Permafrost m; rus: вечная мерзлота  1993-a3
permanent atmospheric center of action
česky: centrum atmosféry akční trvalé; slov: stále akčné centrum atmosféry; něm: stationäres Aktionszentrum n; fr: centre d'action de caractère permanent m; rus: постоянный центр действия  1993-a1
permanent atmospheric center of action
syn. centrum atmosféry akční trvalé – akční centrum atmosféry, které je patrné na klimatologických mapách během celého roku. Poloha, rozsah a intenzita permanentních akčních center se nicméně do určité míry mění, a proto bývají označována i jako centra kvazipermanentní. Takovými akčními centry jsou rovníková deprese, oceánské subtropické anticyklony (např. azorská anticyklona) a cyklony nad oceány ve vysokých zeměpisných šířkách (např. islandská cyklona).
česky: centrum atmosféry akční permanentní; slov: permanentné akčné centrum atmosféry; něm: stationäres Aktionszentrum n; fr: centre d'action de caractère permanent m; rus: постоянный центр действия  1993-a3
Permian
nejmladší geol. perioda paleozoika (prvohor), zahrnující období před 299 – 252 mil. roků. V důsledku zformování superkontinentu Pangea výrazně poklesla hladina světového oceánu, neboť došlo k omezení tvorby oceánské kůry ve středooceánských hřbetech. V nitru superkontinetu se oproti předchozímu karbonu projevovala podstatně větší kontinentalita klimatu, a to jak termická, tak ombrická. Větší aridita klimatu zvýhodňovala na úkor obojživelníků plazy líhnoucí se z vajíček, která již nemusela být umístěna ve vodě, což otevřelo cestu k dominanci plazů v mezozoiku.
Termín Permian zavedl brit. geolog R. Murchison v r. 1841; je odvozen od názvu města Perm v severozáp. Rusku, kde Murchison horniny z tohoto období zkoumal.
česky: perm; slov: perm; něm: Perm n  2018
peroxyacylnitrates
(peroxyacylnitrates, peroxyacylnitráty) – dnes aktuálně sledovaná složka antropogenního znečištění ovzduší, zahrnuje významné škodliviny. Jde o soubor látek, jež v alkanovém řetězci obsahují skupinu C(O)OONO2, jsou většinou toxické a podléhají při vyšší teplotě tepelnému rozkladu. Nejběžnější z nich je peroxyacetyl nitrát se strukturou molekuly CH3C(O)OONO2 , označovaný zkratkou PAN.
česky: PANs; slov: PANs  2018
persistence
v meteorologii jeden z rysů časových změn atm. dějů, který je protějškem jejich proměnlivosti a projevuje se tendencí k zachování existujícího typu počasí nebo existujících hodnot meteorologických prvků. V časových řadách met. prvků se persistence projevuje zachováváním současných hodnot i v blízké budoucnosti. Míra projevu persistence klesá s rostoucí délkou sledovaného období a obvykle závisí na zeměp. poloze, roč. době a řadě met. faktorů. Je různá podle toho, zda uvažujeme celkový charakter počasí nebo jednotlivé met. prvky. Z existence persistence vycházejí rovněž některé pomocné metody používané v předpovědích počasí, např. v souvislosti s využíváním přirozených synoptických období nebo při analýze klimatologických řad. Persistence je obecně podmíněna setrvačností dějů v atmosféře. Viz též předpověď počasí perzistentní.
Termín pochází z lat. persistentia „vytrvání“ (od persistere „vytrvat“).
česky: perzistence; slov: perzistencia; něm: Beständigkeit f, Persistenz f; rus: постоянство, устойчивость  1993-a2
persistence forecast
předpověď počasí inerční – setrvačná primitivní předpověď počasí založená na předpokladu, že počasí nebo hodnota daného meteorologického prvku se nezmění v období, na které předpovídáme, ve srovnání s nedávnou minulostí. Nejjednodušší a nejpoužívanější způsob perzistentní předpovědi počasí se zakládá na předpokladu, že „jak bylo dnes, bude i zítra“. Někdy se používá jako referenční předpověď pro porovnání s jinými metodami předpovědi počasí.
česky: předpověď počasí perzistentní; slov: perzistentná predpoveď počasia; něm: Persistenzvorhersage f; rus: инерционный прогноз  1993-a3
persistent forecast
česky: předpověď počasí setrvačná; slov: zotrvačná predpoveď počasia; něm: permanente Vorhersage f; rus: инерционный прогноз  1993-a3
persistent organic pollutants
viz POP.
česky: polutanty organické perzistentní; slov: organické perzistentné polutanty; něm: Persistente organische Schadstoffe m/pl  2017
persistent organic pollutants
(Persistent Organic Pollutants, perzistentní organické polutanty) – látky charakteru znečišťujících příměsí dlouhodobě setrvávající v prostředí, např. dioxiny, polychlorované bifenyly (PCB), DDT a mnohé další. Jde o významné škodliviny v hygienickém i obecně environmentálním smyslu, ohrožují např. reprodukční procesy živočichů včetně člověka, mohou iniciovat různá zhoubná bujení a celkově zvyšovat výskyt řady chorob. Vznikají mj. v různých chemických výrobách, při produkci a užití pesticidů, různých druhů plastů apod. Vyskytují se v potravních řetězcích, v rozmanitých složkách prostředí, jsou též transportovány v ovzduší.
česky: POP; slov: POP; něm: Persistente organische Schadstoffe m/pl  2017
perturbated pressure gradient force
síla mezi centry relativních změn tlaku vzduchu oproti jeho standardnímu chování. Např. při vývoji konvekce obecně vzniká dolů směřující síla vertikálního perturbovaného tlakového gradinetu, která působí proti vývoji oblaku, a naopak v supercelách se díky poklesu tlaku v mezocykloně vyvíjí vzhůru mířící síla vertikálního perturbovaného tlakového gradientu (VPPGF) posilující život supercely. V rámci vývoje silných konvektivní bouří se uplatňují i další takové síly působící jak ve vertikálním směru, tak horizontálně. Viz též síla tlakového gradientu.
česky: síla perturbovaného tlakového gradientu  2024
perturbation method
syn. metoda poruch – metoda založená na aplikaci tzv. poruchového počtu. Fyz. veličiny podle ní rozkládáme na část stacionární (časově zprůměrovanou) a poruchovou neboli perturbační (časově rychle proměnnou). V meteorologii se s použitím perturbační metody setkáváme zejména v souvislosti s atm. turbulencí, turbulentním přenosem, vlnovými ději apod.
česky: metoda perturbační; slov: perturbačná metóda; něm: Störungsmethode f; rus: метод возмущений  1993-a3
Peru Current
syn. proud Humboldtův – studený oceánský proud ve východním segmentu jihopacifického subtropického koloběhu oceánské vody. V jihovýchodním Pacifiku se odděluje od Západního příhonu a směřuje podél západního pobřeží Jižní Ameriky k severu. Nízká teplota povrchu moře je zde umocňována intenzivním upwellingem. Způsobuje ochlazování přilehlého vzduchu, což v kombinaci s velkou vlhkostí vzduchu vede ke vzniku hustých mlh nazývaných garua. Současně zde dochází ke stabilizaci teplotního zvrstvení atmosféry, která podmiňuje výskyt silně aridního klimatu v tropické části pobřeží, které Peruánský proud omývá. V blízkosti rovníku na něj navazuje Jižní rovníkový proud. Viz též El Niño, La Niña.
česky: proud Peruánský; slov: Peruánsky prúd; něm: Perustrom m  2017
Phanerozoic
současný eon, který začal před 541 mil. roků. Zahrnuje éry paleozoikum (prvohory), mezozoikum (druhohory) a současné kenozoikum (třetihory a čtvrtohory).
Termín pochází z angl. Phanerozoic, které v r. 1930 zavedl amer. geolog G. H. Chadwick. Skládá se z řec. φανερός [faneros] „zjevný, patrný“ a ζωή [zóé] „život“; odkazuje na hojné důkazy života zachované v horninách z tohoto období.
česky: fanerozoikum; slov: fanerozoikum; něm: Phanerozoikum n  2018
phase diagram
grafické vyjádření vzájemných souvislostí mezi stavovými veličinami termodynamického systému. Nejčastěji se v tomto směru používají diagramy typu p – T, kdy na horiz. osu vynášíme teplotu T a na vert. osu tlak p. Obsahuje křivky rozhraní mezi jednotlivými fázemi, jde o křivku vypařování neboli křivku nasycených par, křivku sublimační a křivku tání. Jediným společným bodem všech těchto křivek je trojný bod. V meteorologii se s tímto diagramem setkáváme nejčastěji v souvislosti s fázemi vody, tzn. vodní párou, kapalnou vodou (v přechlazené nebo nepřechlazené variantě) a ledem.
česky: diagram fázový; slov: fázový diagram; něm: Phasendiagramm n  2017
phase of the QBO
západní nebo východní fáze kvazidvouletého cyklu určená podle převládajícího směru zonálního proudění ve vybrané hladině rovníkové stratosféry. Historicky je tato hladina vybírána v rozmezí 50 – 20 hPa.
česky: fáze kvazidvouletého cyklu; slov: fáza kvázidvojročného cyklu; něm: quasi-zweijährige Oszillation f (QBO f); fr: phase d'OQB f, phase de l'oscillation quasi biennale f  2015
phase space
základní pojem používaný v teorii nelineárních dynamických systémů. V meteorologii se vyskytuje při předpovědi počasí v souvislosti s aplikací teorie deterministického chaosu v problematice prediktability atmosférických dějů. Jde o abstraktní prostor, jehož prvky jsou stavy daného systému popsané vhodnými parametry. Vývoj systému v čase popisuje křivka v tomto prostoru ustalující se po uplynutí dostatečně dlouhého času a charakterizující tzv. atraktor. Množina všech stavů, které vedou ke stejnému atraktoru se pak označuje jako oblast přitahování daného atraktoru. Atraktorem může být bod, k němuž zmíněná křivka směřuje, často jím však jsou různé periodické, kvaziperiodické nebo chaotické křivky. V meteorologické literatuře bývá zmiňován např. Lorenzův atraktor, který byl autorem zobrazen při numerických simulacích buněčné konvekce. V případech vhodných vstupních parametrů může podoba tohoto atraktoru připomínat rozevřená motýlí křídla. Viz též efekt motýlích křídel.
česky: prostor fázový; slov: fázový priestor  2017
phase transition
syn. změna fázová, změna skupenství – přechod dané látky z jednoho skupenství (fáze) do jiného, v meteorologii především přechod mezi skupenstvími vody. Fázové přechody mezi vodní párou a kapalnou vodou označujeme jako kondenzaci vodní páry, resp. výpar, mezi kapalnou vodou a ledem dochází k mrznutí vody, resp. tání sněhu nebo ledu, o změnách mezi vodní párou a ledem mluvíme jako o depozici, resp. sublimaci. Podmínky, za nichž dochází k jednotlivým fázovým přechodům vody, jsou znázorněny na fázovém diagramu.  Při fázových přechodem dochází k uvolňování, resp. spotřebování latentního tepla.
česky: přechod fázový; slov: fázový prechod; něm: Phasenübergang m; fr: Transition de phase; rus: фазовый переход  2022
phenogram
graf znázorňující časové změny fenol. jevů, zvláště nástupy fenologických fází, v závislosti na meteorologických prvcích a povětrnostních jevech.
Termín se skládá z řec. komponentu φαίνο- [faino-], odvozeného od slovesa φαίνειν [fainein] „jevit se“ (srov. fenomén), a γράμμα [gramma] „písmeno, zápis“, tj. doslova „zápis o jevech".
česky: fenogram; slov: fenogram; něm: Phänogramm n; fr: phénogramme m; rus: фенограмма  1993-a1
phenological chart
mapa zobrazující data nástupu fenologických fází nebo lidských úkonů souvisejících především s pěstováním polních kultur. Sestavuje se pro určitý rok nebo pro delší období. Plošné rozložení nástupu fenol. fází se znázorňuje pomocí izofen.
česky: mapa fenologická; slov: fenologická mapa; něm: phänologische Karte f; rus: фенологическая карта  1993-a1
phenological forecast
speciální předpověď sestavovaná na základě fenologických pozorování a poznatků biologie příslušných organizmů. Většinou se jedná o předpověď nástupu, trvání a ukončení vybraných fenologických fází zemědělských kultur, volně rostoucích rostlin, ojediněle i živočichů. Fenologické předpovědi se využívají v zemědělství, např. při upřesňování agrotechnických termínů nebo řízení polních prací, v lesnictví, popř. ekologii, a mohou také sloužit jako cenné podklady pro alergologickou praxi (předpověď nástupu alergologicky významných fází rostlin). Viz též fenologie.
česky: předpověď fenologická; slov: fenologická predpoveď; něm: phänologische Vorhersage f; rus: фенологический прогноз  1993-a3
phenological observation
pozorování časového průběhu fenologických fází během roku konané na fenologických stanicích. Zaznamenává se nástup fází jak u rostlin, tak u živočichů, popř. začátek polních prací.
česky: pozorování fenologické; slov: fenologické pozorovanie; něm: phänologische Beobachtung f; rus: фенологическое наблюдение  1993-a1
phenological phase
syn. fenofáze – významný, dobře pozorovatelný a periodicky se opakující životní projev rostlin a živočichů, který je podmíněn střídáním sezon a změnami počasí (vývojem povětrnosti), jako např. kvetení, olistění, přílet ptactva aj. Mezi fenologické fáze v širším smyslu patří i polní práce související s pěstováním polních kultur, např. setí, sklizeň aj. Podle objektu fenologických pozorování rozlišujeme fytofenofáze a zoofenofáze. Viz též fytofenologie, zoofenologie, fenogram, izofena.
česky: fáze fenologická; slov: fenologická fáza; něm: phänologische Phase f; fr: stade phénologique m, phénophase f; rus: фенологическая фаза, фенофаза  1993-a1
phenological seasons
období roku vymezená etapami vývoje přírody. Fenologické roční doby jsou odděleny významnými fenologickými fázemi.
česky: doby roční fenologické; slov: fenologické ročné doby; něm: phänologische Jahreszeiten f/pl; fr: stade phénologique f; rus: фенологические сезоны  1993-a1
phenological station
speciální stanice sledující data nástupu tzv. fenologických fází, což jsou přesně definovaná vývojová stádia nebo periodicky se opakující životní projevy rostlin či živočichů. Po přiřazení meteorologických dat z nejbližší meteorologické stanice slouží napozorované údaje ke zkoumání vztahu mezi počasím nebo klimatem a živými organizmy, využívají se i v zemědělské a lesnické praxi, ekologii a bioklimatologii. Fenologická stanice bývá často specializovaná, např. na polní plodiny, ovocné dřeviny nebo divoce rostoucí rostliny. V současnosti jsou v ČR provozována pouze fytofenologická pozorování.
česky: stanice fenologická; slov: fenologická stanica; něm: phänologische Station f; rus: фенологическая станция  1993-a3
phenology
věda o časovém průběhu významných periodicky se opakujících životních projevů rostlin a živočichů, tzv. fenologických fází, v závislosti na komplexu podmínek vnějšího prostředí, zejména na počasí a klima. Úzký vztah mezi fenol. daty a klimatickými podmínkami činí z fenologie významnou pomocnou vědu klimatologie, neboť výsledků fenologických pozorování a výzkumů lze zpětně využít k charakteristice klimatických podmínek místa nebo oblasti. Podle objektu pozorování se fenologie dělí na fytofenologii a zoofenologii. U nás byla fenol. služba zorganizována celostátně v letech 1923 až 1924 V. Novákem. Viz též předpověď fenologická.
Termín zřejmě poprvé použil pražský rodák K. Fritsch v r. 1858. Skládá se z řec. komponentu φαίνο- [faino-], odvozeného od řec. φαίνειν [fainein] „jevit se“ (srov. fenomén), a z komponentu -λoγία [-logia] „nauka, věda“, který je příbuzný se slovem λόγoς [logos] „výklad, slovo“.
česky: fenologie; slov: fenológia; něm: Phänologie f; fr: phénologie f; rus: фенология  1993-a1
phenophase
syn. fenofáze – významný, dobře pozorovatelný a periodicky se opakující životní projev rostlin a živočichů, který je podmíněn střídáním sezon a změnami počasí (vývojem povětrnosti), jako např. kvetení, olistění, přílet ptactva aj. Mezi fenologické fáze v širším smyslu patří i polní práce související s pěstováním polních kultur, např. setí, sklizeň aj. Podle objektu fenologických pozorování rozlišujeme fytofenofáze a zoofenofáze. Viz též fytofenologie, zoofenologie, fenogram, izofena.
česky: fáze fenologická; slov: fenologická fáza; něm: phänologische Phase f; fr: stade phénologique m, phénophase f; rus: фенологическая фаза, фенофаза  1993-a1
photo synthetically active radiation
oblast elmag. spektra o vlnových délkách od 0,4 do 0,7 µm, v níž je rozloženo pohlcování asimilačních pigmentů, vyvolávající v rostlinné buňce proces fotosyntézy. Pojem fotosynteticky aktivní záření byl přijat v Nizozemí (Committée on Plant Irradiation, 1953) při klasifikaci spektrálních oblastí podle účinků záření na zelené rostliny.
česky: záření fotosynteticky aktivní (FAR); slov: fotosynteticky aktívne žiarenie; něm: photosynthetisch aktive Strahlung f; rus: фотосинтетически активная радиация  1993-a1
photochemical smog
česky: smog fotochemický; slov: fotochemický smog; rus: фотохимический смог  2019
photochemical smog
syn. smog fotochemický – smog ve smyslu směsi vysoce reaktivních látek oxidačního charakteru typicky obsahující ozon a různé peroxyradikály vznikající fotochemicky (tj. za nutné účasti dostatečně intenzivního slunečního záření) z VOC. Pro vznik tohoto druhu smogu je nutná přítomnost dvou skupin tzv. prekurzorů, tzn. oxidů dusíku a VOC. Indikátorem oxidačního smogu je přízemní ozon, a zejména jeho zvýšené koncentrace. Na rozdíl od redukčního smogu není spojen s výskytem mlhy. Vzniká za teplého, slunečného počasí, proto bývá označován i jako letní smog. Poprvé byl popsán v kalifornském Los Angeles v 50. letech 20. století v souvislosti se silným znečištěním z automobilové dopravy, proto bývá méně vhodně označován jako losangeleský nebo kalifornský. Má významné negativní dopady na zdraví i vegetaci a ekosystémy. Viz též PANs.
česky: smog oxidační; slov: fotochemický smog; něm: Photosmog m, photochemischer Smog m, photochemischer Smog m  2014
photometeor
světelný jev v atmosféře, vytvořený odrazem, lomem, ohybem nebo interferencí slunečního, popř. měs. světla. K fotometeorům, objevujícím se ve více méně jasném ovzduší, patří zrcadlení, chvění, scintilace, zelený paprsek a soumrakové barvy. V oblacích vznikají halové jevy, koróny, irizace a glórie. V některých hydrometeorech či litometeorech lze pozorovat glorie, duhy, mlhové duhy, Bishopův kruh a krepuskulární paprsky. Viz též meteor.
Termín se skládá z řec. φῶς [fós, gen. fótos] „světlo“ a ze slova meteor.
česky: fotometeor; slov: fotometeor; něm: Photometeor n; fr: photométéore m; rus: фотометeoр  1993-a1
photometer
přístroj pro měření intenzity světla. V meteorologii je termín fotometr většinou vyhrazen pro přístroj měřící ve viditelné vlnové oblasti slunečního spektra (400 až 760 nm).
Termín se skládá z řec. φῶς [fós, gen. fótos] „světlo“ a μέτρον [metron] „míra, měřítko“.
česky: fotometr; slov: fotometer; něm: Photometer n; fr: photomètre m; rus: фотометр  1993-a3
photometry
vědní obor zabývající se měřením a kvantitativním popisem světla z hlediska jeho účinků na lidské oko. K tomu využívá řadu fotometrických veličin, jako jsou svítivost, světelný tok, jas, (intenzita) osvětlení, osvit apod. Z hlediska meteorologie je důležitá především problematika viditelného záření Slunce a oblohy.
Termín se skládá z řec. φῶς [fós, gen. fótos] „světlo“ a -μετρία [-metria] „měření“.
česky: fotometrie; slov: fotometria; něm: Photometrie f; fr: photométrie f; rus: фотометрия  1993-a3
photopollution
souhrnné označení pro osvícení noční oblohy umělými světelnými zdroji. Působí rušivě zejména při astronomických pozorováních, narušuje některé životní rytmy živých organismů, spánkový režim apod. V této souvislosti jde nejen o světelné zdroje orientované vzhůru, ale i o světlo odražené od zemského povrchu nebo od osvětlovaných objektů. I v případě světelných toků vysílaných zdroji přibližně horizontálně se může významně uplatňovat rozptyl světla v atm. prostředí.
česky: znečištění světelné; slov: svetelné znečistenie; něm: Lichtverschmutzung f; rus: световое загрязнение, световой смог  2015
photosphere
vrstva plynného tělesa hvězdy, v užším smyslu Slunce, kde toto těleso začíná být neprůhledné. Sluneční fotosféra, jejíž mocnost  se udává v rozmezí 200 – 500 km, je tak pozorována jako povrch Slunce. Fotosféra emituje až 99 % spojitého spektra elektromagnetického záření Slunce, přičemž vlastnosti tohoto záření jsou podmíněny teplotou fotosféry, která dosahuje cca 5500 – 6000 K. Fotosféra tak představuje nejchladnější část Slunce, od níž dolů i vzhůru (do chromosféry) teplota roste.
V podloží fotosféry probíhá bouřlivá konvekce žhavých plynů, která proniká i do fotosféry a způsobuje její granulaci, tedy členění do domén stoupajících a klesajících proudů plazmatu. Prostorové uspořádání granulí připomíná včelí plásty o rozměrech jednotlivých buněk cca 1000 – 1200 km. Vnitřní části granulí, v nichž proudí horké plazma vzhůru, se jeví jako světlejší; okraje granulí, kde relativně chladnější plazma klesá dolů, jsou tmavší. Při zvýšené sluneční aktivitě vznikají fotosférické deprese, označované jako sluneční skvrny, obklopené výrazně světlejšími, nepravidelně strukturovanými fakulovými poli, jejichž jednotlivé jasné prvky označujeme jako fakule.
česky: fotosféra; slov: fotosféra; něm: Photosphäre f; fr: photosphère f; rus: фотосфера  2020
physical climate
skutečné klima Země uspořádané do fyzických klimatických pásem a klimatických typů, vytvářené současným působením všech klimatických faktorů. Termín se používá při porovnání se zjednodušenými modely klimatu Země, jako je radiační klima nebo solární klima.
česky: klima fyzické; slov: fyzická klíma; rus: физический климат  1993-b3
physical meteorology
hist. souhrnné označení pro meteorologické obory, které se zformovaly na fyzikálním základu, a to na rozdíl od těch pěstovaných do začátku 20. století na půdě geografie. Pod označení fyzikální meteorologie jednoznačně patřily atmosférická optika, akustika a elektřina. Většinou sem byla zařazována i termodynamika atmosféry, především v souvislosti s oblačnými ději, a nauka o šíření elektromagnetického vlnění v atmosféře. Označení ztratilo význam v době, kdy norská meteorologická škola dala celé meteorologii a především problematice předpovědi počasí fyzikální charakter. Viz též fyzika atmosféry.
česky: meteorologie fyzikální; slov: fyzikálna meteorológia; něm: physikalische Meteorologie f; rus: физическая метеороогия  1993-a3
physical modelling
modelování používané zejména ke studiu dopadů turbulence na atm. procesy a další děje především v mezní vrstvě atmosféry, které není založeno na matematických (numerických) výpočtech, ale na měření v aerodyn. tunelech, vodních tancích apod. Fyzikální modelování využívá zmenšených fyzických modelů konfigurace terénu, zástavby, zdrojů znečišťujících příměsí apod., vystavených proudění vzduchu, popř. proudění jiné modelové tekutiny. Zásadní otázkou je přitom zachování podobnostních kritérií mezi prouděním na modelu a prouděním v reálné modelované situaci. Tyto modely umožňují studovat mj. detailní strukturu turbulence nebo difuzi příměsí v okolí složitých terénních útvarů, v městské a jiné zástavbě apod.
česky: modelování fyzikální; slov: fyzikálne modelovanie; něm: physikalische Modellierung f; rus: физическое моделирование  2014
physics of clouds and precipitation
meteorologická disciplina, která studuje procesy probíhající při vzniku a vývoji oblaků a srážek, i procesy, při nichž oblaky působí na okolní prostředí. Základní oblasti fyziky oblaků a srážek jsou mikrofyzika oblaků a dynamika oblaků. Obecně zařazujeme do oblasti fyziky oblaků a srážek také oblačnou elektřinu a studium optických jevů působených oblaky a srážkami, popř. chemizmus oblaků a srážek. Kromě poznávací složky nacházejí výsledky fyziky oblaků a srážek uplatnění při vývoji parametrizace mikrofyziky a parametrizace konvekce v modelech numerické předpovědi počasí.
česky: fyzika oblaků a srážek; slov: fyzika oblakov a zrážok; něm: Wolken- und Niederschlagsphysik f; fr: physique des nuages et des précipitations f, physique des nuages f; rus: физика облаков и осадков  1993-a3
physiological drought
obdoba agronomického sucha, uvažovaného z hlediska fyziologických potřeb jednotlivých druhů rostlin. Některé vlastnosti vody (pevné skupenství, vysoká koncentrace rozpuštěných látek aj.) nebo půdy (malá velikost zrn) totiž rostlinám brání přijímat půdní vodu, jakkoliv jí může být dostatek, přičemž míra tohoto omezení není stejná pro všechny rostlinné druhy.
česky: sucho fyziologické; slov: fyziologické sucho; něm: physiologische Dürre f; rus: физиологическая засуха  1993-a3
phytobioclimatology
syn. bioklimatologie rostlin, fytoklimatologie – část bioklimatologie zabývající se vztahy mezi klimatem a rostlinnou složkou biosféry.
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova bioklimatologie.
česky: fytobioklimatologie; slov: fytobioklimatológia; něm: Phytoklimatologie f; fr: bioclimatologie végétale f; rus: фитобиоклиматология  1993-a1
phytoclimate
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova klima.
česky: fytoklima; slov: fytoklíma; něm: Phytoklima n; fr: phytoclimat m; rus: климат растений, фитоклимат  1993-a1
phytoclimate
syn. klima vegetační, fytoklima – mikroklima prostředí, v němž žijí rostliny a jehož klimatické podmínky svou přítomností a životními ději spoluvytvářejí (modifikují). Zahrnuje jednak přízemní vrstvu ovzduší včetně prostoru nad vegetací, která je jí ovlivněna, jednak půdní vrstvu v dosahu kořenových systémů. Půdní klima kořenového prostoru (klima rhizosféry) je tedy nedílnou součástí porostového klimatu. Porostové klima se vytváří v různých měřítkách klimatu, zejména v rozsahu mikroklimatu, místního klimatu, popř. mezoklimatu.
česky: klima porostové; slov: porastová klíma; něm: Phytoklima n  1993-b2
phytoclimatology
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova klimatologie.
česky: fytoklimatologie; slov: fytoklimatológia; něm: Phytoklimatologie f; fr: phytoclimatologie f; rus: фитоклиматология  1993-a1
phytophenology
část fenologie zabývající se studiem časového průběhu významných periodicky se opakujících životních projevů rostlin v závislosti na počasí a klimatu. K rostlinným fenologickým fázím (fytofenofázím) patří vzcházení, odnožování, sloupkování, metání, žlutá čili vosková zralost, plná zralost, první listy, všeobecné listění, první květy, všeobecné kvetení, první zralé plody, všeobecné žloutnutí listů a všeobecný opad listů.
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova fenologie.
česky: fytofenologie; slov: fytofenológia; něm: Pflanzen-Phänologie f, Phytophänologie f; fr: phénologie des plantes f, phytophénologie f; rus: фитофенология  1993-a1
Piché evaporimeter
výparoměr sloužící k přibližnému určení hodnoty potenciálního výparu na různých místech v témže časovém období. Používá se hlavně při terénních průzkumech. Je tvořen kalibrovanou skleněnou odměrkou, která má ve svém dně oko k zavěšení. Otevřený konec odměrky naplněné destilovanou vodou se uzavře kotoučkem zeleného savého papíru ve středu propíchnutého a přitlačovaného k otvoru trubice pružinou. Picheův výparoměr se při měření zavěšuje otevřeným koncem směrem k zemi. Z papíru trvale nasyceného vodou z odměrky se voda vypařuje. Její úbytek se určí z poklesu výšky hladiny v odměrce. Přístroj zkonstruoval A. Piche v r. 1873.
česky: výparoměr Picheův; slov: Picheov výparomer; něm: Evaporimeter nach Piche n; rus: испаритель Пише  1993-a2
pileus
(pil) – jeden z průvodních oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak je menšího horiz. rozsahu, má podobu čepice nebo kapuce a vyskytuje se nad vrcholky kupovitých oblaků, které jím často prorůstají. Dosti často lze pozorovat i několik průvodních oblaků pileus nad sebou. Vyskytuje se u druhů cumulonimbus a cumulus. Pileus se tvoří, je-li vrstva vzduchu lokálně vyzdviženého nad rostoucí oblak dostatečně vlhká.
Termín je přejat z lat. pil(l)eus „čepice, klobouk“.
česky: pileus; slov: pileus; něm: pileus; rus: облачная шапка, шапка кучего облака  1993-a3
pilot balloon
balon z elastického materiálu (plněný obvykle vodíkem), který je vypouštěn volně do atmosféry stoupací rychlostí balonu 1,5 až 3,5 m.s–1 a zaměřován vizuálními prostředky, např. optickým pilotovacím teodolitem k určení výškového větru. Viz též měření větru, měření pilotovací.
česky: balon pilotovací; slov: pilotovací balón; něm: Pilotballon m; fr: ballon-pilote m; rus: шар-пилот  1993-a3
pilot balloon slide rule
pomůcka dříve používaná k vyhodnocování výškového větru při pilotovacím měření. Pomocí ní se řešily trigonometrické rovnice charakterizující polohu pilotovacího balonu v prostoru.
česky: pravítko pilotovací; slov: pilotovacie pravítko; něm: Pilotballonlineal n  1993-a1
pilot balloon station
aerologická stanice, která provádí pilotovací měření výškového větru, zpravidla opt. zaměřováním pilotovacího balonu. V některých případech bývá jako pilotážní stanice označována i stanice pro získávání údajů rádiovým zaměřováním dráhy speciálního vysílače neseného balonem nebo radiolokačním sledováním odražeče elektromagnetických vln.
česky: stanice pilotážní; slov: pilotovacia stanica; něm: Pilotballonstation f; rus: станция шаропилотного зондирования  1993-a3
pilot-balloon measurement
jeden ze způsobů zjišťování směru a rychlosti výškového větru. Rozlišujeme jednopilotáž a dvojpilotáž podle toho, zda azimuty a výškové úhly volně letícího pilotovacího prostředku, nejčastěji pilotovacího balonu, zjišťujeme jedním nebo dvěma optickými pilotovacími teodolity. Při jednopilotáži musí být vert. rychlost pilotovacího prostředku známá. Pomocí změřených úhlových hodnot a vypočtené výšky balonu se trigonometricky vyhodnocuje prům. rychlost a směr větru ve vrstvě atmosféry, vymezené polohami pilotovacího prostředku při dvou po sobě následujících zaměřeních. V současné době je pilotovací měření téměř nahrazeno měřením větru radiotechnickými prostředky (radiopilotáží) a užívá se převážně při terénních měřeních. Viz též zpráva PILOT, kruh Molčanovův.
česky: měření pilotovací; slov: pilotovacie meranie; něm: Pilotballonmessung f; rus: шаропилотное измерение  1993-a2
pilot-balloon plotting board
pomůcka k sestrojení horiz. průmětu dráhy pilotovacího balonu v určitém měřítku na základě úhlů měřených optickým pilotovacím teodolitem. Z průmětu dráhy se určuje směr a rychlost větru v různých výškách. Molčanovův kruh se skládá z pevné desky s odpovídajícím nomogramem, otočného průsvitného kruhu a otočného průsvitného pravítka. Zařízení je pojmenováno podle aerologa P. A. Molčanova (1893–1941). Viz též měření pilotovací.
česky: kruh Molčanovův; slov: Molčanovov kruh; něm: Molčanovsches Auswertegerät n; rus: круг Молчанова  1993-a2
pilot-balloon theodolite
přístroj pro opt. zaměřování azimutu a výškového úhlu pilotovacího nebo radiosondážního balonu. Lomený opt. systém teodolitu umožňuje pozorování při libovolné poloze sledovaného objektu. Pro noční měření je optický pilotovací teodoloit opatřen osvětlením zaměřovacích značek v opt. systému i stupnic pro čtení úhlových údajů. Viz též měření pilotovací, radioteodolit.
česky: teodolit pilotovací optický; slov: optický pilotovací teodolit; něm: Ballontheodolit m; rus: аэрологический теодолит  1993-a2
Pineapple Express
neformální označení pro výraznou atmosférickou řeku, která se může vytvořit v chladné části roku nad tropickým Pacifikem, odkud přináší velké množství vodní páry na záp. pobřeží Spojených států či Britské Kolumbie. V kombinaci s návětrným efektem Kordiller zde může způsobit silné srážky trvající řadu dní. Viz též chinook.
česky: expres ananasový; slov: Ananásový expres  2019
pixel
elementární část obrazových dat charakterizovaná svou polohou v rámci snímku. Digitální hodnota přiřazená pixlu vyjadřuje určitou veličinu (např. odrazivost nebo teplotu) charakterizující oblast reprezentovanou pixlem. Tato hodnota vzniká integrací nebo průměrováním sledované veličiny přes plochu (objem) odpovídající pixlu. Jeho rozměr úzce souvisí s rozlišovací schopností přístroje (např. radiometru družice), jímž se sledovaná veličina měří. Viz též snímek družicový.
Termín je poprvé doložen v r. 1965 v angličtině. Vznikl z angl. pix (varianty hovorového výrazu pics, vzniklého zkrácením slova pictures „obrázky“) a z první slabiky slova element „prvek“, doslova „prvek obrázků“.
česky: pixel; slov: pixel; něm: Bildelement n, Pixel n; rus: пиксель  1993-a3
plage
zjasněná oblast ve sluneční chromosféře s rozměry v řádu desítek tisíc km. Tzv. flokulová pole vznikají při zvýšené sluneční aktivitě, přičemž jednotlivé flokule se vyskytují zpravidla nad fakulemi.
česky: flokule; slov: flokula; rus: флoккул  2020
Planck law
zákl. zákon popisující rozdělení energie ve spektru záření absolutně černého tělesa v závislosti na jeho teplotě. Funkce Eλ, vyjadřující toto rozdělení podle vlnových délek, je dána vztahem
Eλ=c1λ -5exp(c2 λT)-1,
kde c1 a c2 jsou konstanty, λ značí vlnovou délku záření a T teplotu povrchu daného černého tělesa v K. Z Planckova zákona, který je obecným zákonem záření, lze též odvodit zákon Stefanův–Boltzmannův, popř. zákon Wienův. Planckův zákon patří k zákl. vztahům používaným v aktinometrii. Zákon teoreticky formuloval r. 1901 M. Planck, což představovalo východisko pro následnou formulaci základů kvantové fyziky.
česky: zákon Planckův; slov: Planckov zákon; něm: Plancksches Gesetz n; rus: закон Планка  1993-b1
planetary albedo
poměr záření odraženého Zemí jako planetou k záření Slunce vstupujícímu do atmosféry Země. V současné době se na základě družicových meteorologických měření udává hodnota albeda Země přibližně 30 %.
česky: albedo Země; slov: albedo Zeme; něm: Albedo der Erde f, Erdalbedo f, planetare Albedo f; fr: albédo terrestre m; rus: альбедо Земли, планетарное альбедо  1993-a2
planetary atmosphere
plynný obal obklopující určitou planetu. Podle chem. složení lze atmosféru planet ve sluneční soustavě rozdělit do tří typů:
1. dusíko-kyslíkový (Země);
2. uhlíkový (Venuše, Mars, kde se atmosféra skládá převážně z oxidu uhličitého);
3. vodíko-metano-čpavkový (velké planety Jupiter, Saturn, Uran, Neptun).
K udržení atmosféry musí mít planeta dostatečně velkou hmotnost a nikoli příliš vysokou teplotu povrchu. Ve sluneční soustavě to lze dokumentovat např. na Merkuru, jenž je prakticky bez atmosféry. V současné době se na společném obsahovém pomezí meteorologie, geofyziky a astronomie věnuje pozornost planetárním atmosférám nejen v rámci naší sluneční soustavy, ale i v souvislosti s exoplanetami, tj. planetami příslušejícími k planetárním systémům jiných hvězd než je naše Slunce. Viz též atmosféra Země.
česky: atmosféra planetární; slov: planetárna atmosféra; něm: planetare Atmosphäre f; fr: atmosphères planétaires pl; rus: планетарная атмосфера  1993-a3
planetary boundary layer of atmosphere
1. mezní vrstva atmosféry v nejširším smyslu. Obsahuje tzv. vnitřní mezní vrstvy vznikající při obtékání jednotlivých překážek prouděním, při přechodu proudění nad odlišný typ povrchu apod.;
2. teor. model mezní vrstvy atmosféry, v němž se předpokládá turbulentní proudění, nezávislost všech veličin na čase a na horiz. souřadnicích.
česky: vrstva atmosféry mezní planetární; slov: planetárna hraničná vrstva atmosféry; něm: planetarische Grenzschicht der Atmosphäre f; rus: планетарный пограничный слой атмосферы  1993-a1
planetary circulation
1. syn. všeobecná cirkulace atmosféry;
2. hypotetická atmosférická cirkulace, která by existovala na planetě s hladkým homogenním povrchem.
česky: cirkulace planetární; slov: planetárna cirkulácia; něm: planetare Zirkulation f; fr: circulation planétaire f; rus: планетарная циркуляция  1993-a2
planetary climate
1. klima Země jako planety, označované též jako klima globální;
2. klima různých planet.
česky: klima planetární; slov: planetárna klíma; něm: globales Klima n  1993-b2
planetary height-level frontal zone
pás zvětšených horiz. gradientů teploty a tlaku vzduchu ve stř. a horní troposféře v mírných a subtropických zeměp. šířkách. Má značné rozměry, většinou se vyskytuje nad určitou částí polokoule, v některých případech však probíhá okolo celé polokoule. Průběh této zóny může být více méně zonální nebo značně meandrující. Největší gradienty teploty a tlaku vzduchu bývají obvykle v blízkosti tropopauzy. Ve volné atmosféře se na tuto výškovou frontální zónu váže polární nebo arktická fronta. V uvedené zóně se často vyskytuje tryskové proudění.
česky: zóna frontální výšková planetární; slov: planetárna výšková frontálna zóna; něm: planetarische Frontalzone f; rus: планетарная высотная фронтальная зона  1993-a3
planetary waves
vlny v zonálním proudění charakteru Rossbyho vln, avšak s velkými vlnovými délkami, přibližně 10 000 km nebo více. Často oscilují kolem určité polohy a projevují se především na výškových klimatologických mapách tlakového pole.
česky: vlny planetární; slov: planetárne vlny; něm: planetare Wellen f/pl; rus: планетарные волны  1993-a1
pleion
Termín je přejat z řec. πλείων [pleión] „větší“.
česky: pleión; slov: pleión; něm: Pleion m  1993-a3
Pleistocene
syn. pleistocén.
česky: čtvrtohory starší; slov: staršie štvrtohory  2018
Pleistocene epoch
syn. čtvrtohory starší – starší geol. epocha kvartéru, zahrnující období před 2,588 – 0,0117 mil. roků. Během pleistocénu opakovaně probíhal kvartérní klimatický cyklus.
Termín zavedl skot. geolog Ch. Lyell v r. 1839; skládá se z řec. πλεῖστος [pleistos] „nejvíc“ a z komponentu -cén, obsaženého v názvu všech epoch současné geol. éry neboli kenozoika (angl. cenozoic; z řec. καινός [kainos] „nový“). Až do vymezení holocénu jako samostatné epochy totiž pleistocén představoval nejnovější úsek geologické minulosti.
česky: pleistocén; slov: pleistocén; něm: Pleistozän n  2018
plume model
pojem používaný některými autory v teoriích turbulence a v modelování mezní vrstvy atmosféry. V rámci řešení problému uzávěru se k přímému vyjádření Reynoldsových napětí nepoužívá žádná rovnice, ale vhodně zkonstruovaný algebraický výraz. Obsah pojmu se v tomto smyslu v zásadě kryje s nularovnicovými modely. V literatuře se též vyskytuje pojem algebraický RSM model, kdy se vhodně zkonstruované algebraické výrazy používají v rámci řešení problému uzávěru na příslušné úrovni k uzavření soustavy Kellerových–Fridmanových rovnic.
česky: model algebraický; slov: algebraický model; něm: algebraisches Modell n  2014
plume rise
syn. převýšení kouřové vlečky – výška nad úrovní ústí zdroje znečišťování ovzduší, v níž osa kouřové vlečky po počátečním vzestupu nabývá horiz. polohu. Je to tedy rozdíl mezi efektivní výškou komína a jeho skutečnou neboli stavební výškou. V praxi bývá hodnota vznosu kouřové vlečky nahrazována největší změřitelnou výškou osy vlečky nad ústím zdroje. Vznos kouřové vlečky se za jinak stejných podmínek zvětšuje, jestliže vzrůstá teplota exhalací, jejich objem a výstupní rychlost. Při růstu rychlosti větru se vznos kouřové vlečky zmenšuje. Při instabilním teplotním zvrstvení ovzduší dochází za jinak konstantních podmínek k většímu vznosu kouřové vlečky než při stabilním teplotním zvrstvení. Vznos kouřové vlečky významně ovlivňuje přízemní imise. Účinné zlepšení kvality ovzduší lze často dosáhnout dodržováním „pravidla jednoho komína“ (z angl. one stack rule): při vypouštění exhalací jedním společným komínem se obvykle dosáhne vyššího vznosu kouřové vlečky, a proto nižších přízemních imisí, než při vypouštění týchž exhalací několika komíny umístěnými blízko sebe a stejně vysokými nebo i poněkud vyššími než společný komín.
česky: vznos kouřové vlečky; slov: vznos dymovej vlečky; rus: подъем дымового факела  1993-a2
pluvial period
období s vydatnými srážkami v nižších zeměp. šířkách. Podle starších představ měly pluviály časově zhruba odpovídat glaciálům ve vyšších zeměp. šířkách, avšak např. poslední pluviál zřejmě nastal na konci glaciálu a přetrval až do období holocénního klimatického optima. Do většiny oblastí, kde dnes panuje horké suché klima, se rozšířilo klima savan, vytvořily se stálé vodní toky a rozsáhlá jezera, takže zde byla i vyšší hustota zalidnění než v současné době.
Termín pochází z lat. pluvialis „dešťový, deštivý“ (od pluvia „déšť“).
česky: pluviál; slov: pluviál; něm: Pluvialzeit f; rus: дождливый период, плювиальный период  1993-a3
pluviogram
záznam ombrografu.
Termín vznikl odvozením od termínu ombrograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. ὄμβρος [ombros] „dešťová přeháňka, příval“ a γράμμα [gramma] „písmeno, zápis“.
česky: ombrogram; slov: ombrogram; něm: Ombrogramm n; rus: плювиограмма  1993-a1
pluviogram
viz ombrograf.
Termín vznikl odvozením od termínu pluviograf, analogicky k pojmům telegram a telegraf. Skládá se z lat. pluvia „déšť“ a z řec. γράμμα [gramma] „písmeno, zápis“; tj. doslova „záznam o dešti“.
česky: pluviogram; slov: pluviogram; něm: Pluviogramm n; rus: плювиограмма  1993-a3
pluviograph
registrační přístroj zaznamenávající časový průběh kapalných srážek. V Česku byly ombrografy nahrazeny člunkovými nebo váhovými srážkoměry. Starší označení pro ombrograf je pluviograf nebo hyetograf. Záznam ombrografu se nazývá ombrogram (pluviogram, hyetogram). Plovákové ombrografy, které se v ČR užívaly, soustřeďují srážkovou vodu do plovákové komory, v níž je výška hladiny indikována polohou plováku spojeného s registračním perem.
Termín se skládá z řec. ὄμβρος [ombros] „dešťová přeháňka, příval“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: ombrograf; slov: ombrograf; něm: Ombrograph m; rus: плювиограф  1993-a3
pluviograph
viz ombrograf. Viz též mikropluviograf.
Termín zavedl brit. inženýr R. Beckley, který přístroj sestrojil zhruba ve 3. čtvrtině 19. století. Termín se skládá z lat. pluvia „déšť“ a z řec. komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: pluviograf; slov: pluviograf; něm: Pluviograph m, Niederschlagsschreiber m; rus: дождемер, плювиограф  1993-a3
pluviography
zast. označení pro klimatologii atm. srážek.
Termín se skládá z řec. ὄμβρος [ombros] „dešťová přeháňka, příval“ a z komponentu -γραφία [-grafia], odvozeného od komponentu -γραφos [-grafos] (od slovesa γράφειν [grafein] „psát“).
česky: ombrografie; slov: ombrografia; něm: Ombrographie f; rus: омбрография  1993-a3
pluviometer
zast. označení pro srážkoměr.
Termín se skládá z lat. pluvia „déšť“ a z řec. μέτρον [metron] „míra, meřidlo“.
česky: pluviometr; slov: pluviometer; něm: Pluviometer n; rus: плювиометр  1993-a3
pluviometric coefficient
syn. kvocient pluviometrický – charakteristika poměrného rozložení atm. srážek během roku, stanovená jako podíl skutečného úhrnu srážek za určitý měsíc a úhrnu, který by spadl v tomto měsíci v případě rovnoměrného rozložení srážek během roku. Je obdobou častěji používaných relativních srážek. Na klimatologických mapách se znázorňuje pomocí izomer.
česky: koeficient pluviometrický; slov: pluviometrický koeficient; něm: pluviometrischer Koeffizient m; rus: плювиометрический коэффициент  1993-a3
pluviometric quotient
česky: kvocient pluviometrický; slov: pluviometrický kvocient; něm: pluviometrischer Quotient m; rus: плювиометрический коэффициент, плювиометрическое отношение  1993-a1
pluviometry
syn. pluviometrie – zast. označení pro měření atmosférických srážek, resp. obor zabývající se jeho metodikou. Viz též hydrologie.
Termín se skládá z řec. ὄμβρος [ombros] „dešťová přeháňka, příval“ a -μετρία [-metria] „měření“.
česky: ombrometrie; slov: ombrometria; něm: Ombrometrie f; rus: измерение количества осадков  1993-a3
pluviometry
syn. ombrometrie.
Termín se skládá z lat. pluvia „déšť“ a z řec. -μετρία [-metria] „měření“.
česky: pluviometrie; slov: pluviometria; něm: Pluviometrie f; rus: плювиометрия  1993-a1
pluvioscope
přístroj indikující výskyt atm. srážek. V současné době nahrazen detektorem počasí.
Termín se skládá z řec. ὄμβρος [ombros] „dešťová přeháňka, příval“ a σκοπεῖν [skopein] „pozorovat, zkoumat“.
česky: ombroskop; slov: ombroskop; něm: Ombroskop n; rus: омброскоп  1993-a3
pluvioscope
zařízení pro určení výskytu, trvání, popř. i druhu atm. srážek. V ČR se nepoužíval. Viz též detektor počasí.
Termín zavedl franc. inženýr C. F. Hervé-Mangon, který přístoj sestrojil zřejmě v r. 1850. Termín se skládá z lat. pluvia „déšť“ a z řec. σκοπεῖν [skopein] „pozorovat, zkoumat“.
česky: pluvioskop; slov: pluvioskop; něm: Pluvioskop n; rus: плювиоскоп  1993-a3
point discharge
syn. výboj bodový – el. výboj, který vzniká na hrotu nalézajícím se v silném el. poli. Ke vzniku hrotového výboje je nutné, aby v bezprostředním okolí hrotu došlo vlivem zesílení el. pole k ionizaci nárazem. Na hrotech, zejména pod cumulonimby, může dosáhnout takové intenzity, že je v temnu viditelný jako sršení doprovázené často slyšitelným praskotem. Tento jev byl mnohokrát popsán v literatuře jako oheň svatého Eliáše. U nás bývá pozorován na vysokých věžích a na horských observatořích, např. na Milešovce nebo Sněžce. V případě, že se jedná o hrot vodivě spojený se zemským povrchem, je svodem odváděn do země elektrický náboj opačného znaménka než je znaménko náboje zemského povrchu na daném místě. Výboje tohoto druhu významně přispívají ke globální regeneraci záporného náboje zemského povrchu. Viz též výboj korónový.
česky: výboj hrotový; slov: hrotový výboj; rus: точечный разряд  1993-a3
point of occlusion
bod na přízemní synoptické mapě, který tvoří vrchol teplého sektoru cyklony a z něhož se směrem do vyššího tlaku vzduchu rozbíhají v okludované cykloně zbývající části teplé a studené fronty. Během procesu okluze se okluzní bod přemísťuje k okraji cyklony. Někdy se poblíž okluzního bodu vytváří nový střed cyklony. Viz též fronta okluzní.
česky: bod okluzní; slov: oklúzny bod; něm: Okklusionspunkt m; fr: point d'inflexion m; rus: точка окклюзии  1993-a3
Poisson equations
1. Rovnice
pαcp/cv =C1,
T=C2pR/cp,
platné při adiabatickém dějiideálním plynu, které lze odvodit z první hlavní termodynamické věty. V nich p značí tlak, α měrný objem plynu, cp, resp. cv měrné teplo při stálém tlaku, resp. při stálém objemu, T teplotu v K, R měrnou plynovou konstantu a C1, C2 jsou konstanty dané počátečními podmínkami. Druhá z těchto rovnic se často uvádí ve tvaru
T1T0=( p1p0) R/cp,
kde T0, po, resp. T1, p1 značí teplotu a tlak v počátečním, resp. v konečném stavu. Z tohoto vyjádření se vychází např. při definici potenciální teploty. Poissonovy rovnice odvodil franc. fyzik a matematik S. D. Poisson v r. 1823.
2. Parciální diferenciální rovnice typu
2ux2+ 2uy2+ 2uz2=f(x,y ,z)
nebo ve dvojrozměrném prostoru
2ux2 +2uy2=φ( x,y),
kde u je hledaná funkce prostorových souřadnic x, y, za f nebo φ jejich zadaná funkce. Rovnice tohoto typu se používají při řešení některých problémů v dynamické meteorologii.
česky: rovnice Poissonovy; slov: Poissonove rovnice; něm: Poisson-Gleichungen f/pl; rus: уравнение Пуассона  1993-a1
Poisson formula
česky: vzorec Poissonův; slov: Poissonov vzorec; něm: Poisson-Formel f; rus: формула Пуассона  1993-a1
polacke
místní název pro studený a suchý padavý vítr charakteru bóry, vyskytující se v českém a moravském pohraničí, (zvl. v Orlických horách a v Jeseníkách) a na Slovensku v podtatranské oblasti při sz. a sev. proudění. Souvisí se vpády studeného polárního a arktického vzduchu postupujícího přes Polsko na naše území. Vyskytuje se nejčastěji na jaře, na počátku podzimu a v zimě. Zesiluje zvláště v Moravské bráně v důsledku proudění zúženým profilem. Viz též efekt tryskový.
česky: polák; slov: poliak; rus: поляк  1993-a2
polake
místní název pro studený a suchý padavý vítr charakteru bóry, vyskytující se v českém a moravském pohraničí, (zvl. v Orlických horách a v Jeseníkách) a na Slovensku v podtatranské oblasti při sz. a sev. proudění. Souvisí se vpády studeného polárního a arktického vzduchu postupujícího přes Polsko na naše území. Vyskytuje se nejčastěji na jaře, na počátku podzimu a v zimě. Zesiluje zvláště v Moravské bráně v důsledku proudění zúženým profilem. Viz též efekt tryskový.
česky: polák; slov: poliak; rus: поляк  1993-a2
polar air
1. zast. syn. pro vzduch mírných šířek;
2. ve starších pracích souborné označení pro vzduch mírných šířek a arktický nebo antarktický vzduch.
česky: vzduch polární; slov: polárny vzduch; něm: Polarluft f; rus: полярный воздух  1993-a3
polar air
vzduchová hmota, vymezená geografickou klasifikací vzduchových hmot, s ohniskem vzniku vzduchové hmoty v mírných zeměp. šířkách. Jeho zast. označení polární vzduch pochází z doby, kdy nebyl vymezován na severní polokouli arktický, na jižní antarktický vzduch, oddělený arktickou, resp. antarktickou frontou. Na opačném okraji je vzduch mírných šířek ohraničen polární frontou. Jeho výskyt je typický celoročně pro klima mírných šířek, v chladné části roku pro subtropické klima, v teplé části roku pro subarktické klima. Mořský vzduch mírných šířek přináší do stř. Evropy oblačné počasí se srážkami. V zimě sem proniká od západu až jihozápadu a je relativně teplý, v létě je zde relativně chladný a proudí od západu až severozápadu. Četnost jeho závisí na intenzitě zonálního proudění. Směrem k východu narůstá na jeho úkor četnost výskytu pevninského vzduchu mírných šířek, který často vzniká transformací jeho mořské formy. Je zde nejčastější vzduchovou hmotou s maximem výskytu v období častých anticyklonálních situací. Bývá suchý a teplotně normální, s výjimkou zimy, kdy je především při zemském povrchu studený.
česky: vzduch mírných šířek; slov: vzduch miernych šírok; něm: Luft gemässigter Breiten f; rus: воздух умеренных широт  1993-a3
polar aurora
jev vznikající ve horní atmosféře, obvykle ve výškách od 80 do 500 km nad zemským povrchem. Bývá pozorován v noci v podobě barevných oblouků, svitků, drapérií nebo závěsů. Příčinou polární záře je vtahování korpuskulárního záření Slunce do magnetického pole Země, kde ionizuje atm. částice, excituje atomy a molekuly a vyvolává tak světelné efekty. Polární záře se vyskytují především v období intenzívní sluneční činnosti při magnetických bouřích, a to zvláště v sev. a již. polárních oblastech v okolí zemských magnetických pólů. Mají složité spektrum, v jasných zářích je nejintenzivnější zelená nebo červená barva. Nejvyšší polární záře dosahují až 1 200 km, nejnižší asi 65 km nad zemí; vrstva, v níž se vyskytují, je nejčastěji silná 10–12 km. Podle toho, na které polokouli se vyskytuje, se též hovoří o sev. záři (aurora borealis) nebo již. záři (aurora australis). Zeměp. rozložení výskytu polární záře za určité období znázorňují izochasmy. Polární záře je jedním z elektrometeorů. Viz též ionizace atmosférická, magnetosféra zemská, záření kosmické.
česky: záře polární; slov: polárna žiara; něm: Polarlicht n; rus: полярное сияние, полярное сияние  1993-a1
polar climate
obecné označení pro klima polárních oblastí. V Köppenově klasifikaci klimatu mu přibližněodpovídá sněhové klima, v Alisovově klasifikaci klimatu pak arktické klima a antarktické klima.
česky: klima polární; slov: polárna klíma; něm: polares Klima n; rus: полярный климат  1993-b3
polar easterlies
převládající vých. větry ve vysokých zeměp. šířkách na vnější straně subpolárního pásu nízkého tlaku vzduchu, které vanou při zemi a mají jen malý vertikální rozsah. Zvlášť stálé a silné východní větry se vyskytují na okrajích rozsáhlé a mohutné antarktické anticyklony.
česky: větry východní polární; slov: východné polárne vetry; něm: polare Ostwinde m/pl; rus: полярные восточные ветры  1993-a2
polar front
hlavní fronta oddělující vzduch mírných šířek, dříve nazývaný polární vzduch, od tropického vzduchu. Nad sev. polokoulí probíhá v několika větvích, z nichž pro Evropu mají největší význam tyto: větev probíhající v zimě od Mexického zálivu nad sev. částí Atlantského oceánu k záp. pobřeží Francie a v létě se nacházející o 1 000 až 1 500 km severněji; středomořská fronta a větev táhnoucí se od Černého moře nad horní Povolží. Viz též teorie polární fronty.
česky: fronta polární; slov: polárny front; něm: Polarfront f; fr: front polaire m; rus: полярный фронт  1993-a3
polar front theory
teorie vycházející z poznatků norské meteorologické školy, která vysvětluje vznik a vývoj mimotropických cyklon vývojem polární fronty, oddělující polární a tropický vzduch. Tyto cyklony zesilují a postupují podél polární fronty, přičemž během svého života procházejí řadou typických vývojových stadií. Teorie polární fronty, kterou rozpracovali v letech 1921–1922 V. Bjerknes, J. Bjerknes a H. Solberg, zahájila nové období atm. analýzy a představuje jeden z mezníků ve vývoji synoptické meteorologie.
česky: teorie polární fronty; slov: teória polárneho frontu; něm: Polarfronttheorie f; rus: теория полярного фронта  1993-a3
polar invasion
nevh. označení pro vpád studeného vzduchu.
česky: vpád polární; slov: polárny vpád; něm: Polarluftausbruch m; rus: полярное вторжение  1993-a1
polar low
mezosynoptická cyklona vznikající nad nezamrzlou mořskou hladinou ve vzduchu mírných šířek, popř. v arktickém vzduchu studeného sektoru řídicích cyklon. V poli přízemního tlaku vzduchu bývá zpravidla vyjádřena brázdou nižšího tlaku, popř. i uzavřenou izobarou. Rozměry polární cyklony jsou řádově stovky km a doba její existence přibližně 1 den. Vznikne-li v bezprostřední blízkosti za studenou frontou, může způsobit její zvlnění a často s ní v tomto případě splyne. Oblačnost polární cyklony má zpravidla výrazně konvektivní charakter, jednotlivé spirální větve mohou být překryty vysokou oblačností.
V sev. Atlantiku vznikají polární cyklony nejčastěji východně od již. cípu Grónska při. záp. až sz. proudění v souvislosti s horizontálním střihem větru v závětří Grónska. Dále se polární cyklony často vyskytují v oblasti Norska a Norského moře, kde při jejich vzniku hraje důležitou roli horizontální střih větru vyvolaný třením nad záp. pobřežím Skandinávie. Polární cyklony se mohou vyskytnout i v oblasti Britských ostrovů, někdy pronikají nad Baltské moře, případně až do střední Evropy. Jsou zpravidla provázeny silným větrem, intenzivními přeháňkami a v zimě sněžením.
Zast. čes. označení pro polární cyklonu je mezocyklona. Chybné je použití termínu polární cyklona ve smyslu cirkumpolární vír.
česky: cyklona polární; slov: polárna cyklóna; něm: Polartief n; fr: dépression polaire; rus: полярная депрессия  2020
polar mesospheric clouds
česky: oblaky mezosférické polární  2022
polar orbiting meteorological satellite
syn. družice meteorologická kvazipolární – vžité zkrácené označení pro meteorologickou družici na polární dráze, tedy s oběžnou dráhou přibližně kolmou na zemský rovník, takže při každém obletu Země přelétá i její polární oblasti. Operativní meteorologické družice na polárních dráhách mají zpravidla oběžnou dobu blízkou 100 minutám a výšku kruhové dráhy přibližně v rozmezí 700 až 1 000 km. Dráha je zpravidla heliosynchronní. Mezi polární meteorologické družice patří mj. družice NOAA a Metop.
česky: družice meteorologická polární; slov: polárna meteorologická družica; něm: polarumlaufender Wettersatellit m; fr: satellite météorologique polaire m; rus: полярные орбитальные спутники  1993-a3
polar outbreak
nevh. označení pro vpád studeného vzduchu.
česky: vpád polární; slov: polárny vpád; něm: Polarluftausbruch m; rus: полярное вторжение  1993-a1
polar stratospheric cloud with nitric acid and water
polární stratosférické oblaky sestávající z částic, které obsahují vodu, kyselinu dusičnou a popř. i kyselinu sírovou. Když teplota ve spodní a střední stratosféře klesá na hodnoty pod –78 °C jsou tyto PSC tvořeny trihydráty kyseliny dusičné, při poklesu pod –81 °C jde o oblaky obsahující přechlazené ternární (třísložkové) roztoky.
PSC obsahující kyselinu dusičnou a vodu se jeví jako tenký žlutavý závoj a vzhledem k tomuto difuznímu vzhledu mohou být chybně zaměněny buď za oblaky cirrostratus nebo za vrstvu zákalu. Jsou nejlépe vidět po západu slunce nebo před jeho východem v době občanského soumraku, když Slunce je mezi přibližně 1° a 6° pod obzorem.
česky: oblaky stratosférické polární obsahující kyselinu dusičnou a vodu  2022
polar stratospheric clouds
(PSC, z angl. polar stratospheric clouds) – skupina oblaků horní atmosféry, které se vyskytují většinou v zimních měsících ve spodní polární stratosféře ve výškách 15 - 30 km. Byly poprvé identifikovány na základě družicových měření v r. 1979. Polární stratosférické oblaky vznikají při velmi nízkých teplotách (185–195 K) typických pro oblast stratosférického cirkumpolárního víru. Jsou až 100krát četnější v oblasti Antarktidy než nad Arktidou, kde je cirkumpolární vír méně výrazný.
Rozlišují se PSC obsahující kyselinu dusičnou a vodu, které jsou jedinými oblaky vznikajícími při teplotě vyšší, než je lokální teplota bodu ojínění, a ledové PSC neboli perleťové oblaky. Tyto dva typy PSC byly dříve označovány jako typ 1 (kyselina dusičná a voda) a typ 2 (led). Podle verze mezinárodní klasifikace oblaků z roku 2017 se toto rozdělení již nepoužívá vzhledem k získanému lepšímu pochopení vlastností částic v různých typech PSC.
Částice polárních stratosférických oblaků tvoří ve spodní stratosféře pevné skupenství. Na jejich povrchu probíhají heterogenní reakce, které velmi zvyšují účinnost sloučenin chloru a bromu při rozkladu ozonu. Proto jsou považovány za důležitý faktor působící při vzniku ozonové díry nad Antarktidou.
česky: oblaky stratosférické polární; slov: polárne stratosférické oblaky; něm: polare Stratosphärenwolken f/pl; rus: полярные стратосферные облака  2014, ed. 2024
polar vortex
v odborném slangu často používané označení pro cirkumpolární vír.
česky: vortex polární; slov: polárny vortex  2020
polar vortex
syn. vír polární – největší atmosférický vír v systému všeobecné cirkulace atmosféry. Tvoří ho převážně západní proudění kolem geografických pólů ve středních a vysokých zeměpisných šířkách, a to ve vyšších vrstvách troposféry a ve stratosféře. Ve vyšší troposféře hovoříme o troposférickém cirkumpolárním víru, který se zde projevuje uzavřenými,  cyklonálně zakřivenými absolutními izohypsami, neboť je vyplněn studeným vzduchem. Jeho okraj přitom leží v jádru oblasti nejsilnějších západních větrů, tedy mezi 40. a 60. stupněm zeměpisné šířky. Troposférický cirkumpolární vír existuje celoročně; nejsilnější je v zimě, kdy je v jeho jádru nejstudenější vzduch. Stratosférický cirkumpolární vír sahá od horního okraje tropopauzy do vyšších hladin stratosféry, přičemž jeho intenzita i horizontální rozsah roste s výškou; v horních hladinách stratosféry leží maxima jeho rychlosti kolem 50. stupně zem. šířky. Na rozdíl od troposférického cirkumpolárního víru existuje střídavě vždy na jedné polokouli. Vytváří se na podzim příslušné polokoule, trvá do jara, obvykle na přelomu jara a léta zaniká. Viz též oteplení stratosférické.
česky: vír cirkumpolární; slov: cirkumpolárny vír; něm: Polarwirbel m, Zirkumpolarwirbel m; rus: околополярный вихрь, полярный вихрь  1993-a3
polarimeter
přístroj k měření velikosti polarizace světla oblohy, popř. k určování polohy neutrálních bodů. Polarimetry využívají opt. vlastností hranolů a destiček z vhodných opt. materiálů ke zjišťování procenta polarizace světla vstupujícího tubusem do přístroje. K tomuto účelu lze využit např. depolarizaci měřeného světla nebo porovnání jasů srovnávacích zorných polí v polarimetru. Výsledkem měření je zpravidla úhel natočení polarizačního hranolu, z něhož lze vypočítat procento polarizace v místě oblohy, na které byl zaměřen tubus. Viz též polarizace slunečního záření v atmosféře.
Termín se skládá ze slova polarizace a z řec. μέτρον [metron] „míra, meřidlo“.
česky: polarimetr; slov: polarimeter; něm: Polarimeter n; rus: поляриметр  1993-a1
polarization of electromagnetic waves
transformace nepolarizovaného elmag. vlnění ve vlnění polarizované. Polarizace může být kruhová, eliptická nebo lineární. Polarizované vlnění se využívá v radarové meteorologii ke studiu meteorologických cílů, tj. zejména tvaru a skupenství nesférických oblačných a srážkových částic. Viz též depolarizace elektromagnetických vln.
Termín zavedl franc. fyzik E. L. Malus v r. 1811 spolu s franc. slovesem polariser „polarizovat“, od něhož je odvozen. Základem těchto slov je lat. polaris „polární, týkající se zeměpisných pólů“ (od polus „konec osy, pól“, z řec. πόλος [polos] „osa; pól osy“). Jako póly totiž E. L. Malus označil okraje paprsku ve směru kolmém k jeho směru, k nimž se naklání reflexní plocha při polarizaci.
česky: polarizace elektromagnetických vln; slov: polarizácia elektromagnetických vĺn; něm: Polarisation von elektromagnetischen Wellen f  1993-a1
polarization of solar radiation in atmosphere
transformace přirozeného slun. záření v záření polarizované, ke které dochází při rozptylu zářenízemské atmosféře. Nejvíce jsou polarizovány paprsky kolmé ke směru šíření přímého slunečního záření. Rozptýlené sluneční záření s minimální polarizací naopak přichází od neutrálních bodů na obloze.
česky: polarizace slunečního záření v atmosféře; slov: polarizácia slnečného žiarenia v atmosfére; něm: Polarisation der Sonnenstrahlung in der Atmosphäre f; rus: поляризация солнечной радиации в атмосфере  1993-a3
polisclimatology
syn. klimatologie urbanistická – část mezoklimatologie a mikroklimatologie aplikovaná na problémy velkých měst a průmyslových aglomerací. Její součástí je i klimatologie mezní vrstvy atmosféry a klimatologie znečištění ovzduší. Z hlediska mezoklimatu jde o interakci města nebo průmyslové oblasti jako celku s okolím, z hlediska mikroklimatu o části města, jako náměstí, ulice, dvory, např. v úzké součinnosti s bioklimatologií o hodnocení pohody ve venkovních prostorech zástavby apod. Do městské klimatologie zasahují i otázky hygieny ovzduší měst. Městská klimatologie je jednou z pomocných vědních disciplín pro urbanismus, tj. nauku o městě. Viz též klima městské.
česky: klimatologie měst; slov: mestská klimatológia; něm: Städtklimatologie f; rus: климатология городов  1993-a3
pollen analysis
rozbor četnosti a kvality pylových zrn různých druhů rostlin obsažených v povrchových nánosech, zvláště v rašeliništích, z nichž mohou být činěny závěry o změnách klimatu. Viz též proxy data.
česky: analýza pylová; slov: peľová analýza; něm: Pollenanalyse f; fr: analyse pollinique f; rus: пыльцевой анализ  1993-a3
pollen corona
koróna kolem světelného zdroje, zpravidla kolem Slunce, působená ohybem přímých paprsků na konturách pylových částic rozptýlených ve vzduchu. V odb. literatuře bývá zmiňována především v souvislostech s obdobími kvetení rozsáhlých lesních komplexů severských lesů. V detailech se na jejím vzhledu uplatňují odlišnosti pylových částic (obvykle větší rozměry a výrazně nesférické tvary) od vodních kapiček, na nichž vznikají běžné koróny.
česky: koróna pylová; slov: peľová koróna  2014
pollen haze
zákal podmíněný přítomností pylových zrn v ovzduší. Vzniká nejčastěji při současném kvetení dominantních lesních dřevin, zejména na jaře za suchého větrnějšího počasí.
česky: zákal pylový; slov: peľový zákal; něm: Pollendunst m; rus: пыльцевая дымка  2019
polluted air
1. vzduch obsahující plynné atmosférické příměsi;
2. vzduch, v němž jsou přítomny znečišťující příměsi libovolného skupenství.
Viz též znečištění ovzduší, vzduch čistý.
česky: vzduch znečištěný; slov: znečistený vzduch; něm: verunreinigte Luft f; rus: загрязненный воздух  1993-a3
polycyclic aromatic hydrocarbons
viz PAH.
česky: uhlovodíky aromatické polycyklické; slov: polycyklické aromatické uhľovodíky; něm: polyzyklische aromatische Kohlenwasserstoffe m/pl, (PAK/PAH)  2017
polycyclic aromatic hydrocarbons
(Polycyclic Aromatic Hydrocarbons, polycyklické aromatické uhlovodíky) – uhlovodíky obsahující ve své struktuře nejméně dva benzenové kruhy. V souvislosti s ochranou čistoty ovzduší se namnoze projevují jako významné škodliviny. V současné době jsou v této souvislosti zmiňovány např. pyreny obsahující čtyři benzenové kruhy, v případě tří těchto kruhů jde o antracen, velkou pozornost pak budí zejména benzo(a)pyren s pěti benzenovými kruhy.
česky: PAH; slov: PAH; něm: polycyclische aromatische Kohlenwasserstoffe m/pl (PAK / PAH), polyzyklische aromatische Kohlenwasserstoffe m/pl (PAK / PAH)  2017
polydispersal pollutant
atmosférická příměs pevného nebo kapalného skupenství tvořící atmosférický aerosol, jejíž částice se při přenosu, difuzi, sedimentaci apod. v atmosféře chovají různě především pro svou nestejnou velikost, tvar nebo hustotu. Viz též příměs monodisperzní.
česky: příměs polydisperzní; slov: polydisperzná prímes; něm: polydisperse Beimengung f; rus: полидисперсионная примесь  1993-a3
polytropic atmosphere
modelová atmosféra s konstantním vertikálním teplotním gradientem. Vert. rozložení tlaku a teploty vzduchu odpovídá působení polytropních dějů v atmosféře a je dáno vztahem:
(pp0) Rγg=TT0,
kde p0 je počáteční a p konečný tlak vzduchu,T0 počáteční a T konečná teplota vzduchu v K, g velikost tíhového zrychlení, R měrná plynová konstanta a γ vert. teplotní gradient. Zvláštními případy polytropní atmosféry jsou adiabatická a homogenní, příp. i izotermická atmosféra.
česky: atmosféra polytropní; slov: polytropná atmosféra; něm: polytrope Atmosphäre f; fr: atmosphère polytropique f; rus: политропная атмосфера  1993-a3
polytropic process
vratný termodyn. děj v plynu, při němž zůstává konstantním měrné teplo a je splněna rovnice polytropy
p.αn=konst.,
kde p značí tlak, α měrný objem daného plynu a n blíže charakterizuje konkrétní probíhající děj. Speciálními případy polytropního děje jsou např. děj adiabatický (n = cp/cv, kde cp, resp. cv je měrné teplo plynu při stálém tlaku, resp. objemu), děj izotermický (n = 1), izobarický (n = 0) a izosterický (n → ∞).
česky: děj polytropní; slov: polytropný dej; něm: polytroper Prozess m; fr: transformation polytropique f; rus: политропический процесс  1993-a1
polytropy equation
česky: rovnice polytropy; slov: rovnica polytropy; něm: Polytropengleichung f; rus: уравнение политропы  1993-a1
pool of cold air
studený vzduch nahromaděný v konkávním (vydutém) útvaru reliéfu, obvykle kotlině nebo úzkém údolí, především v důsledku jeho stékání z okolních vyšších poloh ke dnu sníženiny. Ke stékání vzduchu dochází po jeho ochlazení na svazích při nočním vyzařování. K vytváření jezera studeného vzduchu přispívá i to, že údolní a kotlinové polohy jsou málo ventilovány, mají zkrácenou dobu oslunění, jsou vlhké apod. Polohy, v nichž teplota vzduchu v chladném období klesá častěji pod bod mrazu než v okolí, nebo v nichž zimní mrazy značně zesilují, jsou označovány jako mrazové kotliny. Pro jezero studeného vzduchu jsou typické inverze teploty vzduchu. Termín jezero studeného vzduchu lze označit jako odborný slang.
česky: jezero studeného vzduchu; slov: jazero studeného vzduchu; něm: Kaltluftsee m; rus: озеро холодного воздуха  1993-a2
poorga
regionální označení pro silnou sněhovou vánici v tundrových oblastech sev. Evropy a především sev. Sibiře v zimě. Název pochází z karelského slova „purgu“ nebo finského „purku“. Viz též blizard, buran, burga.
Název je přejat z ruského purga, které zřejmě pochází z karelského a finského purku „sněhová bouře“.
česky: purga; slov: purga; něm: Purga m; rus: пурга  1993-a1
positive feedback
česky: vazba zpětná pozitivní; něm: positive Rückkopplung f  2024
positive feedback
syn. vazba zpětná pozitivní – druh zpětné vazby, která vede k zesilování původního impulzu a tím přispívá k destabilizaci klimatického systému. Viz též vazba zpětná záporná.
česky: vazba zpětná kladná; něm: positive Rückkopplung f  2024
post-frontal fog
česky: mlha zafrontální; slov: zafrontálna hmla; něm: Postfrontalnebel m; rus: зафронтальный туман  1993-a3
post-frontal precipitation
srážky, které vypadávají v oblasti atmosférické fronty za frontální čarou. Mohou být jak trvalé, tak ve formě přeháněk. Jejich intenzita a trvání na určitém místě závisí na druhu fronty, na její výraznosti, rychlosti postupu a roč. i denní době. Nejdelší trvání a největší intenzitu mívají srážky za studenou frontou prvního druhu, významné mohou být i srážky za okluzní frontou charakteru studené fronty. Viz též srážky frontální, srážky předfrontální.
česky: srážky zafrontální; slov: zafrontálne zrážky; něm: postfrontaler Niederschlag m; rus: зафронтальные осадки  1993-a2
post-tropical cyclone
cyklona, která ztratila charakter tropické cyklony tím, že se buď transformovala na mimotropickou cyklonu, nebo došlo k rozpadu její organizované struktury a k poklesu maximální rychlosti větru pod 17 m.s-1.
česky: cyklona posttropická; slov: posttropická cyklóna  2020
postglacial age
viz holocén.
česky: doba poledová; slov: poľadová doba; něm: Postglazial n, Nacheiszeit f; fr: période Holocène f, période postglaciaire f  1993-a3
postglacial stage
viz holocén.
Termín vznikl z lat. post „po“ a ze slova glaciál.
česky: postglaciál; slov: postglaciál; něm: Postglazialzeit f; rus: послеледниковый период  1993-b3
postprocessing
statistický nástroj aplikovaný na výstupy prognostického modelu s cílem zpřesnit předpověď zvolených meteorologických prvků, popř. jiných veličin na základě jejich statisticky prokázaných regresních vztahů k jiným, snáze předpověditelným veličinám. Nalezené regresní vztahy mezi prediktory a prediktanty jsou v operativním provozu aplikovány na výstupy modelu numerické předpovědi počasí, v případě využití v klimatologii na výstupy klimatického modelu. Dvěma hlavními přístupy využívanými v postprocessingu jsou metoda perfektní předpovědi a model output statistics.
česky: postprocessing  2024
potential energy
energie související s klidovou polohou daného tělesa nebo systému v poli působení vnějších sil. V meteorologii zpravidla jde o sílu zemské tíže a obvykle se pak mluví o geopotenciální energii. Potenciální energie zemské atmosféry je dána prostorovým rozložením hustoty vzduchu.
česky: energie potenciální; slov: potenciálna energia; něm: potentielle Energie f; fr: énergie potentielle f  2017
potential evaporation
syn. výparnost – maximálně možný výpar, který by nebyl limitován množstvím vody k vypařování, jako je tomu u skutečného výparu. Vyjadřuje schopnost atmosféry za daných meteorologických podmínek odnímat vodu příslušnému povrchu, tedy vodní hladině nebo povrchu vlhké půdy (potenciální evaporace), popř. i rostlinám bohatě zásobeným vodou (potenciální transpirace) nebo obojímu (potenciální evapotranspirace). Potenciální výpar může být vypočten pomocí nejrůznějších empirických vzorců, případně ho lze měřit pomocí výparoměrů se stálým dostatkem vody.
česky: výpar potenciální; slov: potenciálny výpar; něm: potentielle Verdunstung f; rus: испаряемость  1993-a3
potential evapotranspiration
celkové množství vody, které se může vypařit z půdy (výpar z půdy) a vegetačního krytu (transpirace rostlin) při nasycení půdy vodou nebo při sněhové pokrývce. V přírodních podmínkách potenciální evapotranspirace zpravidla převyšuje evapotranspiraci aktuální. Pojem zavedl C. W. Thornthwaite (1948), který potenciální evapotranspiraci využíval k vyjádření humidity klimatu.
česky: evapotranspirace potenciální; slov: potenciálna evapotranspirácia; něm: potentielle Evapotranspiration f; fr: évapotranspiration potentielle f, potentiel d'évaporation m; rus: возможное суммарное испарение  1993-a2
potential instability
instabilní teplotní zvrstvení atmosféry ve vrstvě vzduchu vyvolané vynuceným výstupem vrstvy, která je původně stabilní z hlediska vertikální stability atmosféry. Před dosažením výstupné kondenzační hladiny a za předpokladu adiabatického ochlazování se vrstva labilizuje, neboť vertikální teplotní gradient ve vrstvě se zvětšuje v důsledku adiabatické expanze. Vrstva však nadále zůstává stabilní. Pokud směšovací poměr vodní páry ve vrstvě klesá s výškou dostatečně rychle, aby spodní část vrstvy dosáhla výstupnou kondenzační hladinu dříve než její horní část, začne se od tohoto okamžiku spodní část vrstvy ochlazovat pomaleji v důsledku uvolňování latentního tepla kondenzace. Vrstva se tak dále labilizuje a nyní se již může stát instabilní. Potenciální instabilita se tedy projeví při dostatečně velkém poklesu směšovacího poměru s výškou a/nebo při dostatečně velkém vert. teplotním gradientu ve vrstvě. Stav, kdy je vrstva charakterizovaná instabilním teplotním zvrstvením až po svém vyzdvižení jako celku k nasycení, je též někdy označován jako konvekční instabilita. Uvažovaná vrstva je potenciálně (konvekčně) instabilní, pokud ve vrstvě klesá adiabatická ekvivalentní potenciální teplota s výškou. Viz též děj adiabatický, děj pseudoadiabatický.
česky: instabilita atmosféry potenciální; slov: potenciálna instabilita atmosféry; něm: potentielle Instabilität der Atmosphäre f; rus: потенциальная неустойчивость атмосферы  1993-a3
potential instability of atmosphere
instabilní teplotní zvrstvení atmosféry ve vrstvě vzduchu vyvolané vynuceným výstupem vrstvy, která je původně stabilní z hlediska vertikální stability atmosféry. Před dosažením výstupné kondenzační hladiny a za předpokladu adiabatického ochlazování se vrstva labilizuje, neboť vertikální teplotní gradient ve vrstvě se zvětšuje v důsledku adiabatické expanze. Vrstva však nadále zůstává stabilní. Pokud směšovací poměr vodní páry ve vrstvě klesá s výškou dostatečně rychle, aby spodní část vrstvy dosáhla výstupnou kondenzační hladinu dříve než její horní část, začne se od tohoto okamžiku spodní část vrstvy ochlazovat pomaleji v důsledku uvolňování latentního tepla kondenzace. Vrstva se tak dále labilizuje a nyní se již může stát instabilní. Potenciální instabilita se tedy projeví při dostatečně velkém poklesu směšovacího poměru s výškou a/nebo při dostatečně velkém vert. teplotním gradientu ve vrstvě. Stav, kdy je vrstva charakterizovaná instabilním teplotním zvrstvením až po svém vyzdvižení jako celku k nasycení, je též někdy označován jako konvekční instabilita. Uvažovaná vrstva je potenciálně (konvekčně) instabilní, pokud ve vrstvě klesá adiabatická ekvivalentní potenciální teplota s výškou. Viz též děj adiabatický, děj pseudoadiabatický.
česky: instabilita atmosféry potenciální; slov: potenciálna instabilita atmosféry; něm: potentielle Instabilität der Atmosphäre f; rus: потенциальная неустойчивость атмосферы  1993-a3
potential temperature
teplota, jakou by měla částice suchého vzduchu, kdybychom ji adiabaticky přivedli do izobarické hladiny 1 000 hPa. Z Poissonových rovnic vyplývá vztah:
Θ=T(1000p )R/cp,
kde T je teplota vzduchu v K, p tlak vzduchu v hPa, R měrná plynová konstanta suchého vzduchu a cp měrné teplo suchého vzduchu při stálém tlaku. Potenciální teplota zůstává konstantní při adiabatických dějích v suchém vzduchu, je tedy konzervativní vlastností vzduchové hmoty, pokud nedochází k fázovým změnám vody. V praxi lze potenciální teplotu používat jako termodyn. charakteristiku, v podstatě jako míru entropie nejen pro suchý, ale i pro vlhký, avšak nenasycený vzduch. Při stabilním teplotním zvrstvení atmosféry potenciální teplota s výškou vzrůstá, při indiferentním zvrstvení se s výškou nemění, při instabilním zvrstvení potenciální teplota s výškou klesá. K pojmu potenciální teplota dospěl v roce 1884 H. Helmholtz, nazýval ji však ještě obsah tepla (Wärmegehalt). Název potenciální teplota pochází od W. Bezolda (1888).
česky: teplota potenciální; slov: potenciálna teplota; něm: potentielle Temperatur f; rus: потенциальная температура  1993-a1
potential vorticity
skalární veličina, která je úměrná skalárnímu součinu vektoru abs. vorticity a gradientu potenciální teploty. Potenciální vorticita P, někdy též nazývaná jako Ertelova potenciální vorticita, je definována vztahem:
P=1ρ(× va).θ= 1ρ(2Ω+× vr).θ,
kde ρ je hustota vzduchu, va vektor rychlosti proudění vzhledem k absolutní souřadnicové soustavě, vr vektor rychlosti proudění vzhledem k relativní souřadnicové soustavě, ∇ θ třídimenzionální gradient potenciální teploty v z-systému a Ω vektor úhlové rychlosti rotace Země. Hodnoty potenciální vorticity se obvykle uvádějí v jednotkách PVU, kde 1 PVU = 10–6 K.kg–1.m2.s–1. Uvedený definiční vztah je nejobecnějším vyjádřením potenciální vorticity. V praxi se často používají účelově zjednodušená matematická vyjádření. Potenciální vorticitu lze však vždy do určité míry považovat za míru podílu abs. vorticity a efektivní tloušťky víru. Například v dynamické meteorologii synoptického měřítka se obvykle používá forma vyjádření v theta-systému:
Pθ=g( ξθ+λ) (θp)θ
kde ξθ je vert. složka rel. vorticity v theta-systému, λ Coriolisův parametr, g velikost tíhového zrychlení a p tlak vzduchu. Potenciální vorticita je v tomto případě definována v daném bodě jako absolutní vorticita vztažená k vertikálnímu vzduchovému sloupci, jehož výšce přísluší jednotkový tlakový rozdíl a jehož obě podstavy se nalézají v hladinách konstantní entropie. Uvedené vyjádření vede k odvození tzv. teorému potenciální vorticity, podle kterého lze potenciální vorticitu vzduchové částice považovat za konstantní za předpokladu hydrostatické rovnováhy a adiabatického děje bez tření v atmosféře, tj. pro většinu pohybů synoptického měřítka. Důsledkem je např. zmenšování (zvětšování) velikosti abs. vorticity vzduchového sloupce v souladu s tím, jak se zmenšuje (zvětšuje) tloušťka sloupce na návětrné (zavětrné) straně horské překážky. Viz též anomálie potenciální vorticity.
česky: vorticita potenciální; slov: potenciálna vorticita; něm: potentielle vorticity f; rus: потенциальный вихрь скорости  1993-a3
potential vorticity anomaly
meteorologická anomálie převážně synoptického měřítka, jejíž vert. rozsah se zvětšuje s rostoucím horiz. rozměrem a zmenšuje s rostoucí vertikální stabilitou atmosféry. Rozlišujeme kladné a záporné anomálie potenciální vorticity, pro které jsou charakteristické kladné, resp. záporné odchylky hodnot od klimatologického normálu. Kladná anomálie potenciální vorticity v horní troposféře je spojena s cyklonální vorticitou a zpravidla se studenou advekcí z vyšších zeměpisných šířek, popř. s pronikáním vzduchu ze stratosféry. Záporná anomálie potenciální vorticity je spojena s anticyklonální vorticitou a zpravidla s teplou advekcí z nižších zeměpisných šířek. Anomálie potenciální vorticity se může vyskytovat i ve spodní troposféře, kde nejčastěji vzniká působením výškové anomálie na prostředí se zvýšenou baroklinitou nebo následkem neadiabatických dějů souvisejících např. s tvorbou srážek. Viz též PV thinking.
česky: anomálie potenciální vorticity; slov: anomália potenciálnej vorticity; něm: Anomalie der potentiellen Vorticity f, Anomalie der potentiellen Vorticity f; fr: anomalie de vorticité potentielle  2014
Potential vorticity thinking
[pí ví θiŋkiŋ] – obecně rozšířený termín v anglicky psané odborné literatuře pro analýzu vlastností a vývoje termobarických útvarů v synoptickém měřítku na základě polí potenciální vorticity. Tento přístup představuje poměrně jednoduchou a názornou alternativu ke klasické metodě dynamické analýzy s využitím kvazigeostrofické aproximace, na rozdíl od níž explicitně neuvažuje existenci vertikálních pohybů vzduchu. Potenciální vorticita, která je konzervativní veličinou při adiabatických dějích a jednoznačně určuje pole proudění a teploty, se zpravidla hodnotí ve vhodně zvolených izentropických hladinách. Někdy se proto používá i označení „IPV thinking“. Z polohy anomálií potenciální vorticity lze usuzovat na oblasti konvergence a divergence proudění spojené s výstupnými a sestupnými pohyby vzduchu. Pozorované pole proudění je pak v prvním přiblížení dáno k hodnocení vlivu neadiabatických dějů na velkoprostorovou dynamiku atmosféry.
česky: PV thinking; slov: PV thinking; něm: PV-Denkart f  2014
power-law profile of wind
empiricky odvozený vztah pro vyjádření závislosti rychlosti větru v na výšce z nad zemským povrchem v přízemní vrstvě atmosféry. Obvykle se uvádí ve tvaru
v(z)=v1 (zz1)α
kde v1 značí změřenou rychlost ve zvolené hladině z1 a exponent a vyjadřuje vliv teplotního zvrstvení ovzduší. Z uvedeného profilu vyplývá tzv. mocninový zákon, podle něhož koeficient turbulentní difuze K závisí na vertikální souřadnici podle vztahu
K=konst.z1-a
česky: profil větru vertikální mocninový; slov: mocninový vertikálny profil vetra; něm: vertikales Potenzwindprofil n  1993-a1
praecipitatio
(pra) – jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Znamená, že z oblaků padají atmosferické srážky (déšť, mrholení, sníh, zmrzlý déšť, krupky, kroupy aj.) dosahující až k zemskému povrchu. Vyskytuje se nejčastěji u druhů altostratus, nimbostratus, stratocumulus, stratus, cumulus a cumulonimbus. Tento jev se řadí mezi zvláštnosti oblaků, protože padající srážky tvoří jakoby prodloužení oblaku; jinak patří srážky mezi hydrometeory. Viz též virga.
Termín je přejat z lat. praecipitatio „střemhlavý pád“, odvozeného od slovesa praecipitare „srazit (dolů), svrhnout“, jež má původ v přídavném jméně praeceps „(padající) hlavou napřed, po hlavě, dolů" (z prae „před" a caput „hlava"). Viz též srážky.
česky: praecipitatio; slov: praecipitatio; něm: praecipitatio; rus: осадки  1993-a2
Prandtl number
poměr v/a, kde v je kinematický koeficient vazkosti a a koeficient teplotní vodivosti. V meteorologii se však spíše používá turbulentní analog Prandtlova čísla zavedený jako poměr koeficientu turbulentní difuze pro hybnost ku koeficientu turbulentní difuze pro teplo. Viz též kritéria podobnostní.
česky: číslo Prandtlovo; slov: Prandtlovo číslo; něm: Prandtl-Zahl f; fr: nombre de Prandtl m; rus: число Прандтля  1993-a1
pre-frontal fog
česky: mlha předfrontální; slov: predfrontálna hmla; něm: Präfrontalnebel m; rus: предфронтальный туман  1993-a3
pre-frontal precipitation
srážky, které vypadávají v oblasti atmosférické fronty před frontální čarou. Předfrontální srážky mohou být jak trvalé, tak ve formě přeháněk. Jejich trvání na určitém místě závisí především na rychlosti postupu fronty, na její výraznosti, roč. a denní době. Nejdelší trvání obvykle mívají srážky před teplými frontami, někdy i více než 24 h, nejkratší před studenými frontami, někdy jen několik min. Viz též srážky frontální, srážky zafrontální.
česky: srážky předfrontální; slov: predfrontálne zrážky; něm: präfrontaler Niederschlag m; rus: предфронтальные осадки  1993-a2
preboreal
viz holocén.
Termín se skládá z lat. předpony prae- „před“ a ze slova boreál.
česky: preboreál; slov: preboreál; něm: Präboreal n; rus: пребореал  1993-a3
Precambrian
společné označení pro eony hadaikum, archaikum (prahory) a proterozoikum (starohory). Jeho počátek odpovídá vzniku planety Země před 4600 mil. roků, konec nástupu fanerozoika, přesněji kambria před 541 mil. roků.
Termín se skládá z lat. předpony prae- „před“ a slova kambrium.
česky: prekambrium; slov: prekambrium; něm: Präkambrium  2018
precession
Jev, nazvaný později precese, objevil řecký astronom a matematik Hipparchos kolem r. 125 př. Kr., termín v tomto smyslu použil polský astronom M. Koperník v r. 1543. Pochází z lat. praecessio „předcházení“ (od slovesa praecedere „předcházet“), které zde vyjadřuje posun rovnodennosti proti směru kalendářního roku, způsobený precesním pohybem zemské osy.
česky: precese; rus: прецессия  2019
precipitable water
množství vody vyjádřené v mm vodního sloupce, které bychom dostali, kdyby všechna vodní pára obsažená ve sloupci vzduchu jednotkového průřezu mezi dvěma tlakovými hladinami zkondenzovala a vypadla ve formě atm. srážek. Pro tento pojem se užívá také označení vysrážitelná voda nebo kapalný ekvivalent vodní páry. Bereme-li v úvahu sloupec sahající přes celý rozsah atmosféry, mluvíme o celkové potenciální srážkové vodě, celkové vysrážitelné vodě nebo celkovém kapalném ekvivalentu vodní páry v atmosféře.
Matematicky lze množství vysrážitelné vody W ve sloupci mezi dvěma isobarickými hladimami p1 a p2 vyjádřit vztahem:
W=1gp1 p2rdp,
kde g je tíhové zrychlení a r(p) je směšovací poměr. Ve srážkových oblacích je hodnota srážkového úhrnu za dobu existence oblaku zpravidla vyšší než celková vysrážitelná voda.
česky: voda srážková potenciální; slov: potenciálna zrážková voda; něm: niederschlagbares Wasser n; rus: запас воды в атмосфере  1993-a3
precipitating cloud
1. oblak, z něhož v čase pozorování vypadávají srážky.
2. označení druhu oblaků, z nichž mohou vypadávat srážky dosahující zemský povrch. Mezinárodní morfologická klasifikace oblaků vyjadřuje fakt, že z oblaku vypadávají srážky dosahující zemský povrch, použitím zvláštnosti oblaku praecipitatio. Slabé srážky se mohou vyskytovat u druhů altostratus, stratus, stratocumulus. Druhy nimbostratus a cumulonimbus jsou srážkové oblaky, které mohou produkovat i silné srážky. Z oblaků druhu cumulus mohou srážky ve formě přeháněk vypadávat pouze u tvaru cumulus congestus. Viz též oblak nesrážkový.
česky: oblak srážkový; slov: zrážkový oblak; něm: Regenwolke f; rus: облако дающее осадки  2014
precipitation
syn. srážky. V současné meteorologii se vyskytuje zřídka.
česky: srážky ovzdušné; slov: ovzdušné zrážky  1993-a2
precipitation
v české met. terminologii souhrnné označení pro hydrometeory buď tvořené padajícími srážkovými částicemi, nebo utvářející se na zemském povrchu či různých objektech. Z tohoto hlediska rozeznáváme srážky padající a usazené; v oboru chemie atmosféry tyto dvě skupiny označujeme jako srážky vertikální a horizontální. Existuje i několik dalších způsobů klasifikace srážek. Výčet různých druhů srážek v Mezinárodním atlasu oblaků a v návodech pro meteorologické pozorovatele ovšem není totožný, neboť angl. termín precipitation zahrnuje pouze padající srážky.
Srážky jsou důležitou příjmovou složkou hydrologické bilance. Měřením srážek zjišťujeme jejich úhrn, popř. intenzitu. Průměrný roční úhrn srážek je jedním z hlavních faktorů určujících humiditu klimatu, průměrné měsíční úhrny srážek slouží k popisu srážkového režimu dané oblasti. Pole srážek může být ovlivňováno orografií, která způsobuje orografické zesílení srážek i úbytek srážek ve srážkovém stínu, případně nad inverzí srážek. Viz též mikrofyzika oblaků a srážek, izohyeta, extrémy srážek.
Termín je odvozen od slovesa srazit, a to původně ve smyslu shora dolů (srov. praecipitatio).
česky: srážky; slov: atmosférické zrážky; něm: Niederschlag m; rus: атмосферные осадки  1993-b3
precipitation
srážky, jejichž srážkové částice vznikají růstem oblačných částic ve srážkových oblacích a vypadávají základnou oblaku směrem k zemskému povrchu. Procesy růstu srážkových částic vysvětlují teorie vzniku srážek ledovým procesem a teorie vzniku srážek koalescencí. Podle příčinných mechanizmů, které ovlivňují i prostorové rozdělení a časový průběh padajících srážek, rozlišujeme srážky konvektivní a srážky stratiformní neboli trvalé, případně i orografické.
Mezi padající srážky, které dosahují zemského povrchu, patří následující hydrometeory: déšť, mrznoucí déšť, mrholení, mrznoucí mrholení, sníh, sněhové krupky, sněhová zrna, krupky, zmrzlý déšť, kroupy a ledové jehličky. Oblaky, z nichž srážky vypadávají, jsou v rámci morfologické klasifikace oblaků označeny zvláštností praecipitatio, případně virga, pokud srážkové pruhy nedosahují zemského povrchu. Viz též srážky usazené, srážky vertikální.
česky: srážky padající; slov: padajúce zrážky; něm: fallender Niederschlag m; rus: падающие осадки  1993-a3
precipitation amount
česky: množství srážek; slov: množstvo zrážok; něm: Niederschlagsmenge f; rus: количество осадков  1993-a1
precipitation amount
syn. množství srážek – množství vody spadlé v kapalném nebo pevném skupenství na vodorovnou plochu a/nebo usazené na zemi v daném místě během určitého časového intervalu (hodina, den, měsíc, rok apod.). Denní úhrn srážek se v ČR měří standardně v 7 h SEČ, přičemž zjištěný údaj za uplynulých 24 h se připisuje předchozímu dni. Úhrn srážek ve zprávě SYNOP vyjadřuje množství spadlých srážek za měřící období 1, 3, 6, 12 nebo 24 hodin. Úhrn srážek se udává v mm (1 mm srážek = 1 l vody na 1 m2), resp. v kg.m–2, s přesností na 0,1 mm, resp. na 0,1 kg.m–2. Viz též měření srážek, intenzita srážek.
česky: úhrn srážek; slov: úhrn zrážok; něm: Niederschlagshöhe f, Niederschlagssumme f; rus: количество осадков, сумма осадков  1993-a3
precipitation day
česky: den srážkový; slov: zrážkový deň; něm: Niederschlagstag m; fr: jour de précipitation m; rus: день с осадками  1993-a1
precipitation day
syn. den srážkový – mezinárodně rozšířený charakteristický den, v němž byly zaznamenány srážky nebo denní úhrn srážek dosáhl určité nízké prahové hodnoty. Podle předpisů WMO se tento úhrn vztahuje k období od 06:00 UTC daného dne do 06:00 UTC následujícího dne. Minimální denní úhrn srážek pro vymezení srážkových dní není mezinárodně stanoven, nejčastěji se vyskytují prahové hodnoty 0,1 mm, 0,2 mm nebo 1 mm. V datech ČHMÚ se jako den se srážkami označuje období mezi klimatologickými termíny 7 h daného dne a 7 h následujícího dne,  pokud  byly v tomto období zaznamenány alespoň neměřitelné srážky. Podle charakteru srážek dále rozlišujeme den s deštěm, den se sněžením a den s krupobitím. Viz též den bezsrážkový.
česky: den se srážkami; slov: deň so zrážkami; něm: Niederschlagstag m; fr: jour de précipitations m; rus: день с осадками  1993-a3
precipitation deposit
označení pro usazené srážky, které se běžně používá v chemii atmosféry; v meteorologii je považováno za nevhodné. Viz též srážky skryté.
česky: srážky horizontální; slov: horizontálne zrážky; rus: горизонтальные осадки  1993-a3
precipitation droplet
označení používané zejména při matematickém modelování procesů v mikrofyzice oblaků a srážek pro kapky, jejichž velikost odpovídá definici srážkových částic. Kromě dešťových kapek a kapek mrholení řadíme mezi srážkové i ty kapky o velikosti srážkových částic, které nedosáhnou zemského povrchu.
česky: kapka srážková; slov: zrážková kvapka; něm: Niederschlagstropfen  2020
precipitation efficiency
1. syn. efektivnost srážková – v klimatologii složka klimatického potenciálu krajiny vyjadřující srážkové (vláhové) podmínky pro růst rostlin. K její charakteristice byly navrženy různé indexy humidity. C. W. Thornthwaite (1931) použil jako kritérium původní Thornthwaiteovy klasifikace klimatu index srážkové účinnosti (PE index) ve tvaru:
PE=  ∑12m=1115(RmTm−10)10/9,
kde Tm je prům. měs. teplota vzduchu ve °C a Rm značí měsíční srážky v mm. Pozdější klasifikace klimatu jsou založeny na poměru mezi srážkami a potenciálním výparem spíše než na vztahu mezi teplotou vzduchu a srážkami.
2. v mikrofyzice oblaků a srážek syn. pro kolizní účinnost.
3. ve fyzice oblaků a srážek označení pro podíl množství dešťových srážek, které dosahují zemský povrch, a celkového obsahu vody v oblačném sloupci. Tato definice se užívá v různých modifikacích např. v závislosti na definici oblačného sloupce, uvažované složky vody a druhu srážek.
 
česky: účinnost srážková; slov: zrážková účinnosť; něm: Niederschlagseffizienz f  1993-a3
precipitation element
česky: element srážkový; slov: zrážkový element; něm: Niederschlagselement n  2018
precipitation field
1. plošné rozložení úhrnů srážek za určité období v dané oblasti; k jeho znázornění je možné použít izohyety;
2. prostorové rozložení srážkových částic v daném okamžiku. Srážkové pole v tomto smyslu je zjišťovano meteorologickými radary, popř. pomocí jiných distančních meteorologických měření.
česky: pole srážek; slov: pole zrážok; něm: Niederschlagsfeld n; rus: поле осадков  1993-a3
precipitation from a clear sky
drobná ledová zrnka, jehličky, krystalky nebo vodní kapičky padající při jasné obloze. Tento jev je pozorován zřídka.
česky: srážky při bezoblačné obloze; slov: zrážky pri bezoblačnej oblohe; něm: Niederschlag bei wolkenfreiem Himmel m; rus: осадки при безоблачном небе  1993-a3
precipitation gradient
změna úhrnu srážek na jednotku horizontální vzdálenosti nebo nadmořské výšky. Při uvažování dlouhodobých průměrů odpovídá vertikální srážkový gradient růstu srážek s výškou až po hladinu inverze srážek. Horizontální srážkový gradient může být zesílen přítomností klimatického předělu.
česky: gradient srážkový; slov: zrážkový gradient  2016
precipitation intensity
množství srážek vypadlých za jednotku času. Podle doporučení Světové meteorologické organizace se intenzita srážek udává v mm.h–1 s přesností na 10–2 mm.h–1, resp. v kg.m–2.s–1 s přesností na 10–5 kg.m–2.s–1.
Intenzita srážek má zásadní význam v hydrologii, ve vodním hospodářství a celé řadě dalších odvětví. Prům. intenzita srážek se vyhodnocuje z údajů srážkoměrů, tzv. okamžitá intenzita srážek se měří váhovým srážkoměrem. Intenzita srážek je na met. stanicích subjektivně odhadována pozorovateli s přihlédnutím na hodnotu intenzity srážek, získanou zpracováním dat srážkoměru, a zaznamenávána kódovými čísly pro stav počasí kódu SYNOP. Viz též měření srážek, extrémy srážek, vztah Wussowův, vztah Z–I.
česky: intenzita srážek; slov: intenzita zrážok; něm: Niederschlagsintensität f; rus: интенсивность осадков  1993-a3
precipitation maximum
1. neurčitý pojem, označující místo nebo dobu s největším úhrnem srážek během srážkové události, popř. i hodnotu dosaženého úhrnu, viz extrémy srážek;
2. v klimatologii maximum křivky průměrného ročního chodu srážek, vyjádřené zpravidla jako nejvyšší prům. měs. úhrn. Kromě tohoto tzv. hlavního srážkového maxima, které na většině území ČR nastává v jednom z letních měsíců, existuje často i tzv. podružné srážkové maximum, tedy přechodné zvýšení křivky průměrného ročního chodu srážek v relativně sušší fázi roku. Pokud se v ČR vyskytuje, zpravidla spadá do období od listopadu do ledna, přičemž v horách severních Čech může dokonce převýšit letní maximum.
česky: maximum srážkové; slov: zrážkové maximum; něm: Niederschlagsmaximum n; rus: максимум осадков  1993-a3
precipitation measurement
měření parametrů srážek, především jejich úhrnu a intenzity, různými druhy přístrojů na srážkoměrných, klimatologických a dalších meteorologických stanicích. Zákl. přístrojem je srážkoměr používaný k měření množství kapalných i tuhých srážek. K měření srážek na těžko dostupných místech se používá totalizátor. U tuhých srážek se měří výška sněhové pokrývky (v cm), někdy též vodní hodnota sněhové pokrývky (v mm nebo v kg.m–2) a hustota sněhu (v kg.m–3). U usazených srážek se jedná především o měření rosy různými typy rosoměrů, popř. drosografů a o měření námrazků. Měření srážek nespočívá jen v získávání dat z indikačních a registračních přístrojů, nýbrž i ve vizuálním pozorování usazených srážek (kondenzačních jevů a námrazků), v určování doby trvání padajících i usazených hydrometeorů.
česky: měření srážek; slov: meranie zrážok; něm: Niederschlagsmessung f; rus: измерение осадков  1993-a3
precipitation particle
syn. element srážkový
1. obecné označení pro vodní kapky a ledové částice, které vypadávají z oblaku při srážkách;
2. v numerických modelech označení srážkových kapek, ledových krystalků, sněhových vloček, krupek a krup, jejichž ekvivalentní průměr je řádu 10–4 m a více. Vzhledem k velikosti srážkových částic nelze jejich pádovou rychlost zanedbat. Srážkotvorné procesy v oblacích jsou spojeny s růstem části oblačných částic do velikosti částic srážkových. Viz též fyzika oblaků a srážek, rozdělení velikosti dešťových kapek, autokonverze, teorie vzniku srážek Bergeronova-Findeisenova, teorie vzniku srážek koalescencí.
česky: částice srážková; slov: zrážková častica; něm: Niederschlagteilchen n  2018
precipitation probability
pravděpodobnost výskytu dne se srážkami, vypočítaná z dlouholeté řady pozorování a vyjádřená v procentech. Patří k zákl. klimatologickým charakteristikám časového rozložení srážek. Měs. nebo roč. srážková pravděpodobnost vyjadřuje poměr mezi počtem dní se srážkami a celkovým počtem sledovaných dní za mnohaleté období, např. srážková pravděpodobnost 33 % v měsíci září znamená, že v uvedeném měsíci byla v dlouholetém průměru třetina dní se srážkami. Denní srážková pravděpodobnost udává pravděpodobnost, s jakou je určitý kalendářní den v roce dnem srážkovým. Např. srážková pravděpodobnost 50 % pro 1. leden za období 1901–1950 znamená, že v průměru v každém druhém roce byly v uvedeném dnu pozorovány srážky.
česky: pravděpodobnost srážková; slov: zrážková pravdepodobnosť; něm: Niederschlagswahrscheinlichkeit f; rus: вероятность выпадения осадков  1993-a1
precipitation reduction
v klimatologii zpravidla redukce prům. měs., sezonních a roč. srážkových úhrnů vypočtených z krátkých řad pozorování na normální období neboli klimatologický normál. Redukce se provádí pomocí výsledků souběžného pozorování blízké referenční stanice obvykle metodou podílů neboli kvocientů. Předpokladem této redukce je, že zvolená referenční stanice pozorovala po celé normální období, její pozorování je homogenní a proměnlivost podílů srážek obou stanic je kvazikonstantní.
česky: redukce srážek na jednotné období; slov: redukcia zrážok na jednotné obdobie; něm: Reduktion des Niederschlags auf gleiche Perioden f; rus: приведение рядов осадков к одному периоду  1993-a1
precipitation regime
označení charakterizující vlastnosti sezonního rozdělení atm. srážek v daném místě. Hlavní typy srážkového režimu podle W. G. Kendrewa jsou rovníkový, tropický, monzunový, středomořský, dále oceánický a kontinentální srážkový režim oblastí s převládajícími záp. větry.
česky: režim srážkový; slov: zrážkový režim; něm: Niederschlagsregime n; rus: режим осадков  1993-a1
precipitation sensor
součást váhového srážkoměru určená pro zjištění kapalných i tuhých srážek na principu změny vodivosti mezi hřebínky na detekční ploše.
česky: detektor srážek; slov: detektor zrážok; rus: датчик осадков  2019
precipitation station
klimatologická stanice, na které se měří úhrn srážek, výška a vodní hodnota sněhové pokrývky a pozorují se rovněž stanovené met. jevy. Obvykle je umístěna tak, aby svými srážkoměrnými údaji doplňovala údaje základních klimatologických stanic.
česky: stanice srážkoměrná; slov: zrážkomerná stanica; něm: Niederschlagsmessstation f; rus: станция измерения осадков  1993-a3
precursor
v atmosférické chemii termín pro látku, ze které vzniká v atmosféře chemickou reakcí látka nová. Např. prekurzory přízemního ozonu jsou oxidy dusíku a VOC.
Termín je přejat z lat. slova praecursor „ten, kdo běží napřed (jako předvoj)“, odvozeného od slovesa praecurrere „běžet napřed“ (z prae- „napřed, dříve“ a currere „běžet“, srov. např. kurz).
česky: prekurzor; slov: prekurzor; něm: Vorläufererscheinung f  2014
predictability in meteorology
syn. předpověditelnost – objektivně vyjádřená schopnost předpovídat budoucí vývoj atmosférického systému a všech dějů, které v něm probíhají. V meteorologické praxi se zpravidla vztahuje k předpovědi počasí, popř. k předpovědi vývoje klimatu. Atmosféra je velmi dynamický a silně nelineární fyzikální systém, z čehož přímo vyplývá objektivně daná omezenost predikčních možností a schopností. Na úrovni dnešních znalostí se vyjádření prediktability zpravidla formuluje v rámci fenoménu deterministického chaosu. Prediktabilita podstatně souvisí s citlivostí procesů, které v daném systému probíhají, na jejich počáteční stav. V teorii deterministického chaosu je pak tato závislost vyjadřována prostřednictvím Ljapunovových exponentů a v praxi se často hodnotí na základě ansámblových předpovědí počasí. Principiální omezení prediktability má při předpovídání počasí i v klimatologických aplikacích značný význam, neboť nelinearita atmosférického systému se projevuje v některých časoprostorových oblastech systému velkou citlivostí na počáteční podmínky. Navíc např. při numerických předpovědích počasí nelze počáteční hodnoty pro časovou integraci z principiálních důvodů stanovit s neomezenou přesností. Souvisí to mj. s tím, že informace o spojitých polích veličin, které charakterizují uvažované procesy, jsou získávány z měření v omezeném počtu diskrétních bodů a měřené údaje nelze uvádět jinak než v zaokrouhlení na daný počet platných cifer. Viz též efekt motýlích křídel.
česky: prediktabilita v meteorologii; slov: prediktabilita v meteorológii  2017
predicted weather
soubor údajů o očekávaném počasí, vztahující se k určitému prostoru a časovému intervalu. Do tohoto souboru se nejčastěji zahrnují údaje o očekávaných hodnotách teploty vzduchu, směru a rychlosti větru, o výskytu oblačnosti, atm. srážek, mlh, bouřek apod.
česky: počasí předpovídané; slov: predpovedané počasie; něm: vorhergesagtes Wetter n; rus: предсказываемая погода  1993-a1
prediction success rate
vyjádření přesnosti vydané předpovědi počasí na základě její verifikace  pro určité období a dané místo nebo  území. Hlavním účelem zjištění úspěšnosti předpovědi je získání podkladů o vhodnosti různých předpovědních metod. Existuje více způsobů hodnocení úspěšnosti předpovědi, která se vyjadřuje často v % splnění vydané předpovědi.
česky: úspěšnost předpovědi; slov: úspešnosť predpovede; něm: Zuverlässigkeit der Wettervorhersage f; rus: надежность прогноза, оправдываемость прогноза  1993-a3
present weather
charakteristika především význačných atmosférických jevů na meteorologické stanici nebo v jejím dohledu v termínu pozorování. Při výskytu více jevů se jako stav počasí uvádí nejdůležitější jev, tj. nejvyšší kódové číslo z příslušné kódové tabulky. Pokud se v termínu pozorování nevyskytuje významný jev, považuje se za stav počasí vývoj vzhledu oblohy (změny vývoje oblačnosti) a výskyt atm. jevů v poslední hodině předcházející termínu pozorování. Údaje o stavu počasí se uvádějí ve zprávách SYNOP, SHIP, METAR aj. Viz též průběh počasí, počasí skutečné.
česky: stav počasí; slov: stav počasia; něm: aktuelles Wetter n, Wetterzustand m; rus: текущая погодa  1993-a3
present weather detector
(PWD) – zařízení používané ke zjišťování stavu počasí, průběhu počasí a meteorologické dohlednosti na automatických meteorologických stanicích. Detektor počasí určuje druh srážek kombinací údajů o intenzitě srážek a teplotě vzduchu a informace, získané na základě dopředného rozptylu světla. Výsledky těchto tří nezávislých měření jsou zpracovány podle příslušných algoritmů tak, aby poskytovaly údaje o stavu počasí podle požadavků Světové meteorologické organizace. Detektor počasí je schopen identifikovat déšť, mrznoucí déšť, mrholení, mrznoucí mrholení, smíšené srážky, sníh, zmrzlý déšť, mlhu, kouřmo a zákal. Zpracováním údajů o stavu počasí během stanoveného období lze získat i údaje o průběhu počasí. Viz též měření dohlednosti.
česky: detektor počasí; slov: detektor počasia; něm: Wettererfassung f, Wettererfassung f; fr: capteur de temps présent m, capteur de conditions météorologiques actuelles m; rus: детектор погоды  2014
pressure
jedna ze zákl. fyz. veličin, která vyjadřuje působení síly kolmo na jednotkovou plochu. Síla zemské tíže způsobuje v nepohybujících se tekutinách statický tlak, který v případě atmosféry Země označujeme jako tlak vzduchu neboli atmosférický tlak. Protože je vzduch tvořen směsí plynů, můžeme rozlišovat parciální tlaky jednotlivých plynů, především tlak vodní páry. Pohyb tekutin navíc vyvolává dynamický tlak; v atmosféře  tímto způsobem vzniká tlak větru. Součet statického a dynamického tlaku můžeme označit jako tlak celkový.
Jednotkou tlaku v soustavě SI je pascal (Pa), v meteorologii se převážně používá jeho stonásobek neboli hektopascal (hPa). Zast. jednotkou tlaku je atmosféra.
česky: tlak; slov: tlak; něm: Druck m; fr: pression f; rus: давление  2023
pressure altimeter
aneroid sloužící k barometrické nivelaci. Je vybaven stupnicí zkonstruovanou podle teor. závislosti poklesu tlaku vzduchu na nadm. výšce a je používán především v letecké dopravě. Naměřený tlak přepočítává na základě matematického modelu tzv. standardní atmosféry a zobrazuje v jednotkách výšky. Viz též hypsometr, nastavení výškoměru, opravy údaje výškoměru.
česky: výškoměr; slov: výškomer; něm: Höhenmesser m; rus: барометрический высотомер, высотомер-анероид  1993-a3
pressure anemometer
česky: anemometr aerodynamický; slov: aerodynamický anemometer; něm: Druckanemometer n; rus: анемометр Дайнца, аэродинамический анемометр  1993-a1
pressure anemometer
anemometr pracující na principu Pitotovy trubice a využívající k měření rychlosti větru tlakové rozdíly, vyvolané na čidle proudícím vzduchem. Pro správnou orientaci vůči proudění bývá umístěn na návětrné straně větrné směrovky. V současnosti není tento princip provozně používán pouze např. v souvislosti s užitím univerzálního anemografu. Viz též anemometr Dinesův.
česky: anemometr tlakový; slov: tlakový anemometer; něm: Druckanemometer n; fr: anémomètre à tube de Pitot m; rus: манометрический анемометр  1993-a3
pressure capsule
syn. dóza Vidieho – kovová krabička s tenkými stěnami z pružného materiálu, z níž je částečně nebo zcela vyčerpán vzduch. Vzdálenost stěn Vidieho aneroidové krabičky se zmenšuje při růstu tlaku vzduchu a zvětšuje při jeho poklesu. Starší Vidieho aneroidové krabičky mají vnitřní nebo vnější napínací pružiny, novější jsou samopružící. Deformaci stěn Vidieho aneroidové krabičky rušivě ovlivňuje teplota okolního vzduchu. Její vliv se kompenzuje zbytkovou náplní vzduchu v krabičce, zařazením bimetalu do převodního systému nebo volbou materiálů s vhodnými koeficienty roztažnosti. Vidieho aneroidová krabička se používá jako čidlo aneroidu nebo barografů.
česky: krabička aneroidová Vidieho; slov: Vidieho aneroidová škatuľka; něm: Aneroiddose f, Vidiedose f; rus: анероидная коробка, коробка Види  1993-a2
pressure coordinate system
syn. soustava souřadnicová p – pravoúhlá souřadnicová soustava se zobecněnou vertikální souřadnicí, kde tato souřadnice vyjadřuje tlak vzduchu. Kvazihorizontální osy x a y leží ve zvolené izobarické hladině a vert. osa je orientována ve směru poklesu tlaku vzduchu. Výhoda této soustavy proti z–systému spočívá v tom, že řada rovnic používaných v meteorologii má jednodušší tvar, neboť používá hydrostatickou aproximaci. P–systém se používá zejména při popisu dějů synoptického měřítka, zpracování výsledků aerologických měření a jejich zakreslování do výškových map a aerologických diagramů. Viz též sigma-systém, soustava souřadnicová hybridní.
Termín obsahuje symbol „p“ označující tlak jako fyzikální veličinu.
česky: p-systém; slov: p-systém; něm: p-System n, p-Koordinaten f/pl; rus: барическая система координат, изобарическая система координат, система координат-p  1993-a3
pressure field
syn. pole barické – spojité skalární pole tlaku, v meteorologii zpravidla tlaku vzduchu. Vyznačuje se charakteristickým vertikálním profilem tlaku vzduchu a podstatně menšími horizontálními tlakovými gradienty, které jsou nicméně určující pro vymezení tlakových útvarů a podobu pole větru.Tlakové pole je charakterizováno izobarickými hladinami, jejichž průsečnice s libovolnou plochou se nazývají izobary. Ty se nejčastěji konstruují na přízemních synoptických mapách k vyjádření pole tlaku vzduchu redukovaného na hladinu moře. K vyjádření tlakového pole na výškových synoptických mapách se používají izohypsy. Časové změny přízemního tlakového pole znázorňují izalobary, výškového tlakového pole izalohypsy. Viz též pole termobarické.
česky: pole tlakové; slov: tlakové pole; něm: Druckfeld n; rus: барическое поле  1993-b3
pressure force
syn. síla barického gradientu – síla působící v tlakovém poli, v němž je nenulový tlakový gradient. Směřuje kolmo na izobarické plochy, na stranu s nižším atm. tlakem. Označíme-li sílu tlakového gradientu vztaženou k jednotce hmotnosti symbolem b, pak platí:
b=1ρp,
kde p značí tlak vzduchu a ρ hustotu vzduchu. Horiz. složky síly tlakového gradientu a Coriolisovy síly jsou ve volné atmosféře nejdůležitějšími činiteli ovlivňujícími horiz. proudění vzduchu. Vert. složka síly tlakového gradientu1ρpz,
označovaná též jako hydrostatická vztlaková síla, která je číselně více než 1000krát větší než horiz. složka, je v atmosféře v přibližné rovnováze se silou zemské tíže. Viz též rovnice pohybová, rovnováha hydrostatická, vítr geostrofický.
česky: síla tlakového gradientu; slov: sila tlakového gradientu; něm: Druckgradientkraft f; rus: градиентная сила, сила барического градиента, сила давления  1993-a3
pressure gradient
syn. gradient barický – gradient v tlakovém poli směřující kolmo na izobarické plochy. V meteorologii zpravidla vyjadřuje změnu tlaku vzduchu p připadající na jednotkovou vzdálenost ve směru jeho maximálního poklesu, takže jeho vektor je určen záporně vzatými parciálními derivacemi podle kartézských souřadnic x, y, z (–∂p/∂x, –∂p/∂y, –∂z/∂z). Obvykle uvažujeme odděleně horizontální a vertikální složku, přičemž horizontální tlakový gradient bývá ve spodní troposféře o tři řády menší než vertikální tlakový gradient. Viz též síla tlakového gradientu.
česky: gradient tlakový; slov: tlakový gradient; něm: Druckgradient m; fr: gradient de pression m; rus: барический градиент  1993-a3
pressure gradient force
syn. síla barického gradientu – síla působící v tlakovém poli, v němž je nenulový tlakový gradient. Směřuje kolmo na izobarické plochy, na stranu s nižším atm. tlakem. Označíme-li sílu tlakového gradientu vztaženou k jednotce hmotnosti symbolem b, pak platí:
b=1ρp,
kde p značí tlak vzduchu a ρ hustotu vzduchu. Horiz. složky síly tlakového gradientu a Coriolisovy síly jsou ve volné atmosféře nejdůležitějšími činiteli ovlivňujícími horiz. proudění vzduchu. Vert. složka síly tlakového gradientu1ρpz,
označovaná též jako hydrostatická vztlaková síla, která je číselně více než 1000krát větší než horiz. složka, je v atmosféře v přibližné rovnováze se silou zemské tíže. Viz též rovnice pohybová, rovnováha hydrostatická, vítr geostrofický.
česky: síla tlakového gradientu; slov: sila tlakového gradientu; něm: Druckgradientkraft f; rus: градиентная сила, сила барического градиента, сила давления  1993-a3
pressure jump
náhlý vzestup tlaku vzduchu na barogramu v souvislosti s průchodem húlavy. Nejčastější případy bouřkového nosu dosahují vzestupu 1 až 3 hPa, ojediněle i více během několika min. Před výskytem bouřkového nosu bývá zpravidla zaznamenáno minimum tlaku vzduchu, ve výjimečných případech však tlak po přechodném náhlém vzestupu klesá i pod tuto hodnotu a záznam na barografu vypadá jako časová značka. Tyto případy prudkého vzestupu tlaku vzduchu s následným poklesem zpravidla souvisí s přechodem bouřkových anticyklon. Převážná většina bouřkových nosů se vyskytuje při přechodu studených front druhého druhu s výraznými projevy frontálního počasí, a to zejména silným větrem současně s náhlým poklesem teploty vzduchu.
česky: nos bouřkový; slov: búrkový nos; něm: Böennase f, Gewitternase f; rus: грозовой нос, скачoк давления  1993-a2
pressure maximum
syn. maximum barické – zast. označení pro anticyklonu; střed tlakového maxima býval dříve na synoptických mapách označován písmenem M.
česky: maximum tlakové; slov: tlakové maximum; něm: Druckmaximum n; rus: барический максимум  1993-a2
pressure minimum
syn. minimum barické – zast. označení pro cyklonu; střed tlakového minima býval dříve na synoptických mapách označován písmenem m.
česky: minimum tlakové; slov: tlakové minimum; něm: Druckminimum n; rus: барический минимум  1993-a2
pressure pattern flying
let v izobarické hladině, tj. prakticky při konstantním tlaku vzduchu. Tohoto způsobu letu se v meteorologii používá při měření ve volné atmosféře pomocí transoceánských sond, která se konají hlavně k výzkumným účelům.
česky: let izobarický; slov: izobarický let; něm: barometrische Navigation f; rus: изобарический полет  1993-a1
pressure reduced to mean sea level
(SLP) – tlak vzduchu v hladině odpovídající stř. výšce hladiny moře
1. vypočtený podle reálné atmosféry:
QFF=p*exp[ g*H/(287.04* TV) ]
z naměřeného tlaku vzduchu p v nadmořské výšce tlakoměru H, virtuální teploty TV a tíhového zrychlení g v zeměpisné šířce stanice a v nadm. výšce tlakoměru H;
2. vypočtený podle mezinárodní standardní atmosféry ICAO:
QNH=p*[ 1+(1013.25n* 0.0065*0.003472)*H /pn ] 1/n
z naměřeného tlaku vzduchu p v nadm. výšce tlakoměru H a pro n = 0,190284.
česky: tlak vzduchu redukovaný na hladinu moře; slov: tlak vzduchu redukovaný na hladinu mora; něm: auf mittlere Meereshöhe reduzierter Luftdruck; rus: атмосферное давление приведенное к уровню моря, давление на уровне моря  1993-a3
pressure system
syn. útvar barický
1. část tlakového pole atmosféry s charakteristickým rozdělením tlaku vzduchu, a tedy i proudění vzduchu popsaná průběhem izobar nebo izohyps na synoptické mapě. Základními tlakovými útvary jsou útvary s uzavřenými izobarami, resp. izohypsami, tedy cyklona neboli tlaková níže a anticyklona neboli tlaková výše. R. Abercromby (1887) rozlišil dalších pět tlakových útvarů: okrajovou neboli podružnou cyklonu, brázdu nízkého tlaku vzduchu, hřeben vysokého tlaku vzduchu, barické sedlo a přímočaré izobary. V met. literatuře se můžeme setkat ještě s dalšími názvy tlakových útvarů, např. výběžek vyššího tlaku vzduchu, pás nízkého tlaku vzduchu, pás vysokého tlaku vzduchu, přemostění, brázda tvaru V. Soubor tlakových útvarů v určité oblasti vytváří barický reliéf. Viz též pole tlakové nevýrazné.
2. část pole průměrného tlaku vzduchu, zobrazeného na klimatologické mapě, a to zpravidla pro určitý kalendářní měsíc nebo sezónu. Tlakové útvary v tomto smyslu jsou označovány též jako akční centra atmosféry, protože určují všeobecnou cirkulaci atmosféry.
česky: útvar tlakový; slov: tlakový útvar; něm: Luftdruckgebilde n; rus: барическая система  1993-a3
pressure tendency
obecně změna tlaku vzduchu za jednotku času na určitém místě. V synoptických zprávách se udává změna tlaku vzduchu na stanici za tři hodiny (v tropických oblastech za 24 hodin) před termínem pozorování. V případě tříhodinové tlakové změny v úrovni stanice se určuje nejen její velikost, ale i charakteristika tlakové tendence za příslušné tříhodinové období. Tlaková tendence spolu s charakteristikou tlakové tendence udávají krátkodobé změny v tlakovém poli a mají značný prognostický význam. Viz též izalobara, mapa izalobar, rovnice tlakové tendence.
česky: tendence tlaková; slov: tlaková tendencia; něm: Luftdrucktendenz f; rus: барическая тенденция  1993-a3
pressure tendency equation
rovnice vyjadřující časovou změnu tlaku vzduchu v daném bodě atmosféry. Má tvar
p(z)t =gzρ( H.v) dzgz ρ(v.H ρ)dz+ρgvz,
kde p(z) značí atm. tlak v bodě o vert. souřadnici z, t čas, g velikost tíhového zrychlení, ρ hustotu vzduchu, v je horiz. rychlost proudění, vz vert. složka rychlosti proudění,H.v vyjadřuje horiz. divergenci proudění a Hρ horiz. gradient hustoty vzduchu. Členy na pravé straně po řadě vyjadřují vliv horiz. divergence proudění, advekce hustoty vzduchu a vertikálních rychlostí na mechanismus tlakových změn v atmosféře. Rovnice tlakové tendence patří k základním vztahům v dynamické meteorologii. Odvodil ji M. Margules a upravil J. Bjerknes (1937).
česky: rovnice tlakové tendence; slov: rovnica tlakovej tendencie; něm: Luftdrucktendenzgleichung f; rus: уравнение барической тенденции  1993-a1
pressure tube anemometer
anemometr založený na principu Pitotovy trubice, v němž se využívá tlakového rozdílu vytvářeného v aerodyn. trubici k vyvolání zdvihu plováku speciálního manometru. Tlakový rozdíl Δp závisí na rychlosti větru v a hustotě vzduchu ρ podle vztahu
Δp=k.ρv22
kde k je bezrozměrná konstanta, jejíž velikost závisí na vlastnostech aerodyn. trubice. Zdvih plováku je v převážné části stupnice lineárně úměrný přírůstku rychlosti větru. Dinesův anemometr je vhodný k měření krátkodobých fluktuací rychlostí větru. Tvoří součást univerzálního anemografu, který byl v Česku do konce 90. let 20. století hojně používán. První anemometr tohoto typu zkonstruoval angl. meteorolog W. H. Dines v r. 1890. Viz též anemometr tlakový.
česky: anemometr Dinesův; slov: Dinesov anemometer; něm: Anemometer nach Dines n, Staurohranemometer n, Druckröhrenanemometer n; fr: anémomètre à tube (de pression) m, anémomètre de Dines m; rus: анемометр Дайнса  1993-a2
pressure-plate anemometer
anemometr, jehož čidlem je lehká deska, orientovaná kolmo na směr proudění a jejíž výchylka od svislice je úměrná rychlosti větru. Má nelineární stupnici. V současné meteorologické praxi není tento princip používán. Viz též anemometr Wildův.
česky: anemometr s výkyvnou deskou; slov: anemometer s doskou; něm: Druckplattenanemometer n; fr: anémomètre à plaque m; rus: анемометр с пластинкой, флюгер Вильда  1993-a3
prevailing visibility
V letecké meteorologii nejvyšší hodnota dohlednosti pozorovaná v souladu s definicí „Dohlednost“, které je dosaženo nejméně na polovině kruhového horizontu nebo nejméně na polovině letištní plochy. Tyto oblasti mohou tvořit spojitý sektor nebo mohou být složeny z několika nespojitých sektorů. Tato hodnota může být vyhodnocena pozorovatelem nebo přístrojovým systémem. K získání co nejlepšího odhadu převládající dohlednosti se tam, kde jsou instalovány, používají přístroje.
česky: dohlednost převládající; slov: prevládajúca dohľadnosť; něm: vorherrschende Sichtbedingungen f/pl; fr: visibilité dominante f  2014
prevailing wind
syn. směr větru převládající – směr větru nejčastěji měřený nebo pozorovaný v daném místě za určité období, např. den, měsíc, sezonu nebo rok. Je jednou ze základních klimatických charakteristik určitého místa.
česky: vítr převládající; slov: prevládajúci vietor; něm: vorherrschender Wind m; rus: преобладающий ветер  1993-a3
prevailing wind direction
česky: směr větru převládající; slov: prevládajúci smer vetra; něm: vorherrschende Windrichtung f; rus: преобладающее направление ветра  1993-a2
primary aerosols
aerosolové částice, které jsou do vzduchu přímo emitovány ze svých zdrojů. V čes. tech. literatuře, zejména staršího původu, se někdy označují jako disperzní aerosoly. Viz též aerosoly sekundární.
česky: aerosoly primární; slov: primárne aerosoly; něm: primäres Aerosol n; fr: aérosols primaires (biogéniques); rus: первичные аэрозольные (взвешенные) частицы  2014
primary circulation
syn. cirkulace prvotní – základní složka všeobecné cirkulace atmosféry. Na ni navazují cirkulace menších měřítek, označované jako cirkulace sekundární a terciární. Toto rozdělení atmosférické cirkulace navrhl H. C. Willet.
česky: cirkulace primární; slov: primárna cirkulácia; něm: primäre Zirkulation f; fr: circulation primaire f; rus: первичная циркуляция  1993-a2
primary cyclone
syn. cyklona centrální – cyklona, uvnitř které se formují jedna nebo více podružných cyklon. Řídicí cyklona je poměrně hlubokou a rozsáhlou frontální cyklonou zpravidla ve stadiu okludované cyklony, která mohla též postupně vznikat spojením několika cyklon. Řídicí cyklona se často vyskytuje nad určitou oblastí (např. u Islandu) po dobu až několika týdnů. Viz též cyklona kvazistacionární, stadia vývoje cyklony.
česky: cyklona řídicí; slov: riadiaca cyklóna; něm: Zentralzyklone f; fr: cyclone principal m, dépression principale f; rus: главный циклон, первичная депресия  1993-a3
primary depression
syn. cyklona centrální – cyklona, uvnitř které se formují jedna nebo více podružných cyklon. Řídicí cyklona je poměrně hlubokou a rozsáhlou frontální cyklonou zpravidla ve stadiu okludované cyklony, která mohla též postupně vznikat spojením několika cyklon. Řídicí cyklona se často vyskytuje nad určitou oblastí (např. u Islandu) po dobu až několika týdnů. Viz též cyklona kvazistacionární, stadia vývoje cyklony.
česky: cyklona řídicí; slov: riadiaca cyklóna; něm: Zentralzyklone f; fr: cyclone principal m, dépression principale f; rus: главный циклон, первичная депресия  1993-a3
primary front
česky: fronta základní; slov: základný front; něm: Hauptfront f; fr: front principal m; rus: главный фронт  1993-a1
primary front
atmosférická fronta oddělující hlavní typy vzduchových hmot, vymezených geografickou klasifikací vzduchových hmot. Hlavními frontami jsou arktická fronta, antarktická fronta, polární fronta, příp. intertropická fronta. Hlavní fronta zpravidla neobepíná celou polokouli, ale rozpadá se do větví atmosférické fronty. Viz též fronta podružná.
česky: fronta hlavní; slov: hlavný front; něm: Hauptfront f; fr: front principal m; rus: главный фронт  1993-a3
primary ice nucleation
česky: nukleace ledu primární; slov: primárna nukleácia ľadu; něm: primäre Eisnukleation f; rus: первичное образование ледяных частиц  2014
primary rainbow
syn. duha hlavní.
česky: duha primární; slov: primárna dúha; něm: Hauptregenbogen m, primärer Regenbogen m; fr: arc primaire m; rus: основная радуга  1993-a1
primary rainbow
syn. duha primární – duha vytvořená lomem a jedním vnitřním odrazem světla na dešťových kapkách. Rozdělení velikosti dešťových kapek určuje, které barvy jsou zastoupeny a jak široký pruh zaujímají. Vždy je však fialová barva na vnitřní (úhlový poloměr oblouku 40°) a červená na vnější (úhlový poloměr oblouku 42°) straně duhového oblouku.
česky: duha hlavní; slov: hlavná dúha; něm: Hauptregenbogen m; fr: arc primaire m; rus: основная радуга, первая радуга  1993-a2
primitive equations
méně vhodné označení pro základní rovnice.
česky: rovnice primitivní; slov: primitívne rovnice; něm: primitive Gleichungen f/pl; rus: полные уравнения, примитивные уравнения  1993-a1
primitive equations
1. v dynamické meteorologii obecně soustava rovnic, která dává do vzájemného vztahu zákl. dynamické a termodynamické veličiny popisující pole větru, teploty a tlaku včetně rozložení obsahu vody ve všech fázích. Počítáme do ní obvykle složkové vyjádření vektorové pohybové rovnice, rovnici kontinuity proudění a vody ve všech fázích, vhodné matematické vyjádření první hlavní věty termodynamické a stavovou rovnici ideálního plynu. Za předpokladu znalosti zdrojových funkcí a počátečních, popř. okrajových podmínek, je taková soustava uzavřeným systémem rovnic. Řešené veličiny jsou pak jednoznačnými funkcemi prostorových souřadnic a času.
2. v tematické oblasti numerické předpovědi počasí se takto obvykle označuje soustava prognostických rovnic, ve kterých jsou použity zjednodušující aproximace hydrostatické rovnováhy a aproximace tenké vrstvy. Filtrují zvukové vlny. Tento typ rovnic je velmi rozšířený pro předpověď počasí od 70. let 20. století a může realisticky pracovat od planetárních škál až po rozlišení přibližně 4 km, kdy popsané horiz. a vert. cirkulace již dosahují srovnatelných měřítek. V literatuře jsou někdy též označovány termínem primitivní rovnice.
česky: rovnice základní; slov: základné rovnice; něm: primitive Gleichungen f/pl; rus: полные уравнения  1993-a3
principal climatological station
meteorologická stanice, na níž je prováděno klimatologické pozorování podle úplného programu a která má nepřetržitý provoz a úplné přístr. vybavení. Doporučený rozsah meteorologických prvků měřených nebo pozorovaných na základní klimatologické stanici: stav a průběh počasí, množství a druh oblačnosti, výška základny oblačnosti, směr a rychlost větru, teplota, vlhkost a tlak vzduchu, dohlednost, množství srážek, sněhová pokrývka, sluneční svit a teplota půdy v hloubkách 5, 10, 20, 50, 100, 150 a 300 cm. Základní klimatologické stanice v ČR neměří teplotu půdy v hloubkách 150 a 300 cm; dohlednost, druh oblačnosti a výška základny oblačnosti se pozorují jen na profesionálních meteorologických stanicích.
česky: stanice klimatologická základní; slov: základná klimatologická stanica; něm: Klimahauptstation f; rus: основная климатологическая станция  1993-a3
principal front
česky: fronta základní; slov: základný front; něm: Hauptfront f; fr: front principal m; rus: главный фронт  1993-a1
principal front
atmosférická fronta oddělující hlavní typy vzduchových hmot, vymezených geografickou klasifikací vzduchových hmot. Hlavními frontami jsou arktická fronta, antarktická fronta, polární fronta, příp. intertropická fronta. Hlavní fronta zpravidla neobepíná celou polokouli, ale rozpadá se do větví atmosférické fronty. Viz též fronta podružná.
česky: fronta hlavní; slov: hlavný front; něm: Hauptfront f; fr: front principal m; rus: главный фронт  1993-a3
principal land station
pozemní meteorologická stanice, která provádí met. měření a pozorování v přízemní vrstvě atmosféry za použití odpovídajícího tech. vybavení a personálu. Její zprávy se zařazují do mezinárodní výměny met. informací.
česky: stanice meteorologická pozemní základní; slov: základná pozemná meteorologická stanica; něm: Hauptlandstation f; rus: главная наземная станция, основная сухопутная станция  1993-a3
principal static's equation
česky: rovnice statiky atmosféry základní; slov: základná rovnica statiky atmosféry; něm: statische Grundgleichung f; rus: основное уравнение статики атмосферы  1993-a1
probable maximum flood (PMF)
(PMF, z angl. Probable Maximum Flood) – odhad velikosti návrhové povodně stanovený na základě hodnoty pravděpodobné maximální srážky pro dané povodí a trvání srážky. V některých zemích se PMF používá při posuzování nových i stávajících vodních děl a jejich kapacitních, stavebních a odtokových vlastností.
česky: povodeň maximální pravděpodobná; slov: maximálna pravdepodobná povodeň; něm: wahrscheinlich maximales Hochwasser n  2018
probable maximum precipitation (PMP)
(PMP, z angl. Probable Maximum Precipitation) – podle Světové meteorologické organizace (WMO) je pravděpodobná maximální srážka definována jako maximální fyzikálně možný srážkový úhrn pro oblast dané velikosti a dané geografické polohy, pro danou dobu během roku a pro dané trvání srážkové události. Odhad PMP nebere v úvahu možné klimatické změny. Z této definice vyplývá, že hodnota PMP je odhadem, který lze verifikovat jenom v negativním smyslu, tzn. že odhad PMP, který by byl při konkrétní srážce překonán, je nutné revidovat. Hodnota PMP se může měnit i s velikostí a umístěním zájmového povodí, stejně jako s meteorologickými podmínkami, za nichž zde k extrémním srážkám dochází. Základní postupem při stanovení hodnoty PMP je tzv. metoda transpozice a maximalizace extrémních srážkových událostí do zájmového území, pokud to meteorologické podmínky v dané oblasti dovolují. Při posuzování vodních děl jsou v některých zemích využívány odhady tzv. pravděpodobné maximální povodně, které odhad PMP využívají.
česky: srážka maximální pravděpodobná; slov: pravdepodobné maximálne zrážky; něm: wahrscheinlich maximaler Niederschlag m; rus: вероятный максимум осадков  2014
process
viz též proces.
česky: děj; slov: dej; něm: Prozess m; fr: processus m; rus: процесс  1993-a1
professional meteorological station
meteorologická stanice, na níž měření a pozorování provádějí výhradně pozorovatelé s požadovanou kvalifikací, v ČR stálí zaměstnanci Českého hydrometeorologického ústavu, Akademie věd ČR nebo Armády ČR. Všechny profesionální met. stanice ČR patří mezi automatizované meteorologické stanice a jejich zprávy se zařazují do mezinárodní výměny met. informací. Viz též metadata meteorologické stanice, stanice dobrovolnická.
česky: stanice meteorologická profesionální; slov: profesionálna meteorologická stanica; něm: Hauptamtliche Wetterstation f, Hauptamtliche Wetterstation f  1993-b3
professional station
česky: stanice profesionální; slov: profesionálna stanica; rus: сетевая станция  2019
profile of atmospheric front
vertikální řez frontální plochou, který ukazuje, jak se mění sklon fronty s výškou. Profil atmosférické fronty závisí především na druhu fronty, rychlosti jejího postupu a na orografických poměrech oblasti, nad níž fronta postupuje. V mezní vrstvě atmosféry se vlivem tření sklon teplé fronty zmenšuje a studené fronty zvětšuje ve srovnání s jejich sklonem ve volné atmosféře. S deformací frontální plochy mohou souviset zvláštnosti v rozdělení frontální oblačnosti a srážek.
česky: profil atmosférické fronty; slov: profil atmosférického frontu; něm: Profil der atmosphärischen Front n; rus: профиль атмосферного фронта  1993-a3
profiler
[profajler]
1. obecné označení přístroje určeného k sondáži atmosféry pomocí radiových vln, světelných paprsků nebo akustických vln. Základními typy profilerů jsou windprofiler, lidar a sodar; kombinaci radiových a akustických vln využívá systém RASS. Vysílače profilerů generují krátké intenzivní pulzy radiového záření, světla nebo zvuku, jejichž zpětný rozptyl, ovlivněný fyz. a chem. vlastnostmi prostředí, je zachycován velmi citlivými a vysoce selektivními přijímači. Ze zpoždění signálu a rychlosti světla, resp. rychlosti zvuku lze určit vzdálenost k místu zpětného rozptylu signálu.
2. syn. windprofiler.
Termín je přejat z angličtiny. Pochází z angl. profile, které vyjadřuje změnu určité veličiny v daném směru a má původ v it. slovese profilare „obšít, lemovat; nakreslit obrys, načrtnout“, v němž je obsažena předpona pro- a it. slovo filo „nit, vlákno“ (z lat. filum téhož významu).
česky: profiler; slov: profiler; něm: Profiler m  2014
prognostic chart
česky: mapa prognózní; slov: prognózna mapa; něm: Vorhersagekarte f; rus: прогностическая карта  1993-a1
prognostic chart
syn. mapa prognózní – v meteorologii obecně mapa, jež obsahuje předpověď kteréhokoli meteorologického prvku a jevu, např. mapa předpovědí atm. srážek, mapa výškového větru se zakreslením předpokládané polohy osy tryskového proudění nebo mapa předpovídaného počátku žní. V denní synop. praxi se význam pojmu předpovědní mapa zužuje na mapy předpovídaných hodnot budoucího rozložení přízemních a výškových polí meteorologických prvků, sestavované zpravidla pomocí numerických předpovědních modelů pro různě dlouhá období (na 24, 48 h atd.). Jedná se především o předpovědní mapy přízemní povětrnostní situace a předpovědní mapy barické topografie, sestavené na základě metod numerické předpovědi počasí v předpovědních centrech a rozšiřované zpravidla prostřednictvím internetu. Viz též mapa přízemní předpovědní, mapa absolutní topografie předpovědní, mapa relativní topografie.
česky: mapa předpovědní; slov: predpovedná mapa; něm: Vorhersagekarte f; rus: прогностическая карта  1993-a3
prognostic constant pressure chart
mapa předpovídaného budoucího rozložení izohyps některé standardní tlakové hladiny, sestavené pro určitý termín, nejčastěji pro 00 UTC. Tato mapa se v současné době zpravidla zpracovává ve větších předpovědních centrech na základě výstupů modelů numerické předpovědi počasí a rozšiřuje internetovým přenosem nebo pomocí meteorologických kódů, např. kódu GRID. Uvedená předpovědní mapa, která je podkladem krátkodobých nebo střednědobých předpovědí počasí, se dříve sestavovala zejména graf. způsobem (např. metodou R. Fjörtofta nebo A. Defanta). Viz též numerická předpověď počasí, mapa relativní topografie.
česky: mapa absolutní topografie předpovědní; slov: predpovedná mapa absolútnej topografie; něm: Vorhersagekarte der absoluten Topographie f; rus: прогностическая карта абсолютной топографии  1993-a3
prognostic equations
rovnice obsahující časové derivace. V meteorologii se jejich časovou integrací tvoří předpověď, takže jsou součástí jak prognostických modelů atmosféry používaných při numerické předpovědi počasí, tak modelů klimatu. Soustavy prognostických rovnic se odvozují ze základních zákonů zachování hmoty, hybnosti a energie. Pokud jde o prognostické rovnice pro rychlost atmosférického proudění, popř. její složky, jsou obecnými prognostickými rovnicemi Navierovy–Stokesovy rovnice. Podle různých zjednodušujících aproximací lze pak odvozovat různé méně obecné systémy rovnic, např. Eulerovy rovnice, kvazi-geostrofické rovnice, tzv. základní rovnice, anelastické rovnice apod. Prognostické rovnice se formulují i pro další veličiny jako např. pro teplotu nebo vlhkost vzduchu nebo se vytvářejí odvozováním z pohybových rovnic. V tomto smyslu lze zmínit např. rovnici vorticity nebo rovnici divergence. Jako svého druhu protikladný pojem k prognostickým rovnicím lze uvažovat diagnostické rovnice, které neobsahují parciální časové derivace, a lze je proto použít pouze k diagnostickým studiím stavu daného systému za předpokladu jeho stacionarity.
česky: rovnice prognostické; slov: prognostické rovnice; něm: prognostische Gleichungen f/pl; rus: прогностические уравнения  1993-a3
prognostic isobaric chart
mapa předpovídaného budoucího rozložení izohyps některé standardní tlakové hladiny, sestavené pro určitý termín, nejčastěji pro 00 UTC. Tato mapa se v současné době zpravidla zpracovává ve větších předpovědních centrech na základě výstupů modelů numerické předpovědi počasí a rozšiřuje internetovým přenosem nebo pomocí meteorologických kódů, např. kódu GRID. Uvedená předpovědní mapa, která je podkladem krátkodobých nebo střednědobých předpovědí počasí, se dříve sestavovala zejména graf. způsobem (např. metodou R. Fjörtofta nebo A. Defanta). Viz též numerická předpověď počasí, mapa relativní topografie.
česky: mapa absolutní topografie předpovědní; slov: predpovedná mapa absolútnej topografie; něm: Vorhersagekarte der absoluten Topographie f; rus: прогностическая карта абсолютной топографии  1993-a3
prognostic isobaric contour chart
mapa předpovídaného budoucího rozložení izohyps některé standardní tlakové hladiny, sestavené pro určitý termín, nejčastěji pro 00 UTC. Tato mapa se v současné době zpravidla zpracovává ve větších předpovědních centrech na základě výstupů modelů numerické předpovědi počasí a rozšiřuje internetovým přenosem nebo pomocí meteorologických kódů, např. kódu GRID. Uvedená předpovědní mapa, která je podkladem krátkodobých nebo střednědobých předpovědí počasí, se dříve sestavovala zejména graf. způsobem (např. metodou R. Fjörtofta nebo A. Defanta). Viz též numerická předpověď počasí, mapa relativní topografie.
česky: mapa absolutní topografie předpovědní; slov: predpovedná mapa absolútnej topografie; něm: Vorhersagekarte der absoluten Topographie f; rus: прогностическая карта абсолютной топографии  1993-a3
prognostic surface chart
předpovědní mapa, na níž je zobrazeno předpokládané rozložení některých meteorologických prvků při zemském povrchu v některých z příštích hlavních synoptických termínů. Jsou na ní obvykle zakresleny izobary, středy cyklon a anticyklon a předpovídané polohy atmosférických front. Pro zákres budoucí polohy rozložení tlaku vzduchu je v současné době používáno výstupů z některého numerického předpovědního modelu. Přízemní předpovědní mapa bývá v praxi nespr. označována jako prebaratik.
česky: mapa přízemní předpovědní; slov: predpovedná prízemná mapa; něm: Bodenvorhersagekarte f; rus: прогностическая приземная карта  1993-a3
progression of the monsoon
počáteční stadium letní monzunové cirkulace, kdy se do dané oblasti pomalu rozšiřuje vzduchová hmota přinášená letním monzunem. Má-li počátek monzunových dešťů prudký nástup, mluvíme o vpádu monzunu.
česky: nástup monzunu; slov: nástup monzúnu; něm: Monsuneinsatz m; rus: продвижение муссона  1993-a2
propagation of electromagnetic waves in atmosphere
rychlost šíření elmag. vlnění v atmosféře c je dána vzorcem:
c=c0/n,
kde c0 značí rychlost elmag. vlnění ve vakuu a n index lomu, který lze spočítat ze vztahu:
nεrμr,
v němž εr je rel. permitivita a μr rel. magnetická permeabilita vzduchu. Protože ve vzduchu μr≈1 lze s dostatečnou přesností položit
n=εr.
Pro šíření světla v atmosféře má značný význam závislost n na vert. souřadnici z, což můžeme pro danou vlnovou délku vyjádřit ve tvaru:
nz=( n01)T0p p0T2(T z+gR),
kde p značí tlak vzduchu, T teplotu vzduchu v K, g velikost tíhového zrychlení, R měrnou plynovou konstantu vzduchu, T0 teplotu 273 K, p0 tlak 1 000 hPa a n0 index lomu ve vzduchu při teplotě T0 a tlaku p0. Podíl g/R = 3,42 K / 100 m je vert. gradient teploty v případě homogenní atmosféry. Je zřejmé, že n se zmenšuje s výškou(n/z <0) tehdy, jestliže teplota s výškou klesá pomaleji než o 3,42 K na 100 m nebo existuje izotermie či inverze teploty. V těchto případech má trajektorie světelného paprsku tvar vypuklý směrem vzhůru. Při šíření paprsku do vyšších vrstev ovzduší potom může dojít k tomu, že úhel sevřený paprskem a vertikálou dosáhne příslušné kritické hodnoty potřebné k totálnímu odrazu paprsku směrem dolů. V tomto případě jsou splněny podmínky pro vznik opt. jevů označovaných jako svrchní zrcadlení. Totálnímu odrazu napomáhá existence výškových inverzí teploty vzduchu. V důsledku zmíněného zakřivení paprsků se zdánlivá poloha Slunce, popř. Měsíce a hvězd na obloze jeví pozemskému pozorovateli o něco výše než poloha skutečná (tzv. astronomická refrakce). Zakřivení opt. paprsků též umožňuje dohlednost poněkud za geometrický obzor. Opačný případ (n/z >0) , kdy teplota klesá s výškou rychleji než o 3,42 K na 100 m, se běžně vyskytuje pouze v silně přehřáté vrstvě vzduchu bezprostředně přiléhající k zemskému povrchu a trajektorie světelného paprsku má pak tvar vypuklý směrem dolů. Známým opt. úkazem, vyskytujícím se za těchto podmínek, je spodní zrcadlení ve vrstvě přehřátého vzduchu při zemském povrchu. V meteorologii má značný význam i šíření rádiových vln, využívaných např. v meteorologických radarech. Tyto vlny se šíří podle stejných zákonitostí jako světlo, avšak index lomu je v tomto případě ovlivňován i vlhkostí vzduchu. Viz též refrakce atmosférická, útlum elektromagnetických vln.
česky: šíření elektromagnetického vlnění v atmosféře; slov: šírenie elektromagnetických vĺn v atmosfére; něm: Ausbreitung von elektromagnetischen Wellen in der Atmosphäre f; rus: распространение электромагнитных волн в атмосфере  1993-a1
propagation of light in atmosphere
česky: šíření světla v atmosféře; slov: šírenie svetla v atmosfére; něm: Ausbreitung des Lichtes in der Atmosphäre f; rus: распространение света в атмосфере  1993-a1
propagation of sound
šíření zvukových vln v atmosféře, jehož rychlost c je dána vzorcem:
c=κRT,
kde κ značí Poissonovu konstantu, vyjadřující poměr měrného tepla vzduchu při stálém tlaku a při stálém objemu, R měrnou plynovou konstantu vzduchu a T teplotu vzduchu v K. Při teplotě 273 K, za bezvětří a v suchém vzduchu je c = 331,36 m.s–1. Protože měrná plynová konstanta vlhkého vzduchu je o něco větší než táž konstanta platná pro suchý vzduch a její hodnota poněkud roste s obsahem vodní páry ve vzduchu, zvětšuje se rychlost zvuku s růstem absolutní vlhkosti. Pro opravu rychlosti zvuku na vlhkost lze užít vzorce:
Δc=0,14cep,
v němž p značí tlak vzduchu a e tlak vodní páry. Vane-li vítr, je celková rychlost zvuku dána součtem rychlosti zvuku v klidném vzduchu a složky rychlosti proudění v daném směru, čehož se využívá u akustických anemometrů. Pro zvukové vlny lze aplikovat zákony odrazu a lomu i pojem zvukového paprsku (kolmice k vlnoploše) a definovat index lomu n = T–1/2. V obvyklém případě, kdy teplota vzduchu klesá s výškou, platí (n/z >0) a dráhy zvukových paprsků orientovaných šikmo vůči zemskému povrchu se zakřivují tak, že mají tvar poněkud vypuklý směrem dolů. Opačná situace nastává ve vrstvách s inverzí teploty vzduchu, kde(n/z <0) a zmíněné dráhy mají tvar vypuklý vzhůru. V tomto případě může nastat totální odraz zvukové vlny, která se pak vrací k zemi často v místech, kam už neproniká zvuk šířící se od svého zdroje přímo podél zem. povrchu a je tlumený na jeho nerovnostech. Tímto způsobem vzniká jev anomální slyšitelnosti a za vhodných podmínek může být v souvislosti se silnými zdroji zvuku (výbuchy apod.) pozorováno i několik pásem anomálníslyšitelnosti oddělených pásmy ticha, kdy zvuk je střídavě slyšitelný a neslyšitelný v kruhových oblastech, někdy jen v sektorech, okolo zdroje zvuku. Počátkem 20. století bylo šíření zvuku v atmosféře jednou z nepřímých metod výzkumu vysokých vrstev atmosféry.
česky: šíření zvuku v atmosféře; slov: šírenie zvuku v atmosfére; něm: Schallausbreitung f; rus: распространение звука  1993-a1
Proterozoic
česky: starohory; slov: starohory  2018
Proterozoic
syn. starohory – nejmladší z eonů prekambria, zahrnující období před 2500 – 541 mil. roků. Evoluce atmosféry Země pokračovala na počátku proterozoika obdobím prvotního nárůstu koncentrace kyslíku, který umožnil existenci aerobních eukaryotických organizmů a vývoj ozonové vrstvy. Způsobil však i pokles koncentrace metanu, takže v důsledku zeslabení skleníkového efektu nastala opakovaně rozsáhlá zalednění, která se posléze opakovala ke konci proterozoika v souvislosti s dalším prudkým nárůstem koncentrace kyslíku. Podle tzv. teorie sněhové koule mohla zalednění vícekrát postihnout celou planetu, která by se z jejich sevření vymanila působením sopečné činnosti. Jiné teorie připouštějí nezamrzlé tropy, jež měly zůstat útočištěm organizmů, jejichž mnohobuněčné formy se objevily na samém konci proterozoika jako tzv. ediakarská fauna a následně se naplno rozvinuly ve fanerozoiku.
Termín pochází z angl. Proterozoic, které zavedl v r. 1887 amer. geolog S. F Emmons; skládá se z řec. πρότερος [proteros] „předchozí, dřívější“ a ζωή [zóé] „život“.
česky: proterozoikum; slov: proterozoikum; něm: Proterozoikum n  2018
protuberance
výron relativně chladnějšího, hustšího plazmatu z fotosféry přes chromosféru do žhavé sluneční koróny. Tyto útvary jsou typické pro období zvýšené sluneční aktivity. Při pozorování se jeví jako výběžky boulovitého tvaru, plameny nebo oblouky, vybíhající ze slunečního tělesa. Někdy se mohou od Slunce úplně odpoutat, pak je označujeme jako výrony korónové hmoty; pokud zasáhnou zemskou magnetosféru, způsobí zde geomagnetickou bouři.
česky: protuberance; slov: protuberancia; něm: Protuberanz f; fr: protubérance solaire f; rus: протуберанец  2020
proxy data
nepřímé indikátory, které umožňují rekonstruovat paleoklima, popř. historické klima, a určit přibližné vlastnosti klimatického sytému v minulosti. Podmínkou jejich využití v paleoklimatologii je možnost alespoň přibližného datování a poznatky o jejich klimatické podmíněnosti. Základními druhy proxy dat jsou data geologická (analýza hlubokomořských, jezerních a navátých sedimentů, ledovcových jevů, fosilních půd), glaciologické (analýza vrtných jader ledovců) a biologická (analýza letokruhů, malakofauny, hmyzu a pylová analýza). V širším smyslu patří mezi proxy data i nepřímé historické prameny užívané historickou klimatologií, které dokumentují jevy vázané na počasí a klima (např. údaje o povodních, záznamy o počátcích žní apod.).
česky: proxy data; slov: proxy data; něm: Proxydaten pl  2014
pseudo front
syn. pseudofronta.
česky: fronta zdánlivá; slov: zdanlivý front; něm: Scheinfront f, Pseudofront f; fr: pseudo-front m, pseudofront m; rus: мнимый фронт  1993-a3
pseudo front
syn. fronta zdánlivá – mezosynoptické rozhraní projevující se náhlou prostorovou změnou v teplotním poli, a to pouze v blízkosti zemského povrchu. Tradičně tak označujeme rozhraní vznikající na hranicích rozdílného aktivního povrchu (např. vodní hladina – led, vodní hladina – souš aj.), nebo v orograficky členitém terénu. Podle angl. terminologie můžeme za pseudofrontu považovat i gust frontu.
Termín se skládá z řec. ψευδής [pseudés] „nepravý, falešný (lživý)“ a slova fronta.
česky: pseudofronta; slov: pseudofront; něm: Pseudofront f; rus: псевдофронт  1993-a3
pseudo wet-bulb potential temperature
česky: teplota potenciální vlhká adiabatická; slov: adiabatická vlhká potenciálna teplota; něm: pseudofeuchtpotentielle Temperatur f; rus: псевдопотенциальная температура смоченного термометрa  1993-b1
pseudo wet-bulb temperature
česky: teplota vlhká adiabatická; slov: adiabatická vlhká teplota; něm: Pseudofeuchttemperatur f  1993-a1
pseudo-gradient
rozdíl hodnot meteorologických prvků odpovídající určitému konstantnímu výškovému rozdílu (zpravidla 100 m), zjištěný mezi místy, která neleží na vertikále. Za pseudogradient teploty vzduchu se např. označuje okamžitá nebo prům. změna teploty s výškou vypočtená z měření přízemních meteorologických stanic ležících v rozdílné nadm. výšce. Velikost pseudogradientu se liší od velikosti vert. gradientu, protože odráží bezprostřední vliv zemského povrchu na hodnoty met. prvků více než vert. gradient zjištěný aerologickým měřením.
Termín se skládá z řec. ψευδής [pseudés] „nepravý, falešný (lživý)“ a slova gradient.
česky: pseudogradient; slov: pseudogradient; něm: Pseudogradient m  1993-a2
pseudoadiabat
křivka na termodynamickém diagramu, která vyjadřuje vztah mezi dvěma stavovými proměnnými, zpravidla mezi teplotou a tlakem, při pseudoadiabatickém ději. Je zároveň křivkou konstantní adiabatické ekvivalentní potenciální teploty.
Termín se skládá z řec. ψευδής [pseudés] „nepravý, falešný (lživý)“ a slova adiabata.
česky: pseudoadiabata; slov: pseudoadiabata; něm: Pseudoadiabate f  1993-a3
pseudoadiabatic lapse rate
česky: gradient teplotní pseudoadiabatický; slov: pseudoadiabatický teplotný gradient; něm: pseudoadiabatischer Temperaturgradient m; fr: gradient pseudo-adiabatique saturé m, pseudo-gradient adiabatique humide m; rus: псевдоадиабатический градиент температуры  2014
pseudoadiabatic process
termodyn. proces, při němž dochází k ochlazování nasyceného vzduchu, který je tepelně izolován od okolí, a veškerá zkondenzovaná voda je okamžitě ze vzduchu odstraněna. Latentní teplo kondenzace tedy ohřívá pouze vlhký vzduch. Pokles teploty vzduchu při pseudoadiabatickém výstupu je znázorněn pseudoadiabatou na termodynamickém diagramu. Dojde-li k následnému sestupu vzduchu, probíhá růst teploty prakticky po suché adiabatě, neboť všechna zkondenzovaná voda byla při pseudoadiabatickém výstupu odstraněna. Pseudoadiabatický děj je tedy nevratný, a proto není adiabatickým dějem. Pojem pseudoadiabatický děj zavedl něm. meteorolog W. Bezold v r. 1888.
česky: děj pseudoadiabatický; slov: pseudoadiabatický dej; něm: pseudoadiabatischer Prozess m; fr: transformation pseudoadiabatique f; rus: псевдоадиабатический процесс  1993-a2
pseudoequivalent potential temperature
česky: teplota potenciální ekvivalentní adiabatická; slov: adiabatická ekvivalentná potenciálna teplota; něm: pseudopotentielle Temperatur f; rus: потенциальная псевдоэквивалентная температура  1993-b1
pseudoequivalent temperature
česky: teplota ekvivalentní adiabatická; slov: adiabatická ekvivalentná teplota; něm: adiabatische Äquivalenttemperatur; rus: адиабатическая эквивалентная температура  1993-a1
psychrometer
přístroj užívaný k měření vlhkosti vzduchu. Je tvořen dvěma shodnými teploměry; jeden má čidlo suché a měří teplotu vzduchu (tzv. suchý teploměr), druhý má čidlo obalené navlhčovanou „punčoškou“, a tím pokryté filmem čisté vody nebo ledu (tzv. vlhký teploměr). Odpařováním vody z obalu se odnímá vlhkému teploměru teplo, a proto je jeho údaj zpravidla nižší než údaj suchého teploměru. V případě, že je vzduch vodní párou nasycen, např. v husté mlze, jsou si oba údaje rovny nebo dokonce při záporných teplotách je nad ledem údaj vlhkého teploměru vyšší. Charakteristiky vlhkosti vzduchu (tlak vodní páry a relativní vlhkost vzduchu) se určují z psychrometrické diference neboli psychrometrického rozdílu, tj. rozdílu údajů suchého a vlhkého teploměru, např. pomocí psychrometrických tabulek. Rozlišujeme psychrometry uměle ventilované neboli aspirační a uměle neventilované, umístěné zpravidla v meteorologické budce. Uměle ventilovaný psychrometr Assmannův (aspirační) má teploměrné nádobky v kovových trubicích a stejnoměrné proudění kolem nádobek zajišťuje ventilátor s rychlostí proudění nejčastěji 2,5 m.s–1. Je to přenosný přístroj, který umožňuje měřit teplotu a vlhkost vzduchu i na slunci. Byl často užíván při terénních meteorologických měřeních. Předchůdcem Assmannova psychrometru je psychrometr prakový, u nějž pozorovatel dosáhl požadované proudění vzduchu kolem nádobek točením přístroje zavěšeného na provázku nebo řetízku. Uměle neventilovaný psychrometr Augustův je používaný na meteorologických stanicích v meteorologických budkách. Je tvořen dvěma staničními teploměry, z nichž vlhký teploměr má nádobku obalenou punčoškou, jejíž dolní konec je ponořen do nádobky s vodou upevněné pod teploměrem. Přístroj navrhl E. F. August (1825). Psychrometrická metoda byla v meteorologii nejužívanější metodou měření vlhkosti vzduchu. Na profesionálních stanicích ČR se údaje z psychrometru používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem. Viz též vzorec psychrometrický, teplota vlhkého teploměru, koeficient psychrometrický.
Termín se skládá z řec. ψυχρός [psychros] „studený, chladný“ a μέτρον [metron] „míra, meřidlo“. Název zřejmě souvisí se zchlazováním vlhkého teploměru.
česky: psychrometr; slov: psychrometer; něm: Psychrometer n; rus: психрометр  1993-a3
psychrometric constant
česky: koeficient psychrometrický; slov: psychrometrický koeficient; něm: Psychrometerkonstante f; rus: психрометрическая постоянная  1993-a3
psychrometric constant
česky: konstanta psychrometrická; slov: psychrometrická konštanta; něm: Psychrometerkonstante f; rus: психрометрическая постоянная  1993-a1
psychrometric difference
česky: diference psychrometrická; slov: psychrometrická diferencia; něm: Psychrometerdifferenz f; fr: différence entre la température humide de l'air et sa température sèche f, différence entre la concentration sèche et humide f; rus: психрометрическая разность, косохлёст  1993-a2
psychrometric formula
syn. formule psychrometrická – poloempirický vzorec používaný při výpočtu psychrometrických tabulek. Má tvar:
e=esAp( TT),
kde e je tlak vodní páry ve vzduchu, es tlak nasycené vodní páry určený s ohledem na fázi vody při teplotě udávané vlhkým teploměrem, A značí psychrometrický koeficient, p tlak vzduchu, T teplotu vzduchu udanou suchým teploměrem a T' teplotu udanou vlhkým teploměrem. Hodnota es závisí na skupenství vody ve vlhkém obalu teploměru. K praktickému určování vlhkosti vzduchu na základě měření Assmannovým psychrometrem se používá psychrometrický vzorec v úpravě Sprungově.
termodynamice atmosféry se psychrometrický vzorec uvádí též ve tvaru:
w=wc pd(TTiv) Lwv,
kde w je směšovací poměr, w" směšovací poměr ve vzduchové částici nasycené při izobarické vlhké teplotě Tiv, cpd měrné teplo při konstantním tlaku pro suchý vzduch a Lwv latentní teplo vypařování. Protože izobarickou vlhkou teplotu Tív lze v podstatě ztotožnit s teplotou naměřenou vlhkým teploměrem, umožňuje výše uvedený vztah vypočítat z naměřených teplot suchého a vlhkého teploměru, jakož i z hodnoty max. směšovacího poměru při teplotě Tiv aktuální směšovací poměr ve vzduchové částici při teplotě T. Viz též vzorec Sprungův.
česky: vzorec psychrometrický; slov: psychrometrický vzorec; něm: Psychrometerformel f; rus: психрометрическая формула  1993-a1
psychrometric tables
tabulky vypočtené podle psychrometrického vzorce, které slouží ke stanovení různých vlhkostních parametrů z údajů změřených psychrometrem. Jsou uspořádány tak, že v řádcích je uváděna suchá teplota a ve sloupcích vlhká teplota. V průsečíku příslušného řádku a sloupce je hodnota tlaku vodní páry a relativní vlhkosti vzduchu odpovídající změřenému psychrometrickému rozdílu. Zvláštním oddílem psychrometrických tabulek je zpravidla i tabulka umožňující vyhledání tlaku vodní páry z údajů relativní vlhkosti a teploty vzduchu. Tento oddíl se někdy označuje jako hygrometrické tabulky. Pro psychrometry uměle ventilované se užívají psychrometrické tabulky aspirační. Termín hygrometrické tabulky se používá někdy rovněž jako syn. termínu psychrometrické tabulky. Viz též koeficient psychrometrický, teplota suchého teploměru, teplota vlhkého teploměru.
česky: tabulky psychrometrické; slov: psychrometrické tabuľky; něm: Psychrometertabellen f/pl; rus: психрометрические таблицы  1993-a2
puelche
Termín vznikl převzetím názvu jihoamerického etnika Puelche (doslova „východní lidé“), jehož členové v 18. století obývali východní svahy And v Chile a na jihozápadě Argentiny. Srov. chinook.
česky: puelche; slov: puelche; něm: Puelche m  1993-a1
puff model
[paf model] – lagrangeovský model transportu znečišťujících příměsí v atmosféře představující nadstavbový stupeň vlečkových modelů. Princip spočívá v tom, že vlečka znečištění pocházející z daného zdroje se podél svojí trajektorie štěpí do spojitého sledu vhodně definovaných segmentů (puffů). Modeluje se pohyb a vývoj těchto individuálních puffů a dále pak např. jejich vzájemné interakce při mísení různých vleček. Proti běžným vlečkovým modelům je výpočetní algoritmus podstatně komplikovanější, avšak lze takto vhodně modelovat např. případy s velkou časovou proměnlivostí zdrojů příměsí, a zejména procesy při vzájemném mísení vleček o různém složení pocházejících z více zdrojů.
česky: puff model; slov: puff model; něm: Ausbreitungsmodell n  2014
pumping of barometer
oscilace délky rtuťového sloupce tlakoměru vznikající kolísáním tlaku vzduchu při dyn. působení nárazovitého větru. Znesnadňuje čtení údaje tlakoměru.
česky: pumpování tlakoměru; slov: pumpovanie tlakomera; něm: Pumpen des Barometers n; rus: неустойчивость уровня ртутного столбика  1993-a1
punch hole
(z angl. cloud hole) – kruhová nebo eliptická bezoblačná mezera, v jejímž středu může být patrná virga. Jev byl identifikován v oblacích altocumulus nebo cirrocumulus, v nichž se mohou vyskytnout přechlazené vodní kapky, které nemrznou vzhledem k nedostatku ledových jader. Na družicových snímcích byl zaznamenán i v oblacích druhu altostratus či cirrostratus. Náhlý vzrůst koncentrace ledových jader může vyvolat vznik drobných ledových krystalků a jejich růst na úkor vypařujícich se kapek. Vypadávání krystalů může vytvořit virgu. Ke zvýšení koncentrace aktivních ledových jader nebo náhlému zmrznutí malých přechlazených kapek může dojít turbulencí a poklesem tlaku při průletu letadla. Jde o velmi řídký jev, který je však při svém výskytu na obloze jasně patrný a bývá občas nesprávně interpretován. Morfologicky byl jev zařazen v roce 2017 do kategorie zvláštnosti oblaků pod označením cavum. Viz též teorie vzniku srážek Bergeronova–Findeisenova, pruh rozpadový.
česky: díra oblačná průletová; slov: preletová oblačná diera; něm: Wolkenlücke f, Wolkenloch n; fr: trou de virga m  2014
purga
regionální označení pro silnou sněhovou vánici v tundrových oblastech sev. Evropy a především sev. Sibiře v zimě. Název pochází z karelského slova „purgu“ nebo finského „purku“. Viz též blizard, buran, burga.
Název je přejat z ruského purga, které zřejmě pochází z karelského a finského purku „sněhová bouře“.
česky: purga; slov: purga; něm: Purga m; rus: пурга  1993-a1
purple light
syn. světlo purpurové – záře pozorovaná na bezoblačné obloze ve tvaru výseče velkého světelného kruhu. Šíří se vzhůru od obzoru, za nímž se nalézá Slunce. Její intenzita i velikost se zvětšuje až do polohy Slunce 3 až 4° pod obzorem, mizí při poloze Slunce 6° pod obzorem. Celý jev trvá asi 20 až 30 minut. Fialová záře je jedním z jevů označovaných souborně jako soumrakové barvy. Intenzita fialové záře vzrůstá s průzračností vzduchu a s nadm. výškou místa pozorování.
česky: záře fialová; slov: fialová žiara; něm: Purpurlicht n; rus: пурпурный свет  1993-a1
PV thinking
[pí ví θiŋkiŋ] – obecně rozšířený termín v anglicky psané odborné literatuře pro analýzu vlastností a vývoje termobarických útvarů v synoptickém měřítku na základě polí potenciální vorticity. Tento přístup představuje poměrně jednoduchou a názornou alternativu ke klasické metodě dynamické analýzy s využitím kvazigeostrofické aproximace, na rozdíl od níž explicitně neuvažuje existenci vertikálních pohybů vzduchu. Potenciální vorticita, která je konzervativní veličinou při adiabatických dějích a jednoznačně určuje pole proudění a teploty, se zpravidla hodnotí ve vhodně zvolených izentropických hladinách. Někdy se proto používá i označení „IPV thinking“. Z polohy anomálií potenciální vorticity lze usuzovat na oblasti konvergence a divergence proudění spojené s výstupnými a sestupnými pohyby vzduchu. Pozorované pole proudění je pak v prvním přiblížení dáno k hodnocení vlivu neadiabatických dějů na velkoprostorovou dynamiku atmosféry.
česky: PV thinking; slov: PV thinking; něm: PV-Denkart f  2014
pyramidal haloes
duhově zbarvené světelné kruhy kolem Slunce představující obdobu malého hala nebo velkého hala, avšak s odlišnými úhlovými poloměry. Vytvářejí se dvojitým lomem paprsků na ledových krystalcích, když vstupní, resp. výstupní stěnou krystalku pro příslušný paprsek je stěna pyramidálního (jehlanovitého) zakončení sloupkových nebo destičkových krystalků (často se vyskytující pyramidální nástavby nad stěnami podstav sloupkových nebo destičkových krystalků). Nejčastěji se v literatuře v tomto směru uvádějí hala o úhlovém poloměru ca: 9° (Buiysenovo halo), 18° (Rankinovo halo), 20° (Burneyovo halo), 23° (Barkowovo halo), 24° (Dutheilovo halo) a 35° (Feuilleovo halo). U pyramidálních hal mohou vzácně vznikat jevy obdobné parheliím a tečným obloukům u malého hala.
česky: hala pyramidální; slov: pyramidálne halo; něm: pyramidaler Halo m; fr: halos inhabituels pl (m); rus: пирамидальное гало  2014
pyramidal sun
deformace tvaru slunečního disku do podoby víceúhelníku při jeho poloze těsně u obzoru. Vyčnívá-li pak nad obzor pouze část slunečního disku, může její tvar připomínat stupňovitou pyramidu. Jev se vyskytuje zejména v zimě při nízkých ranních přízemních teplotách vzduchu. Souvisí pak se složitou strukturou vert. průběhu hustoty vzduchu v blízkosti zemského povrchu. Jev má svůj odraz v lidové mluvě jako „zubaté zimní sluníčko“.
česky: slunce pyramidální; slov: pyramidálne slnko  1993-a1
pyranogram
záznam registračního pyranometru.
Termín vznikl odvozením od termínu pyranograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. πῦρ [pyr] „oheň“, ἀνά [ana] „nahoře“ a γράμμα [gramma] „písmeno, zápis“; tj. doslova „záznam o ohni shora“.
česky: pyranogram; slov: pyranogram; něm: Pyranogramm n; rus: пиранограмма  1993-a1
pyranogram
někdy používané nevhodné označení pro pyranogram.
Termín vznikl odvozením od termínu solarigraf, analogicky k pojmům telegraf a telegram.
česky: solarigram; slov: solarigram; něm: Solarigramm n; rus: соляриграмма  1993-a1
pyranograph
někdy používané nevhodné označení pro pyranograf.
Termín se skládá z lat. solaris „sluneční“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: solarigraf; slov: solarigraf; něm: Solarigraph m; rus: соляриграф  1993-a1
pyranograph
pyranometr, jehož součástí je registrační zařízení zaznamenávající časový průběh intenzity globálního záření. Záznam je většinou prováděný v podobě denní křivky v časové stupnici na předtištěné papírové pásce.
Termín se skládá z. řec. πῦρ [pyr] „oheň“, ἀνά [ana] „nahoře“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“. Prostřední komponent vyjadřuje směr, odkud přichází teplo, které je přístrojem měřeno.
česky: pyranograf; slov: pyranograf; něm: Pyranograph m; rus: пиранограф  1993-a3
pyranometer
někdy používané nevhodné označení pro pyranometr.
Termín se skládá z lat. solaris „sluneční“ a z řec. μέτρον [metron] „míra, měřidlo“.
česky: solarimetr; slov: solarimeter; něm: Solarimeter n; rus: соляриметр  1993-a3
pyranometer
přístroj k měření globálního slunečního záření, pro který se někdy používá i název solarimetr. Pyranometry pracují nejčastěji na termoelektrickém principu. Jejich diferenční termočlánek, popř. termobaterie, indikuje teplotní rozdíl povrchu, který absorbuje prakticky úplně dopadající krátkovlnné záření, a povrchu, který toto záření nepohlcuje, nebo je zastíněn. Obdobný teplotní rozdíl se určuje diferenčním bimetalem v Robitzschově bimetalickém pyranografu nebo rozdílem teplot na teploměrech pyranometru Aragova–Davyova. Některé typy pyranometrů používají jako čidlo fotodiody, které vytvářejí fotoelektrické napětí úměrné dopadajícímu záření. Pyranometr destilační neboli lucimetr měří globální, popř. cirkumglobální záření tak, že záření pohlcené čidlem přístroje využívá k výparu vhodné kapaliny, jejíž objem je po zpětné kondenzaci mírou pohlceného záření. Jestliže se stínidlem odstraní přímé sluneční záření, pyranometry měří rozptýlené sluneční záření a pracují jako difuzometry. Pyranometry jsou většinou vybaveny dvěma skleněnými polokoulemi chránícími jejich čidla před rušivými účinky větru, atm. srážek, vnitřní cirkulací vzduchu v čidle a před usazováním prachu a nečistot. Polokoule současně zabraňují průchodu záření delších vlnových délek než asi 4 µm a způsobují, že pyranometr měří pouze krátkovlnné záření. Jestliže se pyranometr exponuje s polokoulemi umožňujícími průchod dlouhovlnného záření, tzn. měří jak krátkovlnné, tak dlouhovlnné záření, nazývá se pyrradiometr, v čes. literatuře někdy nevhodně též pyranometr efektivní.
Termín zavedli amer. astrofyzikové C. G. Abbot a L. B. Aldrich, kteří přístoj sestrojili v r. 1916. Termín se skládá z. řec. πῦρ [pyr] „oheň“, ἀνά [ana] „nahoře“ a μέτρον [metron] „míra, meřidlo“.
česky: pyranometr; slov: pyranometer; něm: Pyranometer n; rus: пиранометр  1993-a3
pyrgeometer
radiometr používaný k měření dlouhovlnného záření, většinou vyzařovaného atmosférou směrem k zemskému povrchu. Přístroj má obvykle termoelektrické čidlo chráněné křemennou polokoulí, která je pokrytá speciální vrstvou propouštějící pouze záření s vlnovou délkou větší než 4,5 µm.
Termín se skládá z řec. πῦρ [pyr] „oheň“, γῆ [gé]  „Země“ a μέτρον [metron] „míra, meřidlo“.
česky: pyrgeometr; slov: pyrgeometer; něm: Pyrgeometer n; rus: пиргеометр  1993-a3
pyrheliometer
přístroj k měření přímého slunečního záření. Přeměňuje energii slunečního záření, prošlou tubusem s malým vstupním otvorem a pohlcenou černým povrchem čidla nebo dutinou, na teplo, které se určuje ze zvýšení teploty absorpčního povrchu, popř. kapalného chladicího média. Pyrheliometry, jejichž údaj lze vyjádřit přímo ve fyz. jednotkách, se nazývají absolutními, rel. pyrheliometry se nazývají aktinometry. Pyrheliometry se často používají jako referenční etalony pro kalibraci radiometrů pro měření slunečního krátkovlnného záření.
Termín zavedl franc. fyzik C. Pouillet, který přístoj sestrojil  před r. 1841. Termín se skládá z řec. πῦρ [pyr] „oheň“, ἥλιος [hélios] „Slunce“ a μέτρον [metron] „míra, meřidlo“.
česky: pyrheliometr; slov: pyrheliometer; něm: Pyrheliometer n; rus: пиргелиометр  1993-a3
pyrheliometric scale
stupnice používaná při měření energie toků slunečního záření. Je určena základním pyrheliometrickým normálem. V Evropě se do r. 1956 používala Ångströmova pyrheliometrická stupnice, odvozená od Ångströmova kompenzačního pyrheliometru umístěného ve Švédsku. V sev. Americe sloužil obdobně za základ Smithsonské pyrheliometrické stupnice pyrheliometr vodní. Vzájemným srovnáním údajů obou základních etalonů, které měly odchylné principy měření i odchylné podstatné konstrukční parametry, byl zjištěn mezi oběma pyrheliometrickými stupnicemi systematický rozdíl. Jako kompromis byla zavedena v r. 1957 mezinárodní pyrheliometrická stupnice IPS, která snižovala údaje podle Smithsonské stupnice o 2 % a údaje podle Ångströmovy stupnice zvyšovala o 1,5 %. V návaznosti na rozvoj technologií měření slunečního záření byla od 1. 7. 1980 zavedená pyrheliometrická stupnice označená WRR (WorldRadiation Reference), která zvyšuje naměřené hodnoty vůči IPS o 2,2 %. Pyrheliometrická stupnice WRR je definovaná referenční skupinou absolutních pyrheliometrů (World Standard Group) udržovanou ve Světovém radiačním středisku WMO v Davosu, Švýcarsko.
česky: stupnice pyrheliometrická; slov: pyrheliometrická stupnica; něm: pyrheliometrische Skala f; rus: пиргелиометрическая шкала  1993-a3
pyro-clouds
podle mezinárodní morfologické klasifikace oblaků z roku 2017 patří do skupiny zvláštních oblaků s označením flammagenitus. Produkty hoření vystupující vzhůru při velkých požárech (velké lesní požáry, požáry tropických stepí aj.) mohou vytvářet husté, tmavé oblaky s rychlým vert. vývojem, které se vzhledem podobají silně vyvinutému konvektivnímu oblaku. Mají však rychlejší vývoj a tmavší barvu. Produkty hoření z velkých požárů mohou být neseny větrem do velké vzdálenosti od zdroje a mohou získat podobu vrstvovitého závoje, jímž prosvítá Slunce nebo Měsíc jako modře zbarvené. Viz též pyrocumulus, pyrocumulonimbus.
česky: oblaky z požárů; slov: oblaky z požiarov; něm: Feuerwolke f, Pyrocumulus m  2014
pyrocumulonimbus
(pyro-Cb, morfologicky Cb flammagenitus) – extrémní forma oblaku pyrocumulus (Cu flammagenitus), jehož vývoj je důsledkem tepla a kouře uvolněných z rozsáhlých požárů, zpravidla požárů velkých lesních porostů. Pyrocumulonimbus se liší od přirozeného Cb svým mikrofyzikálním složením, s vysokým podílem produktů hoření, a našedlou barvou. Z pohledu meteorologických družic se od běžných Cb liší nižší odrazivostí své horní hranice oblačnosti a její odlišnou emisivitou v tepelných kanálech. Na rozdíl od oblaku pyrocumulus může produkovat srážky i ve formě krup, je pro něj charakteristický výskyt blesků a hřmění a vláknitá nebo difuzní horní část oblaku (podobně jako pro přirozený Cb). Může dosáhnout velmi silného stádia s výskytem extrémních jevů podobně jako supercely (včetně tornád). Srážky mohou působit pozitivně při hašení požáru. Objev stratosférických kouřových vleček hemisférického rozsahu lze spojit s výskytem oblaků pyrocumulonimbus a odhaluje energii jejich vztlaku a potenciál injektovat kouř do spodní stratosféry. Mezi pyro-Cb se někdy zařazují i Cb vzniklé v důsledku silných sopečných erupcí.
Termín se skládá z řec. πῦρ [pyr] „oheň“ a slova cumulonimbus.
česky: pyrocumulonimbus; slov: pyrocumulonimbus; něm: Pyrocumlonimbus m  2014
pyrocumulus
nesrážkový oblak druhu cumulus, který se může vyvinout při výstupu teplého vzduchu při požáru nebo při zvýšení vztlaku emisíkouřové vlečce vystupující z průmyslových nebo energetických provozů. Viz též flammagenitus.
Termín se skládá z řec. πῦρ [pyr] „oheň“ a slova cumulus.
česky: pyrocumulus; slov: pyrocumulus; něm: Pyrocumulus m, Feuerwolke f  2014
pyrradiometer
nevh. název pro pyrradiometr.
česky: pyranometr efektivní; slov: efektívny pyranometer; něm: Effektivpyranometer n  1993-a1
pyrradiometer
přístroj k měření krátkovlnného i dlouhovlnného záření, dopadajícího z prostorového úhlu 2π na vodor. orientovanou plochu. Je-li čidlo obráceno vzhůru, přístroj měří globální sluneční záření a dlouhovlnné záření atmosféry. Je-li čidlo obráceno směrem k zemskému povrchu přístroj měří odražené globální sluneční záření a dlouhovlnné záření zemského povrchu. Kombinací dvou opačně orientovaných pyrgeometrů lze měřit radiační bilanci zemského povrchu. Jako pyrradiometr lze použít pyranometr, který je místo skleněné polokoule vybaven polokoulí z materiálu propustného pro krátkovlnné i dlouhovlnné záření.
Termín se skládá z řec. πῦρ [pyr] „oheň“, z komponentu radio- (z lat. radius „paprsek“, viz radiace) a řec. μέτρον [metron] „míra, meřidlo“.
česky: pyrradiometr; slov: pyrradiometer; něm: Pyrradiometer n; rus: пиррадиометр  1993-b3
raingauge
přístroj pro měření srážek, především jejich úhrnu, případně i okamžité intenzity. Podle způsobu obsluhy rozeznáváme srážkoměry manuální a automatické, případně ombrografy. V ČHMÚ se užívají převážně srážkoměry se záchytnou plochou 500 cm2 instalované tak, aby byla výška záchytné plochy 1 m nad terénem, popř. nad sněhovou pokrývkou. Ve vyšších a horských polohách mohou být srážkoměry pro zimní období vybaveny výškově stavitelným stojanem, popřípadě trvale umístěny na přístrojové rampě. Srážkoměr určený pouze k měření úhrnu srážek za delší období se označuje jako totalizátor. Viz též ochrana srážkoměruhyetometr.
česky: srážkoměr; slov: zrážkomer; něm: Niederschlagsmesser m; rus: осадкомер  1993-a3
podpořila:
spolupracují: