Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene g

X
GAFOR
kód sloužící k rozšiřování leteckých předpovědí počasí pro všeobecné („malé") letectvo. Předpověď ve tvaru kódu GAFOR obsahuje označení pracoviště, které zprávu vydalo, dobu platnosti předpovědi, předpověď kategorie (třídy) počasí se zřetelem na letecky významné jevy a označení území, na které se předpověď vztahuje. V ČR není používán.
česky: GAFOR slov: GAFOR fr: GAFOR m  1993-a3
GAMET
oblastní předpověď ve zkrácené otevřené řeči pro lety v nízkých hladinách zpravidla pro letovou informační oblast nebo její část, kterou připravuje met. služebna určená příslušným met. úřadem a která se vyměňuje mezi met. služebnami sousedních letových informačních oblastí podle dohody mezi příslušnými met. úřady. Jedná se o předpověď pro vrstvu mezi zemí a letovou hladinou 100 (v horských oblastech až FL150). Předpověď je členěna do dvou sekcí, z nichž první obsahuje informace o nebezpečných jevech pro lety v nízkých hladinách a druhá pak doplňující informace. Předpovědi GAMET jsou vydávány zpravidla v intervalu 6 hodin s platností na 6 hodin, pokud není jejich četnost a období platnosti upravena po dohodě mezi meteorologickou službou a uživateli.
česky: GAMET slov: GAMET fr: GAMET m  2014
Gang des meteorologischen Elementes m
kvantit. změna meteorologického prvku s časem. V klimatologii se sleduje zejména denní a roční chod meteorologického prvku.
česky: chod meteorologického prvku angl: course of meteorological element, march of meteorological element slov: chod meteorologického prvku rus: ход метеорологического элемента  1993-a1
Garmsil m
místní název pro suchý a horký vítr charakteru fénu v předhořích Kopet-Dagu a záp. Ťan-Šanu ve stř. Asii, vanoucí v létě od jihu a východu z hor. Působí škody na kulturních plodinách podobně jako suchověj.
česky: garmsil angl: garmsil slov: garmsil rus: гармсэл, керимсел fr: foehn au Tian Shan et Kopet-Dag m  1993-a1
Garua f
1. hustá mlha, někdy s mrholením, vyskytující se zvláště na podzim nad záp. pobřežím Již. Ameriky (na území Ekvádoru, Peru a Chile), omývaným studeným Peruánským proudem. Mívá dlouhé trvání a ve velmi suchých oblastech (např. poušť Atacama) je téměř jediným zdrojem vláhy pro tamější chudou vegetaci;
2. klimatický typ, vyskytující se na horkých subtropických pobřežích, kde teplý pevninský vzduch proniká k pobřeží omývanému studeným oceánským proudem, např. na záp. pobřeží Jižní Ameriky, již. Kalifornie, jz. Afriky a sz. Sahary.
česky: garua angl: garua slov: garua rus: гаруа fr: garúa f, garua f  1993-a2
gefrierender Regen m
déšť, jehož kapky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. Při mrznoucím dešti dochází buď k namrzání přechlazených vodních kapek při dopadu na zemský povrch nebo na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo k namrzání nepřechlazených vodních kapek okamžitě při dopadu na zemský povrch nebo na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího deště je ledovka. V letecké meteorologii je místo „mrznoucí“ používáno adjektivum „namrzající“.
česky: déšť mrznoucí angl: freezing rain slov: mrznúci dážď rus: замерзающий дождь fr: pluie verglaçante f  1993-a3
Gefrierpunkt f
syn. teplota tuhnutí – teplota, při níž dochází k fázovému přechodu dané látky ze skupenství kapalného do skupenství pevného při rovinném fázovém rozhraní. Ochlazujeme-li kapalinu, klesá postupně její teplota až k bodu tuhnutí. Další ochlazování je kompenzováno uvolňováním latentního tepla tuhnutí a teplota tuhnoucí látky zůstává rovna teplotě tuhnutí. Po úplném ztuhnutí veškeré kapaliny pak teplota vzniklé pevné fáze při dalším ochlazování klesá. Teplota tuhnutí závisí na tlaku. U většiny látek teplota tuhnutí s rostoucím tlakem roste, u ledu a několika dalších látek však s růstem tlaku klesá (viz regelace ledu). Čistý led při normálním tlaku má bod tuhnutí 0 °C (273,15 K). Při inverzní změně skupenství odpovídá bodu tuhnutí bod tání. V meteorologii se u fázových přechodů vody místo termínu bod tuhnutí vody používá termín bod mrznutí.
Podmínky pro tání, event. mrznutí mohou být ovlivněny tlakovými poměry v blanách povrchového napětí vody nebo ledu při velkém zakřivení povrchu fázového rozhraní mezi ledem a kapalnou vodou. S tím mj. souvisí existence přechlazené vody v případě oblačných kapiček vyskytujících se v přechlazené kapalné fázi mnohdy i hluboko pod teplotou 0 °C.
česky: bod tuhnutí angl: freezing point  2017
Gefrierpunkt m
česky: bod mrazu  2017
Gefrierpunkt m
syn. teplota mrznutí – v meteorologii označení pro bod tuhnutí nebo bod tání čisté vody při daném atmosférickém tlaku vzduchu. Je-li tento tlak roven normálnímu tlaku, je odpovídající teplota mrznutí rovna 0 °C a označuje se pak v české meteorologické literatuře jako bod mrazu. Tato hodnota teploty byla jako nulový bod zvolena při definování Celsiovy teplotní stupnice. Teplota mrznutí kapek v oblacích může být hluboko pod 0 °C vzhledem k existenci přechlazené vody (viz též ledová jádra).
česky: bod mrznutí angl: freezing point slov: bod mrznutia rus: точка замерзания fr: point de congélation m  1993-a3
gefrorener Regen m
srážky z průhledných ledových částic kulového nebo nepravidelného tvaru o průměru 5 mm nebo menším. Při dopadu na tvrdou zemi obvykle odskakují a při nárazu je slyšet šum. Zmrzlý déšť vzniká zmrznutím dešťových kapek nebo značně roztálých sněhových vloček v blízkosti zemského povrchu. Zmrzlý déšť se nevyskytuje v přeháňkách.
česky: déšť zmrzlý angl: ice pellets slov: zmrznutý dážď rus: ледяная крупа fr: grésil m  1993-b3
Gegenmond m
protiměsíc, viz kruh paraselenický.
česky: antiselenium angl: antiselene slov: antiselénium rus: антиселена fr: antisélène m  1993-a1
Gegensonne f
protislunce, viz kruh parhelický.
česky: antihélium angl: anthelion slov: antihélium rus: антелий, антигелий, дуга антеля , противосолнце fr: anthélie f  1993-a1
genitus
(gen) – označení vyjadřující, že daný druh oblaku vznikl transformací části jiného, tzv. mateřského oblaku. Označení druhu nově vytvořeného oblaku se pak doplňuje adjektivem složeným z názvu druhu mateřského oblaku a z přípony genitus. Podle druhu mateřského oblaku rozeznáváme Ci nebo Cs cirrocumulogenitus (ccgen), Ci, As, Cu nebo Cb altocumulogenitus (acgen), Sc nebo Cb altostratogenitus (asgen), Sc, St nebo Cb nimbostratogenitus (nsgen), Cu nebo Cb stratocumulogenitus (scgen), Ac, Ns, St, Sc  nebo Cb cumulogenitus (cugen) a Ci, Cc nebo St cumulonimbogenitus (cbgen).
česky: genitus angl: genitus slov: genitus rus: генитус fr: genitus m  1993-a3
Genua-Zyklone f
cyklona, která vzniká nad Janovským zálivem a sev. Itálií obvykle na studené frontě, jež postupuje od západu do oblasti Alp, kde se začíná vlnit. Vznik zvlněné fronty je způsoben tím, že údolím řeky Rhóny proniká od severu nad Janovský záliv studený vzduch, zatímco postup studeného vzduchu nad záp. část Pádské nížiny brzdí horský hřeben jz. Alp. Janovská cyklona postupuje v některých případech na sv. a vyvolává na části území ČR dlouhotrvající vydatné srážky. Viz též situace Vb.
česky: cyklona janovská angl: Genoa cyclone slov: janovská cyklóna rus: Генуэзский циклон fr: dépression du golfe de Gênes f, dépression ligure f  1993-a2
geographischer Klimafaktor m
klimatický faktor podmíněný heterogenitou přírodního prostředí Země v různých měřítkách, která se odrážejí v kategorizaci klimatu. Pro utváření makroklimatu je určující zeměp. šířka, rozložení pevniny a oceánů, uspořádání všeobecné cirkulace atmosféry a systém oceánských proudů. V menším prostorovém měřítku se uplatňuje vliv nadm. výšky, tvarů zemského reliéfu a krajinného pokryvu. Mezi geografické klimatické faktory můžeme rovněž řadit složení atmosféry Země, na které epizodicky působí zemský vulkanizmus.
česky: faktor klimatický geografický angl: geographical climatic factor slov: geografický klimaitický faktor rus: географический климатический фактор fr: facteur géographique du climat (m)  1993-b3
Geopotential n
syn. potenciál tíže zemské – potenciál spojený s tíhovým polem Země. Je ekvivalentní potenciální energii vzduchové částice o jednotkové hmotnosti vzhledem ke zvolené nulové geopotenciální hladině, kterou ztotožňujeme se stř. hladinou moře. Číselně je roven práci vykonané proti působení síly zemské tíže při zvednutí jednotkové hmotnosti ze stř. hladiny moře do hladiny, k níž geopotenciál vztahujeme. Geopotenciál Φ, je spojen s geometrickou výškou z vztahem
Φ=0zgdz
kde g je velikost tíhového zrychlení. Viz též hladina ekvipotenciální, výška geopotenciální.
česky: geopotenciál angl: geopotential slov: geopotenciál rus: геопотенциал fr: géopotentiel m  1993-a2
Geopotentialfläche f
hladina (plocha) konstantního geopotenciálu. Viz též hladina ekvipotenciální.
česky: hladina geopotenciální angl: geopotential level, geopotential surface slov: geopotenciálna hladina rus: геопотенциальный уровень  1993-a1
geopotentielle Fläche f
hladina (plocha) konstantního geopotenciálu. Viz též hladina ekvipotenciální.
česky: hladina geopotenciální angl: geopotential level, geopotential surface slov: geopotenciálna hladina rus: геопотенциальный уровень  1993-a1
Geosphäre f
neurčitý pojem, který označuje buď pevnou část planety Země, nebo její svrchní část (syn. litosféra), případně souborně všechny nebo jednotlivé její obaly, tedy litosféru, pedosféru, hydrosféru, biosféru a atmosféru, k nimž někdy řadíme i kryosféru.
česky: geosféra angl: geosphere slov: geosféra rus: геосфера fr: géosphère f  1993-a3
geostationärer Wettersatellit m
meteorologická družice na geostacionární dráze. Parametry geostacionární dráhy (kruhová dráha o poloměru 42 168 km, jejíž rovina je totožná s rovinou zemského rovníku) zajišťují, že družice zdánlivě „visí“ ve výšce přibližně 35 790 km nad pevným místem na zemském povrchu.
česky: družice meteorologická geostacionární angl: geostationary meteorological satellite slov: geostacionárna meteorologická družica rus: геостационарный метеорологический спутник fr: satellite météorologique géostationnaire m, satellite météorologique en orbite géostationnaire m  1993-a3
geostationärer Wettersatellit m
nepřesné (zkrácené) označení družice meteorologické geostacionární.
česky: družice meteorologická stacionární slov: stacionárna meteorologická družica rus: геостационарные спутники fr: satellite météorologique stationnaire m  1993-a3
geostrophische Advektion f
česky: advekce geostrofická angl: geostrophic advection slov: geostrofická advekcia rus: геострофическая адвекция fr: advection géostrophique f  1993-a3
geosynchroner Wettersatellit m
meteorologická družice, jejíž oběžná doba je totožná s dobou rotace Země. Termín se často nesprávně zaměňuje s pojmem meteorologická družice geostacionární.
česky: družice meteorologická geosynchronní angl: earth-synchronous meteorological satellite, geosynchronous meteorological satellite slov: geosynchrónna meteorologická družica rus: геосинхронный метеорологический спутник fr: satellite géosynchrone m, satellite météorologique en orbite géosynchrone permanente m  1993-a3
geothermischer Gradient m
změna teploty s hloubkou v pevné zemské kůře (litosféře) pod povrchovou vrstvou, do které ještě zasahuje vliv tepelné bilance zemského povrchu. Jde tedy o hloubky větší než 10 až 20 m. Geotermický gradient činí přibližně 3 K na 100 m. Viz též stupeň geotermický.
česky: gradient geotermický angl: geothermal gradient slov: geotermický gradient rus: геотермический градиент fr: gradient géothermique m  1993-a1
Gerätefehler m
rozdíl mezi údajem přístroje po vyloučení všech systematických rušivých vlivů a správnou hodnotou měřené veličiny. Viz též kalibrace meteorologických přístrojů.
česky: chyba přístroje angl: instrument error slov: chyba prístroja rus: ошибка прибора  1993-a3
Gesamtmasse der Atmosphäre f
celková hmotnost atmosféry Země je podle A. Ch. Chrgiana (1978) 5,157 . 1018 kg, podle F. J. Monkhouse (1974) 5,9 . 1018 kg. Zejména první z těchto dvou údajů dobře odpovídá dnes uváděným hodnotám. Hmotnost atmosféry tvoří přibližně jednu milióntinu hmotnosti Země (5,98 . 1024 kg). Vzhledem k tomu, že tlak a hustota vzduchu s výškou rychle klesají, ve vrstvě od 0 do 5,5 km se vyskytuje přibližně 50 %, ve vrstvě od 0 do 11 km 75 % a ve vrstvě od 0 do 36 km 99 % celkové hmotnosti atmosféry. V horních vrstvách ovzduší nad 36 km se tedy vyskytuje jen asi 1 % celkové hmotnosti atmosféry.
česky: hmotnost atmosféry angl: total weight of the atmosphere slov: hmotnosť atmosféry rus: масса атмосферы  1993-a3
Gewitter an der Station n
syn. bouřka blízká – označení pro bouřku blízkou, pokud je detekována pozorovatelem meteorologické stanice. Viz též hrom.
česky: bouřka na stanici angl: thunderstorm at the station slov: búrka na stanici rus: местная гроза  1993-a3
Gewitter n
1. soubor el., opt. a akust. jevů, které doprovázejí elektrické výboje uvnitř oblaku, mezi oblaky navzájem nebo mezi oblaky a zemí. Bouřky se vyskytují v oblacích druhu cumulonimbus, případně cumulus congestus a nimbostratus a jsou součástí konvektivní bouře. Podle synoptické situace, při níž se konv. bouře vyvíjejí, dělíme bouřky neformálně na bouřky frontální a bouřky uvnitř vzduchové hmoty (nefrontální). Frontální bouřky rozdělujeme na bouřky studené fronty a teplé fronty. U bouřek uvnitř vzduch. hmoty bereme v úvahu i další příčiny vývoje bouřky a rozlišujeme bouřky kvazifrontální, advekční, konvektivní a orografické. Bouřky dále označujeme podle doby a místa vzniku, pohybu, vzdálenosti od místa pozorování, intenzity projevů atd;
2. místně a časově omezená oblast konv. bouře, v níž se vyskytují elektrické výboje – blesky doprovázené hřměním. Pro pozorování bouřek na pozemních met. stanicích je podstatné přímé pozorování blesků a slyšitelnost hřmění.
3. Často se vyskytující nevhodné synonymum či hovorové označení pro konv. bouři.
Viz též blýskavice, hrom, intenzita bouřky, intenzita bouřkové činnosti, pozorování bouřek, izobronta, elektřina bouřková, předpověď konvektivních bouří.
česky: bouřka angl: thunderstorm slov: búrka rus: гроза fr: orage m  1993-a3
Gewitterelektrizität f
elektřina vzniklá v oblaku druhu cumulonimbus v důsledku elektrické indukce, vzájemných srážek a tříštění vodních kapek a krystalků ledu, fázových změn vody, vert. pohybů v oblaku apod. Při vzniku bouřkové elektřiny nemusí být nosičem nábojů jen voda v různých fázích, mohou jím být i zrnka písku při písečných bouřích nebo rozžhavené částice zeminy vyvržené s popelem při sopečných výbuších.
V oblaku druhu cumulonimbus existují zpravidla dvě zákl. centra el. nábojů opačné polarity (kladné v horní části oblaku a níže ležící záporné centrum) s velkou koncentrací náboje a jedno rel. malé, obvykle kladné centrum v základně oblaku. El. struktura Cb se může zjevně měnit v procesu jeho rozvoje. Mechanismus separace nábojů podle polarity a vytváření nábojových center popisuje několik teorií. Jeden z hlavních mechanismů vzniku bouřkové elektřiny je založen na slabých termoelektrických vlastnostech ledu. Větší ledové částice intenzivně zachytávají přechlazené kapičky vody, které na jejich povrchu při teplotách pod bodem mrazu rychle namrzají a uvolňováním latentního tepla mrznutí je pak povrch těchto větších ledových částic udržován na poněkud vyšší teplotě než povrch malých ledových částic, jež přechlazené kapky prakticky nezachycují, neboť se s nimi vzájemně obtékají v důsledku přibližně shodných rozměrů. Při nárazech a odrážení malých částic na větších ledových částicích pak termoelektricky dochází k výměně el. náboje tak, že rychle narůstající větší (a na svém povrchu teplejší) ledové částice se nabíjejí záporně a malé částice kladně. Druhý z hlavních mechanismů se může uplatnit tehdy, jestliže proces zachycování přechlazených kapek vody na větších částicích ledu je při teplotách pod bodem mrazu natolik intenzivní, že se na povrchu těchto částic vytváří přechodná (postupně namrzající) obalová vrstva přechlazené vody. Vlivem přítomnosti zejména iontů solí dochází pak k výměně elektrického náboje tak, že pevné ledové jádro se nabíjí záporně a obalová vrstvička přechlazené vody kladně. Při zpětném odstřikování kladně nabité přechlazené vody zpět do okolního vzduchu se narůstající komplex ledu s namrzajícím přechlazeným vodním obalem nabíjí záporně, zatímco kladný náboj je vynášen do okolního vzduchu. U obou právě zmíněných mechanismů se shodně větší a narůstající částice ledu nabíjejí záporně, zatímco kladný náboj je vynášen do okolního vzduchu malými elementy. V tíhovém poli Země pak dochází ke gravitačnímu oddělování a formování horního (dolního) centra záporného (kladného) elektrického náboje. Celkový náboj bouřkového oblaku se řádově udává ve stovkách až tisících coulombů. El. gradient pod „zralým“ bouřkovým oblakem dosahuje u země hodnot 10–20 kV.m–1. Za podmínky dostatečné lokální předionizace vzduchu, která dle současných znalostí souvisí zejména s působením tzv. ubíhajících elektronů, pak mohou vznikat výboje blesků. Viz též separace elektrického náboje v oblacích.
česky: elektřina bouřková angl: thunderstorm electricity slov: búrková elektrina rus: грозовое электричество fr: électricité dans un nuage d'orage f  1993-a3
Gewitterintensität f
intenzita a četnost el. výbojů blesků bouřky na stanici nebo vzdálené bouřky, nikoliv však intenzita průvodních jevů, jako jsou srážky, húlava nebo rychlost nárazů větru. Rozlišuje se bouřka slabá, mírná a silná, přesná kritéria pro určování intenzity bouřky nejsou stanovena. Viz též intenzita bouřkové činnosti.
česky: intenzita bouřky angl: thunderstorm intensity slov: intenzita búrky rus: интенсивность грозы  1993-a3
Gewitterintensität f
parametr stanovený z dlouhodobého pozorování bouřek, vycházející z prům. počtu dní s bouřkou na stanici nebo vzdálenou bouřkou za rok nebo z prům. doby trvání bouřek v hodinách za rok. Intenzita bouřkové činnosti je zákl. charakteristikou pro stanovení četnosti škod na techn., zejména elektrotechnických zařízeních. Pro tyto účely se používá k vyjádření intenzity bouřkové činnosti ještě dalších upřesňujících údajů, jako prům. počtu úderů blesku do země (n.rok–1.km–2) a prům. počtu výbojů blesku v oblacích se stejným rozměrem. Ke stanovení těchto parametrů, které jsou časově značně proměnlivé, se užívá systémů detekce blesků. Za min. dobu pozorování se považuje desetileté období. Viz též mapa izobront, mapa izoceraunická, intenzita výbojů blesku do země, intenzita výbojů blesku mezi oblaky.
česky: intenzita bouřkové činnosti angl: thunderstorm intensity slov: intenzita búrkovej činnosti rus: интенсивность грозовой деятельности  1993-a3
Gewittertag m
den, v němž byla zaznamenána bouřka blízká, čili bouřka na stanici, nebo bouřka vzdálená. Den, v němž byla pozorována blýskavice, není tedy do dnů s bouřkou započítáván.
česky: den s bouřkou angl: day of thunderstorm slov: deň s búrkou rus: день с грозой fr: jour avec orage m, jour d'orage m  1993-a1
Gewitterwolke f
(Cb) [kumulonimbus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako mohutný a hustý oblak velkého vert. rozsahu v podobě hor nebo obrovských věží. Alespoň část jeho vrcholu je obvykle hladká, vláknitá nebo žebrovitá a téměř vždy zploštělá; tato část se často rozšiřuje do podoby kovadliny nebo širokého chocholu. Pod základnou oblaku, obvykle velmi tmavou, se často vyskytují nízké roztrhané oblaky, které mohou, avšak nemusí s Cb souviset, a srážky, někdy jen jako virga. Na vývoj Cb jsou vázány bouřky, avšak Cb může existovat, aniž bouřka vznikne.
Vert. rozsah Cb je vždy alespoň několik km, někdy může vrcholek Cb prorůst i tropopauzou. Cb je obvykle komplexem jednoduchých cel, řidčeji se skládá z cely jediné. Vzniká působením intenzivní konvekce, nejčastěji na studených frontách nebo čarách instability. Může se vyvinout i uvnitř homogenní instabilní vzduchové hmoty, často za spolupůsobení orografických faktorů. Pro el. strukturu Cb je charakteristický výskyt centra záporného náboje v dolní a kladného náboje v horní části oblaku. Kromě toho bývá pozorováno i podružné centrum kladného náboje v oblasti základny, které je však vázáno na vypadávání srážek. Cb se v letectví pokládá za nebezpečný jev, neboť se v něm vyskytují výstupné a sestupné vzdušné proudy, které dosahují rychlostí až desítky m.s–1, intenzivní turbulence, námraza, el. výboje a kroupy často velkých rozměrů.
Cb lze dále klasifikovat podle tvaru jako calvus či capillatus. Cb nemá odrůdy, můžeme však u něj klasifikovat zvláštnosti praecipitatio, virga, incus, mamma, arcus, tuba a průvodní oblaky flumen, pannus, pileus a velum. Termín Cb zavedl něm. meteorolog P. Weilbach v letech 1879–1880. Český překlad Cb je dešťová kupa. Viz též elektřina bouřková, rozsah oblaku vertikální, průnik kumulonimbů do stratosféry, informace SIGMET, náboj bouřkového oblaku, moment dipólu bouřkového oblaku, bouře konvektivní, elektrony ubíhající.
česky: cumulonimbus angl: Cumulonimbus, thundercloud slov: cumulonimbus rus: грозовое облако, кучево-дождевые облака fr: Cumulonimbus m, nuage d'orage m  1993-a3
Gewitterzelle f
1. ve starší terminologii užívané označení jednoduché cely;
2. v meteorologické praxi užívané označení oblasti zvýšené efektivní radiolokační odrazivosti, která indikuje výskyt konvektivních srážek.
česky: buňka bouřková angl: thunderstorm cell slov: búrková bunka rus: грозовая ячейка fr: cellule orageuse f  1993-a3
Gibbssche freie Energie f
česky: energie volná Gibbsova fr: énergie libre de Gibbs f, énergie de Gibbs f, enthalpie libre f  2017
Gibli m
místní název pro pouštní vítr v Tunisku a Libyi převážně jv. a již. směru (arabsky „jižní vítr").
česky: gibli angl: gebli, ghibli slov: gibli rus: гибли, джибли fr: ghibli m, guebli m  1993-a1
Glashauseffekt m
oteplení nižších vrstev atmosféry v důsledku selektivní absorpce záření, konkrétně schopnosti atmosféry propouštět většinu slunečního krátkovlnného záření k zemskému povrchu a pohlcovat dlouhovlnné záření zemského povrchu. Dlouhovlnné záření v atmosféře pohlcují tzv. skleníkové plyny, především vodní pára (asi z 60 %), oxid uhličitý (přibližně 26 %), dále metan, oxid dusný a další plyny (ozon, freony…). Tím se atmosféra ohřívá a předává zpětným zářením energii k zemskému povrchu, což vede ke zmenšování efektivního vyzařování zemského povrchu, a tedy snížení jeho radiačního ochlazování. Analogické poměry jsou ve sklenících a pařeništích, kde tomu ale není primárně v důsledku selektivní propustnosti skla pro krátkovlnné a dlouhovlnné záření, ale spíše z důvodu izolovaného prostoru, který brání mechanické ventilaci tepla. Viz též klima skleníkové, mitigace.
česky: efekt skleníkový angl: greenhouse effect slov: skleníkový efekt rus: парниковый эффект fr: effet de serre m  1993-a3
Glazial n
syn. doba ledová – období relativního nárůstu zalednění na Zemi. V geol. minulosti nastal tento jev vícekrát, pravidelně se opakoval v rámci kvartérního klimatického cyklu. Tehdy prům. teplota vzduchu na Zemi klesala až o 10 °C oproti současnosti. Docházelo k mohutnému rozvoji zalednění, především k postupu pevninského ledovce, k periglaciálním jevům a k výraznému poklesu mořské hladiny o více než 100 metrů oproti interglaciálům. V drsném a suchém kontinentálním klimatu se šířila step a tundra, probíhaly intenzívní zvětrávací pochody, zvané zesprašnění, rozvíjela se geol. činnost větru (eolická činnost) a vytvářely se surové půdy.
česky: glaciál angl: glacial, ice age slov: glaciál rus: гляциал, ледниковый период fr: période glaciaire f, glaciation f  1993-a3
glaziale Antizyklone f
označení W. H. Hobbse (1926) pro anticyklonu v oblasti Antarktidy nebo Grónska. Podle něho jsou obě tyto velmi stálé glaciální anticyklony póly atm. cirkulace. Intenzívní anticyklonální proudění a roztékání studeného vzduchu na jejích okrajích je podmíněno nejen studeným aktivním povrchem ledových a sněhových hmot, nýbrž i značným vert. rozsahem obou anticyklon. Pozdější výzkumy však ukázaly nesprávnost této hypotézy, především u anticyklony nad Grónskem, která je poměrně málo stálá a malého plošného rozsahu. Pojem glaciální anticyklona je vhodnější pro výskyt vysokého tlaku vzduchu nad Antarktidou. Viz též anticyklona antarktická, anticyklona arktická.
česky: anticyklona glaciální angl: glacial anticyclone slov: glaciálna anticyklóna rus: ледниковый антициклон fr: anticyclone polaire m  1993-a2
Gleichgewichtslinie f
česky: čára rovnováhy slov: čiara rovnováhy rus: линия сходимости fr: ligne d'équilibre f  1993-a1
Gleichung f
viz též vzorec.
česky: formule slov: formula rus: формула fr: formule f  1993-a1
Gletscherklimatologie f
vědní obor zabývající se vztahy mezi zaledněním a klimatem. Studuje podmínky vzniku a rozvoje ledovců v závislosti na klimatických podmínkách a klimatických změnách. Viz též kryosféra.
česky: glacioklimatologie angl: glacioclimatology slov: glacioklimatológia rus: гляциоклиматология fr: climatologie glaciaire f  1993-a1
Gliederung der Erdoberfläche f
variabilita nadmořských výšek, případně i jiných vlastností orografie v určité oblasti. Uplatňuje svůj vliv ve všech měřítkách rozlišovaných v rámci kategorizace klimatu.
česky: členitost reliéfu zemského povrchu angl: variability of terrain, variability of the earth's surface slov: členitosť reliéfu zemského povrchu rus: расчленение рельефа земной поверхности fr: rugosité de surface f, rugosité surfacique f  1993-a3
Glorie f
syn. glórie.
česky: gloriola angl: glory slov: gloriola rus: глория fr: gloire f  1993-a3
GOES
meteorologická geostacionární družice (Geostionary Operational Environmental Satellite) provozovaná americkou organizací NOAA.
česky: GOES angl: GOES slov: GOES fr: GOES m  2014
Grad der Kontinentalität m
klimatologický index, který vyjadřuje míru kontinentality klimatu, tedy v opačném smyslu i oceánity klimatu. Nejčastěji bývá sledována termická kontinentalita klimatu, a to zpravidla některým z řady empir. vzorců, které hodnotí roční chod teploty vzduchu, přičemž eliminují zonalitu prům. roční amplitudy potenciální insolace. Klasický index L. Gorczyńského (1920) má původní podobu
KG=  1 ,7Asinφ-20.4,
kde A značí prům. roční amplitudu teploty vzduchu, tedy rozdíl prům. měs. teploty vzduchu nejteplejšího a nejchladnějšího měsíce, a φ vyjadřuje zeměpisnou šířku. Index měl nabývat hodnot mezi 0 a 100, v případě silně oceánického klimatu se však vyskytují i záporné hodnoty, proto byly konstanty později různě upravovány. Index navíc nelze aplikovat na oblasti v blízkosti rovníku, proto se pro globální studie častěji používá index upravený Johanssonem (1926), nazývaný Conradův index
KC=  1,7Asin (φ+10)-14.
Jiné indexy kontinentality jsou založeny na porovnání teploty vzduchu na jaře a na podzim, viz např. termodromický kvocient. Ombrická kontinentalita klimatu se hodnotí vzhledem k ročnímu chodu srážek, např. prostřednictvím doby polovičních srážek nebo analýzou relativních srážek pomocí Markhamova indexu.
česky: index kontinentality angl: continentality index slov: index kontinentality rus: индекс континентальности  1993-a3
Gradient des elektrischen Potentials der Atmosphäre m
syn. gradient elektrický – intenzita el. pole E ve vzdálenosti r od kladného bodového náboje ve vzduchu nebo vakuu
E=Qar 4πε0r2,
kde ar je jednotkový vektor ve směru vektoru r od náboje Q a ε0 je permitivita vakua (prakticky rovná permitivitě vzduchu v atmosféře).
V soustavě SI platí (4πε0)–1 = 9.109. Má-li zdroj pole negativní náboj, potom dle právě uvedeného vzorce siločáry el. pole směřují k tomuto bodovému náboji a intenzita el. pole má záporné znaménko. Vzorec popisuje též gradient elektrického potenciálu vně symetrického kulového vodiče nesoucího náboj Q. Za podmínek elektřiny klidného ovzduší je země nabita záporně a atmosféra nad zemí kladně. Potom takto zavedený vektor el. pole nad zemí směřuje do středu Země. Tato konvence o orientaci elektrického pole se používá v obecně fyzikální a elektrotechnické literatuře. V meteorologické literatuře se však často ohledně orientace elektrického pole užívá opačná konvence, kdy se ve zde uvedeném vzorci orientuje polohový vektor tak, aby směřoval k náboji Q. Důvodem této, z obecného hlediska nestandardní konvence, je snaha, aby za podmínek elektřiny klidného ovzduší, kdy zemský povrch nese záporný a atmosféra kladný náboj, bylo vertikální el. pole považováno za kladné. Za podmínek elektřiny klidného ovzduší bývá u země gradient elektrického potenciálu v atmosféře asi 130 V.m–1. Za bouřky dosahuje řádově desítek kV.m–1, přičemž je orientován opačně vůči situaci za podmínek elektřiny klidného ovzduší.
česky: gradient elektrického potenciálu v atmosféře angl: gradient of electric potential in the atmosphere slov: gradient elektrického potenciálu v atmosfére rus: градиент потенциала электрического поля атмосферы fr: gradient du potentiel électrique m  1993-a3
Gradient m
v met. vektor, který vyjadřuje velikost a směr poklesu hodnot skalární funkce φ(x,y,z), kde x, y, z jsou kartézské souřadnice, připadající na jednotkovou vzdálenost v prostorovém poli hodnot funkce. Je definován jako záporně vzatý součin funkce φ a Hamiltonova nabla operátoru vztahem
-φ=-(iφ x+j φy +kφ z),
kde i, j, k jsou jednotkové vektory ve směru os kartézského souřadného systému x, y, z. Dvourozměrný vektor
-Hφ=-(i φx+j φy)
nazýváme horizontálním gradientem φ a záporně vzatou parciální derivaci φ podle vert. souřadnice z gradientem vertikálním. Vektor opačného směru označujeme jako ascendent. V p-systému používáme místo horiz. gradientu φ gradient izobarický. V meteorologii nejčastěji pracujeme s gradientem atm. tlaku, teploty, potenciální teploty, vlhkosti apod. V matematice je gradient definován jako opačný vektor φ orientovaný směrem k rostoucím hodnotám funkce φ.
česky: gradient angl: gradient slov: gradient rus: градиент fr: gradient m  1993-a2
Gradtag m
syn. denostupeň, gradoden – algebraický rozdíl mezi průměrnou denní teplotou vzduchu a zvolenou referenční teplotou, vyjádřený ve °C. U nás se pro topné období (sezonu) používá referenční teplota 12 °C.
česky: graden angl: degree-day slov: graden rus: градусо-день fr: degré jour m, degré jour unifié (DJU) m  1993-a1
Gradtagszahl f
syn. graden.
česky: denostupeň angl: degree-day slov: dennostupeň rus: градусо-день fr: degré-jour m  1993-a1
Gradtagszahl f
syn. denostupeň, gradoden – algebraický rozdíl mezi průměrnou denní teplotou vzduchu a zvolenou referenční teplotou, vyjádřený ve °C. U nás se pro topné období (sezonu) používá referenční teplota 12 °C.
česky: graden angl: degree-day slov: graden rus: градусо-день fr: degré jour m, degré jour unifié (DJU) m  1993-a1
Grenzlinie f
v met. čára na souborné kinematické mapě, která odděluje oblasti s výskytem středů anticyklon, popř. hřebenů vysokého tlaku vzduchu, kde většinou převládá anticyklonální zakřivení izobar či izohyps, od oblastí s výskytem středů cyklon, popř. brázd nízkého tlaku vzduchu s převládajícím cyklonálním zakřivením izobar či izohyps. Viz též mapa kinematická souborná.
česky: čára demarkační angl: line of separation slov: demarkačná čiara rus: демаркационная линия fr: ligne de séparation f  1993-a2
Grenzschichtstruktur f
(BL-View) – prezentační modul ceilometru, který umožňuje měřit a zobrazovat mezní vrstvu atmosféry. BL-View zobrazuje strukturu mezní vrstvy na základě algoritmu, který určuje výšku směšování (tlouštku směšovací vrstvy) v závislosti na koncentraci aerosolů v atmosféře. Automaticky analyzovaná data mezní vrstvy jsou uložena do logických souborů, které mohou být využity i v jiných aplikacích. Směšovací výška je klíčovým parametrem pro sledování znečištění ovzduší městskými emisními zdroji a emisemi z dopravy v závislosti na počasí, jako např. větru, oblačnosti, srážkách atd. Zároveň jsou informace o množství znečišťujících látek v atmosféře, které se jakožto kondenzační jádra podílí na procesech tvorby oblačnosti, důležitým indikátorem pro předpověď srážek. Přímý překlad do češtiny se nepoužívá.
česky: Boundary Layer Structures angl: Boundary Layer Structures (BL-View)  2016
GRIB
obecná informace v pravidelné síti bodů v binárním formátu pro přenos zpracovaných nebo předpověděných hodnot meteorologických prvků, zejména pro distribuci výstupů met. modelů. Kód GRIB obsahuje definici geometrie sítě bodů, popis typu dat, použité komprese a prezentace dat.
česky: GRIB angl: GRIB slov: GRIB rus: ГРИБ fr: GRIB m  2014
grosser Ring m
syn. halo 46°, kolo velké – fotometeor, patřící mezi halové jevy a jevící se obvykle jako slabší bělavě nebo duhově zbarvený světelný kruh kolem zdroje světla (Slunce nebo Měsíce) se zdánlivým úhlovým poloměrem 46°. Jeho intenzita bývá podstatně slabší než intenzita malého hala a též jeho výskyt je mnohem méně častý. Vzniká dvojitým lomem světelných paprsků na šestibokých hranolcích ledových krystalků, kdy paprsek do hranolku vstupuje plochou podstavy a vystupuje plochou pláště nebo naopak, tzn. že jde o lom na hranolu s lámavým úhlem 90°. V české literatuře se jako synonymum někdy vyskytuje velké kolo, z čehož však mohou vznikat nedorozumění, neboť do vydání české verze Mezinárodního atlasu oblaků v r. 1965 se termín velké halo též vyskytoval jako označení pro velké i malé halo.
česky: halo velké angl: halo of 46°, large halo slov: veľké halo rus: большое гало, гало в 46° fr: halo de 46° m, grand halo m  1993-a3
Großwetterlage f
česky: Grosswetterlage angl: general weather situation slov: Grosswetterlage rus: общее синоптическое положение fr: situation météorologique générale f  1993-a1
podpořila:
spolupracují: