Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene t

X
TAF f
Jedná se o zkratku spojení Terminal Aerodrome Forecast „předpověď pro cílové letiště“
česky: TAF; angl: TAF; slov: TAF  2014
Tagesamplitude f
rozdíl mezi denním maximem a denním minimem meteorologického prvku v jednom dni. Někteří autoři nevhodně používají termín denní amplituda pro jednu polovinu výše uvedeného rozdílu. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší denní amplituda teploty vzduchu 24,1 °C (z 23. 1. 1850), vypočtená z denního minima –26,5 °C a denního maxima –2,4 °C. Viz též amplituda denní průměrná.
česky: amplituda denní; angl: daily amplitude, daily range; slov: denná amplitúda; fr: amplitude journalière f, amplitude diurne f, amplitude quotidienne f; rus: суточная амплитуда  1993-a3
Tagesgang der meteorologischen Größe m
změna hodnoty (časový průběh meteorologického prvku) během 24 hodin. V klimatologii se za denní chod met. prvku považuje i denní chod prům. hodinových hodnot vypočtených pro určitý den, měsíc nebo roč. období z víceletých pozorovacích řad.
česky: chod meteorologického prvku denní; angl: daily (diurnal) course of meteorological element; slov: denný chod meteorologického prvku; rus: суточный (дневной) ход метеорологического элемента  1993-a1
Tagesgang m
rozdíl mezi denním maximem a denním minimem meteorologického prvku v jednom dni. Někteří autoři nevhodně používají termín denní amplituda pro jednu polovinu výše uvedeného rozdílu. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší denní amplituda teploty vzduchu 24,1 °C (z 23. 1. 1850), vypočtená z denního minima –26,5 °C a denního maxima –2,4 °C. Viz též amplituda denní průměrná.
česky: amplituda denní; angl: daily amplitude, daily range; slov: denná amplitúda; fr: amplitude journalière f, amplitude diurne f, amplitude quotidienne f; rus: суточная амплитуда  1993-a3
Tageshelligkeit f
osvětlení zemského povrchu a předmětů na Zemi i v atmosféře přímým a rozptýleným slunečním světlem. Měří se v luxech [lx].
česky: osvětlení denní; angl: daily illumination, intensity of daylight; slov: denné osvetlenie; rus: дневная освещенность  1993-a1
Tageskonzentration von Fremdstoffen in der Luft f
aritmetický průměr koncentrace znečišťující látky zjištěný na stanoveném místě za interval 24 h (v ČR často od 7 h do 7 h SEČ následujícího dne).
česky: koncentrace znečišťující látky v ovzduší denní; angl: daily concentration of heterogeneous matter in the atmosphere; slov: denná koncentrácia znečisťujúcich látok v ovzduší; rus: суточная концентрация инородного вещества в воздухе  1993-b3
Tagesmaximum n
nejvyšší hodnota meteorologického prvku zjištěná v konkrétním dnu na met. stanici za 24 h, a to buď v intervalu od 00 do 24 h, nebo mezi dvěma jinak stanovenými termíny pozorování, např. od 7 h SEČ běžného dne do 7 h SEČ následujícího dne nebo od 06 UTC do 18 UTC v případě nejvyšší teploty uváděné ve zprávách SYNOP z evropských zemí. Viz též amplituda denní.
česky: maximum denní; angl: daily (diurnal) maximum of meteorological element; slov: denné maximum; rus: суточный максимум метеорологического элемента  1993-a3
Tagesminimum n
nejnižší hodnota meteorologického prvku, zajištěná v konkrétním dnu na met. stanici za 24 h, a to buď v intervalu od 00 do 24 h, nebo mezi dvěma jinými stanovenými termíny pozorování, např. od 19 h SEČ předchozího dne do 7 h SEČ běžného dne nebo od 18 UTC předchozího dne do 06 UTC daného dne v případě nejnižší teploty uváděné ve zprávách SYNOP z evropských zemí. Viz též amplituda denní.
česky: minimum denní; angl: daily (diurnal) minimum of meteorological element; slov: denné minimum; rus: суточный минимум метеорологического элемента  1993-a3
Tagesmittel des meteorologischen Elementes n
průměrná denní hodnota meteorologického prvku vypočtená z hodnot naměřených nebo pozorovaných v klimatologických nebo synoptických termínech. Podle doporučení WMO se denní průměr met. prvku počítá jako aritmetický průměr hodnot daného prvku měřených v pravidelných intervalech. Na vnitrostátní úrovni se v České republice denní průměry met. prvků počítají jako aritmetické průměry hodnot pozorovaných v termínech 7, 14 a 21 hodin místního času. Prům. denní teplota vzduchu se počítá podle vzorce
T¯=T7 +T14+2T214.
česky: průměr meteorologického prvku denní; angl: daily (diurnal) mean of meteorological element; slov: denný priemer meteorologického prvku; rus: суточное среднее метеорологического элемента  1993-a3
Tagesmitteltemperatur f
prům. hodnota teploty vzduchu vypočtená z hodnot naměřených v klimatologických nebo synoptických termínech. Podle doporučení WMO se denní průměr teploty počítá jako aritmetický průměr hodnot teploty měřených v pravidelných intervalech. Na vnitrostátní úrovni se v ČR průměrná denní teplota vzduchu počítá někdy podle vzorce:
T¯=T7+T 14+2T214,
kde indexy 7, 14 a 21 vyjadřují termíny pozorování. Počítá-li se průměrná denní teplota vzduchu z 24 hodnot, označuje se jako pravý denní průměr teploty. K hrubému odhadu průměrné denní teploty se též někdy užívá vzorce:
T¯=T max+Tmin2,
kde Tmax je max. a Tmin min. denní teplota vzduchu. Viz též průměr meteorologického prvku denní, průměr meteorologického prvku denní pravý.
česky: teplota vzduchu průměrná denní; angl: mean daily temperature; slov: priemerná denná teplota vzduchu; rus: средняя суточная температура  1993-a3
Tagessumme meteorologischer Elemente f
součet všech hodnot meteorologického prvku zjištěných ve stanovených termínech za 24 h. Užívá se především denní úhrn srážek.
česky: úhrn meteorologického prvku denní; angl: diurnal sum of meteorological elements; slov: denný úhrn meteorologického prvku; rus: суточная сумма метеорологического элемента  1993-a2
tägliche Schwankung f
rozdíl mezi denním absolutním maximem a denním absolutním minimem meteorologického prvku, zjištěný v témž kalendářním dnu na met. stanici za dlouholeté období, zpravidla od počátku měření. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší absolutní denní amplituda teploty vzduchu pro 1. březen, a to 43,7 °C, vypočítaná z denního minima –27,6 °C v roce 1785 a denního maxima 16,1 °C v roce 1922.
česky: amplituda absolutní denní; angl: daily absolute amplitude, daily absolute range; slov: absolútna denná amplitúda; fr: amplitude journalière absolue f, amplitude diurne absolue f; rus: суточная абсолютная амплитуда  1993-a3
tägliche Schwankung f
rozdíl mezi denním maximem a denním minimem meteorologického prvku v jednom dni. Někteří autoři nevhodně používají termín denní amplituda pro jednu polovinu výše uvedeného rozdílu. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší denní amplituda teploty vzduchu 24,1 °C (z 23. 1. 1850), vypočtená z denního minima –26,5 °C a denního maxima –2,4 °C. Viz též amplituda denní průměrná.
česky: amplituda denní; angl: daily amplitude, daily range; slov: denná amplitúda; fr: amplitude journalière f, amplitude diurne f, amplitude quotidienne f; rus: суточная амплитуда  1993-a3
Taifun m
regionální označení plně vyvinuté tropické cyklony v oblasti sz. Tichého oceánu západně od datové hranice. Desetiminutová (v USA minutová) rychlost větru při zemi v něm dosahuje nejméně 33 m.s–1; pokud dosáhne 67 m.s–1, mluvíme o supertajfunu. Na Filipínách se pro tajfun používá označení baguio.
Přesný původ termínu není znám; slovo má zřejmě původ v čínštině nebo japonštině, podle jiné teorie pochází z řec. τυφῶν [tyfón] „točivý vítr“ a bylo přejato do arabštiny a dalších jazyků.
česky: tajfun; angl: typhoon; slov: tajfún; rus: тайфун  1993-a3
Taiga-Klima
česky: klima tajgy; angl: taiga climate; slov: klíma tajgy; rus: климат тайги  1993-b3
Talnebel m
mlha, která se tvoří v terénních sníženinách, zejména v údolích následkem stékání chladnějšího vzduchu po svazích, silnějšího ochlazování a v důsledku zvětšené vlhkosti vzduchu. Při pozorování z vyšších poloh se údolní mlha jeví jako oblačné moře.
česky: mlha údolní; angl: valley fog; slov: údolná hmla; rus: долинный туман  1993-a1
Talwind m
česky: vítr údolní; angl: valley breeze; slov: údolný vietor; rus: долинный бриз, долинный ветер  1993-a2
Tangentialspannung f
obecně tečná síla vztažená k jednotkové ploše. V meteorologii mají význam především složky tzv. Reynoldsova napětí, související s turbulentním přenosem hybnosti v mezní vrstvě atmosféry. Lze je vyjádřit ve tvaru
-ρvx2 ¯,-ρvy2 ¯,-ρvz2 ¯,-ρvx vy¯,-ρ vxvz ¯,-ρvy vz¯,-ρ vyvx ¯,-ρvz vx¯,-ρ vzvy¯,
kde ρ značí hustotu vzduchu a vx,v y,vz turbulentní fluktuace složek rychlosti proudění v trojrozměrném souřadnicovém systému tvořeném osami x, y, z. Těchto devět veličin představuje složky symetrického tenzoru druhého řádu a fyz. je lze interpretovat jako složky síly turbulentního tření působící v daném bodě na jednotkovou plochu orientovanou kolmo ke směru jednotlivých souřadnicových os. Viz též tření v atmosféře, síla tření.
česky: napětí tečné; angl: shearing stress; slov: dotykové napätie; rus: напряжение сдвига  1993-a1
tätige Oberfläche f
přechodná plocha mezi litosférou nebo hydrosférou a atmosférou (povrch půdy, vody, porostu, popř. umělý povrch, jako povrch vozovky, střech domů apod.), na níž dochází k odrazu záření i jeho transformaci v jiné druhy energie (především v teplo). Aktivní povrch patří k hlavním klimatotvorným faktorům. V utváření klimatu se uplatňuje především ve spojitosti s radiační bilancí soustavy Země–atmosféra a se všeobecnou cirkulací atmosféry. Aktivní povrch ovlivňuje atm. děje v mezní vrstvě atmosféry svými fyz. a fyz.-chem. vlastnostmi, k nimž patří zejména členitost reliéfu zemského povrchu, albedo, tepelná vodivost, vlhkost, složení a struktura půdy, veget. kryt atd. Pojem aktivní povrch zavedl rus. klimatolog A. I. Vojejkov (1824–1916). Viz též orografie.
česky: povrch aktivní; angl: active surface; slov: aktívny povrch; rus: активная поверхность  1993-a2
tatsächliche Verdunstung
množství vody, které se za daných meteorologických podmínek vypaří do atmosféry ze zemského povrchu o skutečné vlhkosti (skutečná evaporace), popř. i z těl rostlin disponujících dostupnou vodou (skutečná transpirace) nebo z obojího (aktuální evapotranspirace). Případný nedostatek vody k vypařování způsobuje, že skutečný výpar je většinou menší než potenciální výpar. To platí především pro povrch půdy v létě v odpoledních hodinách, naopak v zimě a nad velkými vodními plochami celoročně mají oba druhy výparu podobné hodnoty. Skutečný výpar je obtížně měřitelný, a většinou se jen odvozuje pro jednotlivá povodí na základě hydrologické bilance.
česky: výpar skutečný; angl: actual evaporation, effective evaporation; slov: skutočný výpar; rus: действительное испарение  1993-a3
tatsächliches Wetter n
soubor údajů o skutečném stavu ovzduší, vztahující se k určitému místu a času. Skutečné počasí zpravidla popisujeme údaji o teplotě, tlaku a vlhkosti vzduchu, o směru a rychlosti větru, o stavu počasí (déšť, sněžení, bouřka, mlha apod.), o oblačnosti, dohlednosti, popř. dalšími charakteristikami. V letecké meteorologii se pro počasí skutečné používá i termín počasí aktuální nebo aktuál.
česky: počasí skutečné; angl: current weather; slov: skutočné počasie; rus: настоящая погода, текущая погода  1993-a2
tatsächliches Wetter n 
slang. označení pro počasí skutečné.
Termín pochází z lat. actualis „(ú)činný, skutečný“.
česky: aktuál; angl: current weather; slov: aktuál; fr: météo en temps réel f; rus: текущая погода, реальная погода  1993-a1
Tau m
usazenina vodních kapek na předmětech na zemi nebo blízko jejího povrchu, vznikající kondenzací vodní páry z okolního vzduchu. Tvoří se zpravidla ve večerních a nočních hodinách za slabého větru nebo bezvětří při radiačním ochlazování povrchu předmětů pod teplotu rosného bodu.
Termín je příbuzný s lat. ros téhož významu.
česky: rosa; angl: dew; slov: rosa; rus: роса  1993-a2
Tauen n
rozpouštění sněhu nebo ledu v důsledku zvýšení jejich teploty nad 0 °C. Ke změně pevného skupenství vody na kapalné dochází v přírodě především:
a) následkem advekce teplého vzduchu nad povrch sněhu nebo ledu;
b) účinkem přímého slunečního záření, které je absorbováno sněhem nebo ledem;
c) v důsledku deště s teplotou kapek vyšší než 0 °C. Dále tání nastává i vedením tepla z půdy, na vozovkách při stlačení sněhu za teplot slabě pod nulou, při chemickém posypu apod.
česky: tání sněhu nebo ledu; angl: thaw; slov: topenie snehu alebo ľadu; rus: таяние  1993-a2
Taumesser m
syn. rosoměr.
Termín se skládá z řec. δρόσος [drosos] „rosa“ a μέτρον [metron] „míra, měřidlo“.
česky: drosometr; angl: drosometer; slov: rosometer; fr: drosomètre m; rus: дрозомер, росомер  1993-a1
Taumesser m
drosometr – historický přístroj ke zjišťování výskytu, popř. množství rosy na povrchu určitého tělesa. V nejjednodušším případě se vizuálně odhadovalo množství rosy usazené na povrchu Duvdevaniho rosoměrné destičky, umístěné do výše listů porostu. Jiné rosoměry byly tvořeny síťkou zavěšenou na vahadle vah, jimiž se určoval přírůstek hmotnosti síťky s usazenou rosou. Tento princip se využíval rovněž při registraci rosy drosografy. Viz též ovlhoměr.
česky: rosoměr; angl: dew gauge, drosometer; slov: rosomer; rus: росомер  1993-a3
Taupunkt m
česky: bod rosný; angl: dew point; slov: rosný bod; fr: point de rosée m; rus: точка росы  1993-a3
Taupunkt m
syn. bod rosný – teplota, při níž se vlhký vzduch o dané hodnotě směšovacího poměru vodní páry stane nasyceným vzhledem k vodě následkem izobarického ochlazování. Při dalším poklesu teploty vzduchu dochází k přesycení a tím ke kondenzaci vodní páry obsažené ve vzduchu, přičemž vzniká rosa nebo mlha; v důsledku toho klesá i teplota rosného bodu. Při relativní vlhkosti vzduchu menší než 100 % je teplota rosného bodu vždy nižší než teplota vzduchu.
Teplota rosného bodu ve spojení s měřenou teplotou vzduchu patří k zákl. charakteristikám vlhkosti vzduchu. Zakresluje se do synoptických map a aerologických diagramů, kde křivka rosného bodu slouží k popisu vertikálního profilu vlhkosti vzduchu. Využívá se v řadě empir. vzorců, např. ve Ferrelově vztahu, při předpovědi přízemních mrazů, mlhy apod. Patří ke konzervativním vlastnostem vzduchových hmot.
Na meteorologických stanicích v ČR se přízemní teplota rosného bodu získává výpočtem z tlaku vzduchu na stanici a z hodnot teploty vzduchu a relativní vlhkosti, měřených pomocí teplotně–vlhkostních senzorů HUMICAP, v případě nefunkčnosti tohoto přístroje pak výpočtem z údajů psychrometru. Teplotu rosného bodu lze také určit z psychrometrických tabulek. Teplotu rosného bodu v dané izobarické hladině lze např. určit z definice směšovacího poměru a vhodného řešení Clausiovy–Clapeyronovy rovnice. Přibližnou hodnotu teploty rosného bodu lze též měřit přímo kondenzačním vlhkoměrem nebo termohygroskopem. Viz též deficit teploty rosného bodu, teplota výstupné kondenzační hladiny, teplota bodu ojínění.
česky: teplota rosného bodu; angl: dew point temperature; slov: teplota rosného bodu; rus: температура точки росы  1993-a3, ed. 2024
Taupunktdifferenz f
rozdíl teploty vzduchu a teploty rosného bodu. Patří mezi charakteristiky vlhkosti vzduchu užívané zejména na výškových mapách. Deficit teploty rosného bodu je tím větší, čím je při dané teplotě vzduchu menší relativní vlhkost vzduchu. Viz též sytostní doplněk.
česky: deficit teploty rosného bodu; angl: dew point deficit, dew point depression, dew point spread; slov: deficit teploty rosného bodu; fr: dépression du point de rosée f, déficit du point de rosée m; rus: депрессия точки росы, дефицит точки росы  1993-a3, ed. 2024
Taupunkthygrometer n
vlhkoměr sloužící k určení teploty rosného bodu nebo teploty bodu ojínění stanovením teploty uměle ochlazovaného, zpravidla leštěného, kovového povrchu v okamžiku, kdy se na něm objeví kapalná nebo pevná fáze vody.
česky: vlhkoměr kondenzační; angl: dewpoint hygrometer; slov: kondenzačný vlhkomer; rus: конденсационный гигрометр  1993-a3
Taupunktkurve f
syn. depegram – grafické vyjádření průběhu teploty rosného bodu s tlakem vzduchu (výškou) na termodynamickém diagramu jako výsledek aerologického měření vlhkosti vzduchu. Využívá se pro stanovení dalších vlhkostních charakteristik volné atmosféry. Viz též křivka teplotního zvrstvení.
česky: křivka rosného bodu; angl: depegram; slov: krivka rosného bodu; rus: кривая точки росы  1993-a2
Taupunktspiegel m
jeden z typů kondenzačního vlhkoměru.
česky: zrcátko rosné; angl: mirror-type hygrometer; slov: rosné zrkadielko; rus: зеркало для измерения точки росы  1993-a1
Taupunkttemperatur f
syn. bod rosný – teplota, při níž se vlhký vzduch o dané hodnotě směšovacího poměru vodní páry stane nasyceným vzhledem k vodě následkem izobarického ochlazování. Při dalším poklesu teploty vzduchu dochází k přesycení a tím ke kondenzaci vodní páry obsažené ve vzduchu, přičemž vzniká rosa nebo mlha; v důsledku toho klesá i teplota rosného bodu. Při relativní vlhkosti vzduchu menší než 100 % je teplota rosného bodu vždy nižší než teplota vzduchu.
Teplota rosného bodu ve spojení s měřenou teplotou vzduchu patří k zákl. charakteristikám vlhkosti vzduchu. Zakresluje se do synoptických map a aerologických diagramů, kde křivka rosného bodu slouží k popisu vertikálního profilu vlhkosti vzduchu. Využívá se v řadě empir. vzorců, např. ve Ferrelově vztahu, při předpovědi přízemních mrazů, mlhy apod. Patří ke konzervativním vlastnostem vzduchových hmot.
Na meteorologických stanicích v ČR se přízemní teplota rosného bodu získává výpočtem z tlaku vzduchu na stanici a z hodnot teploty vzduchu a relativní vlhkosti, měřených pomocí teplotně–vlhkostních senzorů HUMICAP, v případě nefunkčnosti tohoto přístroje pak výpočtem z údajů psychrometru. Teplotu rosného bodu lze také určit z psychrometrických tabulek. Teplotu rosného bodu v dané izobarické hladině lze např. určit z definice směšovacího poměru a vhodného řešení Clausiovy–Clapeyronovy rovnice. Přibližnou hodnotu teploty rosného bodu lze též měřit přímo kondenzačním vlhkoměrem nebo termohygroskopem. Viz též deficit teploty rosného bodu, teplota výstupné kondenzační hladiny, teplota bodu ojínění.
česky: teplota rosného bodu; angl: dew point temperature; slov: teplota rosného bodu; rus: температура точки росы  1993-a3, ed. 2024
Taupunktzeiger m
vlhkoměr sloužící k určení teploty rosného bodu nebo teploty bodu ojínění stanovením teploty uměle ochlazovaného, zpravidla leštěného, kovového povrchu v okamžiku, kdy se na něm objeví kapalná nebo pevná fáze vody.
česky: vlhkoměr kondenzační; angl: dewpoint hygrometer; slov: kondenzačný vlhkomer; rus: конденсационный гигрометр  1993-a3
Tautochrone f
bioklimatologii křivka znázorňující vertikální profil teploty půdy nebo vertikální profil teploty vzduchu v přízemní vrstvě atmosféry, příp. obojí dohromady v jednom časovém okamžiku. Zakreslením většího počtu tautochron lze znázornit změny příslušného vertikálního profilu během dne.
Termín v bioklimatologickém smyslu zavedl něm. meteorolog W. Bezold v r. 1892. Pochází z řec. ταὐτός [tautos] „týž“ a χρόνος [chronos] „čas“, zde ve smyslu stejný čas měření.
česky: tautochrona; slov: tautochrona; rus: тавтохрона  1993-a3
Tauwetter n
z met. hlediska zpravidla poměrně náhlé a obvykle alespoň dvoudenní oteplení nad 0 °C, které se vyskytlo po souvislé vícedenní sérii celodenních mrazů, tj. po nepřerušeném období ledových dnů. Teplotní kritéria pro vymezení oblevy nejsou v met. literatuře jednotná. Např. podle J. Kuziemského (1973) jsou jako obleva hodnoceny případy, kdy při oteplení po období mrazů došlo ke zvýšení max. denních teplot vzduchu nad 0 °C ve dvou po sobě následujících dnech. Podle V. Hlaváče (1966) se hovoří o oblevě při nástupu období alespoň dvou po sobě jdoucích dní s prům. denní teplotou vzduchu nad 0 °C, přičemž jeden z těchto dnů měl buď kladné minimum teploty vzduchu, tj. nebyl dnem mrazovým, nebo měl alespoň maximum teploty vzduchu vyšší než 5 °C. Příčinou oblevy ve stř. Evropě je nejčastěji advekce rel. teplého mořského vzduchu mírných šířek do nitra pevniny.
Termín je odvozen od již nepoužívaného slovesa „oblevit“, obsahujícího kořen -levit, který pochází z indoevropského základu *lēu- s významem „povolit“ (srov. např. polevit).
česky: obleva; angl: thaw; slov: odmäk; rus: оттепель  1993-a1
Taylor-Spirale f
geometrické vyjádření změn vektoru větru s výškou v mezní vrstvě atmosféry, teor. vypočtené za zjednodušujícího předpokladu, že se koeficient turbulentní difuze a hustota vzduchu s výškou nemění, proudění vzduchu je horizontální a nezrychlované, geostrofický vítr nezávisí na výšce a rychlost proudění v mezní vrstvě se s výškou asymptoticky blíží rychlosti geostrofického větru. Obalovou křivku koncových bodů vektorů znázorňujících vítr v různých hladinách mezní vrstvy a vynesených z jednoho zvoleného bodu pak nazýváme Taylorovou spirálou. Zvláštní případ Taylorovy spirály, kdy úhel sevřený směry přízemního a geostrofického větru se rovná 45°, se obvykle nazývá spirálou Ekmanovou. Někteří autoři však používají pojmy spirála Taylorova a spirála Ekmanova jako synonyma.
Teorii této spirály vypracoval V. W. Ekman (1902) pro pohyb vody ve svrchních vrstvách oceánu, vyvolaný účinkem větru. Na poměry v atmosféře ji aplikoval F. Äkerblom (1908) na základě měření větru na Eiffelově věži v Paříži. Zobecněný výklad na podkladě teorie atmosférické turbulence podal G. I. Taylor (1915). Viz též vítr přízemní, stáčení větru v mezní vrstvě atmosféry.
česky: spirála Taylorova; angl: Taylor spiral; slov: Taylorova špirála; rus: спираль Тейлора  1993-a1
TCAC n
(TCAC, z angl. Tropical Cyclone Advisory Centre) – meteorologické centrum zřízené v souladu s regionálními postupy ICAO k poskytování informačních zpráv meteorologickým výstražným službám, světovým oblastním předpovědním centrům a mezinárodním databankám OPMET, pokud jde o polohu, předpovídaný směr a rychlost postupu, maximální přízemní vítr a tlak vzduchu ve středu tropických cyklon.
česky: centrum poradenské pro tropické cyklony; angl: Tropical Cyclone Advisory Centre; slov: poradňové centrum pre tropické cyklóny; fr: Centre d'avis de cyclones tropicaux m; rus: консультативный центр по тропическим циклонам  2014
technische Klimatologie f
syn. klimatologie inženýrská – klimatologie aplikovaná v technice. Poskytuje klimatologické podklady k realizaci investičních záměrů, pro urbanistické řešení územních celků, problematiku životního prostředí, zřizování a provoz složitých technol. zařízení, pro výstavbu inženýrských sítí (např. kanalizace), vnějších el. vedení, vysokých komínů, rozhlasových a televizních vysílačů, pro vodohosp. účely, zeměď. praxi apod. Klimatologické podklady se sestavují na základě archivovaného klimatologického materiálu nebo se opírají o výsledky terénního klimatologického průzkumu.
česky: klimatologie technická; angl: technical climatology; slov: technická klimatológia; rus: техническая климатология  1993-a1
technische Sichtbedingungen f/pl
vzdálenost, ve které lze bezpečně rozeznat světelné zdroje. Tato dohlednost je závislá nejen na průzračnosti atmosféry, ale také na intenzitě a barvě světla světelného zdroje. Používá se v letecké meteorologii.
česky: dohlednost technická; angl: technical visibility; slov: technická dohľadnosť  1993-b3
technische Vorschriften der WMO f
publikace vydávaná Světovou meteorologickou organizací (WMO), která kodifikuje podmínky, formy a způsoby mezin. spolupráce v meteorologii a hydrologii. Technická pravidla WMO obsahují zásady, postupy a doporučení pro meteorologické a hydrologické služby. První díl této publikace se týká Světové služby počasí (WWW), včetně systému pozorování, zpracování údajů a met. komunikací (část A), dále obsahuje doporučení pro klimatologii, měření chem. komponent atmosféry a pro výukovou, publikační a výzk. činnost (část B), a pro zabezpečení námořní dopravy a zemědělství (část C). Druhý díl je věnován problematice met. služeb letectví a třetí díl se zabývá otázkami hydrologie.
česky: pravidla technická WMO; angl: Technical Regulations WMO; slov: technické pravidlá WMO; rus: Технический регламент ВМО  1993-a3
Teilchenspektrum des atmosphärischen Aerosols n
vyjádření závislosti počtu aerosolových částic určité velikosti obsažených v jednotkovém objemu vzduchu na jejich poloměru r (popř. průměru). Popisuje se funkcí f(r), pro niž platí, že výraz f(r) dr je roven počtu částic v jednotce objemu, jejichž poloměr leží v intervalu hodnot <r, r + dr), nebo funkcí F(r) = f(r) / N, kde N značí počet všech částic v jednotce objemu. Výraz F(r) dr se rovná poměru počtu částic o poloměru z intervalu <r,r + dr) k počtu všech částic v objemové jednotce. Jako konkrétní příklady zmíněných funkcí lze uvést tzv. Jungeho rozdělení vhodné pro většinu aerosolů kontinentálního původu v oboru částic větších než 10–7 m:
f(r)=C r(β+1),
kde C je vhodně zvolená konstanta a hodnota β se většinou volí blízká třem, popř. logaritmicko-normální rozdělení nebo funkci:
f(r)=a rαexp(brβ ),
pro niž a, α, b, ß* jsou konstanty charakterizující daný typ atmosférického aerosolu.
Pro naposled uvedenou funkci používají někteří autoři název zobecněná gama-funkce a tato funkce spolu s logaritmicko-normálním rozdělením představuje příklady asymetrického jednomodálního rozdělení. Reálné spektrum velikostí částic atmosférického aerosolu obvykle představuje superpozici tří takovýchto rozdělení, v níž se pak přirozeně uplatňují tři módy, tzv. nukleační mód, akumulační mód a hrubý mód. Obalová křivka právě zmíněného celkového třímodálního rozdělení často dobře odpovídá zde již rovněž zmíněnému Jungeho rozdělení v oblasti jeho platnosti.
Analogicky k právě uvedenému lze vytvářet spektra ve vztahu k úhrnným objemům nebo hmotnostem aerosolových částic, obsažených v jednotce objemu, v závislosti na jejich poloměru. Mluvíme pak o objemových nebo hmotnostních (hmotových) spektrech. Podoba těchto spekter odpovídá skutečnosti, že s rostoucí velikostí aerosolových částic sice klesají jejich počty, ale výrazně roste jim odpovídající úhrnný objem nebo hmotnost. Viz též nukleace.
česky: spektrum velikosti aerosolových částic; angl: spectrum of atmospheric aerosol particles; slov: spektrum častíc atmosférického aerosólu; rus: спектр частиц атмосферного аэрозоля  1993-b3
Teilchenstrahlung f
záření tvořené tokem hmotných částic, tedy atomových jader, elektronů, protonů, neutronů, pozitronů, mezonů atd. Příkladem korpuskulárního záření je radioaktivní záření typu alfa nebo beta. Kromě většinově korpuskulárního kosmického záření ovlivňuje Zemi také korpuskulární záření Slunce, zahrnující i sluneční vítr, tj. spojité vytékání plazmy z oblasti sluneční koróny. Korpuskulární sluneční záření vyvolává při interakci se zemským magnetickým polem a atmosférou polární záře, geomagnetické bouře a další geofyz. jevy. Viz též záření gama, činnost sluneční.
česky: záření korpuskulární; angl: corpuscular radiation; slov: korpuskulárne žiarenie; rus: корпускулярнoe излучение  1993-a3
Teilentladung eines Blitzes f
impulz proudu blesku, který se může během jednoho blesku vícenásobně opakovat. Zhruba polovina záporných blesků mezi oblakem a zemí obsahuje jeden dílčí výboj, zatímco druhá polovina dva a více dílčích výbojů.
Blesky kladné polarity mají obvykle jen jeden výboj. Viz též blesk jednoduchý, blesk vícenásobný.
česky: výboj blesku dílčí; angl: lightning stroke; slov: čiastkový výboj blesku  1993-a3
Telebarometer n
málo používané označení pro tlakoměr přizpůsobený k dálkovému přenosu údajů o tlaku vzduchu. Viz též měření tlaku vzduchu.
Termín se skládá z řec. τῆλε [téle] „daleko“ a slova barometr.
česky: telebarometr; angl: telebarometer; slov: telebarometer; rus: телебарометр  1993-a1
TEMP m
Zkratka je zřejmě složena z písmen označujících trojici ve zprávě uváděných meteorologických prvků (TEmperature, Moisture, Pressure).
česky: TEMP; angl: TEMP; slov: TEMP  2014
TEMP-Meldung f
meteorologická zpráva o tlaku a teplotě vzduchu, o deficitu teploty rosného bodu a o směru a rychlosti větru ve standardních izobarických hladinách a také v hladinách významných změn vert. průběhu teploty a rychlosti větru. Zpráva se sestavuje podle kódu TEMP. Část A, resp. C této zprávy obsahuje údaje o všech uvedených parametrech volné atmosféry ve standardních izobarických hladinách do 100, resp. nad 100 hPa. V části B, resp. D, jsou uvedeny hodnoty teploty a deficitu teploty rosného bodu v hladinách významných změn vert. průběhu teploty do hladiny 100, resp. nad 100 hPa (sekce 5) a významné změny větru (sekce 6). Zpráva TEMP obsahuje i údaje o tropopauze, o max. rychlosti a vertikálním střihu větru v rozsahu daného měření. Zprávy TEMP se vysílají každých šest nebo každých dvanáct hodin a slouží kromě rozboru teplotního zvrstvení ovzduší a vertikálního profilu větru na daném místě také k sestavování výškových met. map. Zpráva z mořské stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách se sestavuje podle kódu TEMP SHIP. Viz též měření aerologické, měření meteorologických prvků v mezní vrstvě a volné atmosféře.
česky: zpráva z pozemní stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách (TEMP); angl: Upper level pressure, temperature, humidity and wind report from a fixed land station (TEMP); slov: správa z pozemnej stanice o tlaku, teplote, vlhkosti a vetre vo vyšších hladinách; rus: ТЕМП  1993-a3
Temperatur im Niveau der freien Konvektion f
teplota určená na aerologickém diagramu průsečíkem křivky teplotního zvrstvenínasycenou adiabatou, vycházející z charakteristického bodu aerologického výstupu, tj. z průsečíku suché adiabaty vycházející z přízemní teploty vzduchu a izogramy, jež vychází z teploty rosného bodu. Viz též hladina volné konvekce.
česky: teplota hladiny volné konvekce; angl: temperature of free convection level; slov: teplota hladiny voľnej konvekcie; rus: температура уровня свободной конвекции  1993-a1
Temperatur des feuchten Thermometers
teplota udávaná vlhkým teploměrem psychrometru, který je v dobrém tepelném kontaktu se vzduchem, správně ventilovaný a dokonale chráněný před přímým slunečním zářením. Blíží se izobarické vlhké teplotě. Při záporné teplotě je třeba údaj doplnit o informaci, zda je nádobka obalena ledem.
česky: teplota vlhkého teploměru; angl: wet-bulb temperature; slov: teplota vlhkého teplomeru; rus: температура смоченного термометра  1993-a3
Temperatur des feuchten Thermometers f
1. teplota, které teoreticky nabude původně nenasycený vzduch po nasycení vodní párou. Podle toho, zda tento proces proběhne jako adiabatický nebo izobarický děj, rozlišujeme:
a) adiabatickou vlhkou teplotu Tav. Pomocí termodynamického diagramu ji přibližně určíme tak, že uvažovanou vzduchovou částici převedeme po suché adiabatě do výstupné kondenzační hladiny, kde se vystupující vzduch stane nasyceným vodní párou. Odtud pak vzduchovou částici necháme sestoupit po nasycené adiabatě do výchozí hladiny, na níž přečteme Tav. Převedeme-li částici po nasycené adiabatě dále do tlakové hladiny 1 000 hPa, dostaneme adiabatickou vlhkou potenciální teplotu. Adiabatická vlhká potenciální teplota má ve vzduchu obsahujícím nasycenou vodní páru z hlediska podmínek pro vertikální stabilitu atmosféry analogický význam jako potenciální teplota v nenasyceném vzduchu;
b) izobarickou vlhkou teplotu Tiv. Při jejím určení předpokládáme, že k nasycení (vzhledem k rovinnému vodnímu povrchu) dojde za stálého tlaku vypařováním vody do uvažované vzduchové částice, jíž se odnímá teplo spotřebované na výpar. Tuto teplotu lze vypočítat podle vzorce
Tiv=TL wv(wsw) cp,
kde T značí teplotu vzduchu, Lwv latentní teplo vypařování, cp měrné teplo vzduchu při stálém tlaku, w a ws skutečný směšovací poměr vodní páry, resp. směšovací poměr vodní páry odpovídající stavu nasycení.
Izobarická vlhká teplota je vždy vyšší než adiabatická vlhká teplota. Spolu s ní se v meteorologii používá k analýze termodyn. vlastností vzduchových hmot. Přejdeme-li na termodyn. diagramu z bodu určeného teplotou Tiv v uvažované tlakové hladině po nasycené adiabatě do hladiny 1 000 hPa, zjistíme na teplotní stupnici izobarickou vlhkou potenciální teplotu.
2. v meteorologii běžné zkrácené označení pro teplotu vlhkého teploměru, která se v ideálním případě (z hlediska funkce vlhkého teploměru a na něj působících vnějších faktorů) blíží izobarické vlhké teplotě. Ztotožňování teoreticky určené izobarické vlhké teploty a změřené teploty vlhkého teploměru, k čemuž někdy v praxi dochází, však není zcela přesné.
česky: teplota vlhká; angl: wet-bulb temperature; slov: vlhká teplota; rus: температура смоченного термометра  1993-a1
Temperatur des trockenen Thermometers f
teplota udávaná suchým teploměrem psychrometru, který je v dobrém tepelném kontaktu se vzduchem, správně ventilovaný a dokonale chráněný před přímým slunečním zářením. Jde o teplotu vzduchu v met. významu. Nevhodně je někdy označována jako suchá teplota.
česky: teplota suchého teploměru; angl: dry-bulb temperature; slov: teplota suchého teplomeru; rus: температура по сухoму ртутному термометру  1993-a2
Temperatur f
jedna ze zákl. fyz. veličin, která je mírou stř. kinetické energie termického pohybu molekul. Její jednotkou je v soustavě SI kelvin (K), v met. praxi se používají nebo používaly i jiné teplotní stupnice. Mezi meteorologické prvky patří především teplota vzduchu a teplota půdy.
Termín je odvozen od slova teplý, které obsahuje indoevr. kořen *tep- „být teplý“.
česky: teplota; angl: temperature; slov: teplota; rus: температура  1993-a3
Temperatur im Hebunbskondensationsniveau f
syn. teplota kondenzační adiabatická – teplota, při níž vzduchová částice ochlazovaná adiabaticky při konstantním směšovacím poměru dosáhne nasycení. Graficky je určena průsečíkem suché adiabaty, procházející bodem o daných souřadnicích p a T, s izogramou, procházející teplotou rosného bodu v izobarické hladině p. Tuto teplotu nelze zaměňovat s teplotou rosného bodu, i když v obou případech jde o teplotu částice přivedené k nasycení při konstantním směšovacím poměru. Nasycení je však u teploty kondenzační hladiny dosahováno dějem adiabatickým, zatímco u teploty rosného bodu dějem izobarickým. Teplota výstupné kondenzační hladiny je vždy nižší než teplota rosného bodu, jen v případě nasycené vzduchové částice se obě teploty rovnají a jsou shodné s teplotou vzduchu. Viz též teplota konvekční kondenzační hladiny.
česky: teplota výstupné kondenzační hladiny; angl: temperature of lifting condensation level; slov: teplota výstupnej kondenzačnej hladiny; rus: температура уровня конденсации  1993-a1
Temperatur im konvektiven Kondensationniveau f
česky: teplota konvekční kondenzační hladiny; angl: temperature of the convection condensation level; slov: teplota konvekčnej kondenzačnej hladiny; rus: температура конвективного уровня конденсации  1993-a1
Temperatur in Grad Celsius f
česky: teplota Celsiova; angl: Celsius temperature; slov: Celziova teplota; rus: температура в градусах Цельсия  1993-a1
Temperatur in Grad Reaumur f
česky: teplota Réaumurova; angl: Réaumur temperature; slov: Réaumurova teplota; rus: температура в градусах Реомюра  1993-a1
Temperatur in Kelvin f
česky: teplota Kelvinova; angl: Kelvin temperature; slov: Kelvinova teplota; rus: температура в градусах Кельвина  1993-a3
Temperaturfeld n
spojité skalární pole teploty, v meteorologii nejčastěji teploty vzduchu. To se vyznačuje často složitými vertikálními profily teploty vzduchu a větší složitostí v blízkosti zemského povrchu než ve volné atmosféře. Největší horizontální teplotní gradienty se vyskytují na teplotních rozhraních a při zemi i na pomezí ploch s rozdílným aktivním povrchem. Teplotní pole se analyzuje nejčasěji ve výšce 2 m nad zemským povrchem a v jednotlivých izobarických hladinách. Zobrazovat se může pomocí izoterem, časové změny teplotního pole se znazorňují izalotermami. Na mapách relativní barické topografie se ke znázornění teplotního pole a jeho časových změn používají relativní izohypsy, resp. rel. izalohypsy.
V meteorologii se dále sledují pole teploty půdy, teploty povrchu pevniny, teploty povrchu moře apod. Viz též pole termobarické.
česky: pole teplotní; angl: temperature field; slov: teplotné pole; rus: поле температуры  1993-a3
Temperaturgradient m
1. gradientteplotním poli směřující kolmo k izotermickým plochám. V meteorologii zpravidla vyjadřuje změnu teploty vzduchu, popř. teploty půdy, na jednotkovou vzdálenost ve směru maximálního poklesu teploty T. Jeho vektor je tak určen záporně vzatými parciálními derivacemi podle kartézských souřadnic x, y, z (–∂T/∂x, –∂T/∂y, –∂T/∂z). Obvykle uvažujeme odděleně horizontální a vertikální složku gradientu teploty vzduchu, přičemž horizontální teplotní gradient bývá až na výjimky podstatně menší než vertikální teplotní gradient.
2. změna teploty vertikálně se pohybující vzduchové částice vztažená na jednotku vzdálenosti, viz gradient teplotní adiabatický.
česky: gradient teplotní; angl: temperature gradient; slov: teplotný gradient; fr: gradient thermique m, gradient de température m; rus: градиент температуры  1993-a3
Temperaturinversion f
nevh. zvrat teploty – zvláštní případ vert. rozložení teploty vzduchu, při kterém v určité vrstvě atmosféry, v tzv. inverzní vrstvě, teplota s nadm. výškou vzrůstá. Podle výšky inverzní vrstvy nad zemí rozlišujeme přízemní a výškovou inverzi teploty vzduchu, podle příčiny vzniku např. inverzi teploty vzduchu advekční, frontální, radiační, subsidenční, turbulentní a pasátovou. Inverze teploty vzduchu mají značný význam mimo jiné proto, že stabilní teplotní zvrstvení ovzduší v inverzní vrstvě brzdí promíchávání vzduchu ve vert. i horiz. směru. Tím dochází v nižších a zvláště v uzavřených polohách k vytváření mlh, jezer studeného vzduchu se silnými mrazy v zimě, v průmyslových a městských oblastech s větší hustotou zdrojů znečištění ovzduší ke zvýšeným koncentracím znečišťujících látek, vzniku smogu apod. V oblasti dolní hranice výškových inverzí teploty se často vytváří vrstevnatá oblačnost, která zejména v zimě způsobuje výrazné zkrácení slunečního svitu v nižších polohách oproti nadinverzním horským polohám. Inverze teploty vzduchu charakterizujeme výškou, v níž ji pozorujeme, tloušťkou (vert. rozsahem) vrstvy, v níž teplota vzduchu s výškou vzrůstá, a teplotním gradientem v této vrstvě. Někdy se nepřesně hovoří o „intenzitě" inverze jako rozdílu mezi teplotou horní a spodní hranice inverze. Nejpříznivější podmínky pro vznik inverzí teplot vzduchu jsou v kvazistacionárních anticyklonách. Viz též izotermie, oblak vrstevnatý, oblačnost inverzní.
česky: inverze teploty vzduchu; angl: air temperature inversion; slov: inverzia teploty vzduchu; rus: инверсия температуры воздуха  1993-a3
Temperaturleitfähigkeit f
veličina a, definovaná vztahem
a=kρc,
kde k je koeficient tepelné vodivosti, ρ hustota a c měrné teplo daného prostředí. Jedná-li se o prostředí plynné, potom jako c používáme měrné teplo při stálém tlaku cp. Koeficient teplotní vodivosti charakterizuje schopnost prostředí přenášet teplotní změny. V případě turbulentního přenosu tepla je totožný s koeficientem turbulentní difuze pro teplo.
česky: koeficient teplotní vodivosti; angl: coefficient of thermometric conductivity; slov: koeficient teplotnej vodivosti; rus: коэффициент температуропроводности  1993-a1
Temperaturleitungskoeffizient m
veličina a, definovaná vztahem
a=kρc,
kde k je koeficient tepelné vodivosti, ρ hustota a c měrné teplo daného prostředí. Jedná-li se o prostředí plynné, potom jako c používáme měrné teplo při stálém tlaku cp. Koeficient teplotní vodivosti charakterizuje schopnost prostředí přenášet teplotní změny. V případě turbulentního přenosu tepla je totožný s koeficientem turbulentní difuze pro teplo.
česky: koeficient teplotní vodivosti; angl: coefficient of thermometric conductivity; slov: koeficient teplotnej vodivosti; rus: коэффициент температуропроводности  1993-a1
Temperaturleitzahl f
veličina a, definovaná vztahem
a=kρc,
kde k je koeficient tepelné vodivosti, ρ hustota a c měrné teplo daného prostředí. Jedná-li se o prostředí plynné, potom jako c používáme měrné teplo při stálém tlaku cp. Koeficient teplotní vodivosti charakterizuje schopnost prostředí přenášet teplotní změny. V případě turbulentního přenosu tepla je totožný s koeficientem turbulentní difuze pro teplo.
česky: koeficient teplotní vodivosti; angl: coefficient of thermometric conductivity; slov: koeficient teplotnej vodivosti; rus: коэффициент температуропроводности  1993-a1
Temperaturschichtung f
syn. stratifikace atmosféry teplotní – průběh teploty vzduchu s výškou, vyjádřený vertikálním profilem teploty vzduchu, resp. vertikálním teplotním gradientem γ. V troposféře teplota s výškou obvykle klesá, tedy γ > 0; může však nastat i izotermie (γ = 0) nebo inverze teploty vzduchu (γ < 0). Vztah mezi hodnotou γ v určité hladině atmosféry, suchoadiabatickým teplotním gradientem γD a nasyceně adiabatickým teplotním gradientem γS určuje vertikální stabilitu atmosféry. Jestliže v suchém nebo nenasyceném vzduchu γ = γD, označujeme teplotní zvrstvení jako indiferentní; při γ < γD jde o stabilní zvrstvení, při γ > γD je teplotní zvrstvení atmosféry instabilní, viz absolutní instabilita atmosféry. V nasyceném vzduchu platí totéž při γ = γS, γ < γS (viz absolutní stabilita atmosféry) a γ > γS. Podmíněně instabilní zvrstvení, kdy γ < γD a zároveň γ > γS, způsobuje podmíněnou instabilitu atmosféry. Viz též vrstva inverzní, vrstva zadržující.
česky: zvrstvení atmosféry teplotní; angl: thermal stratification; slov: teplotné zvrstvenie ovzdušia; rus: температурная стратификация атмосферы  1993-a3
Temperaturschichtungskurve f
grafické vyjádření průběhu teploty vzduchu s výškou (tlakem) na termodynamickém diagramu. Křivku teplotního zvrstvení sestrojujeme především na základě údajů z radiosond.
česky: křivka teplotního zvrstvení; angl: lapse rate curve, temperature stratification curve; slov: krivka teplotného zvrstvenia; rus: кривая температурной стратификации  1993-a2
Temperaturskala f
kvantitativní vyjádření teploty, v meteorologii především teploty vzduchu. Nejvíce rozšířenou je Celsiova teplotní stupnice, která nahradila starší stupnici Réaumurovu; v anglosaském světě se nadále používá stupnice Fahrenheitova. V termodynamice se používá Kelvinova teplotní stupnice, pokusem o její kombinaci s Fahrenheitovou stupnicí byla stupnice Rankinova.
česky: stupnice teplotní; angl: temperature scale; slov: teplotná stupnica; rus: температурная шкала  2023
Temperatursturz m
starší nevh. syn. pro termín inverze teploty vzduchu.
česky: zvrat teploty; angl: abrupt change of temperature; slov: zvrat teploty; rus: резкое изменение температуры  1993-a2
Temperatursumme f
charakteristika teplotního režimu místa nebo oblasti, která se v meteorologii používá buď k porovnání teplotních poměrů různých míst ve stejném období nebo na jedné stanici k porovnání teplotních poměrů v jednotlivých letech. Stanovuje se jako:
1. součet teploty vzduchu, obvykle průměrné denní teploty zaznamenané za zvolené období, např. součet všech denních průměrů teploty vzduchu za vegetační období;
2. součet odchylek teploty vzduchu od referenční teploty za zvolené období. V teplém ročním období se zpravidla počítají součty odchylek teploty převyšující referenční teplotu, tj. např. 5, 10, nebo 15 °C, v zimním období sumy záporné teploty. Má praktické uplatnění v zemědělství, klimatologii, klimatologické rajonizaci a tech. praxi.
česky: suma teplot; angl: accumulated temperatures, sum of temperatures; slov: teplotná suma, suma teplôt; rus: сумма температур  1993-a3
Temperaturveränderung durch Luftmassentransformation f
lokální časová změna teploty v libovolné hladině vzduchové hmoty (z = konst. nebo p = konst.) s vyloučením vlivu horiz. advekce. Transformační změny teploty se studují v souřadnicové soustavě, pohybující se s danou vzduchovou hmotou a jsou působeny:
a) neadiabatickými ději, k nimž patří především turbulentní výměna tepla mezi podkladem a vzduchovou hmotou, výměna tepla působená radiací a uvolňování latentního tepla při fázových přechodech vody v atmosféře;
b) vert. pohyby řádu cm.s–1, které se uplatňují především ve volné atmosféře;
c) lokálními časovými změnami tlaku vzduchu. Jejich vliv je významnější jen při mimořádně velkých tlakových tendencích. Transformační změny teploty vzduchu se dají vypočítat z rovnice pro lokální časovou změnu teploty, kterou lze odvodit z první hlavní termodynamické věty. Transformační změny teploty vzduchu lze měřit např. pomocí transoceánských sond.
česky: změna teploty vzduchu transformační; angl: transformation change of air temperature; slov: transformačná zmena teploty vzduchu; rus: трансформационное изменение температуры воздуха  1993-a3
Tendenzgleichung der relativen Topographie f
rovnice, která popisuje změny tloušťky vrstvy mezi zvolenými izobarickými plochami. Má tvar
ht=Rg p1p2[ vxTxvy Ty+ω(α cpTp )+1cpdq dt ]d( lnp),  p1< p2,
který odvodíme z barometrické formule integrací podle tlaku p, derivací podle času t a dalšími úpravami, symbol h značí tloušťku vrstvy mezi izobarickými hladinami p1 a p2, R je měrná plynová konstanta vzduchu, T průměrná teplota uvažované vrstvy, g velikost tíhového zrychlení, vx, vy představuje x, resp. y složku rychlosti proudění v p-systému, ω vertikální rychlost v p-systému, α měrný objem vzduchu, cp měrné teplo vzduchu při stálém tlaku a dq/dt vyjadřuje množství přijatého nebo vydaného tepla neadiabatickými ději v jednotce hmotnosti vzduchu za jednotku času. Tato rovnice byla spolu s rovnicí vorticity využívána v baroklinních modelech atmosféry. Viz též rovnice tlakové tendence.
česky: rovnice tendence relativní topografie; angl: tendency equation, tendency of relative topography equation; slov: rovnica tendencie relatívnej topografie; rus: уравнение тенденции относительной топографии  1993-a1
Tephigramm n
druh aerologického diagramu s pravoúhlými nebo kosoúhlými souřadnicovými osami T a Φ, kde T je teplota vzduchu v K (v některých verzích tefigramu ve °C) a Φ entropie suchého vzduchu. Protože entropie je úměrná logaritmu potenciální teploty Θ podle vztahu:
Φ=cplnΘ+konst.,
kde cp je měrné teplo vzduchu při stálém tlaku, má osa y současně stupnici lnΘ. Tento energetický diagram se používal zejména v anglosaských zemích.
Termín zavedl autor tohoto diagramu, brit. meteorolog W. N. Shaw v r. 1923. Sestavil ho z prvních dvou písmen slova temperature „teplota“, názvu řeckého písmene Φ [fí] a řec. γράμμα [gramma] „písmeno, zápis“.
česky: tefigram; angl: tephigram; slov: tefigram; rus: тефиграмма  1993-a2
termische Frontsparameter m
parametr vhodný pro objektivní frontální analýzu definovaný vztahem:
TFP=-|T |T| T |
První činitel vyjadřuje změnu teplotního gradientu ∇T, druhý činitel pak projekci této změny do směru teplotního gradientu. Termální frontální parametr dosahuje maximální hodnoty v místě největší změny gradientu teploty, typicky tedy v oblasti fronty.
česky: parametr frontální termální; angl: thermal front parameter; slov: frontálny termálny parameter  2015
termodynamisches Gleichgewicht n
z fyzikálního hlediska nejobecnější rovnovážný stav daného systému, v němž neprobíhají žádné makroskopické změny, všechny termodynamické veličiny jsou v čase konstantní, neuskutečňuje se žádná výměna hmoty a energie s okolím daného systému ani uvnitř něho neprobíhá žádný transport hmoty a energie. Ve stavu termodynamické rovnováhy nemohou v systému samovolně probíhat žádné mechanické, tepelné, chemické, fázové apod. změny.
česky: rovnováha termodynamická; angl: thermodynamic equilibrium; slov: termodynamická rovnováha  2018
terrestrische Strahlung f
dlouhovlnné záření, které soustava Země – atmosféra vyzařuje do kosmického prostoru. Jeho intenzita vzrůstá s teplotou této soustavy. Uvedený přenos energie se uskutečňuje jako záření zemského povrchu a záření atmosféry.
česky: záření Země; angl: terrestrial radiation; slov: žiarenie Zeme; rus: земная радиация, излучение Земли  1993-a3
terrestrische Strahlungsbilanz f
bilance radiační dlouhovlnná – bilance dlouhovlnného záření v dané hladině atmosféry nebo na zemském povrchu. Je rozdílem záření atmosféry směřujícího dolů a zemského záření směřujícího nahoru, které je tvořeno zářením zemského povrchu směřujícím nahoru, odraženým zářením atmosféry a zářením atmosféry směřujícím nahoru.
česky: bilance zemského záření; angl: net terrestrial radiation, terrestrial radiation balance; slov: bilancia zemského žiarenia; fr: radiation terrestre f, bilan global « ondes longues » m; rus: баланс земной радиации  1993-a1
terrestrische Strahlungshaushalt f
bilance radiační dlouhovlnná – bilance dlouhovlnného záření v dané hladině atmosféry nebo na zemském povrchu. Je rozdílem záření atmosféry směřujícího dolů a zemského záření směřujícího nahoru, které je tvořeno zářením zemského povrchu směřujícím nahoru, odraženým zářením atmosféry a zářením atmosféry směřujícím nahoru.
česky: bilance zemského záření; angl: net terrestrial radiation, terrestrial radiation balance; slov: bilancia zemského žiarenia; fr: radiation terrestre f, bilan global « ondes longues » m; rus: баланс земной радиации  1993-a1
Tertiär n
syn. terciér.
česky: třetihory; angl: Tertiary; slov: treťohory  2018
Tertiär n
syn. třetihory – vžité označení pro starší část kenozoika, zahrnující období před 66 – 2,588 mil. roků. Zahrnuje dvě periody, paleogén a neogén, na nějž navazuje kvartér neboli čtvrtohory.
Termín zavedl v r. 1760 it. geolog G. Arduino; pochází z lat. tertiarius „třetí v pořadí, třetího druhu“ (od tertius „třetí“), tedy ve smyslu „třetí geologické období“.
česky: terciér; angl: Tertiary; slov: terciér  2018
tertiäre Zirkulation f
podle H. C. Willeta označení pro systémy místní cirkulace, cirkulaci v Cb aj. Viz též cirkulace primární, cirkulace sekundární, cirkulace buňková.
česky: cirkulace terciární; angl: tertiary circulation; slov: terciárna cirkulácia; fr: circulation tertiaire f; rus: третичная циркуляция  1993-a3
tertiärer Regenbogen m
syn. duha terciární – duha vzniklá lomem a trojnásobným vnitřním odrazem slunečních paprsků na dešťových kapkách. Nachází se na opačné straně oblohy než duha hlavní a duha vedlejší v úhlové vzdálenosti asi 43° od Slunce. Je to vzácný opt. úkaz.
česky: duha kolem Slunce; angl: tertiary rainbow; slov: dúha okolo Slnka; fr: arc tertiaire m; rus: третичная радуга  1993-a1
tertiärer Regenbogen m
česky: duha terciární; angl: tertiary rainbow; slov: terciárna dúha; fr: arc tertiaire m; rus: третичная радуга  1993-a1
Test m
dříve používaný termín pro kalibraci meteorologických přístrojů.
Termín je odvozen od slova cejch, které pochází z něm. Zeichen „znamení, značka“.
česky: cejchování; angl: calibration, test; slov: ciachovanie; fr: étallonage m, calibration f; rus: калибровка  1993-a3
Theorie der Niederschlagsbildung durch Koaleszenz f
syn. teorie koalescenční – teorie vzniku srážek vypadávajících především v tropických oblastech z teplých oblaků, v nichž vývoj srážkových částic nemůže probíhat za účasti ledové fáze. Základem vysvětlení je určitý počet oblačných kapek značně větších než většina ostatních, přičemž větší kapky se ve výstupném proudu pohybují pomaleji a mohou koalescencí s malými kapkami růst. Narostou-li do takových rozměrů, že jejich pádová rychlost převýší rychlost výstupných pohybů vzduchu v oblaku, padají oblakem a během svého pádu dále narůstají koalescencí. Po dosažení kritické velikosti se tříští a větší zbytky rozpadlých kapek jsou pak výstupními pohyby znovu unášeny vzhůru, rostou koalescencí s malými oblačnými kapičkami a celý proces se může opakovat. Tímto způsobem se „řetězovou reakcí" v oblaku zvětšuje počet velkých kapek, které posléze mohou vypadnout ve formě kapalných srážek. Podmínkou účinného působení popsaného mechanismu je velký vodní obsah oblaku a taková výstupná vertikální rychlost, která umožní koalescenční růst kapek do velikosti, že se nevypaří u vrcholku oblaku, ale budou padat dolů a dále růst koalescencí.
Příčina počátečního rozdílu ve velikosti kapek není jednoznačně určena. Velké kapky mohou vznikat přednostně na řídkých obřích kondenzačních jádrech, mohou být důsledkem změn vertikální rychlosti nebo koncentrace kondenzačních jader v oblasti kondenzační hladiny.
Ve středních zeměpisných šířkách se koalescence může při vzniku srážek významněji uplatňovat zejména v konvektivních oblacích jako doplnění procesů probíhajících dle teorie vzniku srážek ledovým procesem. Viz též instabilita oblaku koloidní.
česky: teorie vzniku srážek koalescencí; angl: coalescence theory; slov: koalescenčná teória vzniku zrážok; rus: теория столкновений  1993-a3
Theorie der Niederschlagsbildung in den mittlere Breiten f.
teorie, která vysvětluje vznik a další růst srážkových částic nutnou účastí ledové fáze. Základem vysvětlení je popis procesů, které probíhají za účasti ledových částic ve vrstevnatých a konvektivních oblacích zejména středních zeměpisných šířek, přičemž tato teorie je rozšířením původní Bergeronovy–Findeisenovy teorie vzniku srážek, která předpokládala vznik ledových srážkových částic pouze depozicí.
Na vývoji srážek ve vrstevnatých oblacích se významně podílí difuze vodní páry uvažovaná  v Bergeronově–Findeisenově teorii. Narostou-li krystalky depozicí do velikosti, při níž jejich pádová rychlost přesahuje výstupnou rychlost v oblaku, budou padat k zemi a na své cestě mohou dále růst zachycováním a namrzáním přítomných přechlazených vodních kapek. V nižších, teplejších vrstvách atmosféry pak mohou roztát a měnit se na dešťové kapky. Ve vrstevnatých oblacích je pro pomalý růst prostřednictvím depozice k dispozici dostatek času, navíc zde kvůli relativně malé výstupné rychlosti řádu 0,1 m/s mohou začít propadat oblakem i krystaly menší velikosti.
V konvektivních oblacích s vertikální rychlostí řádu 1 – 10 m/s a při velké turbulenci se uplatňuje nejprve heterogenní nukleace na kondenzačních jádrech, na nichž se tvoří zárodečné kapky. Další růst oblačných kapek probíhá prostřednictvím koalescence, při níž rostou přednostně větší kapky zachycováním kapek menších. Po výstupu do oblasti záporných teplot může probíhat několik variant vzniku a růstu ledových částic.  Kromě heterogenní nukleace na sublimačních jádrech dochází k mrznutí kapek obsahujících jádra původně kondenzační a proces růstu ledových částic zachycováním se zásadně mění. Při všech srážkách termodynamicky stabilních ledových částic s termodynamicky nestabilními přechlazenými kapkami rostou ledové částice mrznutím zachycených kapek podstatně rychleji než při růstu depozicí. Po pádu pod nulovou izotermu mohou tyto ledové částice roztát obdobně jako v případě vrstevnatých oblaků.
česky: teorie vzniku srážek ledovým procesem; angl: rain formation theory by ice phase process; slov: teória vzniku zrážok vo miernych šírkach; rus: теория осадкообразования в умеренных широтах.  2022
Theorie der Niederschlagsbildung nach Bergeron-Findeisen f
teorie, která připisuje vznik srážkových částic ve smíšených oblacích růstu ledových krystalků depozicí na úkor vypařujících se vodních kapek. Základem vysvětlení je skutečnost, že při dané teplotě pod bodem mrazu je hodnota tlaku nasycené vodní páry nad ledem nižší než hodnota tlaku nasycené vodní páry nad vodou. Největší rozdíl mezi oběma hodnotami je při –12 °C. V oblaku nebo v jeho části, která sestává z drobných kapiček přechlazené vody, odpovídá tlak vodní páry hodnotě nasycení nad vodou a vodní pára nad ledem je tedy přesycená. Dojde-li ke vzniku ledových krystalků heterogenní nukleací na depozičních jádrech, mohou krystalky v prostředí přesyceném vzhledem k ledu růst depozí vodní páry na úkor vypařujících se vodních kapek. Narostou-li krystalky do dostatečné velikosti, kdy budou padat k zemi, porostou na své cestě dále zachycováním a namrzáním přechlazených kapek. V nižších, teplejších vrstvách oblaku pak ledové částice případně tají a mění se v dešťové kapky.
Základy této teorie, kterou dnes považujeme za součást teorie vzniku srážek ledovým procesem, položil švédský meteorolog T. Bergeron v roce 1935 a teorii rozvinul něm. fyzik W. Findeisen v roce 1938. Část této teorie, vztahující se ke vzniku a růstu krystalků heterogenní nukleací ledu, popsal již v roce 1911 A. Wegener. Proto se tento proces růstu ledových částic a jejich transformace na déšť někdy označuje jako Bergeronův–Findeisenův–Wegenerův.
česky: teorie vzniku srážek Bergeronova–Findeisenova; angl: Bergeron-Findeisen theory; slov: Bergeronova-Findeisenova teória vzniku zrážok; rus: теория Бержерона-Финдейзена, теория осадкообразования Бержерона-Финдейзена  1993-b3
Theorie der thermischen Zyklogenese f
teorie, podle níž se rozhodující význam pro vznik cyklony přisuzuje rozdělení a změnám teploty vzduchu. Vznikla koncem 19. století, kdy se předpokládalo, že první impulz ke vzniku cyklony dává místní kladná odchylka teploty podkladu a přízemní vrstvy atmosféry. Vznikají-li místní teplotní rozdíly v důsledku nerovnoměrného přehřívání spodní troposféry, mluvíme o konv. teorii cyklogeneze; dochází-li k teplotním změnám nad určitou lokalitou v důsledku advekce, potom se používá názvu advekční teorie cyklogeneze. Při termické cyklogenezi u zemského povrchu se cyklonální cirkulace postupně rozšiřuje do vyšších hladin. Ve volné atmosféře se tak termická cyklogeneze projevuje zpravidla vývojem brázdy nízkého tlaku vzduchu. Tato teorie je z hlediska současných poznatků již překonána. Viz též cyklona termická (místní).
česky: teorie cyklogeneze termická; angl: thermal theory of cyclogenesis; slov: termická teória cyklogenézy; rus: термическая теория циклонообразования  1993-a3
Theorie der Zyklogenese f
souhrnné označení pro teorie vzniku cyklon, popř. zesílení cyklonální cirkulace. V historii meteorologie byla vypracována řada teorií cyklogeneze, z nichž nejvýznamnější byly teorie cyklogeneze advekčně dynamická, divergenčnítermická a vlnová. Jejich společným znakem bylo, že si všímaly jen určitých vybraných dějů probíhajících v atmosféře a neřešily otázku vzniku a vývoje cyklony komplexně. Viz též cyklogeneze, cyklolýza, anticyklogeneze, anticyklolýza.
česky: teorie cyklogeneze; angl: theory of cyclogenesis; slov: teória cyklogenézy; rus: теория циклогенеза, теория циклонообразования  1993-a3
Thermik f
v meteorologii širší pojem označující:
a) stabilní a silné vertikální konvektivní pohyby, kterých mohou využívat např. kroužící ptáci a plachtaři k získávání výšky. Tyto termiky bývají dále označovány jako čisté, spojené jen s termickou konvekcí bezoblačnou nebo oblačnou, nebo jako větrné, na jejichž vzniku se podílí zejména mechanická turbulence. V letecké terminologii se užívá též pojmu termické stoupavé proudy nebo slang, „termika". Mají horiz. rozměry v řádu desítek až stovek m, vert. několik stovek až tisíců metrů;
b) v oboru met. měření, zejména prováděných sodary, vzduchové bubliny o vzájemně různé teplotě nebo i vlhkosti, které vznikají buď při formování uspořádaných termických vert. proudů nebo po dosažení hladiny inverze teploty vzduchu těmito stoupavými proudy. Takto pojímané termiky mající rozměr řádově jednotek metrů, vyvolávají akust. ozvěnu.
česky: termiky; angl: thermals; slov: termiky; rus: термики  1993-a1
Thermikschlauch m
termín používaný především piloty bezmotorových letadel a označující zónu termicky podmíněných výstupných proudů, které svou strukturou připomínají poměry uvnitř komína. Pole vertikálních rychlostí v termickém komíně je složité následkem interakce s celkově horiz. pohybem okolního vzduchu; okrajové části komína se vyznačují brzděním vystupujícího vzduchu, čímž se ve větších výškách vytvářejí víry převážně s horiz. osou, zatímco v centrální části komína má pohyb vzduchu často spirálovitý charakter. V důsledku poklesu tlaku vzduchu se průměr termického komína s výškou zvětšuje a účinkem výškového větru se komín naklání. Viz též termiky.
česky: komín termický; slov: termický komín  1993-a2
thermisch asymmetrische Antizyklone f
anticyklona, ve které se vyskytují v horiz. směru dost značné teplotní rozdíly. Na sev. polokouli je nejčastěji vých. a jv. část anticyklony studená, zatímco záp. a sz. část teplá. Rozdíly mezi teplou a stud. částí anticyklony dosahují obvykle 5 až 15 °C. Termicky asymetrické anticyklony bývají většinou uzavírajícími anticyklonami, které ukončují sérii cyklon.
česky: anticyklona termicky asymetrická; angl: thermal asymmetric anticyclone; slov: termicky asymetrická anticyklóna; fr: anticyclone cyclone à cœur chaud/froid asymétrique m; rus: термически асимметричный антициклон  1993-a2
thermisch asymmetrische Zyklone f
frontální cyklona, ve které, především v její přední a týlové části, svírají na synoptické mapě izotermy a izohypsy velký úhel advekce. Teplou advekci v přední části termicky asymetrické cyklony ukončuje čára teplé fronty, čára studené fronty vyznačuje počátek studené advekce v týlové části cyklony. Oblast teplého vzduchu mezi zmíněnými frontálními čarami tvoří teplý sektor cyklony, který v počátečním stadiu vývoje zasahuje na sev. polokouli obvykle z již. části cyklony do jejího středu a bývá nejlépe vyjádřen v izobarické hladině 850 hPa. V pozdějším vývojovém stadiu frontální cyklony se teplý sektor zužuje, posouvá se do přední části cyklony a projevuje se i ve vyšších hladinách nebo na mapách relativní topografie. V zahraniční odborné literatuře se pro termicky asymetrickou cyklonu obvykle používá označení baroklinní cyklona. Viz též jazyk studeného vzduchu, jazyk teplého vzduchu.
česky: cyklona termicky asymetrická; angl: baroclinic cyclone, thermal asymmetric cyclone; slov: termicky asymetrická cyklóna; fr: cyclone asymétrique à coeur chaud/froid m; rus: термически асимметричный циклон  1993-a3
thermisch symmetrische Antizyklone f
anticyklona, v níž jsou malé teplotní rozdíly v horiz. směru mezi jejími jednotlivými částmi. Termicky symetrické anticyklony jsou především kvazistacionární anticyklony, které mohou být teplé nebo studené; teplé jsou subtropické anticyklony; do studených lze zahrnout arktickou a antarktickou anticyklonu a dále pak všechny kontinentální anticyklony.
česky: anticyklona termicky symetrická; angl: thermal symmetric anticyclone; slov: termicky symetrická anticyklóna; fr: anticyclone cyclone à cœur chaud/froid symétrique m; rus: термически симметричный антициклон  1993-a3
thermisch symmetrische Zyklone f
cyklona, v níž jsou při zemi izobary a izotermy, ve volné atmosféře izohypsy a izotermy, téměř rovnoběžné. Termicky symetrické cyklony jsou většinou studené cyklony, v nichž výskyt rel. nejnižších teplot souhlasí se středem cyklony. Termicky symetrické cyklony jsou i nízké cyklony, které vznikají v důsledku termické nebo orografické cyklogeneze. V zahraniční odborné literatuře se pro termicky symetrickou cyklonu obvykle používá označení barotropní cyklona.
česky: cyklona termicky symetrická; angl: barotropic cyclone, thermal symmetric cyclone; slov: termicky symetrická cyklóna; fr: cyclone symétrique à coeur chaud/froid m; rus: термически симметричный циклон  1993-a3
thermische Antizyklogenese f
anticyklogeneze vedoucí ke vzniku nebo mohutnění studené anticyklony vlivem neadiabatického ochlazení vzduchu od aktivního povrchu, popř. vlivem výrazné studené advekce. Tímto způsobem vznikají např. nízké anticyklony nad pevninou v zimě a termické anticyklony relativně malého rozsahu.
česky: anticyklogeneze termická; angl: thermal anticyclogenesis; slov: termická anticyklogenéza; fr: anticyclogénèse thermique f; rus: термический антициклогенез  1993-a3
thermische Antizyklone f
nízká, studená a kvazistacionární anticyklona rel. malého rozsahu, tvořená v zimním období stagnujícím stud. vzduchem, ochlazovaným od zemského povrchu. Viz též anticyklogeneze termická.
česky: anticyklona termická; angl: thermal anticyclone; slov: termická anticyklóna; fr: anticyclone thermique m; rus: термический антициклон  1993-a3
thermische Effizienz f
syn. efektivnost tepelná – v klimatologii charakteristika teplotních poměrů určitého místa z hlediska růstu rostlin za předpokladu dostatku vláhy. Princip navrhli B. E. a G. J. Livingstonovi a použil ho C. W. Thornthwaite ve své klasifikaci klimatu. Thornthwaitův index tepelné účinnosti, označovaný jako T/E, udává roč. sumu hodnot teploty vyšší než práh pro vegetační období, což je např. pro hrách 40 °F (+4,4 °C) a pro kukuřici 50 °F (10 °C). Určité hodnoty indexu T/E sloužily k vymezení klimatických oblastí, tzv. provincií, podle teplotního charakteru.
česky: účinnost tepelná; angl: thermal efficiency; slov: tepelná účinnosť; rus: термическая эффективность  1993-a2
thermische Effizienz f 
česky: efektivnost tepelná; angl: thermal efficiency; slov: tepelná efektívnosť; fr: efficacité thermique f; rus: тепловая эффективность  1993-a1
thermische Instabilität der Atmosphäre f
vertikální instabilita atmosféry vyvolaná insolačním ohříváním zemského povrchu a způsobující termickou konvekci. Při překročení konvektivní teploty dochází k vývoji konvektivních oblaků. Množství oblaků vznikajících v důsledku termické instability atmosféry se vyznačuje výrazným denním chodem obvykle s maximem v odpoledních hodinách. V našich podmínkách je nejběžnějším druhem instability.
česky: instabilita atmosféry termická; angl: thermal instability of atmosphere; slov: termická instabilita ovzdušia; rus: термическая неустойчивость атмосферы  1993-a3
thermische Kontinentalität f
zákl. druh kontinentality klimatu, podmíněný specifickými tepelnými vlastnostmi aktivní vrstvy pevniny. Je silně ovlivněna tvary reliéfu, přičemž je větší v údolích a kotlinách než na hřebenech hor. Projevuje se především velmi výrazným ročním chodem teploty vzduchu i zvýrazněním jejího denního chodu, s výskytem ročního maxima i minima brzy po slunovratech. Míru termické kontinentality, resp. oceánity klimatu lze zjednodušeně vyjádřit pomocí prům. roční amplitudy teploty vzduchu, ta je nicméně ovlivňována i radiačními klimatotvornými faktory, proto místa s různou zeměp. šířkou musí být porovnána pomocí některého indexu kontinentality.
česky: kontinentalita klimatu termická; angl: thermal continentality of climate; slov: termická kontinentalita klímy; rus: термическая континентальность климата  1993-a3
thermische Konvektion f
konvekce vyvolaná izobarickou změnou teploty vzduchu zpravidla jeho ohřátím u zemského povrchu, a to nejčastěji v důsledku insolace. V případě noční termické konvekce působí naopak radiační ochlazování ve vyšších hladinách. V závislosti na teplotním zvrstvení atmosféry může být termická konvekce mělká nebo vertikálně mohutná. Termická konvekce bývá doprovázena termickou turbulencí. Pro termickou konvekci se zvláště ve sportovním letectví používá slang. označení „termika". Viz též termiky, komín termický.
česky: konvekce termická; angl: thermal convection; slov: termická konvekcia; rus: термическая конвекция  1993-a3
thermische Schichtung der Atmosphäre f
česky: stratifikace atmosféry teplotní; slov: stratifikácia  1993-a2
thermische Turbulenz f
turbulence vznikající vlivem lokálního výskytu vztlaku v nehomogenním teplotním poli. V hydrodynamice a aerodynamice je považována za projev termické konvekce. Při vymezení pojmu konvekce, obvyklém v meteorologii, jsou však rozměry konvektivních buněk nebo uspořádaných výstupných konvektivních proudů a kompenzačních sestupných proudů řádově větší než rozměry turbulentních vírů. Někteří autoři sice považují pojmy termická turbulence a termická konvekce za synonymické, tento přístup je však možné přijmout jen v případech velmi slabé konvekce, kdy nemůžeme jednoznačně aplikovat uvedené velikostní rozlišení charakteristických elementů. Viz též termiky.
česky: turbulence termická; angl: thermal turbulence; slov: termická turbulencia; rus: термическая турбулентность  1993-a3
thermische Zirkulation f
syn. cirkulace pobřežní – systém místní cirkulace s denní periodicitou, který se může vytvořit při anticyklonálním počasí nad pobřežní zónou a přilehlou částí moří nebo velkých vodních nádrží. Brízová cirkulace je způsobena rozdíly v denním chodu teploty povrchu pevniny a vodních ploch. Ve dne, kdy je moře nebo jezero chladnější než pevnina, vzniká ve vrstvě vzduchu u zemského povrchu přenos chladnějšího a vlhčího vzduchu z moře na pevninu, tzv. mořská nebo jezerní bríza, která je v noci vystřídána prouděním suššího vzduchu z pevniny, tzv. pevninskou brízou. Nad přízemním prouděním se pak vyskytuje kompenzující protisměrné proudění vzduchu, které uzavírá cirkulační systém o vert. rozsahu maximálně 2 až 4 km. Za daných podmínek klesá intenzita a vertikální rozsah brízové cirkulace s rostoucí vertikální stabilitou atmosféry.
Intenzita brízové cirkulace nejvíce roste v době největšího rozdílu teplot mezi pevninou a vodní plochou, maximum její intenzity pak nastává v době, kdy se velikost horizontálního teplotního gradientu blíží nule, tj. zpravidla těsně po západu, resp. východu Slunce. V případě brízové cirkulace většího prostorového měřítka se ve vyšších zeměp. šířkách objevuje toto maximum dříve vlivem působení Coriolisovy síly, která postupně začne zeslabovat horiz. složku cirkulace kolmou k pobřeží a ovlivňuje tak výraznost a polohu brízové fronty.
Nejpříznivější podmínky pro vznik brízové cirkulace jsou v létě v oblastech subtropických anticyklon, při pobřežích omývaných studeným oceánským proudem, kde se vyskytují největší teplotní rozdíly mezi pevninou a mořem. Zejména v těchto oblastech má brízová cirkulace značný dopad na klima, protože mořská bríza zasahuje poměrně hluboko nad pevninu, kde snižuje denní teplotu vzduchu a zvyšuje jeho vlhkost. Viz též cirkulace terciární.
česky: cirkulace brízová; angl: breeze circulation; slov: brízová cirkulácia; fr: régime de brise m; rus: бризовая циркуляция  1993-a3
thermische Zyklogenese f
cyklogeneze spojená s turbulentním přenosem zjevného tepla od podkladu. Termická cyklogeneze se vyskytuje především nad oblastmi přehřáté pevniny (např. v létě cyklona nad Pyrenejským poloostrovem) nebo při proudění studeného vzduchu nad teplý vodní povrch (např. v zimě cyklona nad Černým mořem).
česky: cyklogeneze termická; angl: thermal cyclogenesis; slov: termická cyklogenéza; fr: formation de dépression thermique f; rus: термический циклогенез  1993-a3
thermischer Äquator m
čára, popř. pás obepínající Zemi a protínající jednotlivé poledníky v místech s nejvyšší prům. teplotou vzduchu redukovanou na hladinu moře, a to buď z hlediska ročního, nebo měsíčního průměru. Pojem termický rovník se používá ve více významech, každopádně není totožný s geogr. rovníkem, neboť jeho poloha je určována mnoha klimatotvornými faktory, především rozložením pevnin a vlastnostmi oceánských proudů. Někdy tak bývá označována nejteplejší rovnoběžka na Zemi (10° s. š.), avšak skutečná spojnice nejteplejších míst zasahuje až k 20° s. š. (v Mexiku) nebo naopak i na jižní polokouli (v Oceánii). Někteří autoři za termický rovník považují pás ohraničený např. prům. roč. izotermou 27 °C, popř. osu tohoto pásu.
V čes. literatuře je častější použití pojmu termický rovník z hlediska průměrné měsíční teploty vzduchu, takže během kalendářního roku mění svou polohu. Tento sezonní pohyb je menší nad oceány, kde poloha termického rovníku odpovídá průměrné poloze intertropické zóny konvergence v dané fázi roku. Nad kontinenty je sezonní pohyb větší v důsledku větší prům. roční amplitudy teploty vzduchu oproti oceánům.
česky: rovník termický; angl: heat equator, thermal equator; slov: termický rovník; rus: тепловой экватор, термический экватор  1993-a3
thermischer Wind m
vektorový rozdíl rychlosti větru v1ve výše ležící hladině z1 a rychlosti větru v2 v níže ležící hladině z2 ( vT=v1v2 , z1>z2, ). Vektor vT směřuje podél izoterem prům. virtuální teploty ve vrstvě vzduchu mezi hladinami z1 a z2 tak, že postavíme-li se čelem po směru vektoru vT, máme na sev. polokouli po pravé ruce vyšší a po levé ruce nižší hodnoty prům. virtuální teploty. Na již. polokouli je tomu naopak. Velikost termálního větru je úměrná hustotě těchto izoterem a vyjadřuje míru baroklinity atmosféry. Zpravidla se vyhodnocuje jako rozdíl skutečné rychlostí větru v hladině 500 a 850 hPa a zakresluje se do map relativní topografie5001000 . Viz též vorticita termální, stáčení větru studené, stáčení větru teplé.
Termín thermal wind navrhl brit. meteorolog E. Gold v dopisu W. N. Shawovi v r. 1917/18.
česky: vítr termální; angl: thermal wind; slov: termálny vietor; rus: термический ветер  1993-a1
thermisches Anemometer n
přístroj, který k měření rychlosti větru využívá zchlazování el. odporového čidla ventilací. Čidlo je tvořeno tenkým (tlouštka řádu jednotek mikrometru) kovovým drátkem (platina, wolfram) a využívá změny odporu většiny kovů s teplotou. Je vyhříváno el. proudem. Měřením změn teploty je stanoven odvod tepla z čidla, jenž výrazně závisí na rychlosti větru. U starších typů je charakteristika čidla značně nelineární. Původně měl proto termoanemometr dostatečnou přesnost jen v poměrně malém rozpětí rychlostí větru. Dnešní termoanemometry svými rozsahy a přesností umožňují i běžná meteorologická měření. Kromě toho se ovšem pro velmi malý rozměr čidla a jeho malou setrvačnost termoanemometru používá především pro určení malých rychlostí větru a turbulentních pulzací při nich. Viz též měření větru, anemometr.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a slova anemometr.
česky: termoanemometr; angl: hot wire anemometer, thermoanemometer; slov: termoanemometer; rus: термоанемометр  1993-a3
thermisches Tief n
oblast sníženého tlaku vzduchu vlivem termických příčin především nad přehřátou pevninou v létě. Viz též cyklona termická.
česky: deprese termická; angl: thermal depression; slov: termická depresia; fr: dépression thermique f; rus: термическая депрессия  1993-a1
thermobarisches Feld n
kombinované teplotní a tlakové pole čili současné prostorové rozložení teploty vzduchu a tlaku vzduchu. Je zobrazováno především na mapách termobarického pole. Viz též teorie cyklogeneze advekčně dynamická.
česky: pole termobarické; angl: thermobaric field; slov: termobarické pole; rus: термобарическое поле  1993-a3
Thermobarometer n
syn. barotermometr – zřídka používaná označení pro hypsometr.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a slova barometr.
česky: termobarometr; angl: hypsometer; slov: termobarometer; rus: гипсометр, термобарометр  1993-a3
Thermobaroskop n
nejstarší přístroj pro měření změn teploty vzduchu, který zkonstruoval G. Galilei (1597) na principu tepelné roztažnosti vzduchu. Šlo o typ teploměru bez vakua s otevřenou trubicí, který proto reagoval rovněž na změny tlaku vzduchu. Viz též teploměr plynový.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“, βάρoς [baros] „tíha, váha“ (srov. bar) a σκοπεῖν [skopein] „pozorovat, zkoumat“.
česky: termobaroskop; slov: termobaroskop; rus: термобароскоп  1993-a2
thermodromischer Quotient m
méně obvyklý index kontinentality k vyjádření termické kontinentality klimatu. Index je založen na porovnání teplotních poměrů jara a podzimu. Počítá se z rovnice
q=100δA
kde δ je rozdíl prům. teploty vzduchu v říjnu a v dubnu a A je průměrná roční amplituda teploty vzduchu. Kladné hodnoty termodromického kvocientu vyjadřují oceánitu klimatu, záporné jeho kontinentalitu; ty se v ČR vyskytují na již. Moravě. Viz též termoizodroma.
Index i jeho označení navrhl F. Kerner von Marilaun v r. 1905.
česky: kvocient termodromický; angl: thermodromic quotient; slov: termodromický kvocient; rus: термодромический коэффициент  1993-a3
Thermodynamik der Atmosphäre f
část meteorologie zabývající se aplikacemi termodyn. zákonů a metod na atmosféru Země. Lze ji rozdělit např. na termodynamiku nenasyceného vzduchu, která popisuje vlhký vzduch jako směs ideálních plynů, a termodynamiku nasyceného vzduchu, studující zejména fázové přechody vody v atmosféře a s nimi spojené transformace energie. K nejlépe prostudovaným a teoreticky popsaným termodyn. procesům v atmosféře patří především adiabatické děje. Poznatky termodynamiky atmosféry se uplatňují prakticky ve všech odvětvích meteorologie, nejvíce ve fyzice oblaků a srážek, v dynamické, synoptické a letecké meteorologii. Za počátek vývoje termodynamiky atmosféry se považuje rok 1843, kdy franc. fyzik J. C. E. Péclet aplikoval Poissonovy rovnice na výstupné vzdušné proudy.
česky: termodynamika atmosféry; angl: atmospheric thermodynamics, thermodynamics of atmosphere; slov: termodynamika atmosféry; rus: термодинамика атмосферы  1993-a2
thermodynamische Luftmassenklassifikation f
rozdělení vzduchových hmot podle termodynamických vlastností. Podle nich rozlišujeme vzduchové hmoty teplé, studené a místní. Studené vzduchové hmoty jsou ty, které při pohybu z ohniska vzniku vzduchové hmoty se dostávají nad teplejší povrch, a teplé vzduchové hmoty ty, které se při pohybu z ohniska dostávají nad chladnější povrch. Podle vert. teplotního zvrstvení rozlišujeme vzduchové hmoty stabilní a instabilní (labilní). Postupující teplé vzduchové hmoty se od chladnějšího povrchu ochlazují a stávají se stabilními, postupující studené vzduchové hmoty se od teplejšího povrchu oteplují, a proto se stávají instabilními. Místní vzduchové hmoty mohou být stabilní i instabilní.
česky: klasifikace vzduchových hmot termodynamická; angl: thermodynamic air masses classification; slov: termodynamická klasifikácia vzduchových hmôt; rus: термодинамическая классификация воздушных масс  1993-a3
thermodynamische Potentiale n/pl
vhodně zvolené extenzivní termodyn. veličiny s rozměrem energie. Jsou formálně analogické potenciálům silových polí, neboť jejich prostřednictvím lze vyjádřit podmínky stability termodynamické rovnováhy za situací, kdy vybrané vnější nebo vnitřní parametry systému jsou konstantní. Z veličin, které se běžněji vyskytují v termodynamice atmosféry, mají charakter termodyn. potenciálu vnitřní energie, volná energie (Helmholtzův potenciál), entalpie a Gibbsův potenciál. V obecné termodynamice se pracuje i s dalšími potenciály, např. s různými variantami tzv. grandkanonického (velkého kanonického) potenciálu.
česky: potenciály termodynamické; angl: thermodynamic potentials; slov: termodynamické potenciály  2017
thermodynamische Solenoide n/pl
fiktivní čtyřhranné trubice v atmosféře, které vznikají při protínání ploch konstantních hodnot termodyn. stavových veličin. Se základními termodyn. veličinami v atmosféře, tj. s tlakem vzduchu, teplotou vzduchu a hustotou vzduchu (měrným objemem vzduchu) pak souvisejí solenoidy izobaricko-izosterické, solenoidy izobaricko-izotermické a solenoidy izotermicko-izosterické. Při konstrukci termodynamických solenoidů lze však využít i plochy konstantních hodnot dalších (odvozených) termodyn. veličin, např. plochy izentropické. Termodynamické solenoidy souvisejí s atmosférickými cirkulacemi různých měřítek a mohou existovat pouze v baroklinní atmosféře. V barotropní atmosféře je jejich počet nulový, neboť plochy konstantních hodnot tlaku, teploty a hustoty vzduchu jsou vzájemně rovnoběžné. Viz též termodynamika atmosféry.
česky: solenoidy termodynamické; angl: thermodynamic solenoids; slov: termodynamické solenoidy; rus: термодинамические соленоиды  1993-a2
thermodynamische Temperatur f
označení pro teplotu vyjádřenou pomocí Kelvinovy teplotní stupnice.
česky: teplota termodynamická; angl: thermodynamic temperature; slov: termodynamická teplota  2018
thermodynamisches Diagramm n
diagram používaný pro vyjádření termodyn. stavu vzduchu, charakterizovaného třemi proměnnými veličinami, a to tlakem, teplotou a vlhkostí vzduchu, nebo jinými veličinami, na kterých tento stav závisí. V meteorologii se termodyn. diagramy používají pro analýzu aerologických měření, proto jsou obvykle označovány jako aerologické diagramy, popřípadě adiabatické diagramy. Termodynamické diagramy se mohou dále využívat i k termodynamické klasifikaci vzduchových hmot, viz thetagram a diagram Rossbyho.
česky: diagram termodynamický; angl: thermodynamic diagram; slov: termodynamický diagram; fr: diagramme thermodynamique m; rus: термодинамическая диаграмма  1993-a3
Thermogramm n
záznam termografu.
česky: termogram; angl: thermogram; slov: termogram; rus: термограмма  1993-a1
Thermograph m
přístroj zaznamenávající časový průběh teploty vzduchu na registrační pásku (týdenní nebo denní). Na meteorologických stanicích byl umístěn v meteorologické budce.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: termograf; angl: thermograph; slov: termograf; rus: термограф  1993-a3
thermohaline Zirkulation f
systém oceánské cirkulace podmíněný rozdíly v hustotě vody. Hustota vody narůstá, pokud klesá její teplota a/nebo roste její salinita. Oba tyto procesy se uplatňují při výparu a mrznutí vody, naopak srážky, tání ledu a přítok z pevniny hustotu mořské vody snižují. Termohalinní cirkulace je poháněna downwellingem, na který navazuje pohyb hlubinné oceánské vody zakončený jejím upwellingem. Pohyb vody v rámci termohalinní cirkulace je podstatně pomalejší než systém povrchových oceánských proudů, vzhledem k velkému objemu přenášené vody je nicméně významným výměníkem tepla. Zesilování nebo naopak slábnutí, případně i prudké zhroucení termohalinní cirkulace tak významně působí na vývoj klimatu.
česky: cirkulace termohalinní; angl: thermohaline circulation; slov: termohalinná cirkulácia  2017
Thermohygrogramm n
záznam termohygrografu.
Termín vznikl odvozením od termínu termohygrograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. θερμός [thermos] „teplý, horký“, ὑγρός [hygros] „vlhký, mokrý“ a γράμμα [gramma] „písmeno, zápis“.
 
česky: termohygrogram; angl: thermohygrogram; slov: termohygrogram; rus: термогигрограмма  1993-a1
Thermohygrograph m
syn. hygrotermograf – přístroj pro současný záznam průběhu teploty a vlhkosti vzduchu na jeden registrační pásek.
Termín vznikl spojením slov termograf a hygrograf.
česky: termohygrograf; angl: thermohygrograph; slov: termohygrograf; rus: термогигрограф  1993-a2
Thermohygroskop n
přístroj pro přibližné určení teploty rosného bodu. Jeho indikační mechanizmus je ovládán současně bimetalickým teploměrem a vlasovým vlhkoměrem.
Termín vznikl spojením slov termoskop a hygroskop.
česky: termohygroskop; angl: hygrothermoscope; slov: termohygroskop; rus: термогигроскоп  1993-a1
Thermoisanomale f
viz izanomála.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a slova izanomála.
česky: termoizanomála; angl: thermoisanomal; slov: termoizanomála; rus: термоизаномала  1993-a3
Thermoisodrome f
izokontinentála spojující místa se stejnou termickou kontinentalitou klimatu vyjádřenou pomocí termodromického kvocientu.
Termín zavedl rakouský meteorolog F. Kerner von Marilaun v r. 1905. Skládá se z řec. θερμός [thermos] „teplý, horký“, ἴσος [isos] „stejný, rovný“ a δρόμος [dromos] „běh, dráha“.
česky: termoizodroma; angl: thermoisodrome; slov: termoizodróma  1993-a3
Thermoisoplethe f
izopleta znázorňující závislost určité teplotní charakteristiky na dvou navzájem nezávislých proměnných. Pomocí termoizoplet lze v jednom klimatologickém diagramu současně vyjádřit např. denní a roční chod teploty vzduchu v určitém místě, Jinými příklady využití termoizoplet jsou znázornění ročního chodu teploty vzduchu v závislosti na zeměp. šířce nebo nadm. výšce, popř. teploty půdy v závislosti na hloubce.
Termín zavedl něm. meteorolog F. Erk v r. 1885. Skládá se z řec. θερμός [thermos] „teplý, horký“ a slova izopleta.
česky: termoizopleta; angl: thermoisopleth; slov: termoizopléta; rus: термоизоплета  1993-a3
Thermometer für Fernmessung n
syn. teploměr distanční – teploměr upravený pro dálkové měření teploty.
česky: teploměr dálkový; angl: distant thermometer; slov: diaľkový teplomer; rus: дистанционный термометр  1993-a2
Thermometer n
v meteorologii přístroj pro měření teploty vzduchu a měření teploty půdy, popř. teploty vody. Nepřímo slouží také k měření jiných meteorologických prvků, např. vlhkosti vzduchu, krátkovlnného slunečního záření, zchlazování, a to jako součást psychrometrů, aktinometrů nebo frigorimetrů. V met. praxi se používají teploměry kapalinové, a to rtuťové a lihové, deformační, k nimž patří teploměry bimetalické a teploměry s Bourdonovou trubicí, a elektrické teploměry, které se dělí na odporové a termoelektrické čili termočlánky. Teploměr patří k nejstarším met. přístrojům. Prvním přístrojem pro sledování teplotních změn byl termobaroskop zkonstruovaný G. Galileiem (1597), který byl v podstatě plynovým teploměrem. Galilei sestrojil též první kapalinový teploměr (1611), jehož teploměrnou látkou byl vinný líh. Název odpovídající čes. slovu "teploměr" použil poprvé J. Laurechon (1624).
česky: teploměr; angl: thermometer; slov: teplomer; rus: термометр  1993-a2
Thermometerhütte f
česky: budka meteorologická žaluziová; angl: Stevenson screen, thermometer screen; slov: žalúziová meteorologická búdka; fr: abri météo à double persiennes m, abri à double persiennes m; rus: жалюзийная будка  1993-a3
Thermometerhütte f
bílá plastová nebo dřevěná skříňka sloužící jako ochrana jednoho nebo několika v ní umístěných meteorologických přístrojů před rušivými účinky záření a srážek, která umožňuje dostatečnou přirozenou ventilaci čidel přístrojů. Má stěny z dvojitých žaluzií, dvojitou střechu, perforované dno nebo dno z drátěného síta a dvířka orientovaná na sever na severní polokouli. Výška umístění budky nad povrchem země je dána požadavkem Světové meteorologické organizace, aby čidla teploměrů byla ve výšce 1,25 až 2,0 m nad zemí. V ČR se umísťuje na čtyřnohém podstavci tak, aby čidla teploměrů byla ve výšce 200 cm nad zemí, resp. nad povrchem sněhu. V horských oblastech s vysokou sněhovou pokrývkou je tedy vhodné použít výškově nastavitelnou budku. Do meteorologické budky se umísťují: psychrometr, maximální a minimální teploměr, vlhkoměr, popř. další přístroje. V minulosti se v meteorologické budce prováděla základní meteorologická měření, což dosud platí pro meteorologické stanice, které nejsou automatizované. Na profesionálních stanicích ČR se údaje z přístrojů v meteorologické budce používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem.
česky: budka meteorologická; angl: Stevenson screen, thermometer screen; slov: meteorologická búdka; fr: abri météorologique m, abri météo m, abri Stevenson m; rus: английская будка, метеорологическая будка  1993-a3
Thermopause f
horní vrstva termosféry ve výšce nad 200 km (Prölss, G. W., 2003). Různí autoři uvádějí výšku termopauzy v rozmezí 450 až 700 km. Ve výšce termopauzy se teplota asymptoticky blíží k hraniční hodnotě nazývané teplotou termopauzy neboli exosférickou teplotou, jejíž hodnota je přibližně 1 000 K, ale může se pohybovat v rozmezí 330 až 2 200 K. Termopauza odděluje termosféru a exosféru.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a lat. pausa „přerušení, ukončení“.
česky: termopauza; angl: thermopause; slov: termopauza; rus: термопауза  1993-a3
Thermoskop n
nejstarší přístroj k indikaci teplotních změn (tepelných stavů), předchůdce teploměru. Vzduchový termoskop popsal a používal již Heron Alexandrejský. Koncem 16. stol. sestrojil "skleněný" termoskop Galileo Galilei. Viz též anemoskop, hygroskop, termobaroskop.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a σκοπεῖν [skopein] „pozorovat, zkoumat“.
česky: termoskop; angl: thermoscope; slov: termoskop; rus: термоскоп  1993-a1
Thermosphäre f
vrstva atmosféry Země nad mezopauzou. Sahá zhruba od výšek 80 až 90 km do výšek nad 200 km nad zemským povrchem. Podle některých autorů se jako termosféra označuje celá část zemské atmosféry nad mezopauzou bez horního omezení, jiní uvažují termosféru do výšek, v nichž se ještě vyskytují polární záře, tj. 600 až 700 km. Do výšky 200 až 300 km je pro termosféru typický výrazný vert. růst teploty většinou v rozmezí přibližně od 200 K až do 1 000 K. Vzhledem k vysokému stupni zředění vzduchu však tuto teplotu nelze měřit běžnými termometrickými metodami, ale určuje se na základě kinetické energie pohybu jednotlivých molekul. Z tohoto důvodu mluvíme někdy o tzv. kinetické teplotě. Viz též termopauza.
Termín zavedl britský přírodovědec S. Chapman v r. 1950. Skládá se z řec. θερμός [thermos] „teplý, horký“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: termosféra; angl: thermosphere; slov: termosféra; rus: термосфера  1993-a3
Thermozyklogenese f
teorie cyklogeneze, kterou vypracoval něm. meteorolog G. Stüve (1926). Podle ní souvisí změny tlaku vzduchu v troposféře s charakterem advekce a termickými procesy ve stratosféře. V tomto pojetí má termocyklogeneze jiný smysl než termická teorie cyklogeneze.
Termín se skládá z řec. θερμός [thermos] „teplý, horký“ a slova cyklogeneze.
česky: termocyklogeneze; angl: thermocyclogenesis; slov: termocyklogenéza; rus: термоциклогенез  1993-a2
theta-Koordinaten f/pl
česky: soustava souřadnicová Θ; angl: Θ coordinate system; slov: súradnicová sústava Θ; rus: система кoординат тета (Ѳ)  1993-a1
theta-Koordinaten f/pl
česky: systém Θ; angl: Θ system; slov: systém Θ; rus: система тета (Ѳ)  1993-a1
theta-System n
česky: systém Θ; angl: Θ system; slov: systém Θ; rus: система тета (Ѳ)  1993-a1
Theta-System n
syn. soustava souřadnicová Θ –  pravoúhlá souřadnicová soustava se zobecněnou vertikální souřadnicí, kde tato souřadnice vyjadřuje potenciální teplotu Θ. Kvazihorizontální osy x a y leží ve zvolené izentropické hladině a vert. osa je orientována ve směru nárůstu potenciální teploty. Theta-systém je vhodný pro studium adiabatických dějů za předpokladu vertikální stability atmosféry. Viz též PV thinking.
česky: theta-systém; angl: Θ coordinate system, Θ system; slov: theta systém; rus: система кoординат тета (Ѳ)  1993-a3
Thetagramm n
termodynamický diagram, který vyjadřuje závislost izobarické ekvivalentní potenciální teploty na nadmořské výšce. Tato teplota se vynáší lineárně na horizontální osu, vertikální osa je buď lineární stupnicí výšky, nebo logaritmickou stupnicí tlaku vzduchu. Na základě četných aerologických měření sestavili O. Moese a G. Schinze (1932) charakteristické thetagramy pro různé geografické typy vzduchových hmot ve stř. Evropě. Název thetagram souvisí s obvyklým označením potenciální teploty řeckým písmenem Θ (theta). Diagram navržený G. Schinzem (1932) má v současné době pouze historický význam. Viz též klasifikace vzduchových hmot.
Termín zavedl autor tohoto diagramu, něm. meteorolog G. Schinze v r. 1932. Skládá se z názvu řeckého písmene Θ [théta], které je obvyklým označením potenciální teploty, a řec. γράμμα [gramma] „písmeno, zápis“.
česky: thetagram; angl: thetagram; slov: thetagram; rus: тетаграмма  1993-a2
Thomson-Formel f
syn. vztah Thomsonův–Gibbsův – teoreticky odvozený vztah vyjadřující závislost tlaku nasycené vodní páry nad zakřiveným povrchem na poloměru křivosti tohoto povrchu. Má tvar
lnesres =cr,
kde esr je tlak nasycené vodní páry nad zakřiveným povrchem, es tlak nasycené vodní páry nad dokonale rovinným povrchem, r poloměr zakřivení povrchu (v případě dutého tvaru vodního povrchu, např. v kapiláře, musíme poloměr křivosti r uvažovat záporný) a paramter c vztahem:
c=2σρw RvT,
přičemž σ značí povrchové napětí vody, ρw hustotu vody, Rv měrnou plynovou konstantu vodní páry a T teplotu v K. Z Thomsonova vztahu vyplývá, že větší oblačné kapičky vyžadují ke kondenzačnímu růstu menší přesycení vzduchu vodní párou než kapičky menší, takže rostou na úkor menších kapiček. Uvedený vztah odvodil angl. fyzik W. Thomson (pozdější lord Kelvin) v r. 1871. Viz též vzorec Magnusův.
česky: vztah Thomsonův; angl: Thomson formula; slov: Thomsonov vzťah; rus: формула Томсона (Кельвина)  1993-a1
Thomson-Formula f
česky: vzorec Thomsonův; slov: Thomsonov vzorec  1993-a1
Tief n
syn. níže tlaková
1. základní tlakový útvar, který se projevuje na synoptické mapě alespoň jednou uzavřenou izobarou nebo izohypsou, přičemž tlak vzduchu uvnitř je nižší než v okolí. Střed cyklony se označuje na synop. mapách v ČR písmenem „N“ (níže), na mapách z angl. jazykové oblasti písmenem „L“ (low), na mapách z něm. jazykové oblasti písmenem „T“ (Tief), na mapách z rus. jazykové oblasti písmenem „H“ (nizkoje davlenije) a na mapách ze španělské jazykové oblasti písmenem „B“ (baja).
Pro cyklony je charakteristická cyklonální vorticita a cyklonální cirkulace. S přízemní konvergencí proudění v cyklonách jsou spojeny výstupné pohyby vzduchu, které určují charakter cyklonálního počasí. Ke vzniku cyklon vedou rozmanité procesy v atmosféře označované jako cyklogeneze. V tomto smyslu rozeznáváme především mimotropické a tropické cyklony, dále cyklony subtropické a polární. Viz též stadia vývoje cyklony, model cyklony, osa cyklony.
2. tlakový útvar se sníženými hodnotami průměrného tlaku vzduchu oproti okolí, patrný na klimatologické mapě za celý rok nebo za určitou sezónu. Cyklony v tomto smyslu patří mezi klimatická akční centra atmosféry, protože v dané oblasti určují všeobecnou cirkulaci atmosféry. Příkladem takových cyklon jsou cyklona aleutská, islandská, jihoatlantická a jihopacifická.
Termín pochází z angl. cyclone. Zavedl jej brit. námořní kapitán H. Piddington v r. 1848 jakožto pojem zahrnující všechny rotující větrné bouře. Odvodil jej z řec. κύκλος [kyklos] „kruh, kruhový pohyb“ (srov. cyklus). Termín do češtiny pronikl zřejmě přes němčinu, a to kromě ženského i v mužském rodě (mužský tvar cyklon má dnes užší význam).
česky: cyklona; angl: cyclone, depression, low; slov: cyklóna; fr: cyclone m, dépression f, système cyclonique m; rus: депреcсия, циклон  1993-a3
Tiefdruckgebiet n
označení útvaru nižšího tlaku vzduchu zpravidla bez přítomnosti atmosférických front.
Slovo deprese (z lat. depressio „stlačení, potlačení“) je zde ve významu snížení hodnoty tlaku vzduchu, nikoliv působení tlakové síly.
česky: deprese tlaková; angl: baric depression; slov: tlaková depresia; fr: dépression barométrique f; rus: барическая депрессия  1993-a3
Tiefdruckgebiet n
syn. cyklona.
česky: níže tlaková; angl: low; slov: tlaková níž; rus: барическая депрессия  1993-a1
Tiefdruckgürtel m
pásmo s nižším tlakem vzduchu zhruba rovnoběžkového směru, které se rozkládá mezi dvěma pásy vysokého tlaku vzduchu a v průběhu roku se přesouvá na sever nebo na jih v závislosti na výšce Slunce. Takovým pásmem je např. rovníkový pás nízkého tlaku vzduchu, nazývaný též rovníková deprese, a pásy nízkého tlaku vzduchu v subpolárních oblastech obou polokoulí. V subpolárních pásech nízkého tlaku vzduchu se nacházejí jednotlivé cyklony.
česky: pás nízkého tlaku vzduchu; angl: low pressure belt, trough; slov: pás nízkeho tlaku vzduchu; rus: зона низкого давления, полоса пониженного давления  1993-a3
Tiefdruckkomplex m
obvykle horiz. velmi rozsáhlá cyklona, v jejíž centrální části lze na synoptické mapě nalézt několik oblastí sníženého tlaku s alespoň jednou uzavřenou izobarou či izohypsou.
česky: cyklona vícestředá; angl: complex low; slov: viacstredová cyklóna; fr: dépression complexe f; rus: многоцентровая депрессия, многоцентровой циклон  1993-a2
Tiefdruckrinne f
tlakový útvar, který se na meteorologické mapě projevuje jako oblast nižšího tlaku vzduchu bez uzavřených izobar či izohyps. Vyskytuje se obvykle mezi dvěma oblastmi vyššího tlaku vzduchu nebo může být částí cyklony. Bývá vyjádřena buď izobarami, popř. izohypsami se slabým cyklonálním zakřivením (mělká brázda nízkého tlaku vzduchu), nebo izobarami, popř. izohypsami ve tvaru písmene V (hluboká brázda nízkého tlaku vzduchu neboli brázda tvaru V). V brázdě nízkého tlaku vzduchu můžeme vyznačit osu brázdy, na které je cyklonální zakřivení izolinií maximální a podél níž se vyskytuje horiz. konvergence proudění. Tato konvergence má za následek výstupné pohyby vzduchu podporující vznik oblačnosti, popř. srážek. V brázdě nízkého tlaku vzduchu zpravidla leží atmosférická fronta. Viz též hřeben vysokého tlaku vzduchu.
česky: brázda nízkého tlaku vzduchu; angl: low pressure trough, trough of low pressure; slov: brázda nízkeho tlaku vzduchu; fr: creux barométrique m, thalweg m, talweg m; rus: барическая ложбина  1993-a2
Tiefdrucktrog m
tlakový útvar, který se na meteorologické mapě projevuje jako oblast nižšího tlaku vzduchu bez uzavřených izobar či izohyps. Vyskytuje se obvykle mezi dvěma oblastmi vyššího tlaku vzduchu nebo může být částí cyklony. Bývá vyjádřena buď izobarami, popř. izohypsami se slabým cyklonálním zakřivením (mělká brázda nízkého tlaku vzduchu), nebo izobarami, popř. izohypsami ve tvaru písmene V (hluboká brázda nízkého tlaku vzduchu neboli brázda tvaru V). V brázdě nízkého tlaku vzduchu můžeme vyznačit osu brázdy, na které je cyklonální zakřivení izolinií maximální a podél níž se vyskytuje horiz. konvergence proudění. Tato konvergence má za následek výstupné pohyby vzduchu podporující vznik oblačnosti, popř. srážek. V brázdě nízkého tlaku vzduchu zpravidla leží atmosférická fronta. Viz též hřeben vysokého tlaku vzduchu.
česky: brázda nízkého tlaku vzduchu; angl: low pressure trough, trough of low pressure; slov: brázda nízkeho tlaku vzduchu; fr: creux barométrique m, thalweg m, talweg m; rus: барическая ложбина  1993-a2
tiefe Wolken f/pl
česky: oblačnost nízká; angl: low clouds; slov: nízka oblačnosť; rus: низкая облачность  1993-a1
tiefe Wolken f/pl
oblaky vyskytující se převážně ve výškách od povrchu země do 2 km. Do této skupiny patří oblaky druhu stratus a stratocumulus. Oblaky druhu cumulus a cumulonimbus mají rovněž základny do výšky 2 km, ale jejich horní části obvykle zasahuji i do stř. a vysokého patra, takže je nelze jednoznačně klasifikovat jako oblaky nízkého patra. Viz též klasifikace oblaků, patra oblaků, oblaky středního patra, oblaky vysokého patra.
česky: oblaky nízkého patra; angl: low clouds, low-level clouds; slov: nízke oblaky; rus: нижние облака, облака нижнего яруса  1993-a2
Tiefkern m
bod s nejnižším tlakem vzduchu na přízemní povětrnostní mapě, popř. s nejnižší hodnotou geopotenciálu na mapách absolutní topografiecykloně. V praxi se za střed cyklony považuje přibližný střed poslední uzavřené izobary na přízemní mapě, popř. izohypsy na výškových mapách, a označuje se buď hodnotou poslední izobary, popř. izohypsy, nebo hodnotou nejnižšího tlaku vzduchu, resp. geopotenciálu. V pohyblivých cyklonách se střed cyklony s výškou přesouvá na stranu studené části cyklony, tj. ve směru sklonu vertikální osy dané cyklony. Ve stacionárních cyklonách leží střed cyklony ve všech izobarických hladinách přibližně nad přízemním středem cyklony. Rozsáhlé centrální cyklony a dále především staré okludované cyklony mívají více středů. Viz též cyklona vícestředá.
česky: střed cyklony; angl: center of cyclone; slov: stred cyklóny  1993-a2
Tiefzentrum n
bod s nejnižším tlakem vzduchu na přízemní povětrnostní mapě, popř. s nejnižší hodnotou geopotenciálu na mapách absolutní topografiecykloně. V praxi se za střed cyklony považuje přibližný střed poslední uzavřené izobary na přízemní mapě, popř. izohypsy na výškových mapách, a označuje se buď hodnotou poslední izobary, popř. izohypsy, nebo hodnotou nejnižšího tlaku vzduchu, resp. geopotenciálu. V pohyblivých cyklonách se střed cyklony s výškou přesouvá na stranu studené části cyklony, tj. ve směru sklonu vertikální osy dané cyklony. Ve stacionárních cyklonách leží střed cyklony ve všech izobarických hladinách přibližně nad přízemním středem cyklony. Rozsáhlé centrální cyklony a dále především staré okludované cyklony mívají více středů. Viz též cyklona vícestředá.
česky: střed cyklony; angl: center of cyclone; slov: stred cyklóny  1993-a2
Tivano m
Jedná se o místní italský název pro vítr vanoucí v oblasti Comského jezera, který snad vznikl z franc. spojení petit vent „mírný vítr“.
česky: tivano; angl: tivano; slov: tivano  1993-a3
TLE m/pl
světelné záblesky nebo výtrysky o krátkém trvání, řádově setin až desetin sekundy, objevující se ve výškovém rozmezí cca 30 – 100 km nad oblastmi, kde se aktuálně vyskytují silné a zpravidla prostorově rozsáhlé konvektivní bouře. V současné době jsou předmětem výzkumu, jenž dosud není uzavřen plně vysvětlující teorií. Evidentně souvisejí s procesy vyvolanými výraznými změnami silných elektrických polí nad aktivními oblaky druhu cumulonimbus při elektrických výbojích v těchto oblacích. Z hlediska jejich vzhledu lze tyto jevy rozdělit do dvou skupin:
1. světelné záblesky převážně červených odstínů, jež jakoby padají dolů z vyšších hladin nebo se v těchto hladinách v kruhových útvarech horizontálně rozšiřují do prostoru, a to převážně v mezosféře, popř. na spodu termosféry, řidčeji v nejvyšších hladinách stratosféry. Z hlediska podoby se rozlišují např. červení skřítci (z angl. red sprites) válcovitého nebo mrkvovitého vzhledu, vlásečnice (z angl. tendrils), jež obvykle jako vláknovité útvary směřují dolů od skřítků, elfové (z angl. elves) v podobě světelných kruhů horizontálně se rozšiřujících do prostoru ve výškách kolem 100 km, jim obdobný úkaz v poněkud nižších hladinách kolem 85 km bývá označován jako sprites halo. Skřítci se objevují většinou po silném kladném blesku s následným udržovacím proudem. Elfové se objevují po silných blescích obou polarit a vypadají jako rychle se rozšiřující světelný kruh, který může mít průměr až 300 km. Červená barva skřítků a elfů je dána excitací molekul dusíku v řidší atmosféře ve výškách nad 50 km od zemského povrchu.
2. výtrysky (z angl. jets) v podobě kuželů modravého nebo načervenalého světla slabší intenzity, vystřelující z horních partií bouřkových oblaků někdy až do výšek kolem 100 km (obří výtrysk, z angl. gigantic jet), častěji však pouze do horních vrstev stratosféry (modrý výtrysk, blue jet) nebo pouze do výšek cca 20 km (modrý spouštěč, z angl. blue starter). Modrá barva výtrysků souvisí s excitací molekul dusíku v hustších vrstvách atmosféry. Obří výtrysky jsou dvoubarevné: blíže k povrchu země modré a ve vyšších výškách červené.
 
česky: úkazy světelné přechodné; angl: transient luminous effects (TLE); slov: prechodné svetelné úkazy  2014
Topochronotherme f
čára stejného časového výskytu určitých hodnot teploty vzduchu, popř. teploty půdy.
Termín se skládá z řec. τόπος [topos] „místo“, χρόνος [chronos] „čas“ a θερμός [thermos] „teplý, horký“.
česky: topochronoterma; slov: topochronoterma  1993-a1
Topographie der Front f
kartografické znázornění prostorové struktury atmosférické fronty nebo frontálního systému. Spočívá v tom, že na geogr. mapě jsou zakresleny polohy frontálních čar na zemském povrchu a ve standardních izobarických hladinách, popř. ve výškových hladinách v celém vert. rozsahu fronty, které jsou zjištěny z přízemní synoptické mapy a z map barické topografie z téhož synoptického termínu. Lze použít i výstupy z numerických předpovědních modelů.
česky: topografie fronty; angl: frontal topography, topography of front; slov: topografia frontu; rus: топография фронта  1993-a3
topographische Diffluenz f
česky: difluence topografická; angl: topographic diffluence; slov: topografická difluencia; rus: топографическая диффлюэнция  1993-a1
topographische Konfluenz f
česky: konfluence topografická; angl: topographic confluence; slov: topografická konfluencia; rus: топографическая сходимость  1993-a1
Topoklima n
syn. topoklima.
česky: klima reliéfové; slov: reliéfová klíma; rus: рельефный климат  1993-b1
Topoklima n
syn. klima reliéfové – typ klimatu, které se utváří pod vlivem georeliéfu, jeho aktivního povrchu a spolupůsobení antropogenních vlivů. Morfografie zemského povrchu dává klimatu specifické vlastnosti, jejichž vert. a horiz. rozsah závisí na přilehlých tvarech reliéfu. Prostorové vymezení topoklimatu je proto neurčité, stejně jako jeho postavení v soustavě členění klimatu. Topoklima v pojetí některých autorů je syn. místního klimatu. Termín navrhl C. W. Thornthwaite (1953). Viz též kategorizace klimatu, zóna svahová teplá.
Termín se skládá z řec. τόπος [topos] „místo“ a slova klima.
česky: topoklima; angl: topoclimate; slov: topoklíma; rus: климат рельефа, топоклимат  1993-a3
Topoklimatologie f
syn. klimatologie terénní – část klimatologie zabývající se topoklimatem. Jejím cílem je posoudit, do jaké míry a jakým způsobem se v procesu geneze klimatu uplatňuje především reliéf povrchu a dále vyčleňování klimatických jednotek neboli klimatopů, zvláště na základě terénních klimatických (topoklimatologických) měření. Viz též měření meteorologické terénní ambulantní.
Termín se skládá z řec. τόπος [topos] „místo“ a slova klimatologie.
česky: topoklimatologie; angl: topoclimatology; slov: topoklimatológia; rus: климатология местности, топоклиматология  1993-a1
Tornado m
hovorové označení pro tornádo (používané především v USA).
Výraz pochází z angličtiny, je odvozen od slovesa twist „kroutit (se), točit (se)“.
česky: twister; angl: twister; slov: twister; rus: твистер  1993-a3
Tornado m
silná tromba spojená se základnou oblaku druhu cumulonimbus a alespoň přechodně se dotýkající zemského povrchu, kde musí mít potenciál způsobit hmotné škody. Pokud se útvar připomínající tornádo nedotkne zemského povrchu, nemůže být formálně jako tornádo označen. Pro tornáda je typická cyklonální rotace, pravidelně se ovšem vyskytují i tornáda s anticyklonální rotací.
V tornádech jsou dosahovány extrémy tlaku vzduchu a rychlosti větru. Podle charakteru způsobených škod se tornáda klasifikují Fujitovou stupnicí (F0 až F5) a jejími pozdějšími modifikacemi, popř. stupnicí TORRO. Nejslabších tornád vzniká nejvíce, nejsilnějších nejméně. Silnější tornáda (F2 až F5) jsou téměř výlučně mezocyklonální tornáda, slabší jsou spíše nemezocyklonální.
Tornáda se vyskytují globálně (s výjimkou polárních oblastí), avšak v některých oblastech (např. východ až středozápad USA) je jejich výskyt častější a zároveň se zde vyskytuje i více silnějších tornád. Množství škod a ztrát na životech nemusí souviset pouze s intenzitou tornáda, nýbrž i s hustotou osídlení, vyspělostí systému meteorologických výstrah a způsobem ochrany obyvatelstva (např. tornáda s největším počtem obětí se vyskytují v Bangladéši). Výskyt tornád na území ČR je komplexněji dokumentován přibližně od konce devadesátých let 20. století, v průměru se zde vyskytne několik (zpravidla slabších) tornád ročně. Historicky nejsilnějším zdokumentovaným případem v Česku je tornádo z 24. 6. 2021, které se vyskytlo na pomezí Břeclavska a Hodonínska a bylo ohodnoceno stupněm F4.
Viz též rodina tornád, série tornád, smršť vodní, Tornádová alej.
Termín nejspíše pochází ze šp. slova tronada „bouřka“. V angličtině se výraz tornado používal nejprve ve významu „silná, prudká bouře“ (od 16. stol.), později (od 17. stol.) i ve významu „větrná bouře, větrný vír“. Je možné, že převládnutí druhého významu ovlivnila podobnost ke šp. slovesu tornar „obrátit, otočit“ (srov. angl. turn); výraz tornado v dnešním smyslu byl přejat do dalších jazyků, včetně španělštiny.
česky: tornádo; angl: tornado; slov: tornádo; rus: торнадо  1993-a3
Torr n
stará jednotka tlaku, odpovídající hydrostatickému tlaku jednoho mm rtuťového sloupce (mm Hg) za definovaných normálních podmínek. Od 1. 1. 1980 není u nás torr jednotkou povolenou normami a základní jednotkou tlaku je dle soustavy jednotek SI pascal (Pa). Mezi oběma jednotkami platí převodní vztah: 1 torr = 133,322 Pa. Viz též měření tlaku vzduchu.
Jednotka byla nazvána podle italského přírodovědce E. Torricelliho (1608–1647).
česky: torr; angl: torr; slov: torr; rus: торр  1993-a3
Torricelli-Rohr n
původní název rtuťového tlakoměru, související s tzv. Torricelliho pokusem (1643).
česky: trubice Torricelliho; angl: Torricelli tube; slov: Torricelliho trubica; rus: трубка Торричелли  1993-a1
Total-totals-Index m
index instability definovaný jako součet rozdílu teploty v hladinách 850 hPa a 500 hPa, který je označován jako VT (z angl. Vertical Totals), a rozdílu teploty rosného bodu v hladině 850 hPa a teploty v hladině 500 hPa, který je označován jako CT (z angl. Cross Totals).
TT=VT+CT=T 850+TD850-2T500.
Přeháňky a bouřky se očekávají od hodnoty indexu vyšší než 30, vývoj silných bouří se očekává při hodnotách indexu TT > 50.
česky: index Total Totals; angl: Total Totals index; slov: index Totals-Totals  2014
Totalisator m
v meteorologii srážkoměr určený k měření úhrnu srážek za delší dobu, zpravidla za půl roku. Často se instaluje na odlehlých nebo těžko dostupných místech. Srážky se zachycují do nádoby dostatečného obsahu, do které se na začátku měření nalije určité množství nemrznoucího roztoku. Přidaná vhodná látka, např. olej, zabraňuje výparu. Úhrn srážek se určí z přírůstku celkového objemu roztoku v nádobě za dobu měření. Průkopníkem měření kapalných i tuhých srážek pomocí tzv. srážkoměrného sběrače, neboli totalizátoru, byl franc. glaciolog P. Mougin (1912). Viz též měření srážek, šít srážkoměru větrný.
Termín je odvozen od středolat. totalis „celistvý, úplný“ (od totus „celý, všechen“); odkazuje na měření za delší období vcelku, nikoliv jako součet denních úhrnů.
česky: totalizátor; angl: accumulative raingauge, totalizer raingauge; slov: totalizátor; rus: накaпливающий дождeмер, тотализатор  1993-a2
tote Zone f
oblast, v níž není zvuk ze vzdáleného zdroje slyšitelný v důsledku útlumu zvukových vln. Mohou však nastat případy, kdy v důsledku anomálního šíření zvuku v atmosféře  je daný zvuk slyšitelný v oblasti ještě vzdálenější. Viz též stín akustický.
česky: pásmo ticha; angl: zone of silence; slov: pásmo ticha; rus: зона молчания  1993-a3
Trägheitsinstabilität f
hydrodynamická instabilita, která je výsledkem poklesu momentu hybnosti se vzdáleností od osy rotace v rotující tekutině. Při radiálním vychýlení částice tekutiny dojde k jejímu urychlení v daném směru vlivem nerovnováhy odstředivé síly působící na částici a na její okolí. Tekutina je v tomto případě inerčně instabilní.
Při hodnocení inerční instability v atmosféře se uplatňuje kombinace odstředivých sil rotace Země a zakřiveného pohybu vzduchu vzhledem k zemskému povrchu. Hodnotí se s využitím kvazigeostrofické aproximace. Vzduchová částice, která má podobu jednodimenzionální trubice orientované ve směru geostrofického větru, je vychylována horizontálně a kolmo k jeho vektoru. V rámci absolutní souřadnicové soustavy si částice zachovává moment hybnosti; prostředí je inerčně instabilní, pokud v něm moment hybnosti klesá se vzdáleností od vertikální osy kombinované rotace. V relativní souřadnicové soustavě se vychýlení vzduchové částice projeví nerovnováhou síly tlakového gradientu a zdánlivých sil, především Coriolisovy síly. Za předpokladu, že geostrofický vítr vane podél horiz. osy y a trubice je vychylována podél horiz. osy x v pravotočivé kartézské souřadnicové soustavě, lze inerční instabilitu hodnotit s použitím následujících vztahů:
ax=(m-mg ),m=v+fx=konst., mg=vg+fx,
kde ax značí výslednou složku zrychlení vychýlené trubice ve směru osy x, f je Coriolisův parametr, a m, resp. mg jsou velikosti měrné hybnosti y-ové složky proudění v v trubici, resp. y-ové složky geostrofického proudění vg v okolí trubice v absolutní souřadnicové soustavě.
S inerční instabilitou se můžeme setkat hlavně v nižších zeměpisných šířkách uvnitř silně rotujících systémů, jako jsou tropické cyklony. Viz též instabilita symetrická.
česky: instabilita inerční; angl: inertial instability; slov: inerčná instablita  2014
Trägheitskreis m
trajektorie, po níž se ve smyslu rotace hodinových ručiček, tj. anticyklonálně, pohybuje vzduchová částice, jestliže se mimo zónu v těsné blízkosti rovníku dostane s určitou rychlostí v svého pohybu vůči rotující Zemi do oblasti s nulovým horizontálním tlakovým gradientem. Vliv tření přitom zanedbáme. Inerční kružnice je v tomto případě jedinou možnou trajektorií, na níž existuje rovnováha mezi působícími horiz. silami, tj. horiz. složkou Coriolisovy síly a odstředivou silou vzniklou zakřivením této trajektorie. Podmínku zmíněné rovnováhy vyjadřuje rovnice
v2r=λv,
kde λ je Coriolisův parametr, v rychlost pohybu vzduchové částice po inerční kružnici a r značí poloměr inerční kružnice, který se nazývá inerčním poloměrem a pro nějž zřejmě platí vztah
r=vλ.
Doba τ jednoho oběhu vzduchové částice po inerční kružnici představuje tzv. inerční periodu a určíme ji ze vzorce
τ=2πλ.
Inerční pohyby v atmosféře mají značný význam pro všeobecnou cirkulaci atmosféry i celkovou oceánicko-atmosférickou cirkulaci a je nutno k nim přihlížet v modelech atmosféry používaných při numerických předpovědích počasí.
česky: kružnice inerční; angl: circle of inertion, inertial circle; slov: inerciálna kružnica; rus: круг инерции  1993-a1
Trägheitsperiode f
česky: perioda inerční; angl: inertial period; slov: inerciálna perióda; rus: инерционный период  1993-a1
Trägheitsströmung f
syn. proudění inerční, viz kružnice inerční.
česky: pohyb inerční; angl: inertial current; slov: inerciálny pohyb; rus: инерционное движение  1993-a1
Trägheitsströmung f
syn. pohyb inerční – viz kružnice inerční.
česky: proudění inerční; angl: inertial flow; slov: inerciálne prúdenie; rus: инерционное течение  1993-a1
Trägheitswellen f/pl
syn. vlny setrvačné – kmity v horizontálně příčném směru vznikající v atmosféře působením setrvačnosti proudění vzduchu a Coriolisovy síly. Jde o teor. pojem používaný v dynamické meteorologii. Viz též kružnice inerční.
česky: vlny inerční; angl: inertia waves; slov: inerciálne vlny; rus: инерционные волны  1993-a3
Trajektorie f
spojnice bodů, jimiž prošla uvažovaná pohybující se částice. Při dostatečné hustotě těchto bodů se trajektorie blíží skutečné dráze částice. V meteorologii jde především o trajektorie vzduchových částicpoli atmosférického proudění. Lze rozlišit obecné trojrozměrné trajektorie od dvourozměrných trajektorií konstruovaných v určitých plochách (hladinách), např. v hladinách konstantní nadmořské výšky, konstantního tlaku vzduchu, konstantní entropie apod. V minulosti se v praxi často používaly trajektorie geostrofické, konstruované v poli geostrofického větru. Jako první, kdo zkonstruoval trajektorie vzduchových částic v atmosféře, se v literatuře obvykle uvádějí Angličané N. Shaw a R. G. K. Lempfert (1906).
Termín pochází z lat. traiectus „přeprava, překročení, přehození“, odvozeného od slovesa traicere „překročit, přehodit“ (z trans „přes, za“ a iacere „házet, vrhat“, srov. čes. trajekt).
česky: trajektorie; angl: trajectory; slov: trajektória; rus: путь, траектория  1993-a3
Tramontana f
studený sev. nebo sv. vítr v záp. části Středomoří, zvláště na pobřeží Ligurského moře na sev. Korsice, na Baleárských ostrovech a v údolí řeky Ebro ve Španělsku. Podobně jako mistral souvisí s postupem anticyklony od západu do Středomoří. Tramontana přináší pěkné počasí s ojedinělými přeháňkami a v zimě sněžení. V Itálii a ve Španělsku se názvu tramontana používá též hovorově pro libovolný vítr vanoucí z hor.
Termín byl přejat z it. tramontana „severní vítr, vítr; polárka“, které pochází z lat. transmontanus „sídlící za horami“ (z trans „přes, za“ a mons „hora“), zde ve významu „vanoucí zpoza hor“.
česky: tramontana; angl: tramontana; slov: tramontana; rus: трамонтана  1993-a2
Transformation der Luftschadstoffen f
souhrn chem. změn podmíněných vzájemnými reakcemi znečišťujících příměsí nebo reakcemi mezi příměsemi a složkami ovzduší. Při transformaci příměsí se mohou uplatňovat i fotochemické reakce pod vlivem slunečního záření. Viz též transport znečišťujících příměsí.
česky: transformace příměsi; angl: air pollution transformation; slov: transformácia prímesi; rus: трансформация примеси  1993-a1
translucidus
(tr) [translucidus] – jedna z odrůd oblaků podle mezinárodní morfologické klasifikace oblaků. Menší nebo větší oblačné vrstvy, které jsou v převážné části tak průsvitné, že je jimi patrná poloha Slunce nebo Měsíce. Vyskytuje se u druhů altocumulus, altostratus, stratocumulus a stratus. Výskyt této odrůdy vylučuje odrůdu opacus.
Termín je přejat z lat. slova translucidus „průsvitný“, složeného z trans „přes, za“ a lucidus „světlý, jasný“ (od lucere „svítit, zářit“, od lux „světlo“).
česky: translucidus; angl: translucidus; slov: translucidus; rus: просвечивающие облака  1993-a2
Transmission von Exhalaten f
čistotě ovzduší souborné označení pro všechny procesy mezi emisí a imisemi, tj. pro rozptyl, šíření i dálkový přenos znečišťujících příměsí. Viz též transformace příměsi, transport znečišťujících příměsí.
česky: transmise exhalátů; angl: transmission of air pollution; slov: transmisia exhalátov; rus: распространение выбросов  1993-a1
Transmission von Luftschadstoffen f
ochraně čistoty ovzduší přenos znečišťujících příměsí na různě velkou vzdálenost. V současné době se ustálilo dělení tohoto transportu na blízký neboli lokální, územní a globální. Při blízkém transportu jde o vzdálenosti několika desítek km, kde lze rozeznat příspěvek jednotlivého velkého zdroje znečišťování ovzduší, při územním o vzdálenosti řádu stovek km až kolem tisíce km, kde lze rozlišovat příspěvky velkých skupin zdrojů znečištění, a konečně při globálním nelze rozpoznávat příspěvky jednotlivých zdrojů znečištění ovzduší ani jejich skupin. Mezi územním a globálním transportem znečišťujících příměsí se někdy uvádí ještě regionální transport. Viz též transmise exhalátů, šíření příměsí v atmosféře.
česky: transport znečišťujících příměsí; angl: air pollution transport; slov: transport znečisťujúcich prímesi; rus: перенос загрязняющих примесей  1993-a2
Transmissionsfunktion f
doplňková funkce k absorpční funkci. Vyjadřuje poměr velikosti radičního toku, který při průchodu uvažovanou atmosférickou vrstvou není absorbován, ku velikosti radiačního toku do této vrstvy vstupujícího.
česky: funkce propustnosti; angl: transmittance function; slov: funkcia priepustnosti; fr: facteur de transmission m; rus: функция пропускания  1993-a3
Transmissionsgrad m
Termín pochází z lat. transmittere „předávat, posílat přes“ (z trans „přes, za“ a mittere „posílat“).
česky: transmitance; slov: transmitancia  1993-a1
Transmissionskoeffizient m
syn. koeficient transmisní – poměr intenzity přímého slunečního záření v úrovni zemského povrchu k intenzitě přímého slunečního záření na horní hranici atmosféry, přepočtený pro referenční stav, kdy sluneční paprsky procházejí ovzduším kolmo k zemskému povrchu. Protože schopnost atmosféry propouštět přímé sluneční záření závisí na vlnové délce (zhruba roste se zvětšující se vlnovou délkou), určuje se koeficient propustnosti atmosféry zpravidla pro různé dostatečně úzké části spektra. Potom hovoříme o spektrálním, popř. monochromatickém koeficientu propustnosti atmosféry. Spolu s Linkeho zákalovým faktorem patří koeficient propustnosti atmosféry k základním charakteristikám vyjadřujícím schopnost zemské atmosféry propouštět sluneční záření; souvisí s vlhkostí a s mírou znečištění vzduchu. V suché a čisté atmosféře má koeficient propustnosti atmosféry celkově pro spektrum slunečního záření hodnotu blízkou 0,9; v reálné atmosféře zpravidla od 0,70 do 0,85. Koeficient propustnosti atmosféry f souvisí s objemovým koeficientem extinkce βex vztahem
f=exp(-0 βexdz)
Pokud se jedná o viditelný obor slunečního záření, označuje se též jako koeficient průzračnosti atmosféry. Viz též koeficient absorpce, koeficient rozptylu.
česky: koeficient propustnosti atmosféry; angl: transmission coefficient of the atmosphere; slov: koeficient priepustnosti atmosféry; rus: коэффициент пропускания  1993-a2
Transmissometer n
Přístroj vynalezl Američan Raymond W. Goodwin v r. 1972. Termín se skládá z lat. transmissio „přepravení“ (odvozeného od slovesa transmittere „předávat, posílat přes“, z trans „přes, za“ a mittere „posílat“) a z řec. μέτρον [metron] „míra, měřidlo“.
česky: transmisometr; angl: transmissometer; slov: transmisometer; fr: transmissiomètre  1993-a1
Transmissometer n
syn. měřič propustnosti, transmisometr – zařízení používané k určování meteorologické dohlednosti, kterým se nejčastěji měří zeslabení sondovacího paprsku po průchodu stanoveným sloupcem ovzduší. Ke generování paprsku slouží v opt. systému nejčastěji laserová dioda, přičemž úzký paprsek je směrován do přijímače, kde je zpravidla elektronicky srovnávána intenzita vyslaného a po průchodu atmosférou zeslabeného paprsku. Délka sondovaného vzorku ovzduší bývá zpravidla desítky metrů. Jinou skupinu tvoří měřiče dohlednosti, které měří dopředný rozptyl záření, tzv. forward scatterometry. Viz též měření dohlednosti, vztah Allardův.
česky: měřič průzračnosti; angl: transmissometer; slov: merač priezračnosti; rus: измеритель прозрачности, трансмиссометр  1993-a3
Transozeansonde f
syn. transosonda – radiosonda sloužící k horizontální sondáži atmosféry nad rozsáhlými oblastmi zemského povrchu, hlavně nad oceány. Měří tlak, teplotu a vlhkost vzduchu, z její trajektorie se určuje směr a rychlost větru. Speciální transoceánské sondy měří navíc i koncentraci ozonu a bilanci záření. Podle účelu se transoceánské sondy dělí na sondy nesené otevřeným balonem a na sondy nesené uzavřeným balonem. Prvé se používají nejčastěji pro lety v hladinách od 300 do 200 hPa. Doba jejich letu zpravidla nepřesahuje 15 dní. Transoceánské sondy s uzavřeným balonem pracují až stovky dní, během nichž vykonají někdy i několik desítek obletů Země. Používají se hlavně při zkoumání všeobecné cirkulace atmosféry. Letové hladiny těchto sond se pohybují od 700 do 10 hPa a vzdálenost mezi sondami v horiz. směru bývá kolem 1 000 km. Informace z transoceánské sondy se přijímají pozemními aerologickými stanicemi do vzdálenosti 8 000 km od sondy. Pro přenos signálů se v současné době používají telekomunikační družice.
česky: sonda transoceánská; angl: transosonde; slov: transoceánska sonda; rus: трансозонд, трансокеанский зонд  1993-b3
Transparenz f
propustnost daného prostředí pro viditelné elmag. záření (světlo). Viz též propustnost atmosféry.
Termín pochází ze středolat. transparens „prosvítající“ (tvar slovesa transparere „prosvítat“, z trans „přes, skrz“ a parere „objevovat se, ukazovat se“).
česky: transparence; angl: transparency; slov: transparentnosť; rus: прозрачность  1993-a1
Transpiration f
syn. transpirace.
česky: výpar fyziologický; slov: fyziologický výpar; rus: физиологическое испарение  1993-a3
Transpiration f
syn. výpar fyziologický – výpar vody prostřednictvím živých organizmů, především v souvislosti s látkovou výměnou neboli metabolismem;  v bioklimatologii se proto transpirace označuje též jako produktivní výpar. Hlavní podíl transpirace připadá na rostliny, probíhá však i na povrchu těl živočichů, včetně lidského těla. Na rozdíl od evaporace, do níž zahrnujeme i přímo vypařenou část vody z intercepce srážek, závisí intenzita transpirace nejen na fyz. podmínkách prostředí, nýbrž i na vnitřním fyziologickém stavu rostlin, popř. živočichů. Viz též potenciální výpar, skutečný výpar, evapotranspirace, radioatmometr.
Termín pochází z novolat. transpiratio „vypařování“ (z trans „přes, skrz“ a spiratio „dýchání“, odvozeniny od slovesa spirare „dýchat; vydechovat, uvolňovat“).
česky: transpirace; angl: transpiration; slov: transpirácia; rus: транспирация  1993-a3
Treibhauseffekt m
česky: jev skleníkový; angl: greenhouse effect; slov: skleníkový jav; rus: парниковый эффект  2019
Treibhauseffekt m
oteplení nižších vrstev atmosféry v důsledku selektivní absorpce záření, konkrétně schopnosti atmosféry propouštět většinu slunečního krátkovlnného záření k zemskému povrchu a pohlcovat dlouhovlnné záření zemského povrchu. Dlouhovlnné záření v atmosféře pohlcují tzv. skleníkové plyny, především vodní pára (asi z 60 %), oxid uhličitý (přibližně 26 %), dále metan, oxid dusný a další plyny (ozon, freony…). Tím se atmosféra ohřívá a předává zpětným zářením energii k zemskému povrchu, což vede ke zmenšování efektivního vyzařování zemského povrchu, a tedy snížení jeho radiačního ochlazování. Analogické poměry jsou ve sklenících a pařeništích, kde tomu ale není primárně v důsledku selektivní propustnosti skla pro krátkovlnné a dlouhovlnné záření, ale spíše z důvodu izolovaného prostoru, který brání mechanické ventilaci tepla. Viz též klima skleníkové, mitigace.
česky: efekt skleníkový; angl: greenhouse effect; slov: skleníkový efekt; fr: effet de serre m; rus: парниковый эффект  1993-a3
Treibhausgase n/pl
radiačně aktivní plyny, které vykazují významnou selektivní absorpci dlouhovlnného záření, a tak se uplatňují při skleníkovém efektu. Jedná se především o plyny s heteronukleární tří- a víceatomovou strukturou molekuly s lomenou vazbou, která umožňuje velký počet vibračních stavů s odpovídajícími absorpčními frekvencemi v oblasti infračerveného záření. Významnými skleníkovými plyny jsou především vodní pára (na skleníkovém efektu se podílí asi 60 %), oxid uhličitý (přibližně 23 %), dále metan (8 %), ozon (6 %), oxid dusný a další složitější, především antropogenní plyny, jako např. freony a další druhy halogenovaných uhlovodíků. Viz též potenciál globálního oteplování.
česky: plyny skleníkové; angl: greenhouse gases; slov: skleníkové plyny  2015
Treibhausklima n
fyz. podmínky uvnitř skleníku, které se vyznačují vysokou teplotou vzduchu vyvolanou zvláště skleníkovým efektem, vytápěním a omezením ztrát tepla do okolního vzduchu. Zvýšené vlhkosti vzduchu je dosahováno častým zavlažováním. V přeneseném významu se termínem skleníkové klima někdy označuje klima vlhkých tropů vzhledem k tamní vysoké teplotě a vlhkosti vzduchu.
česky: klima skleníkové; angl: glasshouse climate; slov: skleníková klíma; rus: климат теплицы  1993-b2
Trias f
nejstarší geol. perioda mezozoika (druhohor), zahrnující období před 252 – 201 mil. roků. Oproti konci paleozoika se podstatně snížila druhová rozmanitost vlivem předchozího velkého vymírání. Během triasu došlo k rozestupování kontinentů dosud tvořících Pangeu. Objevili se první dinosauři, kteří ovládli následující periodu jura.
česky: trias; angl: Triassic; slov: trias  2018
Trichtereffekt m
jeden z případů Venturiho efektu. Vzniká kombinací tryskového efektu a efektu návětrného, když z orografických důvodů dochází ke zhuštění proudnic jak v horiz., tak ve vert. směru. Výrazně přispívá k orografickému zesílení srážek v zasažené oblasti. Podmínkou je stoupající terén sevřený sbíhajícími se horskými pásmy, což vytváří „nálevku“ pro případné natékající proudění. V ČR mají takové uspořádání např. Rychlebské hory s Hrubým Jeseníkem, Oderské vrchy s Moravskoslezskými Beskydami, Lužické hory s Jizerskými horami a Šumava s Novohradskými horami. Uvedené případy se uplatňují při přibližně severním proudění, především při situaci Vb, popř. při výskytu retrográdní cyklony východně od ČR.
česky: efekt nálevkový; angl: funnel effect; slov: lievikový efekt; fr: vent de couloir m; rus: долинный эффект, эффект воронки  1993-a3
Tripelpunkt m
syn. trojbod – v termodynamice jediný bod na fázovém diagramu, který je společný všem křivkám rozhraní mezi jednotlivými fázemi. Udává tedy podmínky, za nichž jsou v rovnováze fáze plynná, kapalná i pevná, přičemž systém nemá žádný stupeň volnosti. V meteorologii se s ním setkáváme především v souvislosti s fázemi vody. Odpovídá mu pak teplota 273,16 K (0,01 °C) a tlak vodní páry 611,7 Pa (6,117 mbar). Jedině za těchto podmínek může nastat rovnovážný stav mezi vodní párou, kapalnou vodou a ledem.
česky: bod trojný; angl: triple point; slov: trojný bod; fr: point triple m  2017
Tripelpunkt m
zřídka užívané syn. bod trojný.
česky: trojbod; angl: triple point  2017
Trockenadiabate f
křivka na termodynamickém diagramu, která vyjadřuje vztah mezi dvěma stavovými proměnnými (zpravidla mezi teplotou a tlakem) při adiabatickém dějisuchém vzduchu. Je zároveň izolinií potenciální teploty. Rovnicí suché adiabaty v závislosti na abs. teplotě T a tlaku vzduchu p je Poissonova rovnice
T0T =(p0p )κd
kde κd = Rd / cpd  0,286, Rd je měrná plynová konstanta suchého vzduchu, cpd měrné teplo suchého vzduchu při stálém tlaku, T0 abs. teplota při tlaku p0. Při užití proměnných abs. teplota T a výška z je suchá adiabata vyjádřena rovnicí
T=T0-γdz,
kde γd je suchoadiabatický teplotní gradient aT0 abs. teplota ve výšce z = 0.
česky: adiabata suchá; angl: dry adiabat , dry adiabatic; slov: suchá adiabata; fr: adiabatique sèche f, adiabatique f; rus: сухая адиабата  1993-a3
trockenadiabatischer Temperaturgradient m
adiabatický teplotní gradient částice suchého vzduchu. Lze jej vyjádřit vztahem
γd=(-dT dz)d=gcpd,
kde dT je změna teploty, dz změna výšky, g tíhové zrychlení a cpd je měrné teplo suchého vzduchu při stálém tlaku. Hodnota γd je 0,98 K na 100 m, v praxi se obvykle zaokrouhluje na 1 K na 100 m. Viz též adiabata suchá.
česky: gradient teplotní suchoadiabatický; angl: dry adiabatic lapse rate; slov: suchoadiabatický teplotný gradient; fr: gradient adiabatique sec m; rus: сухоадиабатический градиент  1993-a3
trockene Deposition f
depozice ve smyslu ukládání atm. příměsi na zemském povrchu, k níž dochází v období beze srážek, popř. hmotnost příměsi, která je tímto způsobem uložena na jednotku plochy za jednotku času. Týká se atmosférického aerosolu i plynů. Na rozdíl od mokré depozice je suchá depozice nepřetržitým procesem. Viz též spad prachu.
česky: depozice suchá; angl: dry deposition; slov: suchá depozícia; fr: dépôt sec m; rus: сухие выпадения (осаждения, накопления)  1993-a3
trockene Luft f
1. v termodynamice atmosféry vzduch, který neobsahuje žádnou vodní páru;
2. v obecném smyslu vzduch s nízkou relativní vlhkostí.
Viz též vzduch vlhký, atmosféra suchá a čistá.
česky: vzduch suchý; angl: dry air; slov: suchý vzduch; rus: сухой воздух  1993-a2
trockene und reine Atmosphäre f
atmosféra tvořená pouze směsí plynů, které jsou přirozeně přítomné v atmosféře Země a svými vlastnostmi se blíží ideálnímu plynu. Suchou a čistou atmosféru tedy tvoří suchý vzduch bez atmosférických příměsí. Viz též atmosféra čistásložení atmosféry Země chemické.
česky: atmosféra suchá a čistá; angl: dry and clear atmosphere; slov: suchá a čistá atmosféra; fr: atmosphère pure et sèche f; rus: сухая и чистая атмосфера  1993-a3
trockener Dunst m
atmosférický aerosol tvořený mikroskopicky malými pevnými částicemi, které jsou tak četné, že způsobují opalescenci a snižují dohlednost. Zákal je v našich zeměp. šířkách nejčastěji pozorovaný litometeor. V pozorovatelské praxi se však zaznamenává jen tehdy, snižuje-li meteorologickou dohlednost pod 10 km. Podle převažujícího původu se někdy rozlišuje zákal prachový, průmyslový, pylový, solný, nepřesně též písečný apod. Na rozdíl od mlhy a kouřma není zákal ve významné míře působen kapičkami vody nebo krystalky ledu. Protože však částice působící zákal mohou být kondenzačními jádry, je přechod od zákalu ke kouřmu a mlze plynulý: vzroste-li při ochlazování vzduchu relativní vlhkost přibližně na 70 %, začíná kondenzace na nejaktivnějších kondenzačních jádrech, dohlednost se snižuje a při pokračujícím růstu relativní vlhkosti zákal postupně přechází v kouřmo, které se při vlhkosti zhruba nad 90 % může změnit v mlhu. Zákal může být složen z produktů spalování, avšak zaznamenává-li se v omezených oblastech v blízkosti větších zdrojů kouře, nelze ho s kouřem zaměňovat.
česky: zákal; angl: haze; slov: zákal; rus: мгла  1993-a3
trockenes Förderband
řidčeji používané syn. intruze (průnik) suchého vzduchu.
česky: pás přenosový suchý; angl: dry intrusion; slov: suchý prenosový pás; rus: вторжение (интрузия) сухого воздуха  2014
trockenes Hagelwachstum n
proces růstu krup, při němž všechna přechlazená voda zachycená kroupou okamžitě mrzne. Latentní teplo mrznutí nestačí na ohřátí kroupy nad 0°C a vznikající struktura ledu je členitá a obsahuje dutiny – vzduchové bubliny. Viz mez Schumanova - Ludlamova.
česky: růst krup suchý; angl: dry growth of hailstones; slov: suchý rast krúp  2014
trockenes Klima n
1. syn. pro klima aridní;
2. v Köppenově klasifikaci klimatu jedno z pěti hlavních klimatických pásem, označené písmenem B.
Roční úhrn srážek zde nedosahuje prahové hodnoty, která je přímo úměrná prům. roč. teplotě vzduchu. Podle velikosti tohoto prahu rozlišujeme klima stepi a drsnější klima pouště, v obou případech buď horké, nebo chladné s prům. roč. teplotou vzduchu pod 18 °C. Horké suché klima souvisí se subtropickým pásem vysokého tlaku vzduchu a pasátovou inverzí teploty vzduchu a částečně odpovídá tropickému klimatuAlisovově klasifikaci klimatu; chladné suché klima je důsledkem velké kontinentality klimatu a vyznačuje se proto mj. velkou roční amplitudou teploty vzduchu.
česky: klima suché; angl: arid climate; slov: suchá klíma; rus: засушливый климат, сухой климат  1993-b3
trockenes Thermometer n
vžité označení pro jeden ze dvojice rtuťových teploměrů, tvořících psychrometr. Na rozdíl od vlhkého teploměru má nádobku suchou a udává tedy teplotu vzduchu, která bývá někdy označována jako suchá teplota. V meteorologických budkách byl staničním teploměrem a tvořil součást Augustova psychrometru. Při měřeních mimo met. budku šlo zpravidla o aspirační teploměr Assmannova psychrometru. Na profesionálních stanicích ČR se údaje ze suchého teploměru používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem.
česky: teploměr suchý; angl: dry-bulb thermometer; slov: suchý teplomer; rus: сухой термометр  1993-a3
Trockengebiet n
česky: oblast suchá; angl: arid zone; slov: suchá oblasť; rus: аридная область, область с сухим климатом  1993-a3
Trockenheit f
obecné označení pro nedostatek vody v krajině. Je vyvoláno nedostatkem srážek a ovlivňováno výparem a dalšími faktory, včetně antropogenních. Definice sucha proto není jednoznačná a různí autoři k hodnocení jeho intenzity používají různé indexy sucha. C. W. Thornthwaite rozlišoval tři hlavní druhy sucha:
a) stálé sucho, způsobující ariditu klimatu;
b) sezonní sucho, nastávající periodicky v období sucha;
c) nepravidelně se vyskytující nahodilé sucho, postihující epizodicky i oblasti s humidním klimatem.
Nedostatek vody  se šíří různými složkami přírodní sféry, křičemž na sebe navazuje meteorologické sucho, půdní neboli zemědělské sucho, hydrologické sucho a socioekonomické sucho. Sucho patří mezi největší atmosféricky podmíněná přírodní ohrožení zejména v chudých zemích. Viz též období suché.
česky: sucho; angl: drought; slov: sucho; rus: засуха  1993-a3
Trockenheitsindex m
syn. index suchosti – 1. klimatologický index k vyjádření aridity klimatu, v podstatě syn. k termínu index humidity;
2. část Thornthwaiteova indexu vlhkosti, vyjadřující sezonní nedostatek srážek v měsících, kdy je úhrn srážek menší než potenciální výpar.
česky: index aridity; angl: aridity index; slov: index aridity; rus: индекс аридности  1993-a3
Trockenheitsindex m
česky: index suchosti; angl: aridity index; slov: index suchosti; rus: индекс аридности, индекс засушливости  1993-a2
Trockenheitsindex m
veličina pro kvantitativní vyhodnocení sucha (především ve smyslu nahodilého sucha), sloužící též k vymezení epizod sucha. Vzhledem k nejednoznačnosti definice sucha a různým hlediskům pro jeho hodnocení existuje takových indexů velké množství. Mnohé jsou založeny na zvolených prahových hodnotách úhrnů srážek nebo např. počtu bezsrážkových dní. Pokročilejší indexy reflektují časovou distribuci srážek (např. index předchozích srážek) nebo míru abnormality srážek (např. standardizovaný srážkový index). Další skupinu indexů sucha tvoří ty, které kromě deficitu srážek zohledňují i podmínky pro výpar (např. Palmerův index intenzity sucha). Mnoho indexů sucha lze využít i k hodnocení vlhkých období. K hodnocení celých roků, případně jejich vegetačních období, pak mohou sloužit i některé indexy aridity.
česky: index sucha; angl: drought index; slov: index sucha; rus: индекс засушливости  2014
Trockenperiode f
časový úsek, kdy se na dané met. stanici nevyskytly atmosférické srážky, nebo úhrn srážek nedosahoval konvenčně stanovené prahové hodnoty, nejčastěji 0,1 mm, ve starších pracích 0,0 mm (neměřitelné srážky). Suchá období se střídají se srážkovými obdobími. Někteří autoři pracují se zvolenou minimální délkou suchých období, jiní mezi ně počítají i samostatné bezsrážkové dny. Kromě takto definovaných, tzv. absolutních nebo též uzavřených suchých období, se někdy vymezují i parciální neboli přerušená suchá období, přičemž kritériem bývá průměrný denní úhrn srážek za toto období. Údaje o četnosti, prům. a nejdelším trvání suchých období jsou důležitými charakteristikami časového rozdělení srážek i kritériem některých klasifikací klimatu. Dlouhá suchá období, označovaná někdy jako období vyprahlá, a jejich opakovaný výskyt způsobují vznik sucha. Jsou charakteristická pro aridní klima a pro období sucha, mohou však nastat i v oblastech s humidním klimatem, resp. v období dešťů. Viz též extrémy srážek.
česky: období suché; angl: dry period, dry spell; slov: suché obdobie; rus: сухой период  1993-a3
Trockenzeit f
česky: doba sucha; slov: doba sucha; fr: saison sèche f  1993-a3
Trockenzeit f
ucelené období, v němž daný index sucha vykazuje hodnoty pro vymezení sucha.
česky: epizoda sucha; slov: epizóda sucha, obdobie sucha; fr: épisode de sécheresse m  2014
Trogachse f
na synoptické mapě čára uvnitř brázdy nízkého tlaku vzduchu, podél níž dochází ke sbíhavosti proudnic. Jestliže je brázda nízkého tlaku tvořena přibližně rovnoběžnými izobarami, resp. izohypsami, je osa brázdy nízkého tlaku vzduchu zároveň čárou nejnižšího tlaku vzduchu, resp. čárou nejmenšího geopotenciálu na výškových mapách. Jestliže je brázda tvaru V, potom je osa brázdy nízkého tlaku vzduchu spojnicí míst s maximálním cyklonálním zakřivením izobar, resp. izohyps. V mělkých brázdách ve tvaru otevřeného písmene U je často určení osy brázdy nízkého tlaku vzduchu obtížné.
česky: osa brázdy nízkého tlaku vzduchu; angl: axis of trough, trough line; slov: os brázdy nízkeho tlaku vzduchu; rus: ось ложбины  1993-a2
Trombe f
označení pro libovolný atmosférický vír s přibližně vertikální osou rotace, průměrem od desítek centimetrů do několika kilometrů, bez ohledu na mechanizmus jeho vzniku a bez ohledu na to, zda se dotýká zemského povrchu či nikoliv. Tromba se může utvořit pod základnou konvektivního oblaku nebo nad zemským povrchem.  Mezi tromby pod základnou konv. oblaků patří kondenzační chobot nedotýkající se zemského povrchu, vodní smršť a tornádo. Tromba nad přehřátým zemským povrchem se označuje jako prachový nebo písečný vír či rarášek, nad vodní hladinou mlžný vír. Extrémním případem uvedeného typu tromby je požárový vír. Dalšími druhy tromb nad zemským povrchem jsou gustnádo a sněhový vír.
Ke zviditelnění tromby může dojít buď různým materiálem unášeným ze zemského povrchu (v prachovém nebo písečném víru a ve sněhovým víru), nebo kondenzací vodní páry (v kondenzačním chobotu neboli nálevce tromby, klasifikované jako tuba, dále pak v mlžném víru), v případě tornáda zpravidla oběma způsoby. Požárový vír mohou zviditelňovat plameny, kouř i produkty kondenzace vodní páry.
Mezi tromby se nezahrnují víry s přibližně horizontální osou rotace (např. rotory), ani nestabilní turbulentní víry.
Termín byl přejat z it. tromba „trubka“, srov. trombón
česky: tromba; angl: whirlwind; slov: tromba; rus: смерч, тромб  1993-a3
Trombenschlauch m
viz tromba.
česky: chobot kondenzační; angl: funnel, funnel cloud, trunk; slov: kondenzačný chobot; rus: воронка тромба, воронкообразное облако, конденсационный хобот, хобот смерча  1993-b3
Trombenschlauch m
starší označení pro kondenzační chobot, viz tromba.
česky: nálevka tromby; slov: lievik tromby; rus: воронка тромба  1993-a3
Tropenmeteorologie f
část meteorologie zabývající se zvláštnostmi vývoje atm. procesů v tropické oblasti, která je přibližně vymezená na severu obratníkem Raka a na jihu obratníkem Kozoroha. Poznatky tropické meteorologie vycházejí jednak ze systematických měření pozemních meteorologických stanic, zejména ale z družicových a radarových měření, a také z výsledků expedičních měření, jako např. YOTC, TACE a TROPICSS. Hlavními objekty výzkumu tropické meteorologie jsou tropické cirkulační systémy a jejich oscilace (pasátová a monzunová cirkulace, Walkerova cirkulace a jižní oscilace, vlny ve východním proudění, tropické cyklony, intertropická zóna konvergence) a vzájemná vazba mezi tropickou a vnětropickou cirkulací i mezi cirkulacemi obou polokoulí.
česky: meteorologie tropická; angl: tropical meteorology; slov: tropická meteorológia; rus: тропическая метеорология  1993-a3
Tropennacht f
noc, v níž minimální teplota vzduchu neklesla pod 20,0 °C. Toto vymezení je užíváno v Česku i v dalších zemích, v mezinárodní komunitě se nicméně za tropickou noc považuje pouze taková noc, kdy minimální teplota vzduchu zůstala nad uvedenou prahovou hodnotou. Časové vymezení hodnocené části dne není jednotné, v Česku se tradičně uvažuje období mezi klimatologickými termíny ve 21 h předchozího dne do 7 h daného dne. Charakteristický den, kdy se tropická noc vyskytla, označujeme jako den s tropickou nocí. Viz též den tropický.
česky: noc tropická; angl: tropical night; slov: tropická noc; rus: тропическая ночь  1993-a3
Tropikfront f
česky: fronta tropická; angl: tropical front; slov: tropický front; fr: front intertropical m; rus: тропический фронт  1993-a3
Tropikluft f
vzduchová hmota, vymezená geografickou klasifikací vzduchových hmot, s ohniskem vzniku vzduchové hmoty po celý rok v tropech a v subtropických anticyklonách, v létě pak i nad již. částmi pevnin mírných šířek. Jeho výskyt je typický celoročně pro tropické klima, v teplé části roku pro subtropické klima, v chladné části roku dané polokoule pro subekvatoriální klima. Tropický vzduch se vyznačuje obecně velkým zakalením atmosféry a zmenšenou dohledností. Pokud pronikne do stř. Evropy, je po celý rok teplý. V zimě se zde může vyskytnout jeho pevninský typ, který sem pronikne ze sv. Afriky nebo Arabského poloostrova. Podstatně častější je pak v létě, kdy sem proudí i z východní Evropy a z Balkánského poloostrova. Má obvykle velmi nízkou relativní vlhkost. Mořský tropický vzduch původem ze Středozemí či z oblasti Azorských ostrovů proniká do stř. Evropy zpravidla jen krátce po přední straně brázdy nízkého tlaku vzduchu a v ní ležící zvlněné fronty. Vyznačuje se naopak vysokou relativní a především měrnou vlhkostí vzduchu a může přinášet vydatné srážky.
česky: vzduch tropický; angl: tropical air; slov: tropický vzduch; rus: тропический воздух  1993-a3
tropische Kalmen f/pl
Termín byl původně užíván v prostředí mořeplavby jako expresivní označení stavu, kdy plachetnice nemohou plout vpřed vlivem bezvětří nebo kvůli proměnlivému větru. Od 2. pol. 19. stol. je doložen i jako označení oblasti rovníkových tišin, kde k tomuto jevu dochází. Vznikl  zřejmě ze staroangl. dold, pravděpodobně příbuzného s dull „tupý“.
česky: doldrums; slov: doldrums; fr: calmes équatoriaux pl, pot au noir m  1993-a2
tropische Ostwinde m/pl
nepoužívané označení pro pasáty.
česky: větry východní tropické; angl: tropical easterlies; slov: východné tropické vetry; rus: тропические восточные ветры  1993-a3
tropische Störung f
rozsáhlá skupina konvektivních bouří v tropických, popř. subtropických oblastech, která se v poli proudění neprojevuje uzavřenou cyklonální cirkulací. Vzniká často v týlu vln ve východním proudění a za určitých podmínek se z ní může vyvinout tropická cyklona. Tropická porucha nemusí být vyjádřena na přízemní synoptické mapě. Na snímcích z meteorologických družic je charakterizována izolovanými systémy uspořádané konvekce. Tropická porucha mívá obvykle průměr 200 až 600 km a zachovává si své vlastnosti více než 24 hodin.
česky: porucha tropická; angl: tropical disturbance; slov: tropická porucha; rus: тропическое возмущение  1993-a3
tropische Zyklone f
1. první stadium tropické cyklony, vyznačující se uzavřenou cirkulací, přičemž desetiminutový (v USA minutový) průměr rychlosti přízemního větru nepřesahuje 17 m.s–1;
2. nepřesné označení libovolné cyklony tropického původu.
česky: deprese tropická; angl: tropical depression; slov: tropická depresia; fr: dépression tropicale f; rus: тропическая депрессия  1993-a3
tropische Zyklone f
cyklona, která vzniká nad tropickými oblastmi oceánů, nejčastěji v pásmech mezi 5° až 20° sev. a již. zeměp. šířky. Za určitých podmínek se vyvíjí z tropické poruchy, přičemž dochází k organizaci konvektivních bouří, poklesu tlaku vzduchu ve středu cyklony a zesilování cyklonální cirkulace. Oproti mimotropické cykloně dochází v tropické cykloně při zemi k většímu zahloubení, zároveň však bývá méně rozsáhlá (zpravidla o průměru několik set kilometrů). Velký horizontální tlakový gradient ve spodní troposféře způsobuje vysokou rychlost větru. Dalšími nebezpečnými projevy jsou vzdutí způsobené bouří, intenzivní srážky a případný výskyt tornád.
Podle desetiminutových (v USA minutových) průměrů rychlosti přízemního větru rozeznáváme tři stadia vývoje tropické cyklony. Prvním stadiem je tropická deprese, druhým tropická bouře a třetím je stadium plně vyvinuté tropické cyklony, které má různá regionální označení: hurikán, cyklon, tajfun, případně baguio. Pro toto stadium je charakteristický vznik oka tropické cyklony. Po dalším zesílení může intenzita tropické cyklony přechodně poklesnout v důsledku cyklu obměny stěny oka.
Tropická cyklona je teplým útvarem, který získává většinu své energie, potřebné pro udržení výstupných pohybů vzduchu a horiz. proudění, prostřednictvím kondenzace vodní páry. Ta se do spodní troposféry dostává výparem z teplé mořské hladiny. Při kondenzaci dochází k uvolňování velkého množství latentního tepla, které je dále transportováno do chladnější horní troposféry. K zániku tropické cyklony, případně k její transformaci na mimotropickou cyklonu, dochází nad pevninou nebo nad chladnějším oceánem v důsledku zeslabení přísunu energie.
Monitoring tropických cyklon koordinuje Světová meteorologická organizace prostřednictvím regionálních specializovaných meteorologických center. Zde jsou tropické deprese číslovány podle pořadí výskytu v dané sezoně; při přechodu do stadia tropické bouře pak dostávají jména z abecedně řazených seznamů, které se střídají po několika letech. Viz též dráhy cyklon, pás srážkový, cordonazo, meteorologie tropická, půlkruh nebezpečný, stupnice Saffirova–Simpsonova, willy-willy.
česky: cyklona tropická; angl: tropical cyclone; slov: tropická cyklóna; fr: cyclone tropical m, dépression tropicale f; rus: тропический циклон  1993-a3
tropischer Monsun m
monzun v tropických oblastech s monzunovým klimatem, kde je proudění vzduchu ovlivňováno nejen monzunovou cirkulací mezi oceánem a pevninou, nýbrž i sezonním pohybem intertropické zóny konvergence, a tím i změnou směru pasátů, s nimiž v některých oblastech tropické monzuny splývají. I z těchto důvodů přináší letní tropický monzun obecně větší monzunové srážky než mimotropický monzun. Tropické monzuny jsou nejsilněji vyvinuty v oblasti Indického oceánu.
česky: monzun tropický; angl: tropical monsoon; slov: tropický monzún; rus: тропический муссон  1993-a3
tropischer Regen m
vydatné srážky v tropických oblastech; vázané na intertropickou zónu konvergence, jejíž pohyb způsobuje roční chod tropických dešťů, který je hlavním kritériem rozlišení typů tropického klimatu. Pouze v klimatu tropického dešťového pralesa se tropické deště vyskytují celoročně, někdy se dvěma maximy ve formě rovnodennostních dešťů. V ostatních oblastech jsou koncentrovány do delšího nebo kratšího období dešťů, což platí především pro oblasti s tropickým monzunovým klimatem. Tropické deště jsou provázeny silnými bouřkami a na pevnině mají výrazný denní chod s maximem v odpoledních hodinách. Viz též pól dešťů, extrémy srážek.
česky: deště tropické; angl: tropical rain; slov: tropické dažde; fr: pluies tropicales f; rus: тропические дожди  1993-a3
tropischer Strahlstrom m
česky: proudění tryskové tropické; angl: tropical jet stream; slov: tropické dýzové prúdenie; rus: тропическое струйное течение  1993-a1
tropischer Strahlstrom m
syn. proudění tryskové tropické – tryskové proudění na sev. polokouli v blízkosti rovníku. Má vých. směr, a proto se někdy označuje termínem „rovníkový východní jet stream“. Bývá součástí letního stratosférického tryskového proudění, je nejvýraznější od června do srpna. Jeho osa bývá ve výšce 20–30 km a nevzdaluje se od rovníku více než 15–20°. Rovníkové tryskové proudění se vyskytuje především nad již. Arábií, Afrikou, Indií a rovníkovými oblastmi Tichého oceánu. V šířkovém směru má rovníkové tryskové proudění relativně malý rozsah.
česky: proudění tryskové rovníkové; angl: equatorial jet stream, tropical jet stream; slov: rovníkové dýzové prúdenie  1993-a1
tropischer Wirbelsturm m
1. druhé stadium vývoje tropické cyklony, ve kterém desetiminutový (v USA minutový) průměr rychlosti přízemního větru dosahuje hodnot mezi 17 a 33 m.s–1. Tropická bouře se vyznačuje dobře organizovanými srážkovými pásy, přičemž konvekce se zpravidla koncentruje do blízkosti jejího středu;
2. nepřesné označení libovolné tropické atmosférické poruchy.
česky: bouře tropická; angl: tropical storm; slov: tropická búrka; fr: tempête tropicale f; rus: тропический шторм  1993-a3
tropisches Klima n
1. souborné označení pro horké klima tropických šířek, tedy klima suchých tropů (horké suché klima) i vlhkých tropů (tropické dešťové klima, resp. ekvatoriální klima a subekvatoriální klima);
2. např. v Alisovově klasifikaci klimatu označení pro klima té části tropů, kde po celý rok převládá tropický vzduch.
česky: klima tropické; angl: tropical climate; slov: tropická klíma; rus: тропический климат  1993-b3
tropisches Regenwaldklima n
Köppenově klasifikaci klimatu typ tropického dešťového klimatu, označovaný Af, s celoročně vysokou teplotou a vlhkostí vzduchu a rovnoměrným rozdělením srážek během roku, přičemž ani v nejsušším měsíci neklesá jejich prům. měs. úhrn pod 60 mm. Tropické deště zde mohou mít dvě maxima ve formě rovnodennostních dešťů. Tento klimatický typ poskytuje nejpříhodnější podmínky pro růst vegetace na Zemi. V Alisovově klasifikaci klimatu mu přibližně odpovídá ekvatoriální klima.
česky: klima tropického dešťového pralesa; angl: tropical-rain-forest climate; slov: klíma tropického dažďového pralesa; rus: климат влажных тропических лесов  1993-b3
tropisches Tief n
cyklona, která vzniká nad tropickými oblastmi oceánů, nejčastěji v pásmech mezi 5° až 20° sev. a již. zeměp. šířky. Za určitých podmínek se vyvíjí z tropické poruchy, přičemž dochází k organizaci konvektivních bouří, poklesu tlaku vzduchu ve středu cyklony a zesilování cyklonální cirkulace. Oproti mimotropické cykloně dochází v tropické cykloně při zemi k většímu zahloubení, zároveň však bývá méně rozsáhlá (zpravidla o průměru několik set kilometrů). Velký horizontální tlakový gradient ve spodní troposféře způsobuje vysokou rychlost větru. Dalšími nebezpečnými projevy jsou vzdutí způsobené bouří, intenzivní srážky a případný výskyt tornád.
Podle desetiminutových (v USA minutových) průměrů rychlosti přízemního větru rozeznáváme tři stadia vývoje tropické cyklony. Prvním stadiem je tropická deprese, druhým tropická bouře a třetím je stadium plně vyvinuté tropické cyklony, které má různá regionální označení: hurikán, cyklon, tajfun, případně baguio. Pro toto stadium je charakteristický vznik oka tropické cyklony. Po dalším zesílení může intenzita tropické cyklony přechodně poklesnout v důsledku cyklu obměny stěny oka.
Tropická cyklona je teplým útvarem, který získává většinu své energie, potřebné pro udržení výstupných pohybů vzduchu a horiz. proudění, prostřednictvím kondenzace vodní páry. Ta se do spodní troposféry dostává výparem z teplé mořské hladiny. Při kondenzaci dochází k uvolňování velkého množství latentního tepla, které je dále transportováno do chladnější horní troposféry. K zániku tropické cyklony, případně k její transformaci na mimotropickou cyklonu, dochází nad pevninou nebo nad chladnějším oceánem v důsledku zeslabení přísunu energie.
Monitoring tropických cyklon koordinuje Světová meteorologická organizace prostřednictvím regionálních specializovaných meteorologických center. Zde jsou tropické deprese číslovány podle pořadí výskytu v dané sezoně; při přechodu do stadia tropické bouře pak dostávají jména z abecedně řazených seznamů, které se střídají po několika letech. Viz též dráhy cyklon, pás srážkový, cordonazo, meteorologie tropická, půlkruh nebezpečný, stupnice Saffirova–Simpsonova, willy-willy.
česky: cyklona tropická; angl: tropical cyclone; slov: tropická cyklóna; fr: cyclone tropical m, dépression tropicale f; rus: тропический циклон  1993-a3
tropisches Tief n
1. první stadium tropické cyklony, vyznačující se uzavřenou cirkulací, přičemž desetiminutový (v USA minutový) průměr rychlosti přízemního větru nepřesahuje 17 m.s–1;
2. nepřesné označení libovolné cyklony tropického původu.
česky: deprese tropická; angl: tropical depression; slov: tropická depresia; fr: dépression tropicale f; rus: тропическая депрессия  1993-a3
tropisches Tiefdruckgebiet n
1. první stadium tropické cyklony, vyznačující se uzavřenou cirkulací, přičemž desetiminutový (v USA minutový) průměr rychlosti přízemního větru nepřesahuje 17 m.s–1;
2. nepřesné označení libovolné cyklony tropického původu.
česky: deprese tropická; angl: tropical depression; slov: tropická depresia; fr: dépression tropicale f; rus: тропическая депрессия  1993-a3
Tropopause f
1. přechodná vrstva oddělující níže ležící troposféru od výše ležící stratosféry. Jen zřídka je to hladina přímého přechodu troposféry ve stratosféru. V literatuře se pod tropopauzou obvykle rozumí spodní hladina této vrstvy, která může mít tloušťku několika set m až po tři km, popř. i více. Někdy se také chybně ztotožňuje s hladinou, v níž byla dosažena nejnižší teplota v horní troposféře. Definice tropopauzy je přijata Světovou meteorologickou organizací jako konvenční tropopauza. Výška tropopauzy závisí na zeměp. šířce, roč. době a na vlastnostech vzduchové hmoty. V závislosti na zeměp. šířce nabývá tropopauza tyto prům. hodnoty výšky a teploty: v oblasti okolo pólu 7 až 9 km a –50 °C, v mírných zeměp. šířkách 10 až 12 km a –56 až –60 °C, nad rovníkem 16 až 18 km a –80 °C a nižší. Prům. výška a teplota tropopauzy nad územím ČR je 10,9 km a –58,8 °C. Výška tropopauzy závisí i na rozložení tlaku vzduchu v troposféře. Nad cyklonami se tropopauza snižuje, nad anticyklonami zvyšuje. Někdy se nad sebou vyskytuje více vrstev splňujících kritéria tropopauzy. Pak se rozlišuje první a druhá tropopauza anebo se hovoří o listovitosti tropopauzy.
2. hladina, v níž potenciální vorticita nabývá určité hodnoty, na severní polokouli se obvykle volí 1,5 nebo 2 tzv. jednotky potenciální vorticity (Potential vorticity unit, PVU, 1 PVU = 10-6 m2 s-1 K kg-1). Přesná hodnota není stanovena. V tomto případě se hovoří o tzv. dynamické tropopauze a používá se hlavně v dynamické meteorologii. Viz též protržení tropopauzy, vlna tropopauzy.
Termín zavedl N. Shaw v r. 1912. Skládá se z řec. τρόπος [tropos] „obrat; způsob“ (viz troposféra) a lat. pausa „přerušení, ukončení“.
česky: tropopauza; angl: tropopause; slov: tropopauza; rus: тропопауза  1993-a3
Tropopausenhöhe f
výška, v níž začíná tropopauza. Obvykle je to výška hladiny, v níž vert. teplotní gradient splňuje kritérium konvenční tropopauzy. Pokud se nad určitou oblastí vyskytuje několik tropopauz, hovoří se o výšce první, druhé, popř. další tropopauzy. Průměrná výška tropopauzy v polárních oblastech je 8 až 9 km, v mírných zeměpisných šířkách 10 až 12 km a v rovníkové oblasti 17 až 18 km. V zimním období je výška tropopauzy menší než v letním období, v oblasti cyklon je zpravidla menší než v oblasti anticyklon. V případě dynamické tropopauzy, je její výška závislá na dynamických pohybech v troposféře a stratosféře, obvykle je v polárních oblastech výrazně níž než v subtropech.
česky: výška tropopauzy; angl: altitude of tropopause; slov: výška tropopauzy; rus: высота тропопаузы  1993-a3
Tropopausenkarte f
synoptická mapa, do níž je zakreslen tlak vzduchutropopauze nebo nadm. výšky (topografie) tropopauzy a teploty vzduchu v ní. Analyzovaná mapa obsahuje izobary nebo izohypsy tropopauzy a izotermy v ní. Někdy se do mapy tropopauzy zakreslují i údaje o maximálním větru. Viz též tropopauza.
česky: mapa tropopauzy; angl: tropopause chart; slov: mapa tropopauzy; rus: карта тропопаузы  1993-a3
Tropopausentrichter m
česky: trychtýř tropopauzy; slov: lievik tropopauzy  1993-a1
Tropopausentrichter m
trychtýř tropopauzy výrazné snížení tropopauzy tvarem připomínající nálevku, které vzniká nad hlubokou a málo pohyblivou cyklonou. Jedná se o proces, kdy se stratosférický vzduch dostává do troposféry. Obvykle se část tohoto vzduchu vrací do stratosféry a část zůstává v troposféře. Důležitý proces výměny plynů mezi dolní stratosférou a troposférou.
česky: nálevka tropopauzy; angl: tropopause folding; slov: lievik tropopauzy; rus: воронка тропопаузы  1993-a3
Tropopausenwelle f
zvlnění tropopauzy vyvolané vert. pohyby vzduchu v souvislosti s výraznou cyklonální činností, která může vést i k protržení tropopauzy. Současně se změnami výšky tropopauzy při přesunu cyklon a anticyklon v atmosféře se mění i teplota v hladině tropopauzy a nad ní, tj. ve spodní části stratosféry, a to tak, že při nízké tropopauze se její teplota zvyšuje, při vysoké snižuje.
česky: vlna tropopauzy; angl: tropopause wave; slov: vlna tropopauzy; rus: волна тропопаузы  1993-a1
Troposphäre f
spodní část atmosféry Země, vymezená při vertikálním členění atmosféry podle vertikálního profilu teploty vzduchu. Charakteristickým rysem troposféry je všeobecné ubývání teploty vzduchu s výškou v průměru o 0,65 °C na každých 100 m výšky. V troposféře jsou soustředěny přibližně 3/4 hmotnosti atmosféry. Vyskytuje se v ní téměř veškerá voda obsažená v atmosféře. Proto je troposféra oblastí vzniku mlh, nejdůležitějších druhů oblaků, bouřkové činnosti, vzniku a vypadávání atm. srážek. Je oblastí neustálého vert. promíchávání vzduchu. Rychlost proudění vzduchu v troposféře obvykle s výškou roste a maxima dosahuje v blízkosti tropopauzy, která je horní hranicí troposféry. Troposféra sahá nad rovníkem do výšky 16 až 18 km, nad póly 7 až 9 km. Ve stř. zeměp. šířkách je prům. výška troposféry 11 km, mění se v závislosti na roč. době (v zimě dosahuje níže než v létě) a na celkové povětrnostní situaci (v cyklonách je níže než v anticyklonách). V troposféře rozlišujeme ještě přízemní vrstvu, která je součástí mezní vrstvy, popř. ji dělíme na troposféru spodní, sahající u nás přibližně do 2 km, střední, ležící mezi výškami 2 až 7 km, a horní mezi 7 km a spodní hranicí tropopauzy. Horní hranici troposféry zjistili v r. 1902 nezávisle na sobě franc. meteorolog P. L. Teisserenc de Bort a Němec R. Assmann.
Termín zavedl franc. meteorolog L. P. Teisserenc de Bort v r. 1908, když rozdělil atmosféru na troposféru a nad ní ležící stratosféru. Skládá se z řec. τρόπος [tropos] „obrat; způsob“, příp. τρόπη [tropé] „změna, obrat“, a  σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“). Název odkazuje k charakteristické vlastnosti troposféry, která se oproti stratosféře podstatně více vertikálně promíchává (doslova převrací) vlivem konvekce.
česky: troposféra; angl: troposphere; slov: troposféra; rus: тропосфера  1993-b3
troposphärische Front f
česky: fronta troposférická; angl: tropospheric front; slov: troposférický front; fr: front troposphérique m; rus: тропосферный фронт  1993-a1
trüber Tag m
charakteristický den, v němž prům. oblačnost byla větší než 8 desetin, případně relativní trvání slunečního svitu bylo menší než 0,2. Viz též den jasný, den oblačný.
česky: den zamračený; angl: overcast day; slov: zamračený deň; fr: jour à ciel couvert m, jour couvert m; rus: пасмурный день  1993-a3
Trübung f
Termín pochází ze středolat. turbiditas „zmatení, rozrušení; kalnost (tekutiny)“, odvozeného od turbidus „rozbouřený, nepokojný“ (od turba „dav; povyk, zmatek“).
česky: turbidita; angl: turbidity; slov: turbidita; rus: мутность  1993-a1
Trübung f
schopnost prostředí zeslabovat procházející záření. V meteorologii se nejčastěji jedná o schopnost atmosféry zeslabovat přímé sluneční záření jeho rozptylem a absorpcí. Viz též zakalení atmosféry, propustnost atmosféry.
Termín pochází z lat. opacitas „stinnost, tmavost“ (od opacus „stinný, tmavý“).
česky: opacita; angl: opacity; slov: opacita; rus: мутность  1993-a2
Trübungsfaktor nach Linke m
charakteristika zeslabení slunečního záření v atmosféře v celém rozsahu spektra, která je definována poměrem extinkce reálné atmosféry obsahující zejména vodní páru a atmosférický aerosol k extinkci čisté a suché (Rayleighovy) atmosféry. Linkeho zákalový faktor vyjadřuje počet těchto ideálních atmosfér zeslabujících sluneční záření stejně jako reálná atmosféra. Určuje se z měření přímého slunečního záření pomocí pyrheliometrů nebo aktinometrů. Uvedenou charakteristiku definoval něm. meteorolog F. Linke v r. 1922. Hodnoty faktoru se obvykle pohybují v rozmezí 2 (studený a čistý vzduch) až 6 (vzduch znečištěný aerosolem).
česky: faktor zákalový Linkeho; angl: Linke turbidity factor; slov: Linkeho zákalový faktor; fr: facteur de trouble de Linke m; rus: фактор мутности Линке, фактор помутнения  1993-a3
Trübungsgrenze f
česky: hranice zákalu; angl: haze line; slov: hranica zákalu; rus: верхняя граница мглы  1993-a3
Trübungsmessgerät n
syn. nefelometr.
česky: zákaloměr; angl: turbidimeter; slov: zákalomer  1993-a1
Trübungsschicht f
vrstva, v níž se vyskytuje zákal. Sahá obvykle od zemského povrchu k první zadržující vrstvě. Pozorovateli na vyvýšeném stanovišti se někdy jeví jako tmavý horizontální pruh, na jehož horním okraji existuje výrazná diskontinuita v zabarvení oblohy. Ta bývá označována jako hranice zákalu.
česky: vrstva zákalová; angl: haze layer; slov: zákalová vrstva; rus: слой мглы  1993-a2
Tschechische bioklimatologische Gesellschaft f
(ČBkS) – vědecká společnost sdružující zájemce o bioklimatologii v ČR, popř. čestné členy ze zahraničí. Je následnickou organizací Československé bioklimatologické společnosti (ČSBkS), která vznikla v roce 1965 sloučením Bioklimatologické komise ČSAV, založené v r. 1953, a bioklimatologické odborné skupiny Československé meteorologické společnosti při ČSAV, založené v r. 1959. ČBkS spolupracuje se Slovenskou bioklimatologickou společností (SBkS), s níž původně tvořila jednu společnost pod společným názvem ČSBkS. Prvním předsedou ČSBkS byl prof. RNDr. Ing. V. Novák, DrSc.
česky: Česká bioklimatologická společnost; angl: Czech Bioclimatological Society; slov: Česká bioklimatologická spoločnosť; fr: Société de bioclimatologie tchèque; rus: Чехословацкое биоклиматологическое Общество  1993-b3
Tschechische meteorologische Gesellschaft f
(ČMeS) – vědecká společnost sdružující zájemce o meteorologii v ČR, popř. čestné členy ze zahraničí. Vznikla r. 1993 jako nástupnická organizace Československé meteorologické společnosti. Její náplní je vědecká činnost, výměna informací mezi pracovníky z různých pracovišť a popularizace meteorologie. Ve své činnosti využívá různé formy přednáškové činnosti, jako např. semináře, konference i akce s mezinárodní účastí. Je řízena hlavním výborem v čele s předsedou. Základním dokumentem ČMeS jako zapsaného spolku jsou stanovy schválené Ministerstvem vnitra ČR. ČMeS je členem Rady vědeckých společností při Akademii věd ČR a členem Evropské meteorologické společnosti. Členové ČMeS jsou organizačně začleněni do poboček (Praha, Brno, Hradec Králové, Ostrava).
česky: Česká meteorologická společnost; angl: Czech Meteorological Society; slov: Česká meteorologická spoločnosť; fr: Société météorologique tchèque f; rus: Ческое метеорологичекое Общество  2014
Tschechisches hydrometeorologisches Institut n
(ČHMÚ) – státní příspěvková organizace v rezortu Ministerstva životního prostředí ČR, pověřená výkonem funkce ústředního státního ústavu České republiky pro obory meteorologie, klimatologie, hydrologie, jakost vody a čistota ovzduší. ČHMÚ je nástupcem Hydrometeorologického ústavu (HMÚ). Provozuje měřicí a monitorovací sítě, zabezpečuje základní zpracování a prezentaci dat a informací, připravuje specializované výstupy, analýzy a studie minulého, aktuálního i budoucího stavu atmosféry a hydrosféry. Zabezpečuje provoz rozsáhlé sítě meteorologických, klimatologických, fenologických, hydrologických stanic, stanic čistoty ovzduší a meteorologických radarů. Přijímá a zpracovává data z meteorologických družic a systému pozemní detekce blesků. Zpracovává a archivuje data z vlastních i zahraničních měřicích sítí. Předpovědní a výstražná služba ČHMÚ ve spolupráci s hydrometeorologickou službou Armády ČR provozuje Systém integrované výstražné služby (SIVS) pro přípravu jednotných informací o nebezpečných projevech počasí na území ČR pro státní správu, samosprávu a veřejnost a spolupracuje se složkami krizového řízení ČR (Hasičský záchranný sbor ČR, Armáda ČR, Státní ústav pro jadernou bezpečnost, Hygienická služba, státní podniky Povodí a další). Zabezpečuje meteorologické informace a předpovědi pro civilní letectví a bezpečnost jaderných elektráren. V rámci Smogového varovného a regulačního systému (SVRS) vyhlašuje meteorologické předpovědi vzniku smogových situací, vznik a ukončení smogové situace a ve vybraných regionech regulační opatření. Je členem nebo zabezpečuje členství v mezinárodních organizacích – Světová meteorologická organizace (WMO), Evropská organizace pro využívání meteorologických družic (EUMETSAT), Evropské centrum pro střednědobé předpovědi počasí (ECMWF), Mezinárodní organizace pro civilní letectví (ICAO) a Mezivládní panel pro změnu klimatu (IPCC). ČHMÚ je pověřen výkonem funkce regionálního telekomunikačního centra v systému Světové služby počasí WMO, funkcí národního radiačního střediska WMO a ve spolupráci se Státním úřadem pro jadernou bezpečnost je pracovištěm Radiační monitorovací sítě ČR. ČHMÚ se podílí na výzkumu a vývoji v daných oborech a spolupracuje s vysokými školami na výchově odborníků. Provozuje veřejnou specializovanou knihovnu pro obory čistota ovzduší, hydrologie, meteorologie a klimatologie a vydává odborné publikace ve vlastním nakladatelství. Viz též meteorologie v ČR.
česky: Český hydrometeorologický ústav; angl: Czech Hydrometeorological Institute; slov: Český hydrometeorologický ústav; fr: Institut hydrométéorologique tchèque m; rus: Ческий гидрометеорологический институт  1993-a3
Tschechoslowakische meteorologische Gesellschaft bei der Tschechoslowakischen Akademie der Wissenschaften f
(ČSMS) – předchůdce České meteorologické společnosti, vědecká společnost při Československé akademii věd sdružující zájemce o meteorologii v tehdejším Československu, popř. čestné členy ze zahraničí. ČSMS vznikla v r. 1958 a jejím prvním předsedou byl prof. RNDr. Mikuláš Konček, DrSc.
česky: Československá meteorologická společnost při ČSAV; angl: Czechoslovak Meteorological Society of the Czechoslovak Academy of Sciences; slov: Československá meteorologická spoločnosť pri ČSAV; fr: Société météorologique tchécoslovaque, Académie tchécoslovaque des sciences f; rus: Чехословацкое метеорологическое Общество при ЧСАН  1993-a3
tuba
(tub) – jedna ze zvláštností oblaku podle mezinárodní morfologické klasifikace oblaků. Je definována jako oblačný sloup nebo obrácený oblačný kužel (nálevka) vycházející ze základny oblaku. Je příznakem kondenzace vodní páry v silném víru (tornádu nebo jiné trombě). Vyskytuje se u druhu cumulonimbus, velmi zřídka i u druhu cumulus.
Termín pochází z lat. tuba „trubka“ (slovo je příbuzné s lat. tubus „roura, trubice“).
česky: tuba; angl: tuba; slov: tuba; rus: хобот  1993-a3
Tundrenklima n
Köppenově klasifikaci klimatu mírnější typ sněhového klimatu, označovaný ET. Prům. měs. teplota vzduchu v nejteplejším měsíci sice nedosahuje 10 °C, avšak přesahuje 0 °C, takže se zde nevytváří stálá pokrývka sněhu nebo ledu. Existence krátkého a chladného léta umožňuje růst typické vegetace, tvořené mechy, lišejníky, travinami, případně křovinami. Tundru najdeme v polárních oblastech spíše v blízkosti oceánu, který sice snižuje letní teplotu vzduchu, nicméně zima zde bývá často mírnější než v případě boreálního klimatu. Totéž platí pro tzv. alpinskou tundru ve vysokých horách, která se zpravidla vyznačuje větší humiditou klimatu. C. W. Thornthwaite uvádí pro tundru hodnoty potenciálního výparu 143–285 mm za rok. Viz též klasifikace klimatu Thornthwaiteova, klima periglaciální, klima horské.
česky: klima tundry; angl: tundra climate; slov: klíma tundry; rus: климат тундры  1993-b3
Turbidität f
Termín pochází ze středolat. turbiditas „zmatení, rozrušení; kalnost (tekutiny)“, odvozeného od turbidus „rozbouřený, nepokojný“ (od turba „dav; povyk, zmatek“).
česky: turbidita; angl: turbidity; slov: turbidita; rus: мутность  1993-a1
Turbopause f
tenká přechodová vrstva atmosféry Země, oddělující níže ležící turbosféru od difuzosféry. Je prakticky totožná s homopauzou. Výška turbopauzy uváděná v literatuře se liší u různých autorů a pro různé další podmínky v rozmezí od 90 do 120 km.
Termín se skládá z komponentu turbo- (viz turbulence a turbosféra) a lat. pausa „přerušení, ukončení“.
česky: turbopauza; angl: turbopause; slov: turbopauza; rus: турбопауза  1993-a3
Turbosphäre f
spodní část atmosféry Země, v níž je vzduch promícháván turbulencí, která zabraňuje vytvoření difuzní rovnováhy, takže se s výškou nemění složení ovzduší, pokud jde o hlavní složky vzdušné plynné směsi. Turbosféra se rozprostírá od zemského povrchu do výšky asi 100 km a je od výše ležící difuzosféry oddělena turbopauzou. Turbosféra se prakticky shoduje s homosférou, podobně jako difuzosféra s heterosférou.
Termín se skládá z komponentu turbo- (viz turbulence)  a řec. σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: turbosféra; angl: turbosphere; slov: turbosféra; rus: турбосфера  1993-a3
turbulente Diffusion f
atm. děj, při kterém se částice původně shromážděné v daném objemu vzduchu rozptylují (zmenšuje se jejich koncentrace) působením turbulentních (vírových) pohybů různých měřítek. Intenzita turbulentní difuze je proměnlivá a závisí na vzniku a vývoji turbulentních pohybů. Ty jsou podmíněny buď mech. příčinami, např. při turbulentním obtékání vzduchu kolem překážek a nad drsným povrchem, nebo termicky při vzniku tepelně podmíněných vírových pohybů nad přehřátým nebo tepelně nehomogenním povrchem. Viz též rovnice difuze, rozptyl příměsí v ovzduší, turbulence, koeficient turbulentní difuze.
česky: difuze turbulentní; angl: turbulent diffusion; slov: turbulentná difúzia; fr: diffusion turbulente f; rus: турбулентная диффузия  1993-a1
turbulente Grenzschicht f
česky: vrstva mezní turbulentní; angl: turbulent boundary layer; slov: turbulentná hraničná vrstva; rus: турбулентный пограничный слой  1993-a1
turbulente Kondensation f
označení pro kondenzaci vodní páry, ke které dochází ve vzduchu blízkém stavu nasycení následkem neuspořádaných vert. turbulentních pohybů. Turbulentní kondenzací mohou vznikat turbulentní oblaky. Při pokročilém matematickém modelování procesů oblačné mikrofyziky je i tento proces součástí parametrizace nukleace vody.
česky: kondenzace turbulentní; angl: turbulent condensation; slov: turbulentná kondenzácia; rus: турбулентная конденсация  1993-a3
turbulente Mischung f
promíchávání vzduchu v turbulentním proudění. Nejvýrazněji se uplatňuje v mezní vrstvě atmosféry, kde je rozhodujícím činitelem při vert. transportu vodní páry, tepla a hybnosti. Turbulentní promíchávání v atmosféře se zvětšuje s rostoucí rychlostí větru a s klesající stabilitou atmosféry, v blízkosti zemského povrchu bývá silně ovlivňováno jeho drsností. Ve volné atmosféře se významné turbulentní promíchávání může vyskytovat zejména ve vrstvách s výrazným vertikálním střihem větru a s instabilním teplotním zvrstvením.
česky: promíchávání turbulentní v atmosféře; angl: turbulent mixing; slov: turbulentné premiešavame v atmosfére; rus: турбулентное перемешивание  1993-a1
turbulente Reibung f
česky: tření turbulentní; angl: eddy friction, turbulent friction; slov: turbulentné trenie; rus: турбулентное трение  1993-a1
turbulente Strömung f
v meteorologii proudění vzduchu, v němž se vyskytují nepravidelné turbulentní víry a fluktuace rychlosti. Při turbulentním proudění pronikají z jedné vrstvy do druhé nejen jednotlivé molekuly, ale i makroskopické vzduchové částice. Proudění bez turbulentních vířivých pohybů nazýváme prouděním laminárním. V reálné atmosféře je proudění zpravidla turbulentní. Viz též turbulence.
česky: proudění turbulentní; angl: turbulent flow; slov: turbulentné prúdenie; rus: вихревой поток, , турбулентное течение, турбулентность  1993-a1
turbulente Viskosität f
česky: viskozita turbulentní; slov: turbulentná viskozita  1993-a1
turbulente Viskosität f
syn. tření turbulentní, tření virtuální, viskozita turbulentní – v meteorologii vnitřní tření v proudícím vzduchu vznikající následkem statisticky náhodných a turbulencí podmíněných přemísťování makroskopických vzduchových částic napříč převládajícího směru proudu. Projevuje se silami působícími tečně k vrstvám proudícího vzduchu. Vztáhneme-li tyto tečné síly k jednotkové ploše, mluvíme o turbulentních tečných neboli Reynoldsových napětích. Z fyz. hlediska je turbulentní tření spjato s turbulentním přenosem hybnosti proudícího vzduchu, např. v mezní vrstvě atmosféry směrem dolů, což kompenzuje zanikání hybnosti vnějším třením proudícího vzduchu o zemský povrch. Viz též tření v atmosféře, síla tření.
česky: vazkost turbulentní; angl: eddy viscosity, turbulent viscosity; slov: turbulentná viskozita; rus: турбулентная вязкость  1993-a1
turbulente Wirbelviskosität f
česky: viskozita turbulentní; slov: turbulentná viskozita  1993-a1
turbulente Wirbelviskosität f
syn. tření turbulentní, tření virtuální, viskozita turbulentní – v meteorologii vnitřní tření v proudícím vzduchu vznikající následkem statisticky náhodných a turbulencí podmíněných přemísťování makroskopických vzduchových částic napříč převládajícího směru proudu. Projevuje se silami působícími tečně k vrstvám proudícího vzduchu. Vztáhneme-li tyto tečné síly k jednotkové ploše, mluvíme o turbulentních tečných neboli Reynoldsových napětích. Z fyz. hlediska je turbulentní tření spjato s turbulentním přenosem hybnosti proudícího vzduchu, např. v mezní vrstvě atmosféry směrem dolů, což kompenzuje zanikání hybnosti vnějším třením proudícího vzduchu o zemský povrch. Viz též tření v atmosféře, síla tření.
česky: vazkost turbulentní; angl: eddy viscosity, turbulent viscosity; slov: turbulentná viskozita; rus: турбулентная вязкость  1993-a1
turbulenter Austausch m
syn. transport turbulentní – v atmosféře přenos jednotlivých veličin (tepla, vodní páry, hybnosti, znečišťujících příměsí apod.) působený turbulentním promícháváním vzduchu. Viz též turbulence, výměna turbulentní.
česky: přenos turbulentní; angl: turbulent transfer, turbulent transport; slov: turbulentný prenos; rus: турбулентный перенос  1993-a1
turbulenter Austausch m
vzájemná výměna makroskopických vzduchových částic probíhající mezi různými vrstvami nebo jinými objemy v proudícím vzduchu a působená turbulentním promícháváním. Turbulentní výměna vytváří v atmosféře turbulentní přenos hybnosti, tepla, vodní páry a různých znečišťujících příměsí. Viz též turbulence, koeficient turbulentní výměny.
česky: výměna turbulentní; angl: eddy exchange, turbulent exchange; slov: turbulentná výmena; rus: турбулентный обмен  1993-a1
turbulenter Austauschkoeffizient m
koeficient A ve vzorci pro turbulentní tok
Q=-Asz,
kde Q je vert. tok fyz. vlastnosti s, vztažené k jednotce hmotnosti. Koeficient turbulentní výměny roste od zemského povrchu zhruba po horní hranici přízemní vrstvy atmosféry, nad ní je buď přibližně konstantní, nebo častěji pomalu klesá. Lze jej určit z měření větru a teploty vzduchu v různých výškách. S koeficientem turbulentní difuze K je spjat vztahem
A=ρK,
kde ρ je hustota prostředí. Jako uvedená vlastnost s se může vyskytovat hybnost, teplo, vodní pára či různé znečišťující příměsi; podle toho rozlišujeme koeficient turbulentní výměny pro hybnost, teplo, vodní páru a znečišťující příměsi. Z hlediska form. analogie mezi charakteristikami turbulentního a vazkého proudění je koeficient turbulentní výměny protějškem dyn. koeficientu vazkosti.
česky: koeficient turbulentní výměny; angl: exchange coefficient; slov: koeficient turbulentnej výmeny; rus: коэффициент обмена  1993-a1
turbulenter Austauschkoeffizient m
formálně zavedený pojem podle analogie s molekulární vodivostí. Zatímco molekulární vodivost v plynech je podmíněna neuspořádaným pohybem molekul, v případě turbulentní vodivosti se jedná o přenos tepelné energie turbulentním promícháváním v atmosféře. Kvantitativní mírou turbulentní vodivosti může např. být koeficient turbulentní difuze nebo koeficient turbulentní výměny.
česky: vodivost turbulentní; angl: eddy conductivity, turbulent conductivity; slov: turbulentná vodivosť; rus: турбулентная проводимость  1993-a1
turbulenter Diffusionskoeffizient m
podíl koeficientu turbulentní výměny a hustoty prostředí, v meteorologii tedy zpravidla hustoty vzduchu. Rozlišujeme koeficient turbulentní difuze pro hybnost, teplo, vodní páru, popř. znečišťující příměsi. Koeficient turbulentní difuze patří k nejužívanějším charakteristikám turbulence. Z hlediska form. analogie mezi charakteristikami turbulentního a vazkého laminárního proudění je koeficient turbulentní difuze pro hybnost analogem kinematického koeficientu vazkosti a koeficient turbulentní difuze pro teplo analogem koeficientu teplotní vodivosti. Viz též koeficient difuze zobecněný.
česky: koeficient turbulentní difuze; angl: eddy coefficient, turbulent diffusion coefficient; slov: koeficient turbulentnej difúzie; rus: коэффициент турбулентной диффузии  1993-a1
turbulenter Fluss m
množství dané veličiny (v meteorologii nejčastěji tepla, vodní páry, hybnosti, různých znečišťujících příměsí apod.), transportované za jednotku času přes jednotkovou plochu v důsledku turbulentního promíchávání vzduchu.
česky: tok turbulentní; angl: turbulent flux; slov: turbulentný tok; rus: турбулентный поток  1993-a1
turbulenter Transport
česky: transport turbulentní; slov: turbulentný transport  1993-a1
turbulenter Transport m
syn. transport turbulentní – v atmosféře přenos jednotlivých veličin (tepla, vodní páry, hybnosti, znečišťujících příměsí apod.) působený turbulentním promícháváním vzduchu. Viz též turbulence, výměna turbulentní.
česky: přenos turbulentní; angl: turbulent transfer, turbulent transport; slov: turbulentný prenos; rus: турбулентный перенос  1993-a1
turbulenter Wirbel m
česky: vír turbulentní; angl: eddy, turbulent vortex; slov: turbulentný vír; rus: турбулентный вихрь  1993-a1
Turbulenz f
obecně fyz. jev, jehož podstata spočívá v existenci nepravidelných vírových pohybů v proudící tekutině, které se v dané době projevují turbulentními fluktuacemi rychlosti proudění. Proudění tekutin nabývá turbulentního charakteru, převýší-li poměr v něm působících setrvačných a vazkých sil, představující Reynoldsovo číslo, určitou kritickou hodnotu. Z met. hlediska jde o turbulenci v proudícím vzduchu v zemské atmosféře, kde rozměry turbulentních vírů dosahují velikosti od několika mm do stovek m. Označíme-li vx, v y, vz po řadě x–ovou,y–ovou a z–ovou složku rychlosti proudění, potom v případě turbulentního proudění platí
vx=vx¯+ vx, vy= vy¯+vy , vz=vz ¯+vz,
kde vx¯, v y¯, vz¯ jsou časově zprůměrované složky okamžité rychlosti proudění, zatímcovx, v y, vz jsou složky turbulentních fluktuací, jejichž stř. hodnoty se rovnají nule, tj. vx¯=v y¯=vz¯=0. V met. praxi se obvykle používá průměrování přes časový interval kolem deseti minut, který bývá dostatečně dlouhý k tomu, aby se odfiltrovaly turbulentní fluktuace a zároveň ještě zpravidla nedochází ke shlazení meteorologicky významných časových změn rychlosti proudění. Turbulence v atmosféře je těsně spjata s nárazovitostí větru, působí promíchávání vzduchu a turbulentní přenos hybnosti, tepla, vodní páry a různých znečišťujících příměsí. Viz též intenzita turbulence, výměna turbulentní, promíchávání turbulentní, difuze turbulentní, spektrum turbulentních vírů, proudění turbulentní, tok turbulentní, akcelerometr.
Termín do fyziky tekutin zavedl angl. fyzik W. Thomson, pozdější lord Kelvin, v r. 1887. Pochází z lat. turbulentia „neklid, zmatek“, odvozeného od slova turbulentus „bouřlivý, zmatený“ (od turba „dav; povyk, zmatek“).
česky: turbulence; angl: turbulence; slov: turbulencia; rus: турбулентность  1993-a3
Turbulenz im Nachlauf f
turbulence vyvolaná letadlem během letu, popř. při jeho pohybu po pohybových plochách letiště. Účinek této turbulence na jiná letadla závisí na vzájemné vzdálenosti letadel a na poměru jejich hmotností i rychlostí pohybu. Za letu hraje významnou roli také teplotní zvrstvení atmosféry a vertikální profil větru. K podobným jevům, jako je turbulence v úplavu za letadlem, dochází při vyšších rychlostech proudění vzduchu za horskými překážkami, zvláště za izolovanými vrcholy.
česky: turbulence v úplavu za letadlem; angl: wake turbulence; rus: турбулентность в вихревом следе  1993-a3
Turbulenz im wolkenfreier Luft f
(CAT–Clear Air Turbulence) – dynamická turbulence ve stř. a horní troposféře, která není převážně doprovázena výskytem charakteristické oblačnosti. Turbulence v bezoblačném prostoru se zpravidla vyskytuje ve vrstvách s tloušťkou několik set m, šířka pásma s turbulencí v bezoblačném prostoru bývá desítky km a délka několik desítek až stovek km. Její trvání se na určitém místě většinou omezuje na dobu 0,5 – 1 hodinu. Při vertikálním střihu větru od 0,6 do 1,0 m.s–1 na 100 m výšky se vyskytuje obvykle turbulence v bezoblačném prostoru slabé intenzity, při střihu 1,1 až 1,6 m.s–1 na 100 m zpravidla jde o mírnou turbulenci a při větších změnách rychlosti větru s výškou bývají splněny podmínky pro vznik silné turbulence v bezoblačném prostoru. Podle výsledků pozorování se výskyt turbulence v bezoblačném prostoru v 75 % případů váže na tryskové proudění. Její maximum bývá na cyklonální straně tryskového proudění 500 až 1 000 m pod místem největšího sklonu tropopauzy.
česky: turbulence v bezoblačném prostoru; angl: clear-air turbulence; slov: turbulencia v bezoblačnom priestore; rus: турбулентность при ясном небе  1993-a3
Turbulenz in der freien Atmosphäre f
souborné označení pro turbulenci, která se vyskytuje nad mezní vrstvou atmosféry. Zahrnuje jak termickou, tak dynamickou a konvektivní turbulenci ve volné atmosféře. Je to především turbulence v oblasti hranic inverzních vrstev, na frontálních plochách, v oblasti tryskového proudění a tropopauzy, nebo v konvektivních oblacích, které mohou sahat až do spodní stratosféry, a v jejich okolí. Do turbulence ve volné atmosféře zahrnujeme také turbulenci v bezoblačném prostoru (tzv. CAT – Clear Air Turbulence).
česky: turbulence ve volné atmosféře; angl: high-level turbulence; slov: turbulencia vo voľnej atmosfére; rus: турбулентность в свободной атмосфере  1993-a3
Turbulenzenergie f
syn. energie turbulentní – střední (časově průměrovaná) kinetická energie příslušející turbulentním fluktuacím rychlosti proudění. Označíme-li po řadě turbulentní fluktuace x-ové, y-ové a z-ové složky rychlosti proudění vx vy vz, potom energii turbulence vztaženou k jednotce hmotnosti vzduchu vyjádříme jako
12(vx2 ¯+vy2¯ +vz2¯),
kde pruh nad veličinou vyjadřuje časové zprůměrování. Viz též turbulence.
česky: energie turbulence; angl: eddy kinetic energy, turbulence energy; slov: energia turbulencie; fr: énergie cinétique turbulente f; rus: кинетическая энергия вихрa, энергия турбулентности  1993-a1
Turbulenzinversion f
vertikálně obvykle nepříliš mohutná teplotní inverze překrývající směšovací vrstvu. Výchozí situací pro vznik této inverze je stabilní teplotní zvrstvení ovzduší. Jestliže ve vrstvě vzduchu přiléhající k zemskému povrchu nastane silné turbulentní mísení, vytvoří se v této vrstvě vertikální teplotní gradient blízký adiabatickému. Přitom nad směšovací vrstvou zůstává přibližně zachován původní vertikální profil teploty vzduchu. Tím v oblasti horní hranice vrstvy směšování vznikne vrstva s inverzí teploty. Patří mezi výškové inverze. Viz též turbulence.
česky: inverze teploty vzduchu turbulentní; angl: turbulence inversion, turbulent inversion; slov: turbulentná inverzia teploty vzduchu; rus: турбулентная инверсия  1993-a1
turbulenzkinetische Energie f
česky: energie turbulentní; angl: turbulence kinetic energy; slov: turbulentná energia; rus: энергия турбулентности  1993-a1
Turbulenzströmung f
v meteorologii proudění vzduchu, v němž se vyskytují nepravidelné turbulentní víry a fluktuace rychlosti. Při turbulentním proudění pronikají z jedné vrstvy do druhé nejen jednotlivé molekuly, ale i makroskopické vzduchové částice. Proudění bez turbulentních vířivých pohybů nazýváme prouděním laminárním. V reálné atmosféře je proudění zpravidla turbulentní. Viz též turbulence.
česky: proudění turbulentní; angl: turbulent flow; slov: turbulentné prúdenie; rus: вихревой поток, , турбулентное течение, турбулентность  1993-a1
Twister m
hovorové označení pro tornádo (používané především v USA).
Výraz pochází z angličtiny, je odvozen od slovesa twist „kroutit (se), točit (se)“.
česky: twister; angl: twister; slov: twister; rus: твистер  1993-a3
Typen des Bodenklimas m/pl
půdy, na jejichž vzniku se z půdotvorných činitelů nejvíce uplatňuje klima, zatímco povaha mateční horniny má menší význam. V jejich rozložení na Zemi se výrazně projevuje šířková pásmovitost klimatu. Příkladem klimatických půdních typů jsou podzoly, jimž vegetačně odpovídá tajga, nebo černozem, které odpovídá step. Viz též klimatologie půdní.
česky: typy půdní klimatické; angl: soil climatic types; slov: pôdne klimatické typy; rus: климатические типы почвы  1993-a1
podpořila:
spolupracují: