Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene g

X
GAFOR
kód sloužící k rozšiřování leteckých předpovědí počasí pro všeobecné („malé") letectvo. Předpověď ve tvaru kódu GAFOR obsahuje označení pracoviště, které zprávu vydalo, dobu platnosti předpovědi, předpověď kategorie (třídy) počasí se zřetelem na letecky významné jevy a označení území, na které se předpověď vztahuje. V ČR není používán.
česky: GAFOR slov: GAFOR fr: GAFOR m  1993-a3
GAMET
oblastní předpověď ve zkrácené otevřené řeči pro lety v nízkých hladinách zpravidla pro letovou informační oblast nebo její část, kterou připravuje met. služebna určená příslušným met. úřadem a která se vyměňuje mezi met. služebnami sousedních letových informačních oblastí podle dohody mezi příslušnými met. úřady. Jedná se o předpověď pro vrstvu mezi zemí a letovou hladinou 100 (v horských oblastech až FL150). Předpověď je členěna do dvou sekcí, z nichž první obsahuje informace o nebezpečných jevech pro lety v nízkých hladinách a druhá pak doplňující informace. Předpovědi GAMET jsou vydávány zpravidla v intervalu 6 hodin s platností na 6 hodin, pokud není jejich četnost a období platnosti upravena po dohodě mezi meteorologickou službou a uživateli.
česky: GAMET slov: GAMET fr: GAMET m  2014
Gang des meteorologischen Elementes m
kvantit. změna meteorologického prvku s časem. V klimatologii se sleduje zejména denní a roční chod meteorologického prvku.
česky: chod meteorologického prvku angl: course of meteorological element, march of meteorological element slov: chod meteorologického prvku rus: ход метеорологического элемента  1993-a1
Garmsil m
místní název pro suchý a horký vítr charakteru fénu v předhořích Kopet-Dagu a záp. Ťan-Šanu ve stř. Asii, vanoucí v létě od jihu a východu z hor. Působí škody na kulturních plodinách podobně jako suchověj.
česky: garmsil angl: garmsil slov: garmsil rus: гармсэл, керимсел fr: foehn au Tian Shan et Kopet-Dag m  1993-a1
Garua f
1. hustá mlha, někdy s mrholením, vyskytující se zvláště na podzim nad záp. pobřežím Již. Ameriky (na území Ekvádoru, Peru a Chile), omývaným studeným Peruánským proudem. Mívá dlouhé trvání a ve velmi suchých oblastech (např. poušť Atacama) je téměř jediným zdrojem vláhy pro tamější chudou vegetaci;
2. klimatický typ, vyskytující se na horkých subtropických pobřežích, kde teplý pevninský vzduch proniká k pobřeží omývanému studeným oceánským proudem, např. na záp. pobřeží Jižní Ameriky, již. Kalifornie, jz. Afriky a sz. Sahary.
česky: garua angl: garua slov: garua rus: гаруа fr: garúa f, garua f  1993-a2
Gauß'sches Ausbreitungsmodell n
nejjednodušší a historicky nejstarší druh disperzních modelů znečištění ovzduší. Je založen na předpokladu prostorově a časově konstantní horiz. rychlosti proudění v celé zájmové oblasti modelu. Znamená to mj., že trajektorie vycházející ze zdrojů znečištění ovzduší jsou horiz. přímkové. Tento silně zjednodušující předpoklad omezuje použitelnost takových modelů na prostorové měřítko maximálně do 100 km. Ve směru rychlosti proudění se uvažuje pouze advekční přenos příměsí, v rovinách kolmých na směr proudění (tj. ve vert. směru a ve směru horiz. příčném ke směru proudění) se modeluje vliv turbulentní difuze prostřednictvím předpokladu, že pole koncentrací příměsí v těchto rovinách je gaussovské. Vliv meteorologických faktorů se pak uvažuje pomocí vhodného provázání hodnot směrodatných odchylek Gaussova normálního rozložení s meteorologickými parametry ovlivňujícími turbulentní difúzi, tj. zejména s velikostí rychlosti proudění a charakteristikami teplotního zvrstvení ovzduší. Nejstarším příkladem modelů tohoto druhu je Suttonův model.
česky: model rozptylový gaussovský angl: gaussian dispersion model slov: gaussovský rozptylový model  2014
Gebietswettervorhersage f
předpověď počasí pro určité vymezené místo nebo malou oblast, např. pro dané letiště, rekreační středisko apod. Častěji než u oblastní předpovědi se při ní využívají pravděpodobnostní vyjádření výskytu meteorologického jevu.
česky: předpověď počasí místní angl: local forecast slov: miestna predpoveď počasia rus: местный прогноз  1993-a3
Gebirgsklima n
klima v horských oblastech, které je určováno především nadm. výškou, členitostí orografie a orientací horských hřebenů vzhledem ke směru převládajícího proudění vzduchu, viz návětrný a závětrný efekt, dále pakorograficky vyvolanou místní cirkulací. Horské klima se vyznačuje nižším tlakem vzduchu, intenzivnějším slunečním zářením, bohatým především na ultrafialovou složku, čistotou vzduchu, nižší teplotou vzduchu, její menší roční amplitudou a větší rychlostí větru ve srovnání s přilehlými nížinami. Velikost průměrné denní amplitudy teploty vzduchu je podstatně ovlivněna konvexností reliéfu, přičemž výrazně klesá na hřebenech hor, viz oceánita klimatu. Vlivem orografického zesílení srážek jejich úhrny s výškou obvykle vzrůstají až po hladinu inverze srážek, jejich rozložení však závisí i na expozici svahů. Vlastností horského klimatu se využívá mj. v klimatoterapii. Viz též meteorologie horská, pozorování meteorologické horské,stanice meteorologická horská, klima svahové.
česky: klima horské angl: mountain climate slov: horská klíma  1993-b3
Gebirgsmeteorologie f
část meteorologie zabývající se povětrnostními, v širším smyslu i klimatickými zvláštnostmi horských oblastí, které jsou podmíněny především nadm. výškou, členitostí horského reliéfu a orientací horských hřebenů vzhledem ke směru převládajícího proudění vzduchu. Studuje vliv hor na pole větru, srážek a oblačnosti, výskyt námrazků, bilanci záření apod. Viz též klima horské, stanice meteorologická horská, vítr horský a údolní, inverze srážek.
česky: meteorologie horská angl: mountain meteorology slov: horská meteorológia rus: горная метеорология  1993-a3
gefährliche meteorologische Ereignisse f/pl
syn. jevy povětrnostní nebezpečné – meteorologické jevy, které při dostatečné intenzitě nebo nepříznivé kombinaci přerůstají v povětrnostní ohrožení. Viz též počasí nebezpečné, výstraha před nebezpečnými meteorologickými jevy všeobecná,GAMET, informace SIGMET, informace AIRMET.
česky: jevy meteorologické nebezpečné angl: dangerous meteorological phenomena, dangerous weather phenomena slov: nebezpečné meteorologické javy rus: опасные метеорологические явления  1993-a3
gefährliche Wetterereignisse f/pl
syn. jevy povětrnostní nebezpečné – meteorologické jevy, které při dostatečné intenzitě nebo nepříznivé kombinaci přerůstají v povětrnostní ohrožení. Viz též počasí nebezpečné, výstraha před nebezpečnými meteorologickými jevy všeobecná,GAMET, informace SIGMET, informace AIRMET.
česky: jevy meteorologické nebezpečné angl: dangerous meteorological phenomena, dangerous weather phenomena slov: nebezpečné meteorologické javy rus: опасные метеорологические явления  1993-a3
gefährliche Wettererscheinungen f/p
česky: jevy povětrnostní nebezpečné slov: nebezpečné poveternostné javy  2014
gefährlicher Halbkreis m
syn. polokruh nebezpečný – oblast tropické cyklony nad oceánem ležící na sev. polokouli vpravo (na již. polokouli vlevo) od její dráhy. Rychlost větru a výška mořských vln zde dosahuje vyšších hodnot než v opačném sektoru, neboť je dána součtem tangenciální rychlosti a rychlosti pohybu cyklony, do jejíž dráhy je navíc plavidlo hnáno. Pojem spadá do oboru meteorologické navigace a pochází z dob plachetnic.
česky: půlkruh nebezpečný angl: dangerous semicircle slov: nebezpečný polkruh rus: опасный полукруг  1993-a3
Gefrieren von Wasser n
fázový přechod kapalné vody na led. Opakem mrznutí vody je tání sněhu nebo ledu. Viz též bod mrznutí, jádra mrznutí, teplo mrznutí latentní, voda přechlazená.
česky: mrznutí vody angl: freezing slov: mrznutie vody rus: замерзание  2014
gefrierender Regen m
déšť, jehož kapky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. Při mrznoucím dešti dochází buď k namrzání přechlazených vodních kapek při dopadu na zemský povrch nebo na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo k namrzání nepřechlazených vodních kapek okamžitě při dopadu na zemský povrch nebo na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího deště je ledovka. V letecké meteorologii je místo „mrznoucí“ používáno adjektivum „namrzající“.
česky: déšť mrznoucí angl: freezing rain slov: mrznúci dážď rus: замерзающий дождь fr: pluie verglaçante f  1993-a3
Gefrierender Sprühregen m
mrholení, jehož kapičky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. Při mrznoucím mrholení dochází buď k namrzání přechlazených vodních kapek při dopadu na zemský povrch nebo na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo k namrzání nepřechlazených vodních kapek okamžitě při dopadu na zemský povrch nebo na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího mrholení je ledovka. V letecké meteorologii je místo mrznoucí používáno adjektivum namrzající.
česky: mrholení mrznoucí angl: freezing drizzle slov: mrznúce mrholenie rus: переохлажденная морось  1993-a3
Gefrierkerne m/pl
částice v atmosféře, které mají vlastnosti vhodné k tomu, aby vyvolaly heterogenní nukleaci ledu v přechlazené vodě. Jako jádra mrznutí mohou působit i některá kondenzační jádra přítomná uvnitř vodních kapiček již při kladných teplotách. Kromě mrznutí na jádrech přítomných uvnitř kapek, může docházet i ke kontaktnímu mrznutí při zachycení jádra přechlazenou kapkou. Bez přítomnosti jader mrznutí by bylo možno většinu vodních kapiček v oblacích přechladit až na teploty kolem –40 °C, aniž by došlo k jejich zmrznutí.
česky: jádra mrznutí angl: freezing nuclei slov: jadrá mrznutia rus: ядра замерзания  2014
Gefrierpunkt f
syn. teplota tuhnutí – teplota, při níž dochází k fázovému přechodu dané látky ze skupenství kapalného do skupenství pevného při rovinném fázovém rozhraní. Ochlazujeme-li kapalinu, klesá postupně její teplota až k bodu tuhnutí. Další ochlazování je kompenzováno uvolňováním latentního tepla tuhnutí a teplota tuhnoucí látky zůstává rovna teplotě tuhnutí. Po úplném ztuhnutí veškeré kapaliny pak teplota vzniklé pevné fáze při dalším ochlazování klesá. Teplota tuhnutí závisí na tlaku. U většiny látek teplota tuhnutí s rostoucím tlakem roste, u ledu a několika dalších látek však s růstem tlaku klesá (viz regelace ledu). Čistý led při normálním tlaku má bod tuhnutí 0 °C (273,15 K). Při inverzní změně skupenství odpovídá bodu tuhnutí bod tání. V meteorologii se u fázových přechodů vody místo termínu bod tuhnutí vody používá termín bod mrznutí.
Podmínky pro tání, event. mrznutí mohou být ovlivněny tlakovými poměry v blanách povrchového napětí vody nebo ledu při velkém zakřivení povrchu fázového rozhraní mezi ledem a kapalnou vodou. S tím mj. souvisí existence přechlazené vody v případě oblačných kapiček vyskytujících se v přechlazené kapalné fázi mnohdy i hluboko pod teplotou 0 °C.
česky: bod tuhnutí angl: freezing point slov: bod tuhnutia  2017
Gefrierpunkt m
česky: bod mrazu slov: bod mrazu  2017
Gefrierpunkt m
syn. teplota mrznutí – v meteorologii označení pro bod tuhnutí nebo bod tání čisté vody při daném atmosférickém tlaku vzduchu. Je-li tento tlak roven normálnímu tlaku, je odpovídající teplota mrznutí rovna 0 °C a označuje se pak v české meteorologické literatuře jako bod mrazu. Tato hodnota teploty byla jako nulový bod zvolena při definování Celsiovy teplotní stupnice. Teplota mrznutí kapek v oblacích může být hluboko pod 0 °C vzhledem k existenci přechlazené vody (viz též ledová jádra).
česky: bod mrznutí angl: freezing point slov: bod mrznutia rus: точка замерзания fr: point de congélation m  1993-a3
gefrorener Regen m
srážky z průhledných ledových částic kulového nebo nepravidelného tvaru o průměru 5 mm nebo menším. Při dopadu na tvrdou zemi obvykle odskakují a při nárazu je slyšet šum. Zmrzlý déšť vzniká zmrznutím dešťových kapek nebo značně roztálých sněhových vloček v blízkosti zemského povrchu. Zmrzlý déšť se nevyskytuje v přeháňkách.
česky: déšť zmrzlý angl: ice pellets slov: zmrznutý dážď rus: ледяная крупа fr: grésil m  1993-b3
gefrorener Tau m
bílá usazenina zmrzlých kapek rosy; nemá krystalickou strukturu. Nesmí se zaměňovat s jíním.
česky: rosa zmrzlá angl: white dew slov: zmrznutá rosa rus: замерзшая роса  1993-a3
Gegendämmerung f
záře, jež se objevuje na opačné straně oblohy než vychází nebo zapadá Slunce. Vzniká zpětným rozptylem a odrazem slunečních paprsků v atmosféře.
česky: protisoumrak angl: anti-twilight, counterglow slov: protisúmrak rus: противосиянние, противосумерки  1993-a3
Gegenmond m
protiměsíc, viz kruh paraselenický.
česky: antiselenium angl: antiselene slov: antiselénium rus: антиселена fr: antisélène m  1993-a1
Gegenmond m
syn. antiselenium – viz kruh paraselenický.
česky: protiměsíc slov: protimesiac  1993-a1
Gegenschein m
slabá světelná skvrna kruhového nebo oválného tvaru, která se objevuje za bezměsíčných jasných nocí v průzračném vzduchu na opačném místě oblohy než je Slunce. Jedná se pravděpodobně o Sluncem osvětlený kosmický prach vně zemské atmosféry, podobně jako u zvířetníkového světla.
česky: protisvit angl: gegenschein, zodiatical counterglow slov: protisvit rus: противосияние  1993-a1
Gegensonne f
protislunce, viz kruh parhelický.
česky: antihélium angl: anthelion slov: antihélium rus: антелий, антигелий, дуга антеля , противосолнце fr: anthélie f  1993-a1
Gegensonne f
syn. antihélium – viz kruh parhelický.
česky: protislunce slov: protislnko  1993-a1
gegenwärtiges Wetter n
česky: počasí aktuální angl: current weather slov: aktuálne počasie  1993-a1
Gegenwind m
vítr vanoucí proti směru pohybu letadla, lodi apod. Z met. hlediska nemá charakter odb. termínu. Viz též vítr boční, vítr podélný, vítr zádový.
česky: protivítr angl: headwind slov: protivietor rus: встречный ветер  1993-a1
gekoppeltes Klimasystem n
část geosféry, která se podílí na procesu geneze klimatu. Zahrnuje atmosféru Země, dále hydrosféru, kryosféru, biosféru a svrchní část litosféry, resp. pedosféry. Jednotlivé složky jsou vzájemně intenzivně provázány, neboť zde v nejrůznějších časových a prostorových měřítkách neustále probíhají fyz., chem. a biologické procesy umožňující výměnu energie, příp. látek (např. záření, vítr, hydrologický cyklus). Zvlášť intenzivní jsou interakce atmosféry a oceánu. Ze statist. souboru stavů klimatického systému je odvozeno klima. Viz též model klimatologický, signál klimatický.
česky: systém klimatický angl: complete climate system, coupled climate system slov: klimatický systém rus: единая климатическая система  1993-b3
Geländeklima n
syn. topoklima.
česky: klima reliéfové slov: reliéfová klíma rus: рельефный климат  1993-b1
Geländeklimatologie f
česky: klimatologie terénní slov: terénna klimatológia rus: топоклиматология  1993-a1
gelber Schnee m
česky: sníh žlutý angl: yellow snow slov: žltý sneh rus: желтый снег  1993-a1
Geltungsbereich m
česky: reprezentativnost v meteorologii slov: reprezentatívnosť v meteorológii rus: репрезентативность в метеорологии  1993-a1
generalisierte Vertikalgeschwindigkeit f
česky: rychlost vertikální generalizovaná slov: generalizovaná vertikálna rýchlosť  1993-a1
genetische Klimaklassifikation f
členění Země nebo její části do regionů vymezených z hlediska geneze klimatu, zejména podle všeobecné cirkulace atmosféry. Tento způsob hrál významnou roli v minulosti, neboť na rozdíl od efektivní klasifikace klimatu nevyžaduje znalost hodnot klimatických prvků. Schematičnost genetických klasifikací však zároveň brání jejich detailnějšímu využití. K nejznámějším patří Flohnova klasifikace klimatu a Alisovova klasifikace klimatu.
česky: klasifikace klimatu genetická angl: genetic climate classification slov: genetická klasifikácia klímy rus: генетическая классификация климатов  1993-b2
genetische Wolkenklassifikation f
třídění oblaků podle podmínek jejich vzniku. Podle klasické genetické klasifikace G. Stüveho se oblaky dělí na:
a) oblaky vzniklé jinde, než se vyskytují;
b) oblaky vzniklé v místě jejich výskytu, a to v důsledku konvekce, advekce a turbulence;
c) orografické oblaky, které se dále člení na oblaky vznikající v horských oblastech na návětrné, resp. závětrné straně, na oblaky vznikající nad pobřežím a na oblaky podmíněné teplotními či jinými kontrasty nad pevninou.
S touto klasifikací se v současné době setkáme jen zřídka. Běžně užívané je dělení na oblaky vrstevnaté a oblaky kupovité resp. konvekční a dále dělení na oblaky frontální a oblaky vznikající uvnitř vzduchové hmoty.
česky: klasifikace oblaků genetická angl: genetic cloud classification slov: genetická klasifikácia oblakov rus: генетическая классификация облаков  1993-a3
genitus
(gen) – označení vyjadřující, že daný druh oblaku vznikl transformací části jiného, tzv. mateřského oblaku. Označení druhu nově vytvořeného oblaku se pak doplňuje adjektivem složeným z názvu druhu mateřského oblaku a z přípony genitus. Podle druhu mateřského oblaku rozeznáváme Ci nebo Cs cirrocumulogenitus (ccgen), Ci, As, Cu nebo Cb altocumulogenitus (acgen), Sc nebo Cb altostratogenitus (asgen), Sc, St nebo Cb nimbostratogenitus (nsgen), Cu nebo Cb stratocumulogenitus (scgen), Ac, Ns, St, Sc  nebo Cb cumulogenitus (cugen) a Ci, Cc nebo St cumulonimbogenitus (cbgen).
česky: genitus angl: genitus slov: genitus rus: генитус fr: genitus m  1993-a3
Genua-Zyklone f
cyklona, která vzniká nad Janovským zálivem a sev. Itálií obvykle na studené frontě, jež postupuje od západu do oblasti Alp, kde se začíná vlnit. Vznik zvlněné fronty je způsoben tím, že údolím řeky Rhóny proniká od severu nad Janovský záliv studený vzduch, zatímco postup studeného vzduchu nad záp. část Pádské nížiny brzdí horský hřeben jz. Alp. Janovská cyklona postupuje v některých případech na sv. a vyvolává na části území ČR dlouhotrvající vydatné srážky. Viz též situace Vb.
česky: cyklona janovská angl: Genoa cyclone slov: janovská cyklóna rus: Генуэзский циклон fr: dépression du golfe de Gênes f, dépression ligure f  1993-a2
geographische Jet-Stream-Klassifikation f
třídění tryskového proudění podle oblasti výskytu. V troposféře rozlišujeme tryskové proudění rovníkové, subtropické a mimotropické, z nichž poslední ještě dále dělíme na tryskové proudění mírných šířek neboli tryskové proudění polární fronty a tryskové proudění arktické. Tryskové proudění se vyskytuje také ve stratosféře s osou nad tropopauzou a lze jej též pozorovat ve všech zeměpisných šířkách.
česky: klasifikace tryskového proudění geografická angl: geographic jet stream classification slov: geografická klasifikácia dýzového prúdenia rus: географическая классификация струйного течения  1993-a3
geographische Klimafaktoren m/pl
klimatický faktor podmíněný heterogenitou přírodního prostředí Země v různých měřítkách, která se odrážejí v kategorizaci klimatu. Pro utváření makroklimatu je určující zeměp. šířka, rozložení pevniny a oceánů, uspořádání všeobecné cirkulace atmosféry a systém oceánských proudů. V menším prostorovém měřítku se uplatňuje vliv nadm. výšky, tvarů zemského reliéfu a krajinného pokryvu. Mezi geografické klimatické faktory můžeme rovněž řadit složení atmosféry Země, na které epizodicky působí zemský vulkanizmus.
česky: faktor klimatický geografický angl: geographical climatic factor slov: geografický klimaitický faktor rus: географический климатический фактор fr: facteur géographique du climat (m)  1993-b3
geographische Luftmassenklassifikation f
rozdělení vzduchových hmot podle geogr. polohy ohniska vzniku vzduchové hmoty. Někteří autoři rozlišují pouze dvě vzduchové hmoty, totiž polární vzduch a tropický vzduch, oddělené polární frontou. Častěji se dále vymezuje arktický vzduch (na jižní polokouli antarktický), oddělený arktickou, resp. antarktickou frontou; polární vzduch je pak označován jako vzduch mírných šířek. V rámci tropického vzduchu je někdy vyčleňován ekvatoriální vzduch, avšak představa tropické fronty na jeho okraji není relevantní. Kromě ekvatoriální se ostatní vzduchové hmoty dále dělí podle toho, kde nabývají své charakteristické vlastnosti, na vzduch pevninský a vzduch mořský. Viz též klasifikace klimatu Alisovova.
česky: klasifikace vzduchových hmot geografická angl: geographic air masses classification slov: geografická klasifikácia vzduchových hmôt rus: географическая классификация воздушных масс  1993-a3
geographische Strahlstromklassifikation f
třídění tryskového proudění podle oblasti výskytu. V troposféře rozlišujeme tryskové proudění rovníkové, subtropické a mimotropické, z nichž poslední ještě dále dělíme na tryskové proudění mírných šířek neboli tryskové proudění polární fronty a tryskové proudění arktické. Tryskové proudění se vyskytuje také ve stratosféře s osou nad tropopauzou a lze jej též pozorovat ve všech zeměpisných šířkách.
česky: klasifikace tryskového proudění geografická angl: geographic jet stream classification slov: geografická klasifikácia dýzového prúdenia rus: географическая классификация струйного течения  1993-a3
geometrischer Horizont m
syn. obzor ideální – obzor, v němž se obloha zdánlivě setkává s geopotenciální hladinou, na níž leží místo pozorování; v nulové nadmořské výšce můžeme tuto hladinu ztotožnit s klidnou mořskou hladinou. Vlivy šíření elektromagnetického vlnění v atmosféře přitom nejsou uvažovány. Geometrický obzor má přibližně tvar kružnice, jejíž poloměr se zvětšuje s vyvýšením očí pozorovatele oproti okolí.
česky: obzor geometrický angl: celestial horizon, geometric horizon slov: geometrický obzor  2016
geomorphologische Klimaklassifikation f
druh efektivní klasifikace klimatu podle hlavních činitelů, které v daných klimatických podmínkách modelují tvary zemského povrchu. Tyto tvary jsou tedy do určité míry indikátorem klimatu, v němž se vyvíjejí. Příkladem je klasifikace A. Pencka (1910), který si z tohoto hlediska všímal srážek a dalších prvků hydrologické bilance. Rozlišil tak tři hlavní skupiny klimatických typů: humidní klima, aridní klima a nivální klima.
česky: klasifikace klimatu geomorfologická angl: geomorphological climate classification slov: geomorfologická klasifikácia klímy rus: геоморфологическая классификация климатов  1993-b2
Geopotential n
syn. potenciál tíže zemské – potenciál spojený s tíhovým polem Země. Je ekvivalentní potenciální energii vzduchové částice o jednotkové hmotnosti vzhledem ke zvolené nulové geopotenciální hladině, kterou ztotožňujeme se stř. hladinou moře. Číselně je roven práci vykonané proti působení síly zemské tíže při zvednutí jednotkové hmotnosti ze stř. hladiny moře do hladiny, k níž geopotenciál vztahujeme. Geopotenciál Φ, je spojen s geometrickou výškou z vztahem
Φ=0zgdz
kde g je velikost tíhového zrychlení. Viz též hladina ekvipotenciální, výška geopotenciální.
česky: geopotenciál angl: geopotential slov: geopotenciál rus: геопотенциал fr: géopotentiel m  1993-a2
Geopotential n
česky: potenciál tíže zemské slov: potenciál zemskej tiaže  1993-a1
Geopotentialfläche f
hladina (plocha) konstantního geopotenciálu. Viz též hladina ekvipotenciální.
česky: hladina geopotenciální angl: geopotential level, geopotential surface slov: geopotenciálna hladina rus: геопотенциальный уровень  1993-a1
Geopotentialfläche f
česky: plocha geopotenciální slov: geopotenciálna plocha  1993-a1
geopotentielle Energie f
potenciální energie daného tělesa nebo systému v poli zemské tíže. Je určena až na aditivní konstantu, která je dána volbou nulové energetické hladiny. V meteorologii je touto hladinou zpravidla zemský povrch nebo střední hladina moře. Geopotenciální energie jednotkové hmotnosti vzduchu představuje geopotenciál.
česky: energie geopotenciální angl: geopotential energy fr: géopotentiel m slov: geopotenciálna energia  2017
geopotentielle Fläche f
hladina (plocha) konstantního geopotenciálu. Viz též hladina ekvipotenciální.
česky: hladina geopotenciální angl: geopotential level, geopotential surface slov: geopotenciálna hladina rus: геопотенциальный уровень  1993-a1
geopotentielles Meter n
jednotka geopotenciální výšky definovaná vztahem:
Hgpm=19.8 0zgdz,
kde H je výška v geopotenciálních metrech, z výška v geometrických metrech a g velikost místního tíhového zrychlení. Vztah mezi geopotenciálním metrem a geometrickým metrem lze vyjádřit ve tvaru
1 geopotenciální metr = 9,8/g geometrických metrů.
Geopotenciální metr je v meteorologii běžně užívanou jednotkou výšky, která se rovná geometrickému metru na místech, kde je tíhové zrychlení přesně rovno 9,8 m.s–2. V geopotenciálních metrech se např. uvádějí výšky na mapách barické topografie a užívá se ho v mezinárodní standardní atmosféře ICAO. Viz též metr dynamický.
česky: metr geopotenciální angl: geopotential metre slov: geopotenciálny meter rus: геопотенциальный метр  1993-a2
geordnete Konvektion f
1. konvekce s prostorově uspořádanou buněčnou strukturou, viz buněčná konvekce;
2. konvekce uspořádaná do tvaru pásů, které souvisejí s polohou studených front druhého druhu nebo čar instability.
česky: konvekce uspořádaná angl: regular convection slov: usporiadaná konvekcia rus: упорядоченная конвекция  1993-a3
Geosphäre f
neurčitý pojem, který označuje buď pevnou část planety Země, nebo její svrchní část (syn. litosféra), případně souborně všechny nebo jednotlivé její obaly, tedy litosféru, pedosféru, hydrosféru, biosféru a atmosféru, k nimž někdy řadíme i kryosféru.
česky: geosféra angl: geosphere slov: geosféra rus: геосфера fr: géosphère f  1993-a3
geostationärer Wettersatellit m
meteorologická družice na geostacionární dráze. Parametry geostacionární dráhy (kruhová dráha o poloměru 42 168 km, jejíž rovina je totožná s rovinou zemského rovníku) zajišťují, že družice zdánlivě „visí“ ve výšce přibližně 35 790 km nad pevným místem na zemském povrchu.
česky: družice meteorologická geostacionární angl: geostationary meteorological satellite slov: geostacionárna meteorologická družica rus: геостационарный метеорологический спутник fr: satellite météorologique géostationnaire m, satellite météorologique en orbite géostationnaire m  1993-a3
geostationärer Wettersatellit m
nepřesné (zkrácené) označení družice meteorologické geostacionární.
česky: družice meteorologická stacionární slov: stacionárna meteorologická družica rus: геостационарные спутники fr: satellite météorologique stationnaire m  1993-a3
geostrophische Advektion f
česky: advekce geostrofická angl: geostrophic advection slov: geostrofická advekcia rus: геострофическая адвекция fr: advection géostrophique f  1993-a3
geostrophische Strömung f
česky: proudění geostrofické slov: geostrofické prúdenie  1993-a1
geostrophische Windgeschwindigkeit f
česky: rychlost větru geostrofická angl: geostrophic wind speed slov: geostrofická rýchlosť vetra  1993-a1
geostrophische Windskala f
graf pro určení rychlosti geostrofického větru ze vzdálenosti izobar, popř. izohyps na přízemních nebo výškových synoptických mapách v závislosti na zeměpisné šířce. Měřítko geostrofického větru bývá vyznačeno na okrajích některých synop. map. Dříve se používalo i v podobě přenosné pomůcky nazývané geostrofické pravítko.
česky: měřítko geostrofické angl: geostrophic wind scale slov: geostrofická mierka rus: геострофическая линейка, геострофическая шкала ветра  1993-a3
geosynchroner Wettersatellit m
meteorologická družice, jejíž oběžná doba je totožná s dobou rotace Země. Termín se často nesprávně zaměňuje s pojmem meteorologická družice geostacionární.
česky: družice meteorologická geosynchronní angl: earth-synchronous meteorological satellite, geosynchronous meteorological satellite slov: geosynchrónna meteorologická družica rus: геосинхронный метеорологический спутник fr: satellite géosynchrone m, satellite météorologique en orbite géosynchrone permanente m  1993-a3
geothemische Tiefenstufe f
převrácená hodnota geotermického gradientu, tj. vert. vzdálenost v zemské kůře odpovídající změně teploty o 1 K. Velikost geotermického stupně je přibližně 33 m/K, přesná hodnota závisí na geol. stavbě a petrografickém složení litosféry pod aktivní vrstvou, tj. v takové hloubce pod zemským povrchem, kde se již neprojevují met. vlivy.
česky: stupeň geotermický angl: geothermic step slov: geotermický stupeň rus: геотермическая ступень  1993-a2
geothermischer Gradient m
změna teploty s hloubkou v pevné zemské kůře (litosféře) pod povrchovou vrstvou, do které ještě zasahuje vliv tepelné bilance zemského povrchu. Jde tedy o hloubky větší než 10 až 20 m. Geotermický gradient činí přibližně 3 K na 100 m. Viz též stupeň geotermický.
česky: gradient geotermický angl: geothermal gradient slov: geotermický gradient rus: геотермический градиент fr: gradient géothermique m  1993-a1
Gerätefehler m
rozdíl mezi údajem přístroje po vyloučení všech systematických rušivých vlivů a správnou hodnotou měřené veličiny. Viz též kalibrace meteorologických přístrojů.
česky: chyba přístroje angl: instrument error slov: chyba prístroja rus: ошибка прибора  1993-a3
Gerüche m
čichové počitky vyvolané přítomností jedné nebo více těkavých příměsí v atmosféře, obvykle v nízkých koncentracích, nicméně převyšujících práh citlivosti čichového ústrojí. Příjemné pachy jsou označovány jako vůně, nepříjemné pachy jako zápachy.
česky: pachy angl: odours slov: pachy rus: запахи  1993-a2
Gesamtauftrieb eines Ballons m
aerostatická vztlaková síla směřující proti síle zemské tíže a rovnající se rozdílu tíhy vzduchu vytlačeného balonem o objemu V a tíhy plynu, kterým je tento balon naplněn. Její velikost F vyplývá z Archimédova zákona:
F=V(ρρn)g,
kde ρ je hustota vzduchu, ρn hustota plynu v balonu a g velikost tíhového zrychlení.
česky: síla balonu stoupací celková angl: total lift of a balloon slov: celková vzostupná sila balóna rus: полная подъемная сила шара  1993-a3
gesamte potentielle Energie
v meteorologii obvykle úhrn potenciální a vnitřní energie ve vertikálním sloupci atmosféry nebo v atmosféře jako celku. Pojem v tomto smyslu zavedl M. Margules v roce 1903.
česky: energie potenciální celková angl: total potential energy slov: celková potenciálna energia  2017
Gesamtmasse der Atmosphäre f
celková hmotnost atmosféry Země je podle A. Ch. Chrgiana (1978) 5,157 . 1018 kg, podle F. J. Monkhouse (1974) 5,9 . 1018 kg. Zejména první z těchto dvou údajů dobře odpovídá dnes uváděným hodnotám. Hmotnost atmosféry tvoří přibližně jednu milióntinu hmotnosti Země (5,98 . 1024 kg). Vzhledem k tomu, že tlak a hustota vzduchu s výškou rychle klesají, ve vrstvě od 0 do 5,5 km se vyskytuje přibližně 50 %, ve vrstvě od 0 do 11 km 75 % a ve vrstvě od 0 do 36 km 99 % celkové hmotnosti atmosféry. V horních vrstvách ovzduší nad 36 km se tedy vyskytuje jen asi 1 % celkové hmotnosti atmosféry.
česky: hmotnost atmosféry angl: total weight of the atmosphere slov: hmotnosť atmosféry rus: масса атмосферы  1993-a3
gesättigter Boden m
nesprávný název pro půdu s rel. vysokým obsahem vody, který se blíží max. vodní kapacitě půdy po nadměrném zavlažení shora srážkami.
česky: půda nasycená angl: saturated soil slov: nasýtená pôda rus: насыщенная почва  1993-a1
gesättigter Dampf m
pára sytá – plynná fáze dané látky, nalézající se ve stavu termodynamické rovnováhy s kapalnou (v případě sublimace s pevnou) fází téže látky při rovinném tvaru fázového rozhraní. Za této rovnováhy je tok molekul směřující přes fázové rozhraní z kapalné (pevné) do plynné fáze stejně velký jako tok opačný. Vztah mezi tlakem (napětím) nasycené páry a teplotou udává Clausiova–Clapeyronova rovnice. Na fázovém diagramu je vztah mezi tlakem a teplotou nasycené páry zobrazen křivkou vypařování, nazývanou též křivka nasycených par. V meteorologických aplikacích jde zpravidla o nasycenou vodní páru a v praxi se pro přibližné vyjádření závislosti jejího tlaku na teplotě používá např. Magnusův vzorec. Při teplotách pod teplotou trojného bodu rozlišujeme nasycenou vodní páru nad povrchem přechlazené vody a nasycenou vodní páru nad ledem.
U zakřiveného rozhraní fází vzniká složitější situace. Pro kladné zakřivení fázového rozhraní (např. u vodních kapiček) při dané teplotě roste tlak nasycené páry se zvětšujícím se zakřivením. Při záporném zakřivení (např. tvar vodní hladiny v kapiláře se stěnami smáčitelnými vodou) je tomu naopak. Příslušné kvantitativní vyjádření této závislosti poskytuje Thomsonův vztah. U vodních roztoků, závisí tlak nasycené vodní páry též na koncentraci příměsi a u disociovaných roztoků (elektrolytů) na jejím druhu. Příslušnou závislost udává Raoultův zákon. Uvedené skutečnosti mají podstatný význam ve fyzice oblaků a srážek, zejména pak v mikrofyzice oblaků a srážek.
česky: pára nasycená angl: saturated vapor slov: nasýtená para  2017
gesättigter Dampf m
česky: pára sytá slov: nasýtená para  2017
geschlossene Konvektionszelle f
česky: buňka uzavřená angl: closed cell slov: uzavretá bunka  2018
geschlossene Schneedecke f
vrstva sněhu nebo ledu, která přímo nebo nepřímo vznikla v důsledku tuhých srážek (sníh, kroupy, sněhové krupky, sněhová zrna, zmrzlý déšť, námrazové krupky, náledí, zmrazky; nikoliv však ledovka na zemi). Pokrývá-li celková sněhová pokrývka v daném termínu méně než polovinu plochy reprezentativního okolí stanice, jedná se o nesouvislou sněhovou pokrývku. Je-li půda na pozemku stanice a jejím reprezentativním okolí pokryta alespoň z poloviny sněhovou pokrývkou, jedná se o souvislou sněhovou pokrývku, u které se měří výška celkové sněhové pokrývky s přesností na celé cm. Je-li výška souvislé sněhové pokrývky menší než 0,5 cm, hovoříme o sněhovém poprašku. Viz též měření sněhové pokrývky.
česky: pokrývka sněhová celková angl: total snow cover slov: celková snehová pokrývka rus: общий снежный покров  1993-a3
Geschwindigkeitspotential n
česky: potenciál divergenční angl: velocity potential slov: divergenčný potenciál rus: потенциал скорости  1993-a1
Geschwindigkeitspotential n
syn. potenciál divergenční – skalární funkce φ, popisující pole divergentního nevírového horiz. proudění v atmosféře, definovaná až na aditivní konstantu vztahy:
vx=φx, vy=φy.
kde vx a vy značí složku x a y rychlosti proudění. Používá se v dynamické meteorologii k vyjádření nevírových složek rychlosti proudění zejména ve vztazích odvozených z pohybových rovnic.
česky: potenciál rychlostní slov: rýchlostný potenciál  1993-a3
gestreutes Licht n
syn. světlo rozptýlené – v met. světlo rozptýlené molekulami vzduchu a aerosolovými částicemi přítomnými v atmosféře.
česky: světlo difuzní angl: diffuse light slov: difúzne svetlo rus: диффузный свет, рассеянный свет  1993-a1
Gewitter an der Station n
syn. bouřka blízká – označení pro bouřku blízkou, pokud je detekována pozorovatelem meteorologické stanice. Viz též hrom.
česky: bouřka na stanici angl: thunderstorm at the station slov: búrka na stanici rus: местная гроза  1993-a3
Gewitter n
1. soubor el., opt. a akust. jevů, které doprovázejí elektrické výboje uvnitř oblaku, mezi oblaky navzájem nebo mezi oblaky a zemí. Bouřky se vyskytují v oblacích druhu cumulonimbus, případně cumulus congestus a nimbostratus a jsou součástí konvektivní bouře. Podle synoptické situace, při níž se konv. bouře vyvíjejí, dělíme bouřky neformálně na bouřky frontální a bouřky uvnitř vzduchové hmoty (nefrontální). Frontální bouřky rozdělujeme na bouřky studené fronty a teplé fronty. U bouřek uvnitř vzduch. hmoty bereme v úvahu i další příčiny vývoje bouřky a rozlišujeme bouřky kvazifrontální, advekční, konvektivní a orografické. Bouřky dále označujeme podle doby a místa vzniku, pohybu, vzdálenosti od místa pozorování, intenzity projevů atd;
2. místně a časově omezená oblast konv. bouře, v níž se vyskytují elektrické výboje – blesky doprovázené hřměním. Pro pozorování bouřek na pozemních met. stanicích je podstatné přímé pozorování blesků a slyšitelnost hřmění.
3. Často se vyskytující nevhodné synonymum či hovorové označení pro konv. bouři.
Viz též blýskavice, hrom, intenzita bouřky, intenzita bouřkové činnosti, pozorování bouřek, izobronta, elektřina bouřková, předpověď konvektivních bouří.
česky: bouřka angl: thunderstorm slov: búrka rus: гроза fr: orage m  1993-a3
Gewitterbeobachtung f
zjišťování výskytu bouřek popř. blýskavic na meteorologických stanicích, při němž se kromě časových údajů zaznamenává vzdálenost od stanice, intenzita a tah bouřky, hlavní náraz větru a srážky. Za začátek bouřky na stanici považujeme okamžik, kdy bylo poprvé slyšet hřmění bez ohledu na to, zda bylo či nebylo vidět blesky nebo zda se na stanici vyskytly srážky. Není-li hřmění slyšitelné, mluvíme o blýskavici. Za konec bouřky považujeme okamžik posledního slyšitelného zahřmění, jestliže po dobu 10 až 15 minut od tohoto okamžiku již hřmění nebylo slyšet. Pro klimatické účely se rozlišuje bouřka na stanici (blízká) a bouřka vzdálená. K určování vzdálenosti bouřky od stanice se využívá rychlost zvuku. V praxi se uvažuje vzdálenost 1 km, jestliže od zablesknutí do zahřmění uběhnou 3 s.
česky: pozorování bouřek angl: observation of thunderstorms slov: pozorovanie búrok rus: наблюдение грозовых явлений  1993-a2
Gewitterelektrizität f
elektřina vzniklá v oblaku druhu cumulonimbus v důsledku elektrické indukce, vzájemných srážek a tříštění vodních kapek a krystalků ledu, fázových změn vody, vert. pohybů v oblaku apod. Při vzniku bouřkové elektřiny nemusí být nosičem nábojů jen voda v různých fázích, mohou jím být i zrnka písku při písečných bouřích nebo rozžhavené částice zeminy vyvržené s popelem při sopečných výbuších.
V oblaku druhu cumulonimbus existují zpravidla dvě zákl. centra el. nábojů opačné polarity (kladné v horní části oblaku a níže ležící záporné centrum) s velkou koncentrací náboje a jedno rel. malé, obvykle kladné centrum v základně oblaku. El. struktura Cb se může zjevně měnit v procesu jeho rozvoje. Mechanismus separace nábojů podle polarity a vytváření nábojových center popisuje několik teorií. Jeden z hlavních mechanismů vzniku bouřkové elektřiny je založen na slabých termoelektrických vlastnostech ledu. Větší ledové částice intenzivně zachytávají přechlazené kapičky vody, které na jejich povrchu při teplotách pod bodem mrazu rychle namrzají a uvolňováním latentního tepla mrznutí je pak povrch těchto větších ledových částic udržován na poněkud vyšší teplotě než povrch malých ledových částic, jež přechlazené kapky prakticky nezachycují, neboť se s nimi vzájemně obtékají v důsledku přibližně shodných rozměrů. Při nárazech a odrážení malých částic na větších ledových částicích pak termoelektricky dochází k výměně el. náboje tak, že rychle narůstající větší (a na svém povrchu teplejší) ledové částice se nabíjejí záporně a malé částice kladně. Druhý z hlavních mechanismů se může uplatnit tehdy, jestliže proces zachycování přechlazených kapek vody na větších částicích ledu je při teplotách pod bodem mrazu natolik intenzivní, že se na povrchu těchto částic vytváří přechodná (postupně namrzající) obalová vrstva přechlazené vody. Vlivem přítomnosti zejména iontů solí dochází pak k výměně elektrického náboje tak, že pevné ledové jádro se nabíjí záporně a obalová vrstvička přechlazené vody kladně. Při zpětném odstřikování kladně nabité přechlazené vody zpět do okolního vzduchu se narůstající komplex ledu s namrzajícím přechlazeným vodním obalem nabíjí záporně, zatímco kladný náboj je vynášen do okolního vzduchu. U obou právě zmíněných mechanismů se shodně větší a narůstající částice ledu nabíjejí záporně, zatímco kladný náboj je vynášen do okolního vzduchu malými elementy. V tíhovém poli Země pak dochází ke gravitačnímu oddělování a formování horního (dolního) centra záporného (kladného) elektrického náboje. Celkový náboj bouřkového oblaku se řádově udává ve stovkách až tisících coulombů. El. gradient pod „zralým“ bouřkovým oblakem dosahuje u země hodnot 10–20 kV.m–1. Za podmínky dostatečné lokální předionizace vzduchu, která dle současných znalostí souvisí zejména s působením tzv. ubíhajících elektronů, pak mohou vznikat výboje blesků. Viz též separace elektrického náboje v oblacích.
česky: elektřina bouřková angl: thunderstorm electricity slov: búrková elektrina rus: грозовое электричество fr: électricité dans un nuage d'orage f  1993-a3
Gewitterintensität f
intenzita a četnost el. výbojů blesků bouřky na stanici nebo vzdálené bouřky, nikoliv však intenzita průvodních jevů, jako jsou srážky, húlava nebo rychlost nárazů větru. Rozlišuje se bouřka slabá, mírná a silná, přesná kritéria pro určování intenzity bouřky nejsou stanovena. Viz též intenzita bouřkové činnosti.
česky: intenzita bouřky angl: thunderstorm intensity slov: intenzita búrky rus: интенсивность грозы  1993-a3
Gewitterintensität f
parametr stanovený z dlouhodobého pozorování bouřek, vycházející z prům. počtu dní s bouřkou na stanici nebo vzdálenou bouřkou za rok nebo z prům. doby trvání bouřek v hodinách za rok. Intenzita bouřkové činnosti je zákl. charakteristikou pro stanovení četnosti škod na techn., zejména elektrotechnických zařízeních. Pro tyto účely se používá k vyjádření intenzity bouřkové činnosti ještě dalších upřesňujících údajů, jako prům. počtu úderů blesku do země (n.rok–1.km–2) a prům. počtu výbojů blesku v oblacích se stejným rozměrem. Ke stanovení těchto parametrů, které jsou časově značně proměnlivé, se užívá systémů detekce blesků. Za min. dobu pozorování se považuje desetileté období. Viz též mapa izobront, mapa izoceraunická, intenzita výbojů blesku do země, intenzita výbojů blesku mezi oblaky.
česky: intenzita bouřkové činnosti angl: thunderstorm intensity slov: intenzita búrkovej činnosti rus: интенсивность грозовой деятельности  1993-a3
Gewitternase f
náhlý vzestup tlaku vzduchu na barogramu v souvislosti s průchodem húlavy. Nejčastější případy bouřkového nosu dosahují vzestupu 1 až 3 hPa, ojediněle i více během několika min. Před výskytem bouřkového nosu bývá zpravidla zaznamenáno minimum tlaku vzduchu, ve výjimečných případech však tlak po přechodném náhlém vzestupu klesá i pod tuto hodnotu a záznam na barografu vypadá jako časová značka. Tyto případy prudkého vzestupu tlaku vzduchu s následným poklesem zpravidla souvisí s přechodem bouřkových anticyklon. Převážná většina bouřkových nosů se vyskytuje při přechodu studených front druhého druhu s výraznými projevy frontálního počasí, a to zejména silným větrem současně s náhlým poklesem teploty vzduchu.
česky: nos bouřkový angl: pressure jump slov: búrkový nos rus: грозовой нос, скачoк давления  1993-a2
Gewittertag m
den, v němž byla zaznamenána bouřka blízká, čili bouřka na stanici, nebo bouřka vzdálená. Den, v němž byla pozorována blýskavice, není tedy do dnů s bouřkou započítáván.
česky: den s bouřkou angl: day of thunderstorm slov: deň s búrkou rus: день с грозой fr: jour avec orage m, jour d'orage m  1993-a1
Gewitterwolke f
(Cb) [kumulonimbus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako mohutný a hustý oblak velkého vert. rozsahu v podobě hor nebo obrovských věží. Alespoň část jeho vrcholu je obvykle hladká, vláknitá nebo žebrovitá a téměř vždy zploštělá; tato část se často rozšiřuje do podoby kovadliny nebo širokého chocholu. Pod základnou oblaku, obvykle velmi tmavou, se často vyskytují nízké roztrhané oblaky, které mohou, avšak nemusí s Cb souviset, a srážky, někdy jen jako virga. Na vývoj Cb jsou vázány bouřky, avšak Cb může existovat, aniž bouřka vznikne.
Vert. rozsah Cb je vždy alespoň několik km, někdy může vrcholek Cb prorůst i tropopauzou. Cb je obvykle komplexem jednoduchých cel, řidčeji se skládá z cely jediné. Vzniká působením intenzivní konvekce, nejčastěji na studených frontách nebo čarách instability. Může se vyvinout i uvnitř homogenní instabilní vzduchové hmoty, často za spolupůsobení orografických faktorů. Pro el. strukturu Cb je charakteristický výskyt centra záporného náboje v dolní a kladného náboje v horní části oblaku. Kromě toho bývá pozorováno i podružné centrum kladného náboje v oblasti základny, které je však vázáno na vypadávání srážek. Cb se v letectví pokládá za nebezpečný jev, neboť se v něm vyskytují výstupné a sestupné vzdušné proudy, které dosahují rychlostí až desítky m.s–1, intenzivní turbulence, námraza, el. výboje a kroupy často velkých rozměrů.
Cb lze dále klasifikovat podle tvaru jako calvus či capillatus. Cb nemá odrůdy, můžeme však u něj klasifikovat zvláštnosti praecipitatio, virga, incus, mamma, arcus, tuba a průvodní oblaky flumen, pannus, pileus a velum. Termín Cb zavedl něm. meteorolog P. Weilbach v letech 1879–1880. Český překlad Cb je dešťová kupa. Viz též elektřina bouřková, rozsah oblaku vertikální, průnik kumulonimbů do stratosféry, informace SIGMET, náboj bouřkového oblaku, moment dipólu bouřkového oblaku, bouře konvektivní, elektrony ubíhající.
česky: cumulonimbus angl: Cumulonimbus, thundercloud slov: cumulonimbus rus: грозовое облако, кучево-дождевые облака fr: Cumulonimbus m, nuage d'orage m  1993-a3
Gewitterwolke f
lidové označení pro cumulonimbus.
česky: oblak bouřkový slov: búrkový oblak rus: грозовое облако  1993-a2
Gewitterzelle f
1. ve starší terminologii užívané označení jednoduché cely;
2. v meteorologické praxi užívané označení oblasti zvýšené efektivní radiolokační odrazivosti, která indikuje výskyt konvektivních srážek.
česky: buňka bouřková angl: thunderstorm cell slov: búrková bunka rus: грозовая ячейка fr: cellule orageuse f  1993-a3
gewittriger Niederschlag m
označení pro konvektivní srážky, které vypadávají z oblaků druhu cumulonimbus při bouřce. Typickými bouřkovými srážkami jsou intenzivní deště, někdy doprovázené krupkami nebo kroupami. Vyskytují se především v letním období a způsobují škody zejména v zemědělství. Viz též krupobití, intenzita srážek, přeháňky, déšť přívalový.
česky: srážky bouřkové angl: thundery precipitation slov: búrkové zrážky rus: грозовые осадки  1993-a2
Gezeiten in der Ionosphäre pl
kolísání ionosféry způsobené gravitačním vlivem Měsíce a gravitačním i radiačním vlivem Slunce.
česky: slapy ionosférické angl: ionospheric tides slov: ionosférické slapy rus: ионосферные приливы  1993-a3
Gibbs-Energie f
syn. energie volná Gibbsova – termodynamický potenciál používaný v meteorologii především ve fyzice oblaků a srážek. Je definován výrazem
G=F+pV=HTS =UTS+pV,
kde F značí volnou energii dané termodyn. soustavy, H entalpii, U vnitřní energii, S entropii, T teplotu v K, p tlak a V objem. Gibbsův termodynamický potenciál zůstává konstantní při vratných dějích, které jsou izobarické a současně izotermické, tzn. že se nemění např. při fázových přechodech.
česky: potenciál Gibbsův angl: Gibbs potential slov: Gibbsov potenciál rus: потенциал Гиббса  1993-a3
Gibbs-Potential n
syn. energie volná Gibbsova – termodynamický potenciál používaný v meteorologii především ve fyzice oblaků a srážek. Je definován výrazem
G=F+pV=HTS =UTS+pV,
kde F značí volnou energii dané termodyn. soustavy, H entalpii, U vnitřní energii, S entropii, T teplotu v K, p tlak a V objem. Gibbsův termodynamický potenciál zůstává konstantní při vratných dějích, které jsou izobarické a současně izotermické, tzn. že se nemění např. při fázových přechodech.
česky: potenciál Gibbsův angl: Gibbs potential slov: Gibbsov potenciál rus: потенциал Гиббса  1993-a3
Gibbssche freie Energie f
česky: energie volná Gibbsova fr: énergie libre de Gibbs f, énergie de Gibbs f, enthalpie libre f slov: Gibbsova voľná energia  2017
Gibli m
místní název pro pouštní vítr převážně jv. a již. směru v Tunisku a Libyi.
česky: gibli angl: gebli, ghibli slov: gibli rus: гибли, джибли fr: ghibli m, guebli m  1993-a3
Gipfelwolke f
česky: oblak horský slov: horský oblak rus: облако горных территорий  1993-a1
Glashauseffekt m
oteplení nižších vrstev atmosféry v důsledku selektivní absorpce záření, konkrétně schopnosti atmosféry propouštět většinu slunečního krátkovlnného záření k zemskému povrchu a pohlcovat dlouhovlnné záření zemského povrchu. Dlouhovlnné záření v atmosféře pohlcují tzv. skleníkové plyny, především vodní pára (asi z 60 %), oxid uhličitý (přibližně 26 %), dále metan, oxid dusný a další plyny (ozon, freony…). Tím se atmosféra ohřívá a předává zpětným zářením energii k zemskému povrchu, což vede ke zmenšování efektivního vyzařování zemského povrchu, a tedy snížení jeho radiačního ochlazování. Analogické poměry jsou ve sklenících a pařeništích, kde tomu ale není primárně v důsledku selektivní propustnosti skla pro krátkovlnné a dlouhovlnné záření, ale spíše z důvodu izolovaného prostoru, který brání mechanické ventilaci tepla. Viz též klima skleníkové, mitigace.
česky: efekt skleníkový angl: greenhouse effect slov: skleníkový efekt rus: парниковый эффект fr: effet de serre m  1993-a3
Glatteis n
souvislá, zpravidla homogenní průhledná ledová vrstva, která vzniká při mrznoucím mrholení nebo mrznoucím dešti, buď zmrznutím přechlazených vodních kapek při dopadu na zemský povrch nebo na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, a nebo zmrznutím nepřechlazených vodních kapek okamžitě při dopadu na zemský povrch nebo na předměty, jejichž teplota je výrazně záporná. Ledovka se tvoří na vodorovných a svislých či šikmých plochách, na větvích i kmenech stromů, na drátech, tyčích, na povrchu země, na chodnících, vozovkách atd. Při déletrvajících podmínkách, vhodných pro její vytváření, může vrstva ledu dosáhnout tloušťky několika cm. Měrná hmotnost ledovky bývá 700 až 900 kg.m–3. Ledovka na zemi se nesmí zaměňovat s náledím. V letecké meteorologii je místo „mrznoucí“ používáno adjektivum „namrzající“.
česky: ledovka angl: glaze slov: ľadovica rus: гололед  1993-a3
Glatteis n
ledová vrstva pokrývající zemi, která vzniká:
a) jestliže nepřechlazené dešťové kapky nebo kapky mrholení později na zemi zmrznou;
b) jestliže voda z úplně nebo částečně roztátého sněhu na zemi opět zmrzne;
c) jestliže při provozu vozidel na silnicích a cestách sníh zledovatí.
Formy náledí b) a c) bývají označovány termínem zmrazky. Na rozdíl od ledovky se na vzniku náledí nepodílejí přechlazené vodní kapičky.
česky: náledí angl: ground ice slov: poľadovica rus: гололедица, гололедно-изморозевое отложение  1993-a3
Glazial n
syn. doba ledová – období relativního nárůstu zalednění na Zemi. V geol. minulosti nastal tento jev vícekrát, pravidelně se opakoval v rámci kvartérního klimatického cyklu. Tehdy prům. teplota vzduchu na Zemi klesala až o 10 °C oproti současnosti. Docházelo k mohutnému rozvoji zalednění, především k postupu pevninského ledovce, k periglaciálním jevům a k výraznému poklesu mořské hladiny o více než 100 metrů oproti interglaciálům. V drsném a suchém kontinentálním klimatu se šířila step a tundra, probíhaly intenzívní zvětrávací pochody, zvané zesprašnění, rozvíjela se geol. činnost větru (eolická činnost) a vytvářely se surové půdy.
česky: glaciál angl: glacial, ice age slov: glaciál rus: гляциал, ледниковый период fr: période glaciaire f, glaciation f  1993-a3
glaziale Antizyklone f
označení W. H. Hobbse (1926) pro anticyklonu v oblasti Antarktidy nebo Grónska. Podle něho jsou obě tyto velmi stálé glaciální anticyklony póly atm. cirkulace. Intenzívní anticyklonální proudění a roztékání studeného vzduchu na jejích okrajích je podmíněno nejen studeným aktivním povrchem ledových a sněhových hmot, nýbrž i značným vert. rozsahem obou anticyklon. Pozdější výzkumy však ukázaly nesprávnost této hypotézy, především u anticyklony nad Grónskem, která je poměrně málo stálá a malého plošného rozsahu. Pojem glaciální anticyklona je vhodnější pro výskyt vysokého tlaku vzduchu nad Antarktidou. Viz též anticyklona antarktická, anticyklona arktická.
česky: anticyklona glaciální angl: glacial anticyclone slov: glaciálna anticyklóna rus: ледниковый антициклон fr: anticyclone polaire m  1993-a2
Glazialklima n
klima zaledněných oblastí, viz klima trvalého mrazu. Viz též glaciál.
česky: klima glaciální angl: glacial climate slov: glaciálná klíma rus: гляциальный климат  1993-b3
Gleichgewichtslinie f
česky: čára rovnováhy slov: čiara rovnováhy rus: линия сходимости fr: ligne d'équilibre f  1993-a1
Gleichung der Vertikalbewegung im p-Systém f
syn. omega-rovnice – rovnice vhodná k diagnostickým výpočtům vertikální rychlosti v p-systému ω z polí geopotenciálu a teploty v různých izobarických hladinách. Rovnici vertikální rychlosti v p-systému je možné odvodit ze základních rovnic dynamiky a termodynamiky atmosféry. V literatuře existuje několik způsobů jejího vyjádření, které se liší podle aplikované aproximace vhodné pro uvažované děje a prostorové měřítko. V české odborné literatuře se lze nejčastěji setkat s rovnicí ve tvaru p2ω+ λ2σ2ω p2=λσ p[ v. p(ξ+λ) ] +Rσpp2 (v.p T)-RTcpσp p2(QT),
kdep2 je Laplaceův operátor aplikovaný v izobarické ploše, ξ relativní vorticita, λ Coriolisův parametr, σ stabilitní parametr daný vztahemσ=-α plnΘ, přičemž lnΘ je přirozený logaritmus potenciální teploty Θ a α měrný objem; v vektor rychlosti proudění v dané izobarické hladině, R měrná plynová konstanta, T teplota, cp měrné teplo při konstantním tlaku a Q tepelná funkce, která kvantifikuje množství neadiabatického tepla dodaného, resp. odňatého jednotce hmotnosti vzduchu (ideálního plynu) za jednotku času. V numerické předpovědi počasí se rovnice vertikální rychlosti v p-systému používá zpravidla ve tvaru odvozeném na základě kvazigeostrofické aproximace. Kromě samotného diagnostického určení vertikální rychlosti z prognostických dat se rovnice používá také při inicializaci vstupních dat.
česky: rovnice vertikální rychlosti v p-systému angl: omega equation slov: rovnica vertikálnej rýchlosti v p-systéme rus: уравнение вертикальной скорости в системе координат (x, y, p, t)  1993-a3
Gleichung f
viz též vzorec.
česky: formule slov: formula rus: формула fr: formule f  1993-a1
Gletscherklimatologie f
vědní obor zabývající se vztahy mezi zaledněním a klimatem. Studuje podmínky vzniku a rozvoje ledovců v závislosti na klimatických podmínkách a klimatických změnách. Viz též kryosféra.
česky: glacioklimatologie angl: glacioclimatology slov: glacioklimatológia rus: гляциоклиматология fr: climatologie glaciaire f  1993-a1
Gliederung der Erdoberfläche f
variabilita nadmořských výšek, případně i jiných vlastností orografie v určité oblasti. Uplatňuje svůj vliv ve všech měřítkách rozlišovaných v rámci kategorizace klimatu.
česky: členitost reliéfu zemského povrchu angl: variability of terrain, variability of the earth's surface slov: členitosť reliéfu zemského povrchu rus: расчленение рельефа земной поверхности fr: rugosité de surface f, rugosité surfacique f  1993-a3
globale Abkühlung f
proces změny klimatu, při kterém dochází v globálním měřítku dlouhodobě k poklesu průměrné teploty a jehož intenzita se v různých oblastech může lišit. V minulosti se jednalo obvykle o fáze nástupu dob ledových v paleoklimatických cyklech, ale např. i pokles globální průměrné teploty o 0,3 °C v období 1958 až 1965 bývá označován jako globální ochlazení. Opakem je globální oteplování. Viz též cyklus klimatický kvartérní, stmívání globální.
česky: ochlazování globální slov: globálne ochladzovanie  2016
globale Erwärmung f
proces změny klimatu, při kterém dochází v globálním měřítku dlouhodobě k nárůstu průměrné teploty a jehož intenzita se v různých oblastech může lišit. Často se globálním oteplováním rozumí antropogenní změna klimatu, tedy složka současných změn klimatu způsobená zesílením skleníkového efektu emisemi skleníkových plynů vyvolaných lidskou činností. Opakem je globální ochlazování. Viz též adaptace, mitigace, Mezivládní panel pro klimatickou změnu.
česky: oteplování globální slov: globálne oteplovanie  2016
Globales Beobachtungssystem n
jeden z prvků Světové služby počasí. Slouží k získávání měřených a pozorovaných dat v celosvětovém měřítku. Jeho hlavními složkami jsou pozemní meteorologické stanice, včetně stanic automatických, aerologické stanice, stanice na lodích, bójích a ropných plošinách, meteorologická pozorování z letadel, meteorologické radiolokátory a meteorologické družice. Světový pozorovací systém zahrnuje také měření slunečního záření, detekci blesků, měření přílivu a vertikálních profilů teploty a větru v nižších vrstvách atmosféry.
česky: systém pozorovací světový angl: Global Observing System slov: Svetový pozorovací systém rus: Глобальная система наблюдений  1993-a3
Globales Datenverarbeitungssystem n
(GDPFS) – jeden z prvků Světové služby počasí. Jeho cílem je zabezpečit dostupnost met. analýz a předpovědí pro všechny členské státy Světové meteorologické organizace prostřednictvím světových meteorologických center, regionálních specializovaných meteorologických center a národních meteorologických center. Funkce systému v reálném čase: příprava dat před vlastním zpracováním, včetně kontroly kvality dat, tvorba met. analýz a předpovědí na jeden den až po dlouhodobé předpovědi, příprava speciálních předpovědí pro letectví, námořní dopravu a pro případ ekologických havárií a prezentace pozorovaných a zpracovaných dat. Funkce systému v nereálném čase: zpracovaní dat pro klimatologické a výzk. účely, verifikace předpovědí, vývoj numerických modelů a dlouhodobé ukládání měřených dat, výstupů z numerických modelů a výsledků verifikace předpovědí.
česky: systém pro zpracování dat a předpovědi světový angl: Global Data Processing and Forecasting System slov: Svetový systém pre spracovanie dát a predpovede rus: Глобальная система обработки данных  1993-a3
Globales Fernmeldesystem n
(GTS) – jeden z prvků Světové služby počasí. Zabezpečuje mezi členskými státy Světové meteorologické organizace sběr, přenos a distribuci měřených, pozorovaných a zpracovaných dat. Je organizován ve třech úrovních:
a) hlavní spojovací okruh propojuje světová a vybraná regionální meteorologická centra;
b) regionální telekomunikační síť zabezpečuje spojení regionálních telekomunikačních center resp. regionálního meteorologického centra s národními meteorologickými centry;
c) národní telekomunikační síť je určena zejména pro sběr dat ze staniční sítě, dat získaných pozorováním z letadel a lodí na území spadajícím do zóny odpovědnosti národního met. centra.
česky: systém telekomunikační světový angl: Global Telecommunication System slov: Svetový telekomunikačný systém rus: Глобальная система телесвязи  1993-a3
globales Klima n
označení pro hlavní charakteristiky makroklimatu celé Země, často děleného jen na hlavní klimatická pásma bez detailních charakteristik. Viz též klima planetární.
česky: klima globální angl: global climate slov: globálná klíma  1993-b3
globales Klima n
1. klima Země jako planety, označované též jako klima globální;
2. klima různých planet.
česky: klima planetární angl: planetary climate slov: planetárna klíma  1993-b2
globales Ozonbeobachtungssystem n
Global Ozone Observing System (GO3OS) – celosvětová síť pozemních stanic monitorujících ozonovou vrstvu, která pracuje v rámci programu Global Atmosferic Watch (GAW) Světové meteorologické organizace (WMO). GO3OS byl postupně vytvořen od konce 50. let 20. století a v současné době zahrnuje přes 300 stanic, z nichž přibližně 50 má dlouhodobý referenční charakter. Naměřené údaje jsou ukládány ve Světovém ozonovém a UV datovém centru WMO (WOUDC) v Torontu, odkud jsou k dispozici uživatelům. Přístroje na stanicích GO3OS jsou udržovány na předepsané kalibrační úrovni pomocí pravidelných mezinárodních srovnání vůči světovým, resp. regionálním etalonům. Z území ČR je v GO3SO zařazena Solární a ozonová observatoř ČHMÚ v Hradci Králové a Aerologické oddělení observatoře ČHMÚ v Praze–Libuši.
česky: systém ozonový observační globální slov: globálny ozónový observačný systém  2014
Globales Telekommunikationssystem n
(GTS) – jeden z prvků Světové služby počasí. Zabezpečuje mezi členskými státy Světové meteorologické organizace sběr, přenos a distribuci měřených, pozorovaných a zpracovaných dat. Je organizován ve třech úrovních:
a) hlavní spojovací okruh propojuje světová a vybraná regionální meteorologická centra;
b) regionální telekomunikační síť zabezpečuje spojení regionálních telekomunikačních center resp. regionálního meteorologického centra s národními meteorologickými centry;
c) národní telekomunikační síť je určena zejména pro sběr dat ze staniční sítě, dat získaných pozorováním z letadel a lodí na území spadajícím do zóny odpovědnosti národního met. centra.
česky: systém telekomunikační světový angl: Global Telecommunication System slov: Svetový telekomunikačný systém rus: Глобальная система телесвязи  1993-a3
globales Wettervorhersagemodell m
(GM) – model numerické předpovědi počasí, který je řešen pro celou zeměkouli. Tento model potřebuje pouze počáteční podmínky. Okrajové podmínky nejsou potřeba zadat, protože jsou periodické. Vzhledem ke geometrii oblasti, na které jsou GM řešeny (koule), je třeba zvolit vhodný souřadný systém. Zpravidla se využívá sférický souřadný systém se souřadnicemi zeměp. šířka, zeměp. délka v horizontální rovině. Vertikální souřadnice je většinou hybridní, kdy v blízkosti zemského povrchu kopíruje terén, a je odvozená buď z tlaku, nebo výšky. Výhodou sférického souřadného systému, kromě toho, že je speciálně určený na řešení úloh na kulové ploše, je možnost využití spektrálního rozvoje polí pomocí sférických harmonických bázových funkcí (kombinace Fourierovy transformace podél rovnoběžek a Legendrovy transformace podél poledníků). Tyto bázové funkce jsou vlastními vektory horizontálního Laplaceova operátoru, vyskytujícího se v prognostických rovnicích, což je výhodná matematická vlastnost. Nevýhodou sférického systému je to, že blízko pólů dochází k významnému zhuštění horizontálních souřadnic, což se například řeší postupným ředěním počtu uzlových bodů na rovnoběžkách blížících se pólům. Alternativou ke sférickým souřadnicím je diskretizace kulové plochy pomocí šestiúhelníků, kdy se při výpočtu vzdáleností uvažuje, že šestiúhelníky se nacházejí na kulové ploše. Výhodou této diskretizace je, že nemá problém s póly a umožňuje nerovnoměrné pokrytí kulové plochy, a tím i nerovnoměrné rozlišení modelu v různých oblastech.
česky: model předpovědi počasí globální angl: global model rus: глобалная модель прогноза погоды slov: globálny model predpovedi počasia  2014
Glorie f
syn. glórie.
česky: gloriola angl: glory slov: gloriola rus: глория fr: gloire f  1993-a3
GOES
meteorologická geostacionární družice (Geostionary Operational Environmental Satellite) provozovaná americkou organizací NOAA.
česky: GOES angl: GOES slov: GOES fr: GOES m  2014
Golfstrom m
teplý oceánský proud v západním segmentu severoatlantského subtropického koloběhu oceánské vody. Z hlediska mezišířkového přenosu tepla patří k nejvýznamnějším na Zemi. Směřuje od okraje Mexického zálivu podél východního pobřeží Floridy a dál k severu. V chladné části roku zde zvětšuje horizontální teplotní gradient mezi teplým mořským a studeným pevninským vzduchem, čímž přispívá k časté intenzivní cyklogenezi a potažmo zvyšuje humiditu klimatu východního pobřeží USA. Golfský proud ovlivňuje kromě mimotropických cyklon i prostorové rozdělení tropických cyklon tím, že poskytuje zdroj latentního tepla a umožňuje tak jejich pronikání do relativně vysokých zeměp. šířek.
V blízkosti Newfoundlandu se Golfský proud střetává se studeným Labradorským proudem, což zde způsobuje častou tvorbu mořské mlhy. Dále pokračuje k východu pod názvem Severoatlantský proud, jehož různé větve zvyšují oceánitu klimatu západní Evropy a zmírňují klima Norska, Islandu i jihovýchodního Grónska. Jedna z jeho větví, nazývaná Norský proud, dosahuje až do Barentsova moře a končí výrazným downwellingem povrchové oceánské vody. Jiná větev Severoatlantského proudu se mění na studený Kanárský proud.
česky: proud Golfský angl: Gulf Current, Gulf Stream slov: golfský prúd  2017
Grad der Kontinentalität m
klimatologický index, který vyjadřuje míru kontinentality klimatu, tedy v opačném smyslu i oceánity klimatu. Nejčastěji bývá sledována termická kontinentalita klimatu, a to zpravidla některým z řady empir. vzorců, které hodnotí roční chod teploty vzduchu, přičemž eliminují zonalitu prům. roční amplitudy potenciální insolace. Klasický index L. Gorczyńského (1920) má původní podobu
KG=  1 ,7Asinφ-20.4,
kde A značí prům. roční amplitudu teploty vzduchu, tedy rozdíl prům. měs. teploty vzduchu nejteplejšího a nejchladnějšího měsíce, a φ vyjadřuje zeměpisnou šířku. Index měl nabývat hodnot mezi 0 a 100, v případě silně oceánického klimatu se však vyskytují i záporné hodnoty, proto byly konstanty později různě upravovány. Index navíc nelze aplikovat na oblasti v blízkosti rovníku, proto se pro globální studie častěji používá index upravený Johanssonem (1926), nazývaný Conradův index
KC=  1,7Asin (φ+10)-14.
Jiné indexy kontinentality jsou založeny na porovnání teploty vzduchu na jaře a na podzim, viz např. termodromický kvocient. Ombrická kontinentalita klimatu se hodnotí vzhledem k ročnímu chodu srážek, např. prostřednictvím doby polovičních srážek nebo analýzou relativních srážek pomocí Markhamova indexu.
česky: index kontinentality angl: continentality index slov: index kontinentality rus: индекс континентальности  1993-a3
Grad n
1. jednotka teploty, viz např. stupnice teplotní Celsiova, stupnice teplotní Kelvinova.
2. jednotka úhlové vzdálenosti, tj. 1/360 kruhu.
3. intenzita jevu nebo veličiny definovaná v rámci dané stupnice, např. stupnice větru Beaufortovy nebo stupnice Fujitovy.
4. ve speciálních případech vert. vzdálenost, která odpovídá změně veličiny o jednotkovou hodnotu, viz stupeň barický, stupeň geotermický.
česky: stupeň slov: stupeň  1993-a3
Gradient des elektrischen Potentials der Atmosphäre m
syn. gradient elektrický – intenzita el. pole E ve vzdálenosti r od kladného bodového náboje ve vzduchu nebo vakuu
E=Qar 4πε0r2,
kde ar je jednotkový vektor ve směru vektoru r od náboje Q a ε0 je permitivita vakua (prakticky rovná permitivitě vzduchu v atmosféře).
V soustavě SI platí (4πε0)–1 = 9.109. Má-li zdroj pole negativní náboj, potom dle právě uvedeného vzorce siločáry el. pole směřují k tomuto bodovému náboji a intenzita el. pole má záporné znaménko. Vzorec popisuje též gradient elektrického potenciálu vně symetrického kulového vodiče nesoucího náboj Q. Za podmínek elektřiny klidného ovzduší je země nabita záporně a atmosféra nad zemí kladně. Potom takto zavedený vektor el. pole nad zemí směřuje do středu Země. Tato konvence o orientaci elektrického pole se používá v obecně fyzikální a elektrotechnické literatuře. V meteorologické literatuře se však často ohledně orientace elektrického pole užívá opačná konvence, kdy se ve zde uvedeném vzorci orientuje polohový vektor tak, aby směřoval k náboji Q. Důvodem této, z obecného hlediska nestandardní konvence, je snaha, aby za podmínek elektřiny klidného ovzduší, kdy zemský povrch nese záporný a atmosféra kladný náboj, bylo vertikální el. pole považováno za kladné. Za podmínek elektřiny klidného ovzduší bývá u země gradient elektrického potenciálu v atmosféře asi 130 V.m–1. Za bouřky dosahuje řádově desítek kV.m–1, přičemž je orientován opačně vůči situaci za podmínek elektřiny klidného ovzduší.
česky: gradient elektrického potenciálu v atmosféře angl: gradient of electric potential in the atmosphere slov: gradient elektrického potenciálu v atmosfére rus: градиент потенциала электрического поля атмосферы fr: gradient du potentiel électrique m  1993-a3
gradient Form der Richardson-Zahl f
varianta Richardsonova čísla označovaná nejčastěji Ri a definovaná výrazem
Ri=gΘ¯ Θ/z | v/z |2,
kde Θ¯ značí potenciální teplotu v K, z vert. souřadnici, g velikost tíhového zrychlení a v vektor rychlosti větru. Záporné hodnoty Richardsonova čísla odpovídají instabilnímu zvrstvení, v případě kladného Ri jde o zvrstvení stabilní; Ri rovné nule se vyskytuje při zvrstvení indiferentním. Nahradíme-li v gradientovém tvaru parciální derivace podle vertikální souřadnice konečnými diferencemi příslušných veličin na horní a dolní hranici atmosférické vrstvy o konečné tloušťce a dosadíme-li do jmenovatele průměrnou potenciální teplotu v dané vrstvě, získáme tzv. bulk Richardsonovo číslo, označované zpravidla Rib. Jestliže za dolní hranici vrstvy považujeme zemský povrch, můžeme Rib vztáhnout i k celé tloušťce např. přízemní nebo mezní vrstvy atmosféry.
česky: číslo Richardsonovo v gradientovém tvaru angl: gradient Richardson number slov: Richardsonovo číslo v gradientovom tvare fr: nombre de Richardson de gradient m  2014
Gradient m
v met. vektor, který vyjadřuje velikost a směr poklesu hodnot skalární funkce φ(x,y,z), kde x, y, z jsou kartézské souřadnice, připadající na jednotkovou vzdálenost v prostorovém poli hodnot funkce. Je definován jako záporně vzatý součin funkce φ a Hamiltonova nabla operátoru vztahem
-φ=-(iφ x+j φy +kφ z),
kde i, j, k jsou jednotkové vektory ve směru os kartézského souřadného systému x, y, z. Dvourozměrný vektor
-Hφ=-(i φx+j φy)
nazýváme horizontálním gradientem φ a záporně vzatou parciální derivaci φ podle vert. souřadnice z gradientem vertikálním. Vektor opačného směru označujeme jako ascendent. V p-systému používáme místo horiz. gradientu φ gradient izobarický. V meteorologii nejčastěji pracujeme s gradientem atm. tlaku, teploty, potenciální teploty, vlhkosti apod. V matematice je gradient definován jako opačný vektor φ orientovaný směrem k rostoucím hodnotám funkce φ.
česky: gradient angl: gradient slov: gradient rus: градиент fr: gradient m  1993-a2
gradientschwaches Gebiet n
tlakové pole s velmi malými horiz. tlakovými gradienty.
česky: pole tlakové nevýrazné angl: flat low, shallow low slov: nevýrazné tlakové pole rus: безградиентная зона, неглубокая депресия  1993-a1
Gradientströmung f
česky: proudění gradientové slov: gradientové prúdenie  1993-a1
Gradientwindlineal n
česky: pravítko geostrofické angl: geostrophic ruler slov: geostrofické pravítko rus: геострофическая линейка  1993-a1
Gradtag m
syn. denostupeň, gradoden – algebraický rozdíl mezi průměrnou denní teplotou vzduchu a zvolenou referenční teplotou, vyjádřený ve °C. U nás se pro topné období (sezonu) používá referenční teplota 12 °C.
česky: graden angl: degree-day slov: graden rus: градусо-день fr: degré jour m, degré jour unifié (DJU) m  1993-a1
Gradtagszahl f
syn. graden.
česky: denostupeň angl: degree-day slov: dennostupeň rus: градусо-день fr: degré-jour m  1993-a1
Gradtagszahl f
syn. denostupeň, gradoden – algebraický rozdíl mezi průměrnou denní teplotou vzduchu a zvolenou referenční teplotou, vyjádřený ve °C. U nás se pro topné období (sezonu) používá referenční teplota 12 °C.
česky: graden angl: degree-day slov: graden rus: градусо-день fr: degré jour m, degré jour unifié (DJU) m  1993-a1
Grasboden m
půda, na níž je udržován trávník na stejné výšce pro účely srovnatelnosti meteorologických měření. V ČR je předepsaným druhem aktivního povrchu na meteorologických stanicích.
česky: půda porostlá trávníkem angl: grassy soil slov: pôda s porastom trávnika rus: почва под травой, травянистая почва  1993-a3
Grasminimum n
česky: minimum teploty vzduchu přízemní angl: grass minimum temperature, ground minimum temperature slov: prízemné minimum teploty vzduchu rus: минимум температуры на поверхности травы  1993-a3
Graupel f
srážky složené z průsvitných ledových částic převážně kulového, zřídka též kuželovitého tvaru o ekvivalentním průměru do 5 mm. Krupky se vyskytují výhradně v přeháňkách. V konvektivních oblacích mohou krupky tvořit kroupové zárodky.
česky: krupky angl: small hail slov: krúpky rus: ледяная крупа, небольшой град  1993-a3
Gravitationskraft f
síla vzájemného přitahování, kterou na sebe působí hmotná tělesa. V gravitačním poli Země lze gravitační interakci poměrně přesně popsat Newtonovým gravitačním zákonem. Gravitační síla F mezi tělesem o hmotnosti m a Zemí o hmotnosti M a při vzdálenosti mezi jejich těžišti r má velikost:
F=κ0mMr2
kde κ0 značí gravitační konstantu. Gravitační síla působící na dané hmotné těleso tedy směřuje do těžiště Země a její velikost klesá s kvadrátem vzdálenosti těžišť tohoto tělesa a Země. Viz též síla zemské tíže.
česky: síla gravitační angl: gravitational force slov: gravitačná sila rus: гравитационная сила  1993-a3
Grenzlinie f
v met. čára na souborné kinematické mapě, která odděluje oblasti s výskytem středů anticyklon, popř. hřebenů vysokého tlaku vzduchu, kde většinou převládá anticyklonální zakřivení izobar či izohyps, od oblastí s výskytem středů cyklon, popř. brázd nízkého tlaku vzduchu s převládajícím cyklonálním zakřivením izobar či izohyps. Viz též mapa kinematická souborná.
česky: čára demarkační angl: line of separation slov: demarkačná čiara rus: демаркационная линия fr: ligne de séparation f  1993-a2
Grenzschichtmeteorologie f
česky: meteorologie mezní vrstvy atmosféry angl: boundary layer meteorology slov: meteorológia hraničnej vrstvy atmosféry rus: метеорология пограничного слоя атмосферы  1993-a1
Grenzschichtstrahlstrom m
syn. proudění tryskové v mezní vrstvě – výrazné zesílení horiz. proudění vzduchu ve spodní troposféře, nejčastěji v horní části mezní vrstvy atmosféry, které se projevuje lokálním maximem ve vertikálním profilu větru, ale většinou neodpovídá definici tryskového proudění podle WMO. Obvykle souvisí s výškovými nebo přízemními inverzemi teploty vzduchu, přičemž hladina max. rychlosti větru bývá blízká horní hranici inverze. Nízkohladinové tryskové proudění má různé příčiny, jednou z nich jsou setrvačné oscilace rychlosti proudění, které se projevují zejména v nočních hodinách a jsou způsobeny Coriolisovou silou při zeslabeném turbulentním tření. Orografické příčiny se uplatňují např. v předpolí horské překážky, která při stabilním teplotním zvrstvení blokuje proudění směřující kolmo na překážku, stáčí ho podél překážky a zrychluje ho. Nízkohladinové tryskové proudění se může vyskytovat i v oblasti místní cirkulace, která má denní periodicitu. Je ovlivňováno teplotním zvrstvením ve spodní troposféře, baroklinitou a nestacionárností dějů v mezní vrstvě atmosféry. Viz též košava.
 
česky: proudění tryskové nízkohladinové angl: low-level jet stream slov: nízkohladinové dýzové prúdenie  1993-a3
Grenzschichtstruktur f
(BL-View) – prezentační modul ceilometru, který umožňuje měřit a zobrazovat mezní vrstvu atmosféry. BL-View zobrazuje strukturu mezní vrstvy na základě algoritmu, který určuje výšku směšování (tlouštku směšovací vrstvy) v závislosti na koncentraci aerosolů v atmosféře. Automaticky analyzovaná data mezní vrstvy jsou uložena do logických souborů, které mohou být využity i v jiných aplikacích. Směšovací výška je klíčovým parametrem pro sledování znečištění ovzduší městskými emisními zdroji a emisemi z dopravy v závislosti na počasí, jako např. větru, oblačnosti, srážkách atd. Zároveň jsou informace o množství znečišťujících látek v atmosféře, které se jakožto kondenzační jádra podílí na procesech tvorby oblačnosti, důležitým indikátorem pro předpověď srážek. Přímý překlad do češtiny se nepoužívá.
česky: Boundary Layer Structures angl: Boundary Layer Structures (BL-View) slov: Boundary Layer Structures  2016
Grenzschichtstruktur f
(BL-View) – prezentační modul ceilometru, který umožňuje měřit a zobrazovat mezní vrstvu atmosféry. BL-View zobrazuje strukturu mezní vrstvy na základě algoritmu, který určuje výšku směšování (tlouštku směšovací vrstvy) v závislosti na koncentraci aerosolů v atmosféře. Automaticky analyzovaná data mezní vrstvy jsou uložena do logických souborů, které mohou být využity i v jiných aplikacích. Směšovací výška je klíčovým parametrem pro sledování znečištění ovzduší městskými emisními zdroji a emisemi z dopravy v závislosti na počasí, jako např. větru, oblačnosti, srážkách atd. Zároveň jsou informace o množství znečišťujících látek v atmosféře, které se jakožto kondenzační jádra podílí na procesech tvorby oblačnosti, důležitým indikátorem pro předpověď srážek. Přímý překlad do češtiny se nepoužívá.
česky: Boundary Layer Structures angl: Boundary Layer Structures (BL-View) slov: Boundary Layer Structures  2016
GRIB
obecná informace v pravidelné síti bodů v binárním formátu pro přenos zpracovaných nebo předpověděných hodnot meteorologických prvků, zejména pro distribuci výstupů met. modelů. Kód GRIB obsahuje definici geometrie sítě bodů, popis typu dat, použité komprese a prezentace dat.
česky: GRIB angl: GRIB slov: GRIB rus: ГРИБ fr: GRIB m  2014
Griesel m
starý název pro sněhová zrna, který se přestal používat po vydání Mezinárodního atlasu oblaků v r. 1965.
česky: krupice slov: krupica rus: снежные зерна  1993-a1
grober Modus m
syn. mód disperzní – mód ve spektru částic atmosférického aerosolu, jenž odpovídá částicím o velikosti poloměru nejméně 10–6 m a je převážně tvořen částicemi, které jsou přímo emitovány do vzduchu jako součást primárních aerosolů. Čes. název hrubý mód se zřejmě používá dle angl. coarse mode, ale vyskytuje se též název disperzní mód, mód hrubých (disperzních) částic apod.
česky: mód hrubý angl: coarse mode slov: hrubý mód  2014
Größenverteilung des atmosphärischen Aerosols n
vyjádření závislosti počtu aerosolových částic určité velikosti obsažených v jednotce objemu na jejich poloměru r (popř. průměru). Popisuje se funkcí f(r), pro niž platí, že výraz f(r) dr je roven počtu částic v jednotce objemu, jejichž poloměr leží v intervalu hodnot <r, r + dr), nebo funkcí F(r) = f(r) / N, kde N značí počet všech částic v jednotce objemu. Výraz F(r) dr se rovná poměru počtu částic o poloměru z intervalu <r,r + dr) k počtu všech částic v objemové jednotce. Jako konkrétní příklady zmíněných funkcí lze uvést tzv. Jungeho rozdělení vhodné pro většinu aerosolů kontinentálního původu v oboru částic větších než 10–7 m:
f(r)=C r(β+1),
kde C je vhodně zvolená konstanta a hodnota β se většinou volí blízká třem, popř. logaritmicko-normální rozdělení nebo funkci:
f(r)=a rαexp(brβ ),
pro niž a, α, b, ß* jsou konstanty charakterizující daný typ atmosférického aerosolu.
Pro naposled uvedenou funkci používají někteří autoři název zobecněná gama-funkce a tato funkce spolu s logaritmicko-normálním rozdělením představuje příklady asymetrického jednomodálního rozdělení. Reálné spektrum velikostí částic atmosférického aerosolu obvykle představuje superpozici tří takovýchto rozdělení, v níž se pak přirozeně uplatňují tři módy, tzv. nukleační mód, akumulační mód a hrubý mód. Obalová křivka právě zmíněného celkového třímodálního rozdělení často dobře odpovídá zde již rovněž zmíněnému Jungeho rozdělení v oblasti jeho platnosti.
Analogicky k právě uvedenému lze vytvářet spektra ve vztahu k úhrnným objemům nebo hmotnostem aerosolových částic, obsažených v jednotce objemu, v závislosti na jejich poloměru. Mluvíme pak o objemových nebo hmotnostních (hmotových) spektrech. Podoba těchto spekter odpovídá skutečnosti, že s rostoucí velikostí aerosolových částic sice klesají jejich počty, ale výrazně roste jim odpovídající úhrnný objem nebo hmotnost. Viz též nukleace.
česky: spektrum částic atmosférického aerosolu angl: spectrum of atmospheric aerosol particles slov: spektrum častíc atmosférického aerosólu rus: спектр частиц атмосферного аэрозоля  1993-a3
Größenverteilung von Regentropfen f
česky: rozdělení velikosti dešťových kapek angl: size distribution of rain drops 
grosser Ring m
syn. halo 46°, kolo velké – fotometeor, patřící mezi halové jevy a jevící se obvykle jako slabší bělavě nebo duhově zbarvený světelný kruh kolem zdroje světla (Slunce nebo Měsíce) se zdánlivým úhlovým poloměrem 46°. Jeho intenzita bývá podstatně slabší než intenzita malého hala a též jeho výskyt je mnohem méně častý. Vzniká dvojitým lomem světelných paprsků na šestibokých hranolcích ledových krystalků, kdy paprsek do hranolku vstupuje plochou podstavy a vystupuje plochou pláště nebo naopak, tzn. že jde o lom na hranolu s lámavým úhlem 90°. V české literatuře se jako synonymum někdy vyskytuje velké kolo, z čehož však mohou vznikat nedorozumění, neboť do vydání české verze Mezinárodního atlasu oblaků v r. 1965 se termín velké halo též vyskytoval jako označení pro velké i malé halo.
česky: halo velké angl: halo of 46°, large halo slov: veľké halo rus: большое гало, гало в 46° fr: halo de 46° m, grand halo m  1993-a3
grosser Ring m
syn. halo velké – ve starší české literatuře někdy užíváno jako souhrnné označení pro halo malé a halo velké.
česky: kolo velké angl: halo of 46°, large halo slov: halo 46° rus: большое гало , гало в 46°  1993-a3
Großwetterlage f
česky: Grosswetterlage angl: general weather situation slov: Grosswetterlage rus: общее синоптическое положение fr: situation météorologique générale f  1993-a1
Großwetterlage f
situace synoptická – rozložení vzduchových hmot, atmosférických front, cyklon, anticyklon a jiných synoptických objektů, které určují ráz počasí nad určitou velkou geogr. oblastí. Představu o celkové povětrnostní situaci získáváme pomocí synoptických map. Z praktických důvodů, částečně i pro účely předpovědi počasí, se provádí typizace povětrnostních situací. Součástí vydávaných met. předpovědí bývá zpravidla předpověď celkové povětrnostní situace, která uvádí vlastní předpověď počasí. Viz též kalendář povětrnostních situací.
česky: situace povětrnostní celková angl: large-scale weather situation slov: celková poveternostná situácia rus: макропогода, общая синоптическая ситуация  1993-a2
grüner Strahl m
česky: záblesk zelený slov: zelený záblesk  1993-a1
grüner Strahl m
záblesk zelený – převážně zelené krátkodobé zabarvení oblohy, často jen záblesk, vycházející zdánlivě z vrchního okraje slunečního nebo měsíčního kotouče při jejich východu nebo západu. Zelený paprsek je pozorovatelný, pouze je-li horizont zřetelně viditelný (bez výskytu zákalu nebo kouřma). Vysvětluje se skutečností, že index lomu světelných paprsků roste s jejich klesající vlnovou délkou a sluneční disk je pak pro barvy odpovídající kratším vlnovým délkám zdánlivě více pozvednut nad obzor působením astronomické refrakce. Výskyt namodralých odstínů je však velice vzácný, neboť paprsky této barvy jsou v přímém slunečním záření výrazně oslabovány působením molekulárního rozptylu elektromagnetického vlnění v atmosféře. Jev bývá nejčastěji pozorován nad mořskou hladinou nebo v horách nad horní hranicí nízko položených vrstevnatých oblaků a obecně patří mezi fotometeory.
česky: paprsek zelený angl: green flash, green ray slov: zelený lúč rus: зеленая вспышка, зеленый луч  1993-a3
GTS n
(GTS) – jeden z prvků Světové služby počasí. Zabezpečuje mezi členskými státy Světové meteorologické organizace sběr, přenos a distribuci měřených, pozorovaných a zpracovaných dat. Je organizován ve třech úrovních:
a) hlavní spojovací okruh propojuje světová a vybraná regionální meteorologická centra;
b) regionální telekomunikační síť zabezpečuje spojení regionálních telekomunikačních center resp. regionálního meteorologického centra s národními meteorologickými centry;
c) národní telekomunikační síť je určena zejména pro sběr dat ze staniční sítě, dat získaných pozorováním z letadel a lodí na území spadajícím do zóny odpovědnosti národního met. centra.
česky: systém telekomunikační světový angl: Global Telecommunication System slov: Svetový telekomunikačný systém rus: Глобальная система телесвязи  1993-a3
günstiges Wetter für den Flugverkehr n
met. podmínky, při nichž je horiz. dohlednost 10 km nebo více a není hlášena nejnižší dohlednost, není oblačnost provozního významu a nevyskytuje se význačné počasí pro letectví (atm. srážky, bouřka, nízko zvířený sníh, přízemní mlha, atd.). Uvedené podmínky se v pravidelných a mimořádných leteckých meteorologických zprávách (METAR a SPECI), stejně jako v letištních předpovědích počasí (TAF a trend), označují zkr. CAVOK (cloud and visibility OK), která nahrazuje údaje o vodorovné, popř. dráhové dohlednosti, o stavu počasí a o oblačnosti. Viz též minima letištní provozní a oblačnost provozního významu.
česky: počasí příznivé pro letecký provoz (CAVOK) angl: clouds and visibility okay slov: priaznivé počasie pre leteckú prevádzku rus: погода, благоприятная для полета  1993-a3
podpořila:
spolupracují: