Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene c

X
coning n
jeden z tvaru kouřové vlečky. Pro vlnění kouřové vlečky je příznačný kruhový nebo eliptický průřez vlečky ve směru kolmém na její podélnou osu. Vlečka má tvar protáhlého kužele s téměř vodorovnou osou. Vlnění kouřové vlečky je charakteristické pro počasí s mírným až silným větrem a s mírně stab. teplotním zvrstvením ovzduší v celé vrstvě, v níž se vlečka šíří. Rozptyl exhalací je v tomto případě působen v rozhodující míře nevelkými víry při mechanické turbulenci. Vlnění je nejběžnějším tvarem kouřové vlečky, může se vyskytovat v kterékoli části dne a roku.
česky: vlnění kouřové vlečky angl: coning slov: vlnenie dymovej vlečky rus: конусообразный факел, конусообразный шлейф загрязнений  1993-a1
Calme f
česky: kalm angl: calm slov: kalm rus: затишье  1993-a3
Calvus m
(cal) [kalvus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Charakterizuje cumulonimbus (Cb), u něhož některé výběžky horní části oblaku začínají ztrácet kupovité obrysy, avšak nikde ještě nelze pozorovat řasnatou strukturu; výběžky mají vzhled bělavé oblačné hmoty, většinou s více méně vert. žebrováním. Vyskytuje se pouze u druhu Cb v jeho počátečním stadiu vývoje.
Termín byl zaveden v r. 1926. Je přejat z lat. calvus „lysý, plešatý, holý; jeho původ odkazuje na absenci řasnaté struktury oblaku, která by připomínala vlasy.
česky: calvus angl: calvus slov: calvus fr: calvus m rus: лысые облака  1993-a2
CAPE
(Convective Available Potential Energy - konvektivní dostupná potenciální energie) – energie, kterou má adiabaticky izolovaná vzduchová částice v případě dosažení hladiny volné konvekce k dispozici při výstupu do hladiny nulového vztlaku. CAPE se udává v m2.s–2 = J.kg–1 a je definovaná vztahem:
CAPE [ J .kg-1]= HVKHNVBdz= HVKHNV gT-TTdz
kde B je vztlak, g tíhové zrychlení, T‘ značí teplotu adiabaticky vystupující částice a T teplotu okolního vzduchu, HVK značí výšku hladiny volné konvekce a HNV výšku hladiny nulového vztlaku. Na termodynamickém diagramu je proto reprezentována velikostí plochy mezi křivkou teplotního zvrstvení a stavovou křivkou částice, ve vrstvě nad hladinou volné konvekce, kde na částici působí kladný vztlak.
Hodnota CAPE, stanovená pro danou křivku teplotního zvrstvení, závisí na hodnotách tlaku, teploty a vlhkosti vzduchu v počátečním bodě jejího výstupu. V met. literatuře se proto setkáváme s několika variantami výpočtu CAPE, které se liší především stanovením počátečních podmínek pro výstup vzduchové částice. V nejčastějším případě, kdy se uvažují přízemní hodnoty tlaku, teploty a teploty rosného bodu, se CAPE označuje jako SBCAPE (z angl. Surface-Based CAPE).
Modifikovaný výpočet vychází z předpokladu, že v mezní vrstvě daného vertikálního rozsahu (zpravidla 50 hPa, popř. 100 hPa) dochází k intenzivnímu vertikálnímu promíchávání vzduchu. Hodnota potenciální teploty vystupující částice se stanoví jako průměrná potenciální teplota v uvažované směšovací vrstvě. Tato varianta CAPE se označuje jako MLCAPE (z angl. Mixed-Layer CAPE). Další používaná varianta CAPE se značí zkratkou MUCAPE (z angl. Most Unstable CAPE); představuje maximální hodnotu CAPE při uvažování výstupů vzduchové částice z kterékoli hladiny ve spodní vrstvě o tlousťce např. 100 hPa. Abychom zahrnuli do výpočtu CAPE i vliv vertikálního rozsahu vrstvy s kladným vztlakem, používá se normalizovaná hodnota NCAPE v m.s–2. Je definovaná jako CAPE dělená hodnotou vertikálního rozsahu vrstvy mezi HVK a HNV.
Vzhledem k tomu, že vztlaková síla je definovaná pomocí rozdílu hustoty vystupující částice a okolního vzduchu, používá se někdy k výpočtu CAPE jeho virtuální teplota, přičmež výslekdy se mohou značně lišit.
Veličina CAPE je patří mezi charakteristiky konv. prostředí; její zvýšené hodnoty signalizují pravděpodobnost vývoje silné konvekce. Je proto hojně využívaná jako prekurzor konvektivních bouřípředpovědi počasí. Viz též CIN.
česky: CAPE slov: CAPE fr: EPCD m rus: конвективно доступная потенциальная енергия  2014
capillatus m
(cap) [kapilátus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Charakterizuje cumulonimbus (Cb), jehož horní část má zřetelně patrnou řasnatou, vláknitou nebo žebrovitou strukturu cirrů v podobě kovadliny, chocholu nebo obrovské více méně neuspořádané kštice. Při vývoji Cb cap se obvykle vyskytují přeháňky, přívalové deště a bouřky doprovázené často dalšími nebezpečnými jevy spojenými s konvektivními bouřemi; často je možno pozorovat srážkové pruhy virga. Vyskytuje se pouze u druhu oblaků Cb.
Termín byl zaveden v r. 1926. Je přejat z lat. capillatus „dlouhovlasý, vláknitý, vlasatý“ (z capillus „vlas“, srov. kapilára); jeho původ odkazuje na přítomnost řasnaté struktury oblaku, která připomíná vlasy.
česky: capillatus angl: capillatus slov: capillatus fr: capillatus m rus: волосатые облака  1993-b3
castellanus m
(cas) [kastelánus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Charakterizuje oblak, který má ve své horní části kupovité vrcholky nebo věžičky, které se podobají cimbuří; tyto věžičky, z nichž některé mají větší výšku než šířku, spočívají na společné základně a jsou uspořádány v řadách. Tvar cas je obzvlášť patrný, pozorujeme-li oblaky z profilu. Je příznakem vertikální instability atmosféry ve vrstvě, kde se vyskytuje. Užívá se u druhů cirrus, cirrocumulus, altocumulus a stratocumulus. Při jeho výskytu u druhů Ac a Sc v ranních hodinách je vysoká pravděpodobnost vývoje bouřek během dne.
Termín v podobě castellatus navrhl angl. meteorolog W. C. Ley v r. 1879; do současné, jazykově vhodnější podoby ho v r. 1951 upravil Komitét pro studium oblaků a hydrometeorů. Termín je přejat z lat. castellanus „patřící k tvrzi“ (z castellum „tvrz“), zde „věžovitý“.
česky: castellanus angl: castellanus slov: castellanus fr: castellanus m rus: башенкообразные облака  1993-a2
Ceilometer m
přístroj pro měření výšky základny oblaků a množství oblačnosti v jednotlivých vrstvách, vertikální dohlednosti a koncentrace aerosolů v přízemní vrstvě. Pro stanovení výšky základny oblaků a množství oblačnosti se využívá část softwarové výbavy ceilometru Sky Condition Algorithm. Informace o stavu oblohy jsou pravidelně aktualizovány v minutových intervalech, přičemž se vychází z dat naměřených v průběhu posledních 30 minut. Ceilometr poskytuje informace až o čtyřech vrstvách oblaků. Odrazy z jednotlivých měření jsou podle jejich výšky přiřazeny k jednotlivým vrstvám, podle počtu odrazů v určitých výškách je odhadnuto množství oblačnosti v dané vrstvě. Moderní ceilometry obsahuji prezentační modul, který umožňuje měřit a zobrazovat strukturu mezní vrstvy atmosféry na základě algoritmu, který určuje tloušťku směšovací vrstvy v závislosti na koncentraci aerosolů v atmosféře. Směšovací výška je klíčovým parametrem pro sledování znečištění ovzduší emisemi v závislosti na počasí, např. na větru, oblačnosti a srážkách. Viz též měření výšky základny oblaků.
Termín se skládá z angl. ceiling „strop, horní mez“ a z řec. μέτρον [metron] „míra, měřidlo“; stropem je míněna základna oblaků.
česky: ceilometr angl: ceilometer slov: ceilometer fr: célomètre m rus: облакомер  1993-a3
Celsius-Temperaturskala f
teplotní stupnice, která dělí teplotní interval mezi bodem mrznutí a bodem varu čisté vody při normálním tlaku vzduchu 1 013,25 hPa na 100 dílů (°C). Prvému z uvedených bodů přiřazuje teplotu 0 °C, druhému 100 °C. Celsiova teplotní stupnice je pojmenována podle švédského matematika a geodeta A. Celsia, který ji navrhl v roce 1736, avšak bod mrznutí označil jako 100° a bod varu 0°. Obrácení stupnice tak, jak se používá nyní, doporučil C. Linné (1745). Je to nejužívanější teplotní stupnice. Mezi Celsiovou teplotní stupnicí a stupnicí teplotní Kelvinovou platí vztah T(°C)=T (K)273,15.
česky: stupnice teplotní Celsiova angl: Celsius temperature scale slov: Celziova teplotná stupnica rus: температурная шкала Цельсия  1993-a3
CFD-Modell n
(Computional Fluid Dynamics) – souhrnné označení pro modely, jež jsou založeny na numerickém řešení soustav diferenciálních rovnic popisujících dynamiku proudění tekutin a na formulaci k tomu vhodných okrajových a počátečních podmínek. Z hlediska procesů v zemské atmosféře se jedná zejména o modelování turbulentního proudění nad komplexně pojatým reliéfem zemského povrchu. Lze sem zařadit starší modely založené zejména na řešení Reynoldsových rovnic nebo statistické modely turbulence, ze soudobých metod např. metodu simulace velkých vírů (LES). V obecné hydrodynamice dnes existuje řada speciálních typů těchto modelových rovnic. Další rozvoj problematiky CFD modelů evidentně přímo souvisí s rozvojem možností výpočetní techniky, zejména v oblasti nejvýkonnějších počítačů.
česky: modely CFD angl: computional fluid dynamics models slov: modely CFD  2014
Chamsin m
suchý a horký již. až jv. pouštní vítr, vanoucí v Egyptě a nad Rudým mořem při postupu cyklony Středomořím dále k východu. Přináší velké množství prachu a písku, po přechodu studené fronty často následuje písečná bouře. Viz též scirocco.
Termín je přejat z arabského označení khamsīn „padesát“, které vychází z počtu dní v jarních měsících, pro něž je výskyt tohoto větru typický.
česky: chamsin angl: chamsin, khamsin slov: chamsin rus: хамсин  1993-a3
chaotische Strömung f
proudění vzduchu v závětří horské překážky, jestliže tloušťka vrstvy vzduchu proudícího přes hřeben nepřesahuje o více než polovinu převýšení hřebenu nad okolním terénem. Chaotické proudění má neuspořádaný charakter se silnou nárazovitostí v závětrném prostoru. Pojem uvedeného významu zavedl český meteorolog J. Förchtgott.
česky: proudění chaotické slov: chaotické prúdenie  1993-a3
Chapman-Zyklus m
cyklus reakcí popisující vznik a zánik ozonu ve stratosféře. Byl popsán Sidney Chapmanem roku 1930. Cyklus na začátku zahrnuje fotolytický rozklad molekuly kyslíku O2 následovaný reakcí mezi vzniklým atomárním kyslíkem O a další molekulou O2. Tím vzniká ozon O3, který se následně fotolyticky rozkládá anebo reaguje s atomárním kyslíkem. Chapmanův cyklus popisuje základní ozonové reakce. Pro realistický popis vzniku a zániku ozonu ve stratosféře je třeba do popisu zahrnout také katalytické reakce se sloučeninami dusíku, vodíku, chlóru a brómu. Tyto reakce doplňující základní Chapmanův cyklus zejména o procesy zesilující rozklad ozonu v atmosféře Země mají obecně podobu cyklu, jenž vychází z reakce
O3+XXO+O2.
Do další reakce pak vstupuje fotolyticky vzniklý excitovaný atomární kyslík
O+XOX+O2
a výsledkem je regenerace původního činitele X, za nějž můžeme dosadit NO, Cl, Br, hydroxylový radikál OH*, popř. další.
česky: cyklus Chapmanův angl: Chapman cycle slov: Chapmanov cyklus fr: cycle ozone-oxygène m, cycle de Chapman m  2015
Charakteristik der Drucktendenz f
časový průběh změny tlaku vzduchu během stanoveného časového intervalu určený podle grafického výstupu průběhu tlaku zpracovaného staničním SW, případně z tvaru záznamu mikrobarografu. V synoptických zprávách charakteristika tlakové tendence vyjadřuje charakter změn staničního tlaku za období posledních tří hodin před termínem pozorování.
česky: charakteristika tlakové tendence angl: characteristic of the pressure tendency slov: charakteristika tlakovej tendencie rus: характеристика барической тенденции  1993-a3
charakteristische Abmessung f
lineární vzdálenost charakteristická pro velikost plošného nebo prostorového atm. útvaru, např. části pole meteorologického prvku, víru v atmosféře apod. Podle charakteristického rozměru se rozlišují měřítka atm. dějů, např. na makrometeorologické, mezometeorologické a mikrometeorologické. Dříve se používal též termín charakteristická délka. Viz též měřítko atmosférických vírů, délka směšovací.
česky: rozměr charakteristický angl: characteristic dimension slov: charakteristický rozmer  2014
charakteristische Länge f
česky: délka charakteristická slov: charakteristická dĺžka fr: longueur caractéristique f rus: характерная длина  1993-a3
charakteristische Temperatur f
česky: teplota charakteristická angl: characteristic temperature slov: charakteristická teplota rus: характеристическая температура  1993-a1
Charlessches Gesetz n
zákon o rozpínavosti plynu, podle nějž se tlak plynu při stálém objemu, tj. při izosterickém ději, mění lineárně s teplotou. Jinými slovy, při izosterickém ději je závislost tlaku plynu na teplotě vyjádřena vztahem
pT=p0(1+α'T)
kde pT je tlak plynu při teplotě T ve °C, p0 značí tlak plynu při teplotě 0 °C, α' je koeficient rozpínavosti plynů, který je u všech reálných plynů přibližně roven koeficientu jejich objemové roztažnosti. U ideálních plynů se rozpínavost přesně rovná objemové roztažnosti. Vyjádříme-li teplotu v K, lze Charlesův zákon psát též ve tvaru
pTp0 =TT0,
kde T0 značí teplotu 273,15 K. Uvedený zákon je analogický zákonu Gay-Lussacovu.
česky: zákon Charlesův angl: Charles law slov: Charlesov zákon rus: закон Шарля  1993-a1
chemische Zusammensetzung der Atmosphäre f
soubor všech chemických látek tvořících atmosféru Země, a to jako výsledek procesů její evoluce. V užším smyslu je tímto termínem označováno chemické složení směsi plynů, tvořících suchou a čistou atmosféru, viz následující tabulku:
plyn objemová procenta
dusík N2 78,084
kyslík O2 20,946
argon Ar 0,944
oxid uhličitý CO2 0,040 55
neon Ne 0,001 818
hélium He 0,000 524
metan CH4 0,000 186
krypton Kr 0,000 114
vodík H2 0,000 05
oxid dusný N2O 0,000 033
xenon Xe 0,000 008 7
oxid siřičitý SO2 0 až 0,000 1
ozon O3 0 až 0,000 007 (léto)
    0 až 0,000 002 (zima)
oxid dusičitý NO2 0 až 0,000 002
amoniak NH3 stopy
oxid uhelnatý CO stopy
jód (páry) I2 stopy
Pokud neuvažujeme znečišťující příměsi, je zastoupení těchto plynů během roku v homosféře přibližně konstantní, ovšem s výjimkou ozonu a oxidu uhličitého, jejichž koncentrace jsou přirozeně variabilní v čase i v prostoru. Zastoupení některých skleníkových plynů navíc v minulosti oscilovalo např. v souvislosti s kvartérním klimatickým cyklem a v současnosti průběžně narůstá vlivem antropogenní činnosti.
Pokud uvažujeme i všechny další složky atmosféry Země, připadá 0,25 % na vodu, jejíž rozdělení v atmosféře je rovněž značně nerovnoměrné. Svým chemickým složením se od zbytku atmosféry podstatně liší půdní vzduch i vzduch v neventilovaných prostorách. Také chemické složení vzduchu uvězněného v ledovcích se může lišit od současného a posloužit tak jako proxy data při rekonstrukci paleoklimatu.
Chemickým složením atmosféry Země se mj. zabývá chemie atmosféry. Během několika posledních století se zvyšuje antropogenní podíl na znečišťování ovzduší, čímž dochází ke změnám chemického složení zemské atmosféry.
česky: složení atmosféry Země chemické angl: chemical composition of atmosphere slov: chemické zloženie atmosféry Zeme rus: химический состав атмосферы Земли  1993-a3
chemische Zusammensetzung des Niederschlags f
množství a chem. složení látek rozpuštěných nebo suspendovaných ve vodě srážek. Znalost chemického složení srážek je důležitá při studiu procesů samočišténí ovzduší, antropogenního nebo přirozeného znečišťování ovzduší a znečištění jiných složek prostředí (hydrosféra, pedosféra, biosféra), pro které představují atmosférické srážky významný vstup znečišťujících látek. Viz též déšť kyselý, mineralizace srážek.
česky: složení srážek chemické angl: chemical composition of precipitations slov: chemické zloženie zrážok rus: химический состав осадков  1993-a3
chemisches Transportmodell n
modely, jež vedle transportních mechanismů souvisejících s atmosférickým prouděním zahrnují i procesy působící chemické změny a transformace složek vzduchu a transportovaných příměsí přirozené i antropogenní povahy. Současné modely tohoto typu zpravidla svému uživateli nabízejí k výběru sady procedur zaměřených, obvykle z určitého účelového hlediska, na vybrané soubory chemických reakcí. Bývají zahrnuty i procesy suché depozice a mokré depozice. Tyto modely se dnes používají v souvislosti s problémy ochrany čistoty ovzduší, ale často i k modelování a studiu vlivů různých meteorologických parametrů na průběh uvažovaných chemických reakcí a jejich cyklů, resp. ke studiu zpětných vlivů atmosférické chemie na obecné meteorologické a klimatické podmínky. Právě v těchto souvislostech jsou velmi významné např. vazby mezi atmosférickou chemií a radiačními procesy v ovzduší. V současné době (r. 2017) se u nás např. využívají konkrétní chemické modely CAMx (www.camx.com), CMAQ (https://www.cmascenter.org/cmaq/) nebo WRF-Chem (http://www.acd.ucar.edu/wrf-chem/).
česky: modely chemické transportní angl: chemical transport models slov: chemické transportné modely  2017
Chemosphäre f
část atmosféry Země zahrnující horní část stratosféry, mezosféru a dolní část termosféry. Pro chemosféru jsou typické fotochemické reakce kyslíku, ozonu, dusíku atd., které vznikají působením slunečního záření velmi krátkých vlnových délek.
Termín se skládá z řec. χημεία [chémeia] „slévání kovů“ (srov. chemie, alchymie) a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: chemosféra angl: chemosphere slov: chemosféra rus: хемосфера  1993-a2
Chicago-Schule f
směr a výsledky met. bádání konaného v Chicagu v Ústavu pro výzkum atmosféry. Za jejího zakladatele je považován C. G. Rossby. Dále k ní patří D. Fultz, J. Namias, N. A. Philipps, H. C. Willet a jiní. Škola meteorologická chicagská vznikla před II. světovou válkou, nejcennějších výsledků však dosáhla až po r. 1945. Studovala hlavně zákonitosti všeobecné cirkulace atmosféry a rozšířila znalosti o vlnové cirkulaci atmosféry. Studovala časové a prostorové změny dlouhých vln (Rossbyho vlny), které se využívají při předpovědi počasí a sledovala mimozemské vlivy na atm. cirkulaci. Přispěla ke zlepšení numerických předpovědí počasí zavedením nových předpovědních modelů.
česky: škola meteorologická chicagská angl: Chicago school of meteorology slov: chicagská meteorologická škola  1993-a1
Chinook m
[činúk] – 1. označení pro fén na vých. straně Skalnatých hor na území USA a Kanady. Přináší obyčejně náhlá a velká oteplení, někdy o více než 10 °C za několik málo minut. Vyvolává prudká tání sněhu (odtud pramení i regionální název snow eater "požírač sněhu"), nebo rychlé dozrávání plodů. I když je typický pro zimu, vyskytuje se během celého roku.
2. v původním významu, ve kterém se dodnes hovorově používá na záp. pobřeží USA a Britské Kolumbie, označení pro vlhký jz. vítr z Tichého oceánu, související s tzv. ananasovým expresem a přinášející sem oblačné a deštivé počasí.
Termín byl přejat z označení žargonu, který používali Indiáni na dolním toku amer. řeky Columbia k dorozumění s bílými obchodníky. Ti termín přenesli na východ, kde získal dnešní hlavní a v odb. literatuře jediný význam (1).
česky: chinook angl: chinook slov: chinook rus: чинук  1993-a3
Chionograph m
v češtině zast. označení pro váhový srážkoměr.
Termín se skládá z řec. χιών [chión] „sníh“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“. Označení lze vysvětlit tím, že chionograf umožňoval zaznamenávat i tuhé srážky.
česky: chionograf slov: chionograf rus: хионограф  1993-a3
Chionosphäre f
přerušovaný koncentrický obal Země s aktivní bilancí tuhých srážek, tedy prostor na povrchu Země s celoročně možným výskytem sněhu a ledu. Chionosféra je vymezena dolní a horní sněžnou čarou.
Termín navrhl ruský geograf S. V. Kalesnik (1901–1977). Skládá se z řec. χιών [chión] „sníh“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: chionosféra angl: chionosphere slov: chionosféra rus: хионосфера  1993-a1
Chrgian-Mazin-Spektrum n
česky: spektrum Chrgianovo–Mazinovo angl: Khrgian–Mazin spectrum rus: спектр Хргиана-Мазина  2019
Chrgian-Mazin-Verteilung f
syn. spektrum Chrgianovo–Mazinovo – často používané rozdělení velikosti oblačných kapek, které užívá gama rozdělení ve tvaru:
f(r)=Ar2 exp(-Br).
Hodnoty parametrů A a B je možné stanovit např. pomocí celkové koncentrace kapek N a středního poloměru kapek rstř
N=2A/B3 ,rstř=3/B,
které známe z měření.
česky: rozdělení Chrgianovo–Mazinovo angl: Khrgian and Mazin distribution slov: Chrgianovo-Mazinovo rozdelenie  2018
Chromosphäre f
relativně tenká spodní vrstva sluneční atmosféry o mocnosti cca 10 000 km. U přechodu k níže ležící fotosféře je teplota chromosféry cca 6000 K a směrem vzhůru stoupá, takže na horním okraji, kde chromosféra přechází ve sluneční korónu, dosahuje 30 000 K. V horní části je chromosféra značně nehomogenní; bývá zde vzhledově složena z tzv. spikulí, což jsou sloupce plazmy tryskající chromosférou do sluneční koróny rychlostí 20 – 30 km.s-1. Dalším chromosférickým jevem jsou tzv. flokulová pole, lokalizovaná zpravidla nad níže ležícími fotosférickými fakulovými poli a projevující se jako strukturovaná prostorová zjasnění, označovaná jako flokule. Při zvýšené sluneční aktivitě probíhají v chromosféře chromosférické erupce a protuberance.
Termín zavedl angl. astronom J. Norman Lockyer v r. 1868. Vytvořil jej spojením řec. χρῶμα [chróma] „barva“ (srov. chrom, chromozom) a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: chromosféra angl: chromosphere, solar chromosphere slov: chromosféra fr: chromosphère f rus: хромосфера  2020
chromosphärische Eruption f
náhlé, několik minut až několik desítek minut trvající zjasnění flokulového pole ve sluneční chromosféře, typické pro období zesílené sluneční aktivity. Tyto erupce jsou mohutným zdrojem rentgenového, ultrafialového a korpuskulárního záření. Významně ovlivňují sluneční vítr a toky slunečního kosmického záření zasahující Zemi.
česky: erupce chromosférická angl: solar flare slov: chromosférická erupcia fr: éruption chromosphérique f rus: солнечная всппышка  1993-a3
CIN
energie, kterou je nutné vynaložit při adiabatickém výstupu vzduchové částice z přízemní hladiny z0 do hladiny volné konvekce. Na termodynamickém diagramu je to oblast mezi stavovou křivkou a křivkou zvrstvení, kde je vystupující částice chladnější než okolí. Jako kladnou veličinu ji definujeme vztahem:
CIN [ J .kg-1 ]=-z0 HVKBdz= -z0 HVKgT-TTdz ,
kde B je vztlak, T‘ značí teplotu adiabaticky vystupující částice a T teplotu okolního vzduchu, HVK značí výšku hladiny volné konvekce. Vzhledem k tomu, že vztlaková síla je definovaná pomocí rozdílu hustoty vystupující částice a okolního vzduchu, uvádí se v literatuře někdy definice CIN pomocí virtuální teploty. V tom případě se pak ve vzorci pro výpočet hodnoty CIN nahradí teplota T virtuální teplotou Tv. Viz též CAPE.
Termín je zkratkou angl. Convective Inhibition s významem "konvektivní brzdění, bránění".
česky: CIN angl: convective inhibition slov: CIN fr: EIC m rus: энергия конвективно устойчивого слоя (CIN)  2014
CIN
energie, kterou je nutné vynaložit při adiabatickém výstupu vzduchové částice z přízemní hladiny z0 do hladiny volné konvekce. Na termodynamickém diagramu je to oblast mezi stavovou křivkou a křivkou zvrstvení, kde je vystupující částice chladnější než okolí. Jako kladnou veličinu ji definujeme vztahem:
CIN [ J .kg-1 ]=-z0 HVKBdz= -z0 HVKgT-TTdz ,
kde B je vztlak, T‘ značí teplotu adiabaticky vystupující částice a T teplotu okolního vzduchu, HVK značí výšku hladiny volné konvekce. Vzhledem k tomu, že vztlaková síla je definovaná pomocí rozdílu hustoty vystupující částice a okolního vzduchu, uvádí se v literatuře někdy definice CIN pomocí virtuální teploty. V tom případě se pak ve vzorci pro výpočet hodnoty CIN nahradí teplota T virtuální teplotou Tv. Viz též CAPE.
Termín je zkratkou angl. Convective Inhibition s významem "konvektivní brzdění, bránění".
česky: CIN angl: convective inhibition slov: CIN fr: EIC m rus: энергия конвективно устойчивого слоя (CIN)  2014
Cirrocumulus m
česky: cirokumulus slov: cirokumulus fr: Cirrocumulus m  1993-a1
Cirrocumulus m
(Cc) [cirokumulus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Cc je charakterizován jako tenké, menší nebo větší skupiny nebo vrstvy bílých oblaků bez vlastního stínu, složené z velmi malých oblačných částí v podobě zrnek nebo vlnek apod. Jednotlivé části mohou být buď navzájem odděleny nebo mohou spolu souviset a jsou více méně pravidelně uspořádány. Zdánlivá velikost jednotlivých částí zpravidla nepřesahuje 1° prostorového úhlu. Cc patří mezi nesrážkové oblaky vysokého patra. Je oblakem ledovým, někdy však může obsahovat i kapky přechlazené vody, které rychle mrznou. Vzniká následkem vlnových a konv. pohybů v horní troposféře. Cc lze dále klasifikovat podle tvaru jako stratiformis, lenticularis, castellanus nebo floccus a podle odrůdy jako undulatus a lacunosus. Mohou se u něj vyskytovat zvláštnosti virga a mamma.
Termín poprvé použil angl. továrník a amatérský meteorolog L. Howard v r. 1803,  v současném smyslu ho zavedl franc. meteorolog E. Renou v r. 1855. Byl vytvořen spojením lat. slov cirrus „kadeř“ a cumulus „kupa, hromada“. Do češtiny se v minulosti překládal jako řasová kupa.
česky: cirrocumulus angl: Cirrocumulus slov: cirrocumulus fr: Cirrocumulus m rus: перисто-кучевые облака  1993-a3
Cirrostratus m
česky: cirostratus slov: cirostratus fr: Cirrostratus m  1993-a1
Cirrostratus m
(Cs)  [cirostratus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako průsvitný bělavý oblačný závoj vláknitého nebo hladkého vzhledu, který úplně, nebo částečně zakrývá oblohu a dává vznik halovým jevům. Cs je nesrážkový ledový oblak vysokého patra. Vyskytuje se jako typická součást oblačných systémů atmosférických front. Může vzniknout z kovadliny Cb, která se dále šíří i po rozpadu původního oblaku. Cs lze dále klasifikovat podle tvaru jako fibratus či nebulosus nebo floccus a podle odrůdy jako duplicatus a undulatus. U Cs se neklasifikují žádné zvláštnosti a průvodní oblaky.
Termín poprvé použil angl. továrník a amatérský meteorolog L. Howard v r. 1803,  v současném smyslu ho zavedl franc. meteorolog E. Renou v r. 1855. Byl vytvořen spojením lat. slov cirrus „kadeř“ a stratus „vrstva“. Do češtiny se v minulosti překládal jako řasová sloha.
česky: cirrostratus angl: Cirrostratus slov: cirrostratus fr: Cirrostratus m rus: перисто-слоистые облака  1993-a3
Cirrus m
(Ci) [cirus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Ci je definován jako vzájemně oddělené oblaky v podobě bílých jemných vláken, bílých plošek nebo úzkých pruhů. Má vláknitý vzhled a často hedvábný lesk. Ci patří mezi oblaky vysokého patra, je oblakem ledovým, nevypadávají z něho srážky a jeho výskyt na obloze bývá často příznakem blízkosti atmosférické fronty. Může vzniknout z kovadliny Cb, která se dále šíří i po rozpadu původního oblaku. Vyskytuje se však i v oblastech vysokého tlaku vzduchu. Ci lze dále klasifikovat podle tvaru jako fibratus, uncinus, spissatus, castellanus nebo floccus a podle odrůdy jako intortus, radiatus, vertebratus a duplicatus. Průvodním jevem Ci může být zvláštnost oblaku mamma.
Termín navrhl angl. továrník a amatérský meteorolog L. Howard v r. 1803. Je přejat z lat. cirrus „kadeř“, do češtiny se nicméně v minulosti překládal jako řasa.
česky: cirrus angl: Cirrus slov: cirrus fr: Cirrus m rus: перистые облака  1993-a3
Cirrus m
čes. překlad termínu cirrus.
česky: řasa slov: riasa  1993-a1
Clapeyron-Gleichung f
někdy používané označení pro stavovou rovnici ideálního plynu.
česky: rovnice Clapeyronova angl: Clapeyron equation slov: Clapeyronova rovnica rus: уравнение Клапейрона  1993-a1
Clapeyron-Gleichung f
česky: vzorec Clapeyronův angl: Clapeyron formula slov: Clapeyronov vzorec rus: формула Клапейрона  1993-a1
Clausius-Clapeyronsche Gleichung f
diferenciální rovnice, která vyjadřuje změnu tlaku E s teplotou T ve stavu rovnováhy mezi dvěma fázemi dané látky. Obecně ji lze vyjádřit ve tvaru: dEdT=Lkj T(αjαk), Lkj=Ljk, kj,
kde k, j postupně probíhá w, i, v, přičemž w značí kapalnou, i pevnou a v plynnou fázi, Lkj představuje latentní teplo pro přechod z fáze k do fáze j a α značí měrný objem příslušné fáze. V meteorologii se jedná o vyjádření závislosti tlaku nasycené vodní páry na teplotě T v K. Obvykle se udává jako diferenciální vyjádření teplotní závislosti tlaku nasycení nad rovinným vodním povrchem ve tvaru
desdT= esLwvRvT2,
kde es je napětí vodní páry nasycené nad rovinným vodním povrchem, Rv značí měrnou plynovou konstantu vodní páry a Lwv latentní teplo výparu, které závisí na teplotě. Tento vztah lze užít i pro přechlazenou vodu. Pro vyjádření závislosti napětí vodní páry nasycené nad rovnou hladinou ledu je třeba nahradit latentní teplo výparu latentním teplem sublimace. Clausiova–Clapeyronova rovnice je jedním ze základních vztahů termodynamiky atmosféry a v literatuře najdeme několik typů jejího řešení v závislosti na tom, jakou míru zjednodušení při řešení akceptujeme. Viz též Magnusův vzorec.
česky: rovnice Clausiova–Clapeyronova angl: Clausius-Clapeyron equation slov: Clausius-Clapeyronova rovnica rus: уравнение Клаузиуса-Клапейрона  1993-b2
CLIMAT
česky: CLIMAT angl: CLIMAT slov: CLIMAT fr: message CLIMAT m rus: КЛИМАТ  2014
CLIMAT
česky: CLIMAT angl: CLIMAT slov: CLIMAT fr: message CLIMAT m rus: КЛИМАТ  2014
CLIMAT TEMP-Meldung
do června 2010 meteorologická zpráva sestavovaná podle kódu CLIMAT TEMP a vysílaná pravidelně po skončení daného kalendářního měsíce. Současně se zprávou CLIMAT TEMP byla zrušena také zpráva CLIMAT TEMP SHIP o měs. průměrech aerol. hodnot ze stanice na lodi.
česky: zpráva o měsíčních aerologických průměrech z pozemní stanice (CLIMAT TEMP) angl: Report of monthly aerological means from a land station (CLIMAT TEMP) slov: správa o mesačných priemeroch aerologických hodnôt z pozemnej stanice rus: КЛИМАТ-ТЕМП  1993-a3
CLIMAT-Meldung
meteorologická zpráva sestavená podle kódu CLIMAT a vysílaná pravidelně po skončení daného kalendářního měsíce. Obsahuje identifikaci měsíce, roku a stanice, a v sekci 1 prům. měs. tlak vzduchu v úrovni stanice, tlak vzduchu redukovaný na určitou hladinu nebo prům. hodnotu geopotenciálu, prům. měs. teplotu vzduchu, prům. měs. tlak vodní páry, počet dní se srážkami alespoň jeden mm, měs. úhrn srážek s uvedením frekvenčního intervalu, do kterého tento úhrn spadá, a trvání slunečního svitu v hodinách a v procentech normálu za daný měsíc. Sekce 2 obsahuje normály prvků sekce 1. Sekce 3 a 4 obsahují údaje o počtu dní v daném měsíci, kdy určitý prvek překročil stanovenou hodnotu a údaje o výskytu extrémních hodnot s uvedením dne výskytu. Měsíční údaje ze stanice na lodi se předávají ve tvaru zpráv sestavovaných podle kódu CLIMAT SHIP analogického kódu CLIMAT.
česky: zpráva o měsíčních údajích z pozemní stanice (CLIMAT) angl: Report of monthly values from a land station (CLIMAT) slov: správa o mesačných údajoch z pozemnej stanice rus: КЛИМАТ  1993-a3
cloud electricity f
1. elektřina generovaná mechanismy v oblacích kvalitativně stejnými jako u elektřiny bouřkové, ale kvantitativně natolik slabšími, že nedochází k výbojům blesku.
2. souhrnné označení pro veškeré elektrické děje v oblacích včetně bouřkové elektřiny.
česky: elektřina oblačná angl: cloud electricity slov: oblačná elektrina fr: électricité nuageuse f rus: электричество облаков  2014
Codeziffer f
numerická, výjimečně alfanumerická hodnota sloužící k popisu významu met. veličiny, kterou nelze vyjádřit numerickou hodnotou ve stanovených jednotkách, např. typ stanice, typ přístrojového vybavení, stav a průběh počasí, druh oblaků. V tradičních alfanumerických kódech se kódová čísla používají i pro vyjádření hodnoty některých meteorologických prvků, pokud rozsah daného prvku nemůže být přímo uveden stanoveným počtem symbolických písmen. Význam kódových čísel pro daný met. prvek jedefinován v kódové tabulce, která může být společná pro různé meteorologické kódy.
česky: číslo kódové angl: code figure slov: kódovacie číslo fr: chiffre de code m rus: цифра кода  1993-b3
congestus
(con) [kongestus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako kupovitý oblak značného vert. rozsahu se silně vyvinutými výběžky; při pohledu z boku mívá podobu květáku. Užívá se u druhu oblaků Cu. Viz též humilis, mediocris.
Termín navrhl franc. meteorolog C. Maze na mezinárodním met. kongresu v Paříži v r. 1889. Je přejat z lat. congestus „nakupený“ (příčestí trpné slovesa congerere „snášet, hromadit“). Do češtiny se v minulosti překládal jako mohutný.
česky: congestus angl: congestus slov: congestus fr: congestus m rus: мощные облака  1993-a2
constant flux layer f
česky: vrstva konstantního toku angl: constant flux layer of atmosphere slov: vrstva konštantného toku rus: слой постоянных потоков в атмосфере  2019
Constant-level-balloon m
česky: transosonda slov: transosonda  1993-a1
Cordonazo
[kordonaso] – regionální označení tropické cyklony při záp. pobřeží Mexika, popř. středoamerických států. Kdysi bylo považováno za rovnodennostní bouři, vyskytující se jen jednou za několik let kolem svátku svatého Františka z Assisi 4. října (cordonazo de San Francisco). Ve skutečnosti jsou tropické cyklony v této oblasti častější než v severním Atlantiku. Viz též hurikán.
česky: cordonazo angl: cordonazo slov: cordonazo fr: cordonazo m rus: кордоназо  1993-a3
Coriolis-Beschleunigung f
česky: zrychlení Coriolisovo angl: Coriolis acceleration slov: Coriolisovo zrýchlenie rus: ускорение Кориолиса  1993-a1
Corioliskraft f
setrvačná síla působící na tělesa pohybující se v rotující neinerciální vztažné soustavě. V meteorologii se jedná především o souřadnicové soustavy pevně spojené s rotující Zemí, a proto se Coriolisova síla nazývá též uchylující silou zemské rotace. Coriolisovu sílu c lze vyjádřit vztahem:
c=2mv× Ω
kde v je vektor rychlosti pohybu daného tělesa v soustavě rotující úhlovou rychlostí Ω a m značí hmotnost tohoto tělesa. Odtud vyplývá, že Coriolisova síla působí kolmo ke směru rychlosti v a nemá tedy za následek změny kinetické energie pohybujícího se tělesa. V aplikacích na met. problémy dosazujeme za v rychlost proudění vzduchu a Ω představuje úhlovou rychlost rotace Země. Dále se v meteorologii Coriolisova síla často vztahuje k jednotce hmotnosti vzduchu, tj. m = 1, a je pak číselně rovna Coriolisovu zrychlení. Horizontální složky Coriolisovy síly rostou pro dané horizontální proudění se zvětšující se zeměp. šířkou a uchylují ho na sev. polokouli vpravo, na již. polokouli vlevo. Naproti tomu vert. složka Coriolisovy síly dosahuje maxima na rovníku a s rostoucí zeměp. šířkou klesá k nulové hodnotě na pólech. Ve srovnání se silou zemské tíže je však vert. složka Coriolisovy síly asi o čtyři řády menší.
Coriolisova síla má zásadní význam v cirkulaci atmosféry a pro formování tlakových útvarů, neboť proudění ve volné atmosféře zhruba zachovává stav rovnováhy mezi horiz. složkami síly tlakového gradientu a Coriolisovy síly. Důsledkem této skutečnosti je zákon Buys-Ballotův, podle něhož proudění ve volné atmosféře přibližně směřuje podél izohyps. Kdyby tedy nebylo Coriolisovy síly, docházelo by okamžitě k vyrovnávání horiz. tlakových rozdílů. Viz též parametr Coriolisův, rovnice pohybová, vítr geostrofický.
česky: síla Coriolisova angl: Coriolis force slov: Coriolisova sila rus: сила Кориолиса  1993-a3
Coriolisparameter m
veličina definovaná výrazem 2ωsinφ , kde ω je velikost úhlové rychlosti zemské rotace a φ z. š., vyjadřovaná na sev. polokouli úhly v intervalu (0, 90°) a na již. polokouli v intervalu (0, –90°). Coriolisův parametr se často vyskytuje v rovnicích a vztazích používaných v meteorologii, neboť bezprostředně souvisí s působením Coriolisovy síly v zemské atmosféře. Jeho hodnota na 50° sev. zeměp. š. činí 1,2.10–4 s–1. Parametr je nazván podle franc. matematika a fyzika G. G. Coriolise (1792–1843).
česky: parametr Coriolisův angl: Coriolis parameter slov: Coriolisov parameter rus: параметр Кориолиса  1993-a2
Crepuskularstrahlen m/pl
temné pruhy ve směru slunečních paprsků při poloze Slunce za obzorem. V podstatě to jsou stíny oblaků, které rovněž mohou být za obzorem, promítající se na pevné nebo kapalné částice, vznášející se v atmosféře. Někdy se stíny promítají až na opačnou stranu oblohy a jsou pozorovatelné v blízkosti antisolárního bodu. V tomto případě se nazývají antikrepuskulární paprsky. Krepuskulární paprsky patří k fotometeorům. Termín paprsky krepuskulární se primárně vztahuje k situacím při zapadajícím nebo vycházejícím Slunci, popř. v době soumraku, kdy tyto paprsky vytvářejí jakoby vějíř rozevírající se vzhůru. Někdy se však jako paprsky krepuskulární označuje i obdobný jev při větších výškách Slunce nad obzorem a otvorech v oblačné vrstvě, kdy se zmíněný vějíř rozevírá dolů.
česky: paprsky krepuskulární angl: crepuscular rays slov: krepuskulárne lúče rus: сумеречные лучи  1993-a3
Crepuskularstrahlen m/pl
temné pruhy ve směru slunečních paprsků při poloze Slunce za obzorem. V podstatě to jsou stíny oblaků, které rovněž mohou být za obzorem, promítající se na pevné nebo kapalné částice, vznášející se v atmosféře. Někdy se stíny promítají až na opačnou stranu oblohy a jsou pozorovatelné v blízkosti antisolárního bodu. V tomto případě se nazývají antikrepuskulární paprsky. Krepuskulární paprsky patří k fotometeorům. Termín paprsky krepuskulární se primárně vztahuje k situacím při zapadajícím nebo vycházejícím Slunci, popř. v době soumraku, kdy tyto paprsky vytvářejí jakoby vějíř rozevírající se vzhůru. Někdy se však jako paprsky krepuskulární označuje i obdobný jev při větších výškách Slunce nad obzorem a otvorech v oblačné vrstvě, kdy se zmíněný vějíř rozevírá dolů.
česky: paprsky krepuskulární angl: crepuscular rays slov: krepuskulárne lúče rus: сумеречные лучи  1993-a3
CREX
Znakový formát pro reprezentaci a výměnu dat. Má podobnou strukturu jako kód BUFR, tj. zpráva v kódu CREX obsahuje kromě dat také jejich popis pomocí deskriptorů. Jedná se však o alfanumerický kód a komprese dat se neprovádí, a proto CREX není vhodný např. pro radiosondážní data s vysokým vert. rozlišením nebo pro družicová data.
česky: CREX angl: CREX slov: CREX fr: CREX m  2014
CREX
Znakový formát pro reprezentaci a výměnu dat. Má podobnou strukturu jako kód BUFR, tj. zpráva v kódu CREX obsahuje kromě dat také jejich popis pomocí deskriptorů. Jedná se však o alfanumerický kód a komprese dat se neprovádí, a proto CREX není vhodný např. pro radiosondážní data s vysokým vert. rozlišením nebo pro družicová data.
česky: CREX angl: CREX slov: CREX fr: CREX m  2014
Cumulonimbus m
(Cb) [kumulonimbus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako mohutný a hustý oblak velkého vert. rozsahu v podobě hor nebo obrovských věží. Alespoň část jeho vrcholu je obvykle hladká, vláknitá nebo žebrovitá a téměř vždy zploštělá; tato část se často rozšiřuje do podoby kovadliny nebo širokého chocholu. Pod základnou oblaku, obvykle velmi tmavou, se často vyskytují nízké roztrhané oblaky, které mohou, avšak nemusí s Cb souviset, a srážky, někdy jen jako virga. Na vývoj Cb jsou vázány bouřky, avšak Cb může existovat, aniž bouřka vznikne.
Vert. rozsah Cb je vždy alespoň několik km, někdy může vrcholek Cb prorůst i tropopauzou. Cb je obvykle komplexem jednoduchých cel, řidčeji se skládá z cely jediné. Vzniká působením intenzivní konvekce, nejčastěji na studených frontách nebo čarách instability. Může se vyvinout i uvnitř homogenní instabilní vzduchové hmoty, často za spolupůsobení orografických faktorů. Pro el. strukturu Cb je charakteristický výskyt centra záporného náboje v dolní a kladného náboje v horní části oblaku. Kromě toho bývá pozorováno i podružné centrum kladného náboje v oblasti základny, které je však vázáno na vypadávání srážek. Cb se v letectví pokládá za nebezpečný jev, neboť se v něm vyskytují výstupné a sestupné vzdušné proudy, které dosahují rychlostí až desítky m.s–1, intenzivní turbulence, námraza, el. výboje a kroupy často velkých rozměrů.
Cb lze dále klasifikovat podle tvaru jako calvus či capillatus. Cb nemá odrůdy, můžeme však u něj klasifikovat zvláštnosti praecipitatio, virga, incus, mamma, arcus, tuba a průvodní oblaky flumen, pannus, pileus a velum. Viz též elektřina bouřková, rozsah oblaku vertikální, průnik cumulonimbů do stratosféry, informace SIGMET, náboj bouřkového oblaku, moment dipólu bouřkového oblaku, bouře konvektivní, elektrony ubíhající.
Termín zavedl něm. meteorolog P. Weilbach v letech 1879–1880. Vytvořil ho spojením lat. slov cumulus „kupa, hromada“ a nimbus „oblak (zvl. dešťový), příval, bouře“. Do češtiny se v minulosti překládal jako dešťová kupa.
česky: cumulonimbus angl: Cumulonimbus, thundercloud slov: cumulonimbus fr: Cumulonimbus m, nuage d'orage m rus: грозовое облако, кучево-дождевые облака  1993-a3
Cumulonimbus m
česky: kumulonimbus slov: kumulonimbus rus: кумулус, кучево-дождевые облака  1993-a1
Cumulus m
(Cu) [kumulus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako osamocený oblak, obvykle hustý a s ostře ohraničenými obrysy, vyvíjející se směrem vzhůru ve tvaru kup, kupolí nebo věží. Při pohledu z boku mívá podobu květáku. Části ozářené Sluncem bývají zářivě bílé, základna oblaku bývá poměrně tmavá a téměř vodorovná. Někdy jsou Cu roztrhané. Cu je obvykle vodním oblakem, v případě velkého vert. rozsahu (Cu con) může být v horní části oblakem smíšeným. Nejčastěji vzniká působením termické konvekce. Je většinou nesrážkovým oblakem, z vert. mohutných Cu však mohou někdy vypadávat srážky v podobě krátkých přeháněk. Cu se může za vhodných podmínek někdy dále vyvíjet v Cb. Cu lze dále klasifikovat podle tvaru jako humilis, mediocris, congestus a fractus. Může být odrůdy radiatus a můžeme u něj klasifikovat zvláštnosti praecipitatio, virga, arcus, tuba a průvodní oblaky pannus, pileus a velum. Viz též patra oblaků, rozsah oblaku vertikální.
Termín navrhl angl. továrník a amatérský meteorolog L. Howard v r. 1803. Je přejat z lat. cumulus „kupa, hromada“. Do češtiny se v minulosti překládal jako kupa, pozůstatkem této zvyklosti je termín kupovitý oblak.
česky: cumulus angl: Cumulus slov: cumulus fr: Cumulus m rus: кучевые облака  1993-a3
Cumulus m
viz cumulus.
česky: kumulus slov: kumulus rus: кучевые облака  1993-a1
Cut-off-Zyklone f
syn. cyklona odštěpená – studená cyklona vzniklá oddělením již. části meridionálně orientované hluboké brázdy nízkého tlaku vzduchu hřebenem vysokého tlaku vzduchu, které je dobře patrné zejména v horní troposféře. Izolovaná cyklona je často produktem blokování. V Evropě se izolované cyklony vytvářejí např. nad sz. Středomořím a sev. Itálií.
česky: cyklona izolovaná angl: cut-off low slov: izolovaná cyklóna fr: dépression coupée f, dépression froide f, cut-off low m rus: отсеченный циклон  1993-a3
podpořila:
spolupracují: