Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene п

X
паводок
výrazné přechodné zvýšení hladiny toku, způsobené náhlým nárůstem průtoku nebo dočasným zmenšením průtočnosti koryta, přičemž může dojít k rozlivu vody mimo koryto. K nárůstu průtoku na území ČR dochází vlivem intenzivních dešťových srážek (dešťová povodeň) nebo prudkým táním sněhu při oblevě (sněhová povodeň), popř. jejich kombinací (smíšená povodeň). Dešťová povodeň může být vyvolána trvalým deštěm nebo přívalovým deštěm. Ten je nejčastější příčinou přívalových povodní (někdy nesprávně označovaných jako bleskové povodně z angl. flash flood), pro něž je typický rychlý nárůst i pokles průtoku. K dočasnému zmenšení průtočnosti koryta dochází zejména při výskytu ledových jevů (ledová povodeň). Náhlé uvolnění překážky je dalším mechanizmem vzniku přívalové povodně. Viz též hydrometeorologie.
česky: povodeň angl: flood slov: povodeň něm: Hochwasser n  1993-a3
падающие осадки
viz srážky.
česky: srážky padající angl: falling precipitation slov: padajúce zrážky něm: fallender Niederschlag m  1993-a2
падающий ветер
katabatický vítr na závětrné straně hor, orograficky zesílený. Může se vyznačovat vysokými rychlostmi a značnou nárazovitostí. Jde o součást místní cirkulace, která na rozdíl od gravitačního větru vzniká modifikací proudění většího měřítka. Rychlost padavého větru je tak podmíněna vlastnostmi orografické překážky (tvarem, převýšením, strmostí svahů) a synoptickou situací (především velikostí horizontálního tlakového gradientu a jeho orientací vůči překážce, teplotou a vlhkostí vzduchu, vertikální stabilitou atmosféry apod.). V užším smyslu jde o vítr charakteru bóry, v širším smyslu tak označujeme i orografický fén. Jako typický příklad ve stř. Evropě se v oblasti Vysokých Tater uvádí přetékaní rychlého proudění přes Lomnické sedlo do doliny Skalnatého plesa.
česky: vítr padavý angl: fall wind slov: padavý vietor něm: Fallwind m  1993-a3
палеоклимат
klima v geol. minulosti, studované v rámci paleoklimatologie na základě tzv. proxy dat. V souladu s aktuální geologickou stratigrafií můžeme rozlišovat klima jednotlivých eonů (viz hadaikum, archaikum, proterozoikum, fanerozoikum), ér (viz paleozoikum, mezozoikum, kenozoikum), period (viz kambrium, ordovik, silur, devon, karbon, perm, trias, jura, křída, paleogén, neogén, kvartér), epoch (viz pleistocén, holocén) a dalších jednotek. Bez ohledu na změny klimatu zůstávala hlavním rysem jeho rozložení na Zemi zonalita klimatu, i když velikost a poloha klimatických pásem se v průběhu času měnila. Viz též geneze klimatu, teorie paleoklimatu, klima historické.
česky: paleoklima angl: paleoclimate slov: paleoklíma něm: Paläoklima n  1993-a3
палеоклиматология
vědní obor, zabývající se rekonstrukcí a interpretací paleoklimatu. Změny klimatu v geol. minulosti se snaží vysvětlit pomocí teorií paleoklimatu. K jejich ověření využívá tzv. proxy dat, přičemž se opírá o poznatky dalších disciplín, např. sedimentologie, paleontologie a geochemie; při studiu klimatu kvartéru a především holocénu se uplatňují i geomorfologie a archeologie. Viz též dendroklimatologie, klimatologie historická.
česky: paleoklimatologie angl: paleoclimatology slov: paleoklimatológia něm: Paläoklimatologie f  1993-a3
памперо
stud. nárazovitý vítr jz. směrů na pampách v Argentině a Uruguayi, obvykle vázaný na přechod čar instability s projevem studené fronty. Je často doprovázen bouřkovými lijáky s náhlým poklesem teploty. Vyskytuje se při vpádech studeného vzduchu z již. polárních oblastí, a je tedy obdobou severoamerického větru norther.
česky: pampero angl: pampero slov: pampero něm: Pampero m, Pampero m  1993-a1
папагаио
silný sv. padavý vítr z And na tichomořském pobřeží Nicaragui a Guatemaly. Vzniká při přechodu chladných vzduchových hmot (vítr „el norte“) přes horská pásma Střední Ameriky a přináší pěkné počasí. Nejčastěji se vyskytuje v lednu a v únoru, kdy často trvá 3 až 4 dny. Má charakter bóry.
česky: papagajo angl: papagayo slov: papagajo něm: Papagajo Wind m, Papagajo Wind m  1993-a1
параллельные (одновременные) измерения
měření základních meteorologických prvků v jedné lokalitě různými přístroji nebo v různých časových intervalech. Souběžné měření se provádí hlavně při zásadních změnách přístrojového vybavení na meteorologických stanicích pro zjištění kvality nově instalovaných způsobů měření nebo pro budoucí výpočet homogenity klimatologických řad.
česky: měření souběžná angl: parallel measurement slov: súbežné meranie  2014
параметр Кориолиса
veličina definovaná výrazem 2ωsinφ , kde ω je velikost úhlové rychlosti zemské rotace a φ z. š., vyjadřovaná na sev. polokouli úhly v intervalu (0, 90°) a na již. polokouli v intervalu (0, –90°). Coriolisův parametr se často vyskytuje v rovnicích a vztazích používaných v meteorologii, neboť bezprostředně souvisí s působením Coriolisovy síly v zemské atmosféře. Jeho hodnota na 50° sev. zeměp. š. činí 1,2.10–4 s–1. Parametr je nazván podle franc. matematika a fyzika G. G. Coriolise (1792–1843).
česky: parametr Coriolisův angl: Coriolis parameter slov: Coriolisov parameter něm: Coriolisparameter m  1993-a2
параметр Рейнольдса
česky: parametr Reynoldsův angl: Reynolds parameter slov: Reynoldsov parameter něm: Reynolds-Parameter m, Reynolds-Parameter m  1993-a1
параметр Ричардсона
česky: parametr Richardsonův angl: Richardson parameter slov: Richardsonov parameter něm: Richardson-Parameter m, Richardson-Parameter m  1993-a1
параметр Россби
veličina β daná meridionálním gradientem Coriolisova parametru a definovaná vztahem:
β=λy,
kde λ je Coriolisův parametr a kladný směr souřadnicové osy y směřuje k severu. Využívá se zejména v teorii Rossbyho vln.
česky: parametr Rossbyho angl: Rossby parameter slov: Rossbyho parameter něm: Rossby-Parameter m, Rossby-Parameter m  1993-a2
параметр Скорера
veličina používaná pro diagnózu, popř. prognózu mechanické turbulence, nebo vlnového proudění za horskou překážkou. Ve zjednodušené podobě je definována vztahem:
l=(gv2 1θθz) 1/2,
kde g je velikost tíhového zrychlení, v velikost průmětu vektoru rychlosti větru na kolmici k ose horského hřebene, Θ potenciální teplota vzduchu a z vert. souřadnice. Scorerův parametr se určuje pro jednotlivé vrstvy ovzduší, přičemž tloušťka vrstvy se volí podle stupně „monotónnosti“ změny teploty vzduchu s výškou. Při použití aerol. údajů je nejvhodnější určit Scorerův parametr pro vrstvy mezi význačnými tepl. body (tepl. „zlomy“). Příznivé podmínky pro vlnové proudění nastávají při poklesu Scorerova parametru s výškou.
česky: parametr Scorerův angl: Scorer parameter slov: Scorerov parameter něm: Scorer-Parameter m, Scorer-Parameter m  1993-a3
параметр Стокса
bezrozměrný parametr, který se v meteorologii používá především v teorii koalescence vodních kapek o různých velikostech. Většinou se uvádí ve tvaru:
2ρwr2 | vRvr |/9μR,
kde vR, resp. vr značí velikost pádové rychlosti kapek o poloměru R, resp. r (r << R), ρw hustotu vody a μ koeficient dynamické vazkosti vzduchu. Výraz 2ρwr2/9μ, vyjadřuje čas, za který klesne na 1/e původní hodnoty (e je základ přirozených logaritmů) rychlost pohybu sférické částice, o dostatečně malém poloměru r a hustotě ρw, na niž působí pouze síla odporu prostředí daná Stokesovým zákonem. Viz též vzorec Stokesův.
česky: parametr Stokesův angl: Stokes parameter slov: Stokesov parameter něm: Stokes-Parameter m, Stokes-Parameter m  1993-a1
параметр тока молнии
veličina definující kvalit. a kvantit. proud bleskového výboje. Ke kvalit. parametrům bleskového proudu patří např. polarita (kladná, záporná, bipolární), která se určuje podle polarity náboje oblaku. Mezi kvantit. parametry bleskového proudu počítáme amplitudu proudu blesku, strmost proudu blesku, dobu čela, dobu půltýlu, náboj bleskového výboje, čtverec impulzu proudu blesku, trvání celkového výboje aj. Viz též blesk.
česky: parametr bleskového proudu angl: lightning current parameter slov: parameter bleskového prúdu něm: Blitzstromparameter m, Blitzstromparameter m  1993-a1
параметр устойчивости
kvantit. vyjádření stabilitních podmínek, tj. stability nebo instability teplotního zvrstvení atmosféry. V širším smyslu mezi stabilitní parametry patří např. vert. teplotní gradient, Bruntova-Vaisalova frekvence a dále parametry, které zahrnují nejen termické, ale i dynamické charakteristiky stavu atmosféry, tj. parametry typu Richardsonova čísla, nebo pro přízemní vrstvu atmosféry poměr z/L, kde z je výška nad zemským povrchem a L je Obuchovova délka. Viz též vertikální instabilita atmosféry, klasifikace stabilitní.
česky: parametr stabilitní angl: stability parameter slov: parameter stability něm: Stabilitätsparameter m  1993-a3
параметр шероховатости
syn. koeficient drsnosti – veličina s rozměrem délky, která patří svým původem do aerodynamiky. V meteorologii se používá ve fyzice mezní vrstvy atmosféry k vyjádření vlivu zemského povrchu na proudění vzduchu a na vert. transport hybnosti, tepla, vodní páry, popř. různých příměsí v přízemní vrstvě atmosféry. Parametr drsnosti lze interpretovat jako výšku drsnostních elementů, tj. různých výčnělků apod. zemského povrchu, efektivní z hlediska posuzovaného vlivu, nebo jako charakteristiku turbulentního promíchávání v úrovni zemského povrchu. Určuje se zpravidla z vert. profilu rychlosti horiz. proudění v bezprostřední blízkosti zemského povrchu, nejlépe při indiferentním teplotním zvrstvení ovzduší. Pro různé typy přirozeného rovinného povrchu dosahuje hodnot od setin mm (uhlazená sněhová pokrývka) do zhruba 10 cm (vysoká tráva). Uvnitř zástavby se volí hodnota parametru drsnosti zemského povrchu v rozmezí 1/20 až 1/10 výšky staveb. Nad vodním povrchem závisí parametr drsnosti na vlnění, a tím na rychlosti větru. Podle C. G. Rossbyho lze souvislost mezi parametrem drsnosti zemského povrchu z0 a směšovací délkou l vyjádřit vztahem
l(z)=κ (z+z0)
v němž z značí výšku nad zemským povrchem a κ von Kármánovu konstantu. Viz též drsnost povrchu.
česky: parametr drsnosti angl: roughness parameter slov: parameter drsnosti něm: Rauhigkeitshöhe f, Rauhigkeitsparameter m  1993-a1
параметризация
souhrnné označení pro simulaci efektu fyzikálních procesů energetického a hydrologického cyklu atmosféry, jejichž prostorová a časová měřítka jsou menší, než může model atmosféry popsat. Termín parametrizace se kromě podchycení nerozlišených fyzikálních procesů používá též pro simulaci procesů diabatických, nevratných, a pro popis výměny hybnosti, tepla a vlhkosti mezi atmosférou a jejím okolím (Země, vesmír). Výsledkem parametrizace jsou matematické vztahy, které popisují vliv procesů na prognostické proměnné modelu atmosféry a také popisují jejich interakci s dalšími proměnnými, např. modelu zemského povrchu. To, které procesy jsou v modelu atmosféry parametrizovány, tak obecně závisí na jeho rozlišení. Typicky se parametrizují: radiační přenos v atmosféře; výměna hybnosti, tepla a vlhkosti s povrchem a jejich další vertikální transport efekty suché a vlhké turbulence; srážkové procesy, konvekce a s ní spojené srážky a transport hybnosti, tepla a vlhkosti; dynamické účinky nerozlišené orografie.
česky: parametrizace v meteorologii angl: parametrization slov: parametrizácia v meteorológii něm: Parametrisierung f, Parametrisierung f  1993-a3
парантгелий
česky: paranthelium angl: paranthelion slov: paranthélium něm: Nebengegensonne f  1993-a1
парантиселена
česky: parantselenium angl: parantiselena slov: parantselénium něm: Nebengegenmond m  1993-a1
параселена
česky: paraselenium angl: paraselena slov: paraselénium něm: Nebenmond m  1993-a1
параселенный круг
fotometeor, projevující se jako bílý horiz. kruh, který má stejnou úhlovou výšku nad horizontem jako Měsíc. Je obdobou kruhu parhelického, je však vyvolán měsíčním světlem. Světelná ohniska na paraselenickém kruhu jsou označována paraselenium (paměsíc), parantselenium (boční měsíc) a antiselenium (protiměsíc). Paraselenický kruh patří mezi halové jevy. Někdy bývají na obloze patrné pouze jeho části. Viz též měsíc nepravý.
česky: kruh paraselenický angl: paraselenic circle slov: paraselenický kruh něm: Nebenmondkreis m  1993-a1
паргелий
syn. parhelia, paslunce – velmi častý halový jev v podobě světelných skvrn nalézajících se na parhelickém kruhu vně malého hala. Jsou obvykle výrazněji duhově zbarveny, s červeným okrajem na straně bližší Slunci. Při poloze Slunce na obzoru by se parhelia nalézala na malém halu, s rostoucí výškou Slunce nad obzorem se od malého hala bočně vzdalují v rozsahu několika úhlových stupňů. Vznikají dvojitým lomem slunečních paprsků při průchodu šestibokými ledovými krystalky při lámavém úhlu 60° a vert. poloze hlavní krystalové osy.
česky: parhelium angl: mock sun, parhelion, sun dog slov: parhélium něm: Nebensonne f  1993-a3
паргелический круг
syn. kruh horizontální, kruh vedlejších sluncí – fotometeor, projevující se jako bílý horiz. kruh, který má stejnou úhlovou výšku nad horizontem jako Slunce. V některých bodech parhelického kruhu bývají pozorovány světlé nebo dokonce duhově zářící skvrny. Tato světelná ohniska jsou nejčastěji v blízkosti průsečíků s malým halem, tzv. parhelia (paslunce), občas ve vzdálenosti 120° od Slunce, tzv. paranthelia (boční slunce) a velmi zřídka naproti Slunci, tzv. antihelium (protislunce). Parhelia někdy spojují s malým halem Lowitzovy oblouky. Parhelický kruh patří mezi halové jevy a vzniká odrazem světelných (slunečních) paprsků na vertikálně orientovaných stěnách ledových krystalků. Někdy bývají na obloze patrné pouze jeho části. Viz též slunce nepravé, kruh paraselenický.
česky: kruh parhelický angl: mock sun ring, parhelic circle slov: parhelický kruh něm: parhelischer Ring m  1993-a3
парниковый эффект
oteplení nižších vrstev atmosféry v důsledku selektivní absorpce záření, konkrétně schopnosti atmosféry propouštět většinu slunečního krátkovlnného záření k zemskému povrchu a pohlcovat dlouhovlnné záření zemského povrchu. Dlouhovlnné záření v atmosféře pohlcují tzv. skleníkové plyny, především vodní pára (asi z 60 %), oxid uhličitý (přibližně 26 %), dále metan, oxid dusný a další plyny (ozon, freony…). Tím se atmosféra ohřívá a předává zpětným zářením energii k zemskému povrchu, což vede ke zmenšování efektivního vyzařování zemského povrchu, a tedy snížení jeho radiačního ochlazování. Analogické poměry jsou ve sklenících a pařeništích, kde tomu ale není primárně v důsledku selektivní propustnosti skla pro krátkovlnné a dlouhovlnné záření, ale spíše z důvodu izolovaného prostoru, který brání mechanické ventilaci tepla. Viz též klima skleníkové, mitigace.
česky: efekt skleníkový angl: greenhouse effect slov: skleníkový efekt něm: Treibhauseffekt m, Glashauseffekt m fr: effet de serre m  1993-a3
парселена
zvlášť jasné světelné skvrny na paraselenickém kruhu, který patří k halovým jevům. Jde o souborné označení pro paraselenia neboli paměsíce, parantselenia neboli boční měsíce a antiselenium neboli protiměsíc.
česky: měsíc nepravý angl: mock moon, paraselene slov: nepravý mesiac  1993-a1
парциальное давление
česky: tlak dílčí angl: partial pressure slov: parciálny tlak  1993-a2
паскаль
základní jednotka pro tlak v soustavě SI. Označuje se Pa a je definována jako síla 1 N působící kolmo na plochu jednoho metru čtverečního. Pro meteorologické účely je tato jednotka malá, v meteorologii se proto nejčastěji užívá jednotka stokrát větší, tj. hektopascal (hPa). Má to zároveň praktickou výhodu, neboť hektopascal je číselně roven jednotce tlaku milibar (bar), která se dříve běžně používala v meteorologii. Viz též měření tlaku vzduchu.
česky: pascal angl: pascal slov: pascal něm: Pascal n  1993-a2
пасмурно
viz oblačnost.
česky: zataženo angl: overcast slov: zamračené něm: bedeckt  1993-a1
пасмурный день
den, v němž prům. oblačnost byla alespoň 8,1 desetin, resp. relativní sluneční svit byl menší než 0,2. Viz též den jasný, den oblačný.
česky: den zamračený angl: overcast day slov: zamračený deň něm: trüber Tag m fr: jour de ciel très nuageux m, jour de ciel couvert m, jour couvert m  1993-a3
пассат
vítr pasátové cirkulace ve spodní troposféře, mající na sev. polokouli převážně sv. směr, na již. polokouli jv. směr. Vyznačuje se značnou stálostí jak směru, tak rychlosti proudění, která bývá nejčastěji od 6 do 8 m.s–1; rychlost 12 m.s–1 překračují jen zřídka. Označení pochází ze španělského „pasada“ (průjezd), protože španělští mořeplavci využívali pasáty při cestách z Evropy do Ameriky. Viz též fronta pasátová, vlny ve východním proudění.
česky: pasát angl: trade-winds, trades slov: pasát něm: Passat m  1993-a3
пассатная инверсия
teplotní inverze v oblasti pasátové cirkulace způsobená subsidencí vzduchu z vyšších hladin. Odděluje vlhký pasátový vzduch v nižších hladinách od teplého a velmi suchého vzduchu ležícího nad ním.
česky: inverze teploty vzduchu pasátová angl: trade-winds inversion slov: pasátová inverzia teploty vzduchu něm: Passatinversion f  1993-a3
пассатная циркуляция
složka všeobecné cirkulace atmosféry, která zajišťuje výměnu vzduchu mezi subtropickými anticyklonami a rovníkovou depresí. Je vyvolána termicky a podstatně ovlivňována rotací Země. Ve spodní troposféře vanou pasáty ze subtropických anticyklon a jsou stáčeny k západu. Na ně navazují výstupné pohyby vzduchuintertropické zóně konvergence a zpětné výškové proudění s postupně rostoucí západní složkou (viz antipasát). Pasátovou cirkulaci uzavírá subsidence vzduchu v subtropických anticyklonách. Viz též inverze teploty vzduchu pasátová, tišiny rovníkové, Hadleyova buňka, cirkulace Walkerova.
česky: cirkulace pasátová angl: trade-winds slov: pasátová cirkulácia něm: Passatzirkulation f fr: alizés pl  1993-a3
пассатные волны
česky: vlny pasátové slov: pasátové vlny něm: Passatwellen f/pl  1993-a1
пассатный климат
nepříliš časté označení pro klima savany, odkazující na vliv pasátů a sezonní výskyt pasátové inverze teploty vzduchu.
česky: klima pasátové angl: trade-winds climate slov: pasátová klíma něm: Passatklima n  1993-b3
пассатный фронт
atmosférická fronta v tropech oddělující od sebe „starý" tropický vzduch od trop. vzduchu, který vznikl transformací polárního vzduchu. Pasátová fronta obvykle leží v brázdě nízkého tlaku vzduchu mezi dvěma subtropickými anticyklonami. S pasátovou frontou bývají v pasátové oblasti spojeny srážky.
česky: fronta pasátová angl: trade-wind front slov: pasátový front něm: Passatfront f fr: front des alizés m  1993-a1
пассивная примесь
vžité označení pro plynné látky, které jsou do atmosféry emitovány přírodními nebo antropogenními procesy a nemají vůči okolnímu vzduchu převýšení svého energetického (tepelného) obsahu, což znamená, že nepodléhají přímo působení archimédovských vztlakových sil. Viz též příměs aktivní.
česky: příměs pasivní angl: passive pollutant slov: pasívna prímes něm: passive Beimengung f  1993-a3
пассивная радиолокация
metoda radiolokace, využívající k získání informace o radiolokačním cíli elmag. záření generované samotným cílem (radiová komunikace letadel, v meteorologii např. bleskové výboje). Většinou se využívá více přijímacích antén na různých místech, aby bylo možné pomocí triangulačních metod určit polohu cíle. Viz též cíl radiolokační, radiolokace aktivní.
česky: radiolokace pasivní angl: passive radio detection slov: pasívna rádiolokácia něm: passive Funkortung f  1993-a3
пассивный, дифузный дозиметр
difuzní zařízení k odběru vzorků plynů z atmosféry rychlostí danou fyzikálním procesem difuze plynu ve stagnantní vrstvě vzduchu nebo porézního materiálu nebo permeací přes membránu, aniž dochází k aktivnímu pohybu vzduchu zařízením. Molekuly plynu jsou transportovány molekulární difuzí, která je funkcí teploty a atmosférického tlaku. Průměrná koncentrace sledované látky vážená časem se vypočítá na základě Fickova prvního zákona difuze.
česky: dozimetr pasivní slov: pasívny dozimeter něm: passives Dosimeter n fr: dosimètre passif m  2014
пастаграмма
málo používaný druh aerologického diagramu se souřadnicovými osami S a Zp. Souřadnice S je definována vztahem:
S=TTpTp,
kde T je změřená teplota v hladině o tlaku p a Tp teplota této hladiny ve standardní atmosféře. Druhá souřadnice Zp je výška hladiny p ve standardní atmosféře. Diagram navrhl J. C. Bellamy.
česky: pastagram angl: pastagram slov: pastagram něm: Pastagramm n  1993-a2
пеленгатор гроз
česky: pelengátor bouřek slov: búrkový pelengátor  1993-a3
пеленгатор гроз
česky: zaměřovač bouřek angl: lightning recorder slov: zameriavač búrok něm: Blitzzähler  1993-a3
пентада
pětidenní období, které se často využívá při podrobnějším rozboru chodu meteorologických prvků (chodu srážek, teploty aj. prvků po pentádách). První pentáda je období od 1. do 5. ledna, poslední pentáda je od 27. do 31. prosince, na rok připadá 73 pentád. V přestupném roce je pentáda na konci února nahrazena hexádou (šestidenním obdobím). Do meteorologie zavedl použití pentád k zobrazení chodu teploty vzduchu H. W. Dove (1854). V praxi je běžně zaměňováno za období pěti po sobě následujících dnů začínajících 1., 6., 11., 16., 21. a 26. dne v každém měsíci (poslední pentáda končí posledním dnem v měsíci). Viz též dekáda.
česky: pentáda angl: pentad slov: pentáda něm: Pentade f  1993-a2
пепельный свет
jas temné části měsíčního kotouče po novu, vyvolaný slunečním zářením odraženým od Země a její atmosféry.
česky: světlo popelavé angl: earthlight, earthshine slov: popolavé svetlo něm: Erdlicht n, Erdschein m  1993-a1
пеплопауза
horní hranice peplosféry.
česky: peplopauza angl: peplopause slov: peplopauza něm: Peplopause f  1993-a2
пеплосфера
vrstva atmosféry Země, která sahá od zemského povrchu do výše 1,5 až 2 km. Je definovánajako vrstva, pro niž je charakteristický častý výskyt inverzí teploty vzduchu, které zmenšují prům. vert. teplotní gradient ve srovnání s výše ležícími vrstvami troposféry. Pojem peplosféra zavedl do odb. literatury německý meteorolog K. Schneider-Carius a z tohoto důvodu se tento pojem vyskytuje zejména v literatuře německého původu. Horní hranice peplosféry se označuje jako peplopauza. Z prostorového hlediska odpovídá peplosféra přibližně mezní vrstvě atmosféry.
česky: peplosféra angl: peplosphere slov: peplosféra něm: Peplosphäre f  1993-a2
первая радуга
syn. duha primární – duha vytvořená lomem a jedním vnitřním odrazem světla na dešťových kapkách. Rozdělení velikosti dešťových kapek určuje, které barvy jsou zastoupeny a jak široký pruh zaujímají. Vždy je však fialová barva na vnitřní (úhlový poloměr oblouku 40°) a červená na vnější (úhlový poloměr oblouku 42°) straně duhového oblouku.
česky: duha hlavní angl: primary rainbow slov: hlavná dúha něm: Hauptregenbogen m fr: arc primaire m  1993-a2
первая тропопауза
česky: tropopauza první angl: first tropopause slov: prvá tropopauza  1993-a1
первичная депресия
syn. cyklona centrální – cyklona, uvnitř které se formují jedna nebo více podružných cyklon. Řídicí cyklona je poměrně hlubokou a rozsáhlou frontální cyklonou zpravidla ve stadiu okludované cyklony, která mohla též postupně vznikat spojením několika cyklon. Řídicí cyklona se často vyskytuje nad určitou oblastí (např. u Islandu) po dobu až několika týdnů. Viz též cyklona kvazistacionární, stadia vývoje cyklony.
česky: cyklona řídicí angl: primary cyclone, primary depression slov: riadiaca cyklóna něm: Zentralzyklone f fr: cyclone principal m, dépression principale f  1993-a3
первичная циркуляция
syn. cirkulace prvotní – základní složka všeobecné cirkulace atmosféry. Na ni navazují cirkulace menších měřítek, označované jako cirkulace sekundární a terciární. Toto rozdělení atmosférické cirkulace navrhl H. C. Willet.
česky: cirkulace primární angl: primary circulation slov: primárna cirkulácia něm: primäre Zirkulation f fr: circulation primaire f  1993-a2
первичная циркуляция
česky: cirkulace prvotní slov: prvotná cirkulácia  1993-a1
первичное образование ледяных частиц
česky: nukleace ledu primární angl: primary ice nucleation slov: primárna nukleácia ľadu něm: primäre Eisnukleation f  2014
первичные аэрозольные (взвешенные) частицы
atmosférický aerosol, jehož částice jsou do vzduchu přímo emitovány ze svých zdrojů. V čes. tech. literatuře, zejména staršího původu, se lze setkat i se synonymickým pojmem aerosoly disperzní.
česky: aerosoly primární angl: primary aerosols slov: primárne aerosoly něm: primäres Aerosol n fr: aérosols primaires (biogéniques)  2014
пергумидный климат
česky: klima perhumidní angl: perhumid climate slov: perhumidná klíma  1993-b3
переменная облачность
oblačnost s velkými a rychlými změnami, které se typicky vyskytují v instabilní studené vzduchové hmotě, a to zvláště při vývoji konv. druhů cumulus a cumulonimbus. Vyskytuje se zejména po přechodu studených front v týlu rychle se pohybujících cyklon. V případě velmi rychlých změn hovoříme také o rychle se měnící oblačnosti. Někdy se u proměnlivé oblačnosti setkáme s nevhodným termínem oblačnost střídavá.
česky: oblačnost proměnlivá angl: variable cloudiness slov: premenlivá oblačnosť něm: veränderliche Bewölkung f  1993-a3
переменный ветер
vítr krátkodobě měnící směr o více než 45° (není normováno). Nejčastějším zdrojem těchto odchylek je buď mechanická turbulence v proudění za blízkými překážkami nebo termická turbulence při uvolňování přehřátého stoupajícího vzduchu.
česky: vítr proměnlivý angl: variable wind slov: premenlivý vietor něm: wechselhafter Wind m  1993-a3
перемешивание, смешивание
česky: mísení angl: mixing slov: miešanie něm: Mischung f  1993-a1
перенасыщение
česky: přesycení angl: supersaturation slov: presýtenie něm: Übersättigung f  1993-a1
перенасыщенный воздух
1. vzduch, který obsahuje více vodní páry, než odpovídá stavu nasycení nad rovinným povrchem čisté vody při dané teplotě. V oblacích a v mlze dosahuje přesycení řádově setiny až desetiny procenta relativní vlhkosti vzduchu, v extrémních případech, v mohutných vzestupných proudech bouřkových oblaků, kolem 1 %. Dokonalým očištěním vzduchu od všech částic, které mohou působit jako kondenzační jádra, lze v labor. podmínkách dosáhnout přesycení vzduchu až stovky procent;
2. ve fyzice oblaků a srážek se pojmu přesycený vzduch používá i v souvislosti s rozdílným tlakem nasycené vodní páry nad různými povrchy kapalné vody a ledu. Vzhledem k tomu, že tlak nasycené vodní páry nad ledem je za jinak stejných podmínek vždy nižší než nad vodou, může se ve smíšených oblacích vytvořit stav, kdy vzduch je vůči kapkám přechlazené vody nenasycený, zatímco vůči ledovým částicím přesycený. Podobně v důsledku rozdílného tlaku nasycené vodní páry nad různě zakřiveným vodním povrchem může být vzduch nenasycen vůči maličkým kapičkám, zatímco vzhledem k velkým kapkám nebo rovnému fázovému rozhraní je přesycen. Podle Raoultova zákona vyvolává rozpuštění určité látky snížení tlaku nasycené vodní páry nad roztokem, a proto např. vůči kapičkám solných roztoků může být přesycený i vzduch nenasycený vůči čisté vodě. Pojem přesycený vzduch se v meteorologii běžně užívá, jde však o terminologické zjednodušení (terminologickou zkratku). Věcně korektní by mělo být: vzduch obsahující přesycenou vodní páru. Viz též teorie vzniku srážek Bergeronova–Findeisenova.
česky: vzduch přesycený angl: supersaturated air slov: presýtený vzduch něm: übersättigte Luft f  1993-a3
перенос выбросов
česky: přenos exhalátů angl: transport of air pollution slov: prenos exhalátov něm: Ausbreitung von Exhalaten f, Ausbreitung von Luftschadstoffen f  1993-a1
перенос загрязняющих примесей
ochraně čistoty ovzduší přenos znečišťujících příměsí na různě velkou vzdálenost. V současné době se ustálilo dělení tohoto transportu na blízký neboli lokální, územní a globální. Při blízkém transportu jde o vzdálenosti několika desítek km, kde lze rozeznat příspěvek jednotlivého velkého zdroje znečišťování ovzduší, při územním o vzdálenosti řádu stovek km až kolem tisíce km, kde lze rozlišovat příspěvky velkých skupin zdrojů znečištění, a konečně při globálním nelze rozpoznávat příspěvky jednotlivých zdrojů znečištění ovzduší ani jejich skupin. Mezi územním a globálním transportem znečišťujících příměsí se někdy uvádí ještě regionální transport. Viz též transmise exhalátů, šíření příměsí v atmosféře.
česky: transport znečišťujících příměsí angl: air pollution transport slov: transport znečisťujúcich prímesi  1993-a2
перенос радиации
přenos energie elektromagnetickým zářením v zemské atmosféře. V meteorologii je znám především v souvislosti s vyhodnocováním radiační bilance zemského povrchu nebo částí atmosféry jako radiační přenos krátkovlnný (sluneční záření) a dlouhovlnný (infračervené – tepelné záření). Viz též výměna radiační.
česky: přenos radiační angl: radiative transfer slov: radiačný prenos něm: Strahlungstransport m, Strahlungsübertragung f  1993-a3
переохлажденная вода
kapalná fáze vody přítomná v atmosféře při teplotách vzduchu nižších než 0 °C. Většina oblačných a mlžných kapek zůstává v kapalném stavu i za teploty hluboko pod bodem mrznutí; existence přechlazených kapek v oblacích je prokázána až do teploty cca –42 °C. Přechlazené kapky jsou při teplotě pod 0 °C nestabilní a dostanou-li se do kontaktu s ledovou částicí, rychle mrznou. Proces mrznutí přechlazených kapiček vody v atmosféře usnadňují i ledová jádra. Běžná existence přechlazených vodních kapek v oblacích souvisí s tlakovými poměry v blanách povrchového napětí vody při jejich vysokém zakřivení. Viz též mlha přechlazená, oblak přechlazený, teorie vzniku srážek Bergeronova–Findeisenova.
česky: voda přechlazená angl: supercooled water slov: prechladená voda něm: unterkühltes Wasser n  1993-a2
переохлажденная морось
mrholení, jehož kapičky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. Při mrznoucím mrholení dochází buď k namrzání přechlazených vodních kapek při dopadu na zemský povrch nebo na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo k namrzání nepřechlazených vodních kapek okamžitě při dopadu na zemský povrch nebo na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího mrholení je ledovka. V letecké meteorologii je místo mrznoucí používáno adjektivum namrzající.
česky: mrholení mrznoucí angl: freezing drizzle slov: mrznúce mrholenie něm: Gefrierender Sprühregen m  1993-a3
переохлажденное облако
vodní oblak, jehož teplota je nižší než 0 °C. Viz též voda přechlazená.
česky: oblak přechlazený angl: supercooled cloud slov: prechladený oblak něm: unterkühlte Wolke f  1993-a2
переохлажденный дождь
déšť, tvořený přechlazenými vodními kapkami. Viz voda přechlazená.
česky: déšť přechlazený angl: supercooled rain slov: prechladený dážď něm: unterkühlter Regen m fr: pluie surfondue f  1993-a1
переохлажденный туман
česky: mlha přechlazená angl: supercooled fog slov: prechladená hmla něm: unterkühlter Nebel m  1993-a3
перепутанные облака
(in) [intortus] – jedna z odrůd oblaků podle mezinárodní morfologické klasifikace oblaků. Vyskytuje se u oblaků druhu cirrus, jestliže se zakřivená oblačná vlákna zdánlivě velmi nepravidelně navzájem proplétají.
česky: intortus angl: intortus slov: intortus něm: intortus  1993-a2
переходный климат
neurčité označení pro klima mezi dvěma odlišnými klimatickými typy, a to v daném měřítku, vyjádřeném kategorizací klimatu. V případě makroklimatu jde nejčastěji o pásmo mezi oblastmi se zřetelnou oceánitou a kontinentalitou klimatu, přičemž šířka tohoto pásma bývá vymezována pouze subjektivně. Z hlediska mikroklimatologie je přechodné klima vázáno na hranici aktivních povrchů výrazně odlišných fyz. vlastností (např. klima okraje lesa, jezerního břehu apod.).
česky: klima přechodné angl: transition climate slov: prechodná klíma něm: Übergangsklima n  1993-b3
перигляциальный климат
klima oblastí v předpolí kontinentálního nebo horského ledovce, které má podobné vlastnosti jako klima tundry. Dochází zde ke střídavému mrznutí a tání povrchové vrstvy permafrostu. Převládá mrazové zvětrávání hornin, důležitá je i činnost větru. Termín se používá především v paleoklimatologii. Na území ČR se periglaciální klima vyskytovalo v glaciálech při rozšíření kontinentálního ledovce.
česky: klima periglaciální angl: periglacial climate slov: periglaciálná klíma něm: Periglazialklima n  1993-b3
период
časový interval mezi pravidelně se opakujícími výskyty jevu v důsledku jeho periodicity. V meteorologii a klimatologii se někdy pojem perioda používá nevhodně i ve významech období, cyklus, chod aj.
česky: perioda angl: period slov: perióda něm: Periode f  1993-a3
период без мороза
v klimatologii časový interval mezi prům. datem posledního mrazu na jaře a prům. datem prvního mrazu na podzim. Stanovuje se podle účelu na základě měření teploty vzduchu, zpravidla v meteorologické budce, tj. přibližně ve výšce 2 m nad zemí. Období bezmrazové, které patří k hrubým charakteristikám vegetačního období, je významné zejména pro rajonizaci zeměď. výroby. Viz též období mrazové.
česky: období bezmrazové angl: frost-free period slov: bezmrazové obdobie něm: frostfreie Zeit/Periode f  1993-a1
период без осадков
česky: období bezsrážkové slov: bezzrážkové obdobie něm: niederschlagsfreie Zeit/Periode f  1993-a1
период засухи?
neurčitý pojem pro obzvlášť dlouhé suché období, nebo pro období obecně chudé na atmosférické srážky, provázené vysokou teplotou vzduchu a nízkou relativní vlhkostí vzduchu.
česky: období vyprahlé slov: vyprahnuté obdobie něm: Dürreperiode f  1993-a3
период обледенения
časový interval, ve kterém lze očekávat v daném místě nebo oblasti tvoření tuhých usazených atmosférických srážek. Na území ČR v nadm. výškách do 1 000 m n. m. trvá námrazové období zpravidla od 1. 11. do 31. 3. Termín námrazové období se dříve používal v jiném smyslu, a to pro období skutečného výskytu námrazků, které se nyní označuje jako námrazový cyklus. Během jednoho námrazového období se tedy může vyskytnout několik námrazových cyklů oddělených obdobími bez námrazků. Termín námrazové období se používá především pro potřeby energetiky.
česky: období námrazové angl: icing period slov: námrazové obdobie něm: Vereisungsperiode f  1993-a2
период отбора (проб)
syn. doba vzorkovací – délka časového intervalu, po který se v aerochemických měřeních odebírá jeden vzorek. Měření se pak vztahuje k celému časovému intervalu. V praxi se užívá 30 minut, 1 hodina, 24 hodin, nebo i více (týden, měsíc).
česky: doba odběrová angl: sampling interval slov: doba odberu něm: Beprobungszeitpunkt m, Probenahmezeit f fr: période d'échantillonnage f  1993-a2
период с осадками
časový úsek po sobě jdoucích dnů se srážkami na dané met. stanici. Jako minimální denní úhrn srážek se přitom nejčastěji uvažuje 0,1 mm, ve starších pracích 0,0 mm (neměřitelné srážky). Srážková období, někdy označovaná i jako období vlhká, se střídají se suchými obdobími. Někteří autoři pracují se zvolenou minimální délkou srážkových období, jiní mezi ně počítají i samostatné dny se srážkami. Kromě takto definovaných, tzv. absolutních nebo též uzavřených srážkových období, se někdy vymezují i parciální neboli přerušená srážková období, přičemž kritériem bývá průměrný denní úhrn srážek za toto období. Údaje o četnosti, prům. a nejdelším trvání srážkových období a jejich srážkové vydatnosti jsou důležitými charakteristikami časového rozdělení srážek. Velká četnost, případně délka srážkových období jsou charakteristické pro humidní klima a pro období dešťů.
česky: období srážkové angl: rainy period, wet spell slov: zrážkové obdobie něm: Niederschlagsperiode f, Regenperiode f  1993-a3
периодичность
v meteorologii vlastnost časové řady meteorologického prvku nebo jevu opakovat po uplynutí časového intervalu (periody) posloupnost hodnot (jevů), které se v tomto intervalu vyskytly. Meteorologicky reálnými jsou periodicita denní, daná změnami bilance záření během jedné otočky Země kolem osy, a roční, daná změnami radiační bilance během jednoho oběhu Země kolem Slunce. Tyto periodicity lze zjistit prakticky u všech met. prvků. Další periodicity, např. čtyřdenní, osmidenní, jedenáctiletá apod., jejichž příčiny jsou méně pravidelné a výrazné, bývají vyjádřeny v časových řadách méně zřetelně. Viz též rytmy povětrnostní.
česky: periodicita angl: periodicity slov: periodicita něm: Periodizität f  1993-a2
перисто-кучевые облака
(Cc) [cirokumulus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Cc je charakterizován jako tenké, menší nebo větší skupiny nebo vrstvy bílých oblaků bez vlastního stínu, složené z velmi malých oblačných částí v podobě zrnek nebo vlnek apod. Jednotlivé části mohou být buď navzájem odděleny nebo mohou spolu souviset a jsou více méně pravidelně uspořádány. Zdánlivá velikost jednotlivých částí zpravidla nepřesahuje 1° prostorového úhlu. Cc patří mezi nesrážkové oblaky vysokého patra. Je oblakem ledovým, někdy však může obsahovat i kapky přechlazené vody, které rychle mrznou. Vzniká následkem vlnových a konv. pohybů v horní troposféře. Cc lze dále klasifikovat podle tvaru jako stratiformis, lenticularis, castellanus nebo floccus a podle odrůdy jako undulatus a lacunosus. Mohou se u něj vyskytovat zvláštnosti virga a mamma. Termín Cc v současném smyslu zavedl franc. meteorolog E. Renou v r. 1855. Český překlad Cc je řasová kupa.
česky: cirrocumulus angl: Cirrocumulus slov: cirrocumulus něm: Cirrocumulus m fr: Cirrocumulus m  1993-a3
перисто-слоистое облако
čes. překlad termínu cirrocumulus.
česky: kupa řasová slov: riasová kopa  1993-a1
перисто-слоистые облака
(Cs)  [cirostratus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizován jako průsvitný bělavý oblačný závoj vláknitého nebo hladkého vzhledu, který úplně, nebo částečně zakrývá oblohu a dává vznik halovým jevům. Cs je nesrážkový ledový oblak vysokého patra. Vyskytuje se jako typická součást oblačných systémů atmosférických front. Může vzniknout z kovadliny Cb, která se dále šíří i po rozpadu původního oblaku. Cs lze dále klasifikovat podle tvaru jako fibratus či nebulosus nebo floccus a podle odrůdy jako duplicatus a undulatus. U Cs se neklasifikují žádné zvláštnosti a průvodní oblaky. Termín Cs v současném smyslu zavedl franc. meteorolog E. Renou v r. 1855. Český překlad Cs je řasová sloha.
česky: cirrostratus angl: Cirrostratus slov: cirrostratus něm: Cirrostratus m fr: Cirrostratus m  1993-a3
перистые облака
(Ci) [cirus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Ci je definován jako vzájemně oddělené oblaky v podobě bílých jemných vláken, bílých plošek nebo úzkých pruhů. Má vláknitý vzhled a často hedvábný lesk. Ci patří mezi oblaky vysokého patra, je oblakem ledovým, nevypadávají z něho srážky a jeho výskyt na obloze bývá často příznakem blízkosti atmosférické fronty. Může vzniknout z kovadliny Cb, která se dále šíří i po rozpadu původního oblaku. Vyskytuje se však i v oblastech vysokého tlaku vzduchu. Ci lze dále klasifikovat podle tvaru jako fibratus, uncinus, spissatus, castellanus nebo floccus a podle odrůdy jako intortus, radiatus, vertebratus a duplicatus. Průvodním jevem Ci může být zvláštnost oblaku mamma. Termín Ci navrhl Angličan L. Howard v r. 1803. Český překlad Ci je řasa.
česky: cirrus angl: Cirrus slov: cirrus něm: Cirrus m fr: Cirrus m  1993-a3
перламутровые облака
oblaky ve stř. stratosféře vzhledem se podobající oblakům druhu cirrus nebo altocumulus lenticularis, na nichž se velmi výrazně projevuje irizace, takže nabývají vzhledu perleti. Nejživější barvy jsou pozorovány při poloze Slunce několik stupňů pod obzorem. Mikrofyzikální složení oblaků není jednoznačně určeno, ale výrazná irizace se současným výskytem různých spektrálních barev podporuje jako příčinu ohyb světla na kulových částicích o průměru menším než 2,5 µm. Řada poznatků o chemickém složení byla získána na základě leteckých měření. Perleťové oblaky byly zaznamenány ve výškách 20 až 30 km v Evropě nad Skotskem a Norskem, dále např. v Antarktidě a na Aljašce. Perleťové oblaky se jeví jako stacionární a během dne se podobají bledým cirrům. Při západu slunce se objevuje spektrální zbarvení, které se zvýrazňuje při stmívání. Jak slunce klesá níže pod obzor, pestré zbarvení mizí a je nahrazeno nejprve oranžovým a později růžovým zbarvením, které silně kontrastuje s tmavnoucí oblohou a postupně šedne. I později po západu slunce je lze stále rozeznat jako nevýrazné a šedivé oblaky. Lze je pozorovat i v noci při měsíčním světle. Před východem slunce probíhá vývoj irizace v opačném pořadí. Viz též oblaky polární stratosférické.
česky: oblaky perleťové angl: mother-of-pearl clouds, nacreous clouds slov: perleťové oblaky něm: Perlmutterwolken f/pl  1993-a3
песчаная мгла
označení pro zákal vytvářený jemnými písečnými částicemi v ovzduší po předchozí písečné bouři. Vzhledem k současné přítomnosti prachových částic se v met. literatuře zahrnuje pod termín prachový zákal.
česky: zákal písečný angl: sand haze slov: pieskový zákal něm: Sanddunst m  1993-a3
песчаный вихрь
syn. rarášek – tromba vznikající odspodu termickou konvekcí ve vrstvě vzduchu u silně přehřátého zemského povrchu s výraznou vertikální instabilitou atmosféry. Poloměr víru s výškou roste, osa rotace je víceméně vertikální. Směr rotace může být po směru nebo proti směru otáčení hodinových ručiček, přičemž uprostřed víru nemusí být prach nebo písek přítomen. Byly zdokumentovány víry tohoto typu, které dosáhly výšku kolem 1 000 m, převažují však výšky kolem 30 m. Víry od výšky 100 m bývají už využitelné i pro bezmotorové létání. Rychlost rotace víru se může měnit od méně než 15 m/s do více než 30 m/s. Mohou se vyskytovat i za jasného počasí a mohou způsobovat škody v úzkém pásu o šířce několika metrů, jímž postupují. Prachový nebo písečný vír řadíme mezi litometeory.
česky: vír prachový nebo písečný angl: dust whirl or sand whirl, dust devil slov: prachový alebo piesočný vír něm: Sandwirbel m, Staubwirbel m  1993-a3
пиксель
elementární část obrazových dat (základní obrazový prvek, ang. picture element) charakterizovaná svou polohou v rámci snímku. Digitální hodnota přiřazená pixlu vyjadřuje určitou veličinu (např. odrazivost nebo teplotu) charakterizující oblast reprezentovanou pixlem. Tato hodnota vzniká integrací nebo průměrováním sledované veličiny přes plochu (objem) odpovídající pixlu. Jeho rozměr úzce souvisí s rozlišovací schopností přístroje (např. radiometru družice), jímž se sledovaná veličina měří.
česky: pixel angl: pixel slov: pixel něm: Bildelement n, Pixel n  1993-a3
ПИЛОТ
zpráva o směru a rychlosti větru ve standardních izobarických hladinách a v hladinách význačných změn větru. Sestavuje se podle kódu PILOT. V části A, resp. C této zprávy, jsou uvedeny údaje o větru ve standardních izobarických hladinách a údaje o max. rychlosti a vert. střihu větru do hladiny 100, resp. nad 100 hPa. Část B, resp. D, obsahuje údaje o význačných změnách směru a rychlosti větru v hladinách do 100, resp. nad 100 hPa. Zpráva PILOT se sestavuje jen při pilotovacím měření nebo při měření větru radiotechnickými prostředky. Zjednodušenou formou zprávy PILOT je PILOT SPECIAL. Obsahuje informace o větru do výšky 5 000 m po vrstvách 500 m a nad výškou 5 000 m jsou uváděny údaje o větru z hladin vzájemně vzdálených o 1 000 m. Zpráva z mořské stanice o výškovém větru se sestavuje podle kódu PILOT SHIP, který je kódu PILOT analogický.
česky: zpráva z pozemní stanice o výškovém větru (PILOT) angl: Upper-wind report from a fixed land station (PILOT) slov: správa z pozemnej stanice o výškovom vetre něm: PILOT-Meldung f  1993-a3
пирамидальное гало
duhově zbarvené světelné kruhy kolem Slunce představující obdobu malého hala nebo velkého hala, avšak s odlišnými úhlovými poloměry. Vytvářejí se dvojitým lomem paprsků na ledových krystalcích, když vstupní, resp. výstupní stěnou krystalku pro příslušný paprsek je stěna pyramidálního (jehlanovitého) zakončení sloupkových nebo destičkových krystalků (často se vyskytující pyramidální nástavby nad stěnami podstav sloupkových nebo destičkových krystalků). Nejčastěji se v literatuře v tomto směru uvádějí hala o úhlovém poloměru ca: 9° (Buiysenovo halo), 18° (Rankinovo halo), 20° (Burneyovo halo), 23° (Barkowovo halo), 24° (Dutheilovo halo) a 35° (Feuilleovo halo). U pyramidálních hal mohou vzácně vznikat jevy obdobné parheliím a tečným obloukům u malého hala.
česky: hala pyramidální angl: pyramidal haloes slov: pyramidálne halo něm: pyramidaler Halo m fr: halos inhabituels pl (m)  2014
пиранограмма
záznam registračního pyranometru.
česky: pyranogram angl: pyranogram slov: pyranogram něm: Pyranogramm n  1993-a1
пиранограф
pyranometr, jehož součástí je registrační zařízení zaznamenávající časový průběh intenzity globálního záření. Záznam je většinou prováděný v podobě denní křivky v časové stupnici na předtištěné papírové pásce.
česky: pyranograf angl: pyranograph slov: pyranograf něm: Pyranograph m  1993-a3
пиранометр
přístroj k měření globálního slunečního záření, pro který se někdy používá i název solarimetr. Pyranometry pracují nejčastěji na termoelektrickém principu. Jejich diferenční termočlánek, popř. termobaterie, indikuje teplotní rozdíl povrchu, který absorbuje prakticky úplně dopadající krátkovlnné záření, a povrchu, který toto záření nepohlcuje, nebo je zastíněn. Obdobný teplotní rozdíl se určuje diferenčním bimetalem v Robitzschově bimetalickým pyranografu nebo rozdílem teplot na teploměrech pyranometru Aragova–Davyova. Některé typy pyranometrů používají jako čidlo fotodiody, které vytvářejí fotoelektrické napětí úměrné dopadajícímu záření. Pyranometr destilační neboli lucimetr měří globální, popř. cirkumglobální záření tak, že záření pohlcené čidlem přístroje využívá k výparu vhodné kapaliny, jejíž objem je po zpětné kondenzaci mírou pohlceného záření. Jestliže se stínidlem odstraní přímé sluneční záření, pyranometry měří rozptýlené sluneční záření a pracují jako difuzometry. Pyranometry jsou většinou vybaveny dvěma skleněnými polokoulemi chránícími jejich čidla před rušivými účinky větru, atm. srážek, vnitřní cirkulací vzduchu v čidle a před usazováním prachu a nečistot. Polokoule současně zabraňují průchodu záření delších vlnových délek než asi 4 µm a způsobují, že pyranometr měří pouze krátkovlnné záření. Jestliže se pyranometr exponuje s polokoulemi umožňujícími průchod dlouhovlnného záření, tzn. měří jak krátkovlnné, tak dlouhovlnné záření, nazývá se pyrradiometr, v čes. literatuře někdy nevhodně též pyranometr efektivní.
česky: pyranometr angl: pyranometer slov: pyranometer něm: Pyranometer n  1993-a3
пиранометр Араго-Дэви
přístroj k přibližnému určení globálního slunečního záření. Tvoří jej dvojice speciálně upravených skleněných teploměrů, z nichž jeden má nádobku začerněnou, druhý lesklou nebo opatřenou bílým nátěrem. Oba teploměry jsou ve vakuovaných skleněných krytech bránících výměně energie vedením. Zjištěný rozdíl jejich teplot je úměrný měřenému záření. Někdy jsou v této úpravě použity maximální teploměry, takže pyranometr udává přibližně max. denní hodnotu globálního záření. V současné době se tento přístroj již v met. praxi nepoužívá.
česky: pyranometr Aragův–Davyův angl: Arago-Davy pyranometer slov: Arago-Davyho pyranometer něm: Arago-Davy-Pyranometer n  1993-b3
пиранометр, диффузометр
pyranometr měřící v krátkovlnném oboru pouze rozptýlené sluneční záření; je opatřen stínidlem ve tvaru prstence, posuvného ve směru rovnoběžném se zemskou osou nebo pohyblivým stínícím kotoučem, který zabraňuje dopadu přímého slunečního záření na čidlo. Jako difuzometr může být použit v podstatě každý pyranometr s vodorovným čidlem obráceným vzhůru po doplnění příslušným stínidlem.
česky: difuzometr angl: diffusometer slov: difúzometer něm: Diffusiometer n fr: diffusiomètre m, diffusomètre m  1993-a3
пиргелиометр
přístroj k měření přímého slunečního záření. Přeměňuje energii slunečního záření, prošlou tubusem s malým vstupním otvorem a pohlcenou černým povrchem čidla nebo dutinou, na teplo, které se určuje ze zvýšení teploty absorpčního povrchu, popř. kapalného chladicího média. Pyrheliometry, jejichž údaj lze vyjádřit přímo ve fyz. jednotkách, se nazývají absolutními, rel. pyrheliometry se nazývají aktinometry. Pyrheliometry se často požívají jako referenční etalony pro kalibraci radiometrů pro měření slunečního krátkovlnného záření.
česky: pyrheliometr angl: pyrheliometer slov: pyrheliometer něm: Pyrheliometer n  1993-a3
пиргелиометр Онгстрема
pyrheliometr využívající kompenzačního principu. Jako čidla se používá dvou stejných tenkých a začerněných manganinových pásků. Teplotní diference mezi nimi se při střídavém ozařování a zastiňování určuje pomocí termočlánků přilepených na jejich neozařované straně. Zastíněný pásek se vyhřívá el. proudem takové intenzity, aby měl stejnou teplotu s teplotou ozářeného pásku. Intenzita měřeného záření je přímo úměrná čtverci kompenzačního proudu. Pyrheliometr Ångströmův byl v minulosti používán především jako standardní radiometr. Uvedený pyrheliometr zkonstruoval švédský fyzik K. Ångström v r. 1893.
česky: pyrheliometr Ångströmův angl: Ängström pyrheliometer slov: Ängströmov pyrheliometer něm: Pyrheliometer nach Angström n  1993-a3
пиргелиометрическая шкала
stupnice používaná při měření energie toků slunečního záření. Je určena základním pyrheliometrickým normálem. V Evropě se do r. 1956 používala Ångströmova pyrheliometrická stupnice, odvozená od Ångströmova kompenzačního pyrheliometru umístěného ve Švédsku. V sev. Americe sloužil obdobně za základ Smithsonské pyrheliometrické stupnice pyrheliometr vodní. Vzájemným srovnáním údajů obou základních etalonů, které měly odchylné principy měření i odchylné podstatné konstrukční parametry, byl zjištěn mezi oběma pyrheliometrickými stupnicemi systematický rozdíl. Jako kompromis byla zavedena v r. 1957 mezinárodní pyrheliometrická stupnice IPS, která snižovala údaje podle Smithsonské stupnice o 2 % a údaje podle Ångströmovy stupnice zvyšovala o 1,5 %. V návaznosti na rozvoj technologií měření slunečního záření byla od 1. 7. 1980 zavedená pyrheliometrická stupnice označená WRR (WorldRadiation Reference), která zvyšuje naměřené hodnoty vůči IPS o 2,2 %. Pyrheliometrická stupnice WRR je definovaná referenční skupinou absolutních pyrheliometrů (World Standard Group) udržovanou ve Světovém radiačním středisku WMO v Davosu, Švýcarsko.
česky: stupnice pyrheliometrická angl: pyrheliometric scale slov: pyrheliometrická stupnica něm: pyrheliometrische Skala f  1993-a3
пиргеометр
radiometr používaný k měření dlouhovlnného záření, většinou vyzařovaného atmosférou směrem k zemskému povrchu. Přístroj má obvykle termoelektrické čidlo chráněné křemennou polokoulí, která je pokrytá speciální vrstvou propouštějící pouze záření s vlnovou délkou větší než 4,5 µm.
česky: pyrgeometr angl: pyrgeometer slov: pyrgeometer něm: Pyrgeometer n  1993-a3
пиргеометр Онгстрема
pyrgeometr, jehož čidlo se skládá ze dvou párů tenkých manganinových pásků, z nichž jeden pár je začerněn a druhý pozlacen. Pracuje na kompenzačním principu a je použitelný pouze v noci. V současné době se již nepoužívá.
česky: pyrgeometr Ångströmův angl: Ängström pyrgeometer slov: Ängströmov pyrgeometer něm: Angström-Pyrgeometer n  1993-b3
пиррадиометр
přístroj k měření krátkovlnného i dlouhovlnného záření, dopadajícího z prostorového úhlu 2π na vodor. orientovanou plochu. Je-li čidlo obráceno vzhůru, přístroj měří globální sluneční záření a dlouhovlnné záření atmosféry. Je-li čidlo obráceno směrem k zemskému povrchu přístroj měří odražené globální sluneční záření a dlouhovlnné záření zemského povrchu. Kombinací dvou opačně orientovaných pyrgeometrů lze měřit radiační bilanci zemského povrchu. Jako pyrradiometr lze použít pyranometru, který je místo skleněné polokoule vybaven polokoulí z materiálu propustného pro krátkovlnné i dlouhovlnné záření.
česky: pyrradiometr angl: pyrradiometer slov: pyrradiometer něm: Pyrradiometer n  1993-b3
плавучесть
dynamické meteorologii označení pro vertikálně orientovanou výslednici síly zemské tíže a vztlakové síly působící na danou vzduchovou částici. V případě, že je výslednice těchto sil orientována od zemského povrchu, mluvíme o kladném vztlaku, v opačném případě o záporném vztlaku. V důsledku toho vzniká vertikální pohyb uvažované vzduchové částice směrem vzhůru při kladném, resp. dolů při záporném vztlaku. V meteorologii je dominantním faktorem vztlaku hydrostatická složka vztlakové síly, daná Archimédovým zákonem; v aerodynamice jsou naopak rozhodující dynamické složky vztlaku, vznikající při obtékání profilu tělesa (např. křídla letadla) vzdušným proudem. V obecné mechanice tekutin se nicméně vztlakem obvykle rozumí pouze vztlaková síla. Viz též konvekce.
česky: vztlak angl: buoyancy slov: vztlak něm: Auftrieb m  2014
планерная метеорология
aplikace letecké meteorologie v bezmotorovém létání. Plachatřská meteorologie se zabývá především zákonitostmi procesů v ovzduší, které mají základní význam pro vznik vertikálních pohybů vzduchu vhodných k využití při letech kluzáků. Zahrnuje zejména rozbory podmínek konvekce, místních cirkulací, zejména svahových, popř. cirkulačních systémů, hlavně denních mořských vánků a proudění v horských závětrných vlnách. Viz též komín termický, termiky, konvekce termická, cirkulace brízová.
česky: meteorologie plachtařská angl: soaring meteorology slov: plachtárska meteorológia něm: Segelflugmeteorologie f  1993-a3
планетарная атмосфера
plynný obal obklopující jednotlivé planety. Podle chem. složení lze planetární atmosféru ve sluneční soustavě rozdělit do tří typů:
1. dusíko-kyslíkový (Země);
2. uhlíkový (Venuše, Mars, kde se atmosféra skládá převážně z oxidu uhličitého);
3. vodíko-metano-čpavkový (velké planety Jupiter, Saturn, Uran, Neptun).
K udržení atmosféry musí mít planeta dostatečně velkou hmotnost a nikoli příliš vysokou teplotu povrchu. Ve sluneční soustavě to lze dokumentovat např. na Merkuru, jenž je prakticky bez atmosféry. V současné době se na společném obsahovém pomezí meteorologie, geofyziky a astronomie věnuje pozornost planetárním atmosférám nejen v rámci naší sluneční soustavy, ale i v souvislosti s exoplanetami, tj. planetami příslušejícími k planetárním systémům jiných hvězd než je naše Slunce. Viz též atmosféra Země.
česky: atmosféra planetární angl: planetary atmosphere slov: planetárna atmosféra něm: planetare Atmosphäre f fr: atmosphères planétaires pl  1993-a1
планетарная высотная фронтальная зона
pás zvětšených horiz. gradientů teploty a tlaku vzduchu ve stř. a horní troposféře v mírných a subtropických zeměp. šířkách. Má značné rozměry, většinou se vyskytuje nad určitou částí polokoule, v některých případech však probíhá okolo celé polokoule. Průběh této zóny může být více méně zonální nebo značně meandrující. Největší gradienty teploty a tlaku vzduchu bývají obvykle v blízkosti tropopauzy. Ve volné atmosféře se na tuto výškovou frontální zónu váže polární nebo arktická fronta. V uvedené zóně se často vyskytuje tryskové proudění.
česky: zóna frontální výšková planetární angl: planetary height-level frontal zone slov: planetárna výšková frontálna zóna něm: planetarische Frontalzone f  1993-a3
планетарная циркуляция
1. syn. všeobecná cirkulace atmosféry;
2. hypotetická atmosférická cirkulace, která by existovala na planetě s hladkým homogenním povrchem.
česky: cirkulace planetární angl: planetary circulation slov: planetárna cirkulácia něm: planetare Zirkulation f fr: circulation planétaire f  1993-a2
планетарное альбедо
poměr záření odraženého Zemí jako planetou k záření Slunce vstupujícímu do atmosféry Země. V současné době se na základě družicových meteorologických měření udává hodnota albeda Země přibližně 30 %.
česky: albedo Země angl: albedo of the Earth, planetary albedo slov: albedo Zeme něm: Albedo der Erde f, Erdalbedo f, planetare Albedo f fr: albédo terrestre m  1993-a2
планетарные волны
vlny v zonálním proudění charakteru Rossbyho vln, avšak s velkými vlnovými délkami, přibližně 10 000 km nebo více. Často oscilují kolem určité polohy a projevují se především na výškových klimatologických mapách tlakového pole.
česky: vlny planetární angl: planetary waves slov: planetárne vlny něm: planetare Wellen f/pl  1993-a1
планетарный пограничный слой атмосферы
1. mezní vrstva atmosféry v nejširším smyslu. Obsahuje tzv. vnitřní mezní vrstvy vznikající při obtékání jednotlivých překážek prouděním, při přechodu proudění nad odlišný typ povrchu apod.;
2. teor. model mezní vrstvy atmosféry, v němž se předpokládá turbulentní proudění, nezávislost všech veličin na čase a na horiz. souřadnicích.
česky: vrstva atmosféry mezní planetární angl: planetary boundary layer of atmosphere slov: planetárna hraničná vrstva atmosféry něm: planetarische Grenzschicht der Atmosphäre f  1993-a1
пленка холодного воздуха
slangové označení pro tenkou vrstvu studeného vzduchu, která se za vhodných podmínek udržuje nad zemským povrchem a neúčastní se všeobecného proudění vzduchu. Její tloušťka kolísá od několika metrů do několika stovek metrů. Vytváří se nejčastěji v zimě ve studených anticyklonách nad prochlazenou pevninou, v uzavřených terénních sníženinách, kde zejména v nočních hodinách studený vzduch stéká ze svahů do nižších poloh, nebo pod rozhraním teplé fronty v případě, kdy je její nejspodnější část výrazně zpomalována oproti ostatním částem fronty v důsledku tření o zemský povrch. V bláně studeného vzduchu zpravidla pozorujeme inverzi teploty vzduchu nebo izotermii. Viz též jezero studeného vzduchu.
česky: blána studeného vzduchu angl: film of cold air slov: blana studeného vzduchu něm: Kaltluftfilm m fr: film d'air froid m  1993-a3
пленочный гигрометр
vlhkoměr pracující na deformačním principu. Jeho čidlo je zhotoveno ze zlatotepecké blány (fólie z hovězího slepého střeva). Blána je napjata v kruhovém rámečku a má tvar trychtýře, jehož střed se vytahuje při vzrůstu relativní vlhkosti vzduchu. Posuvy středu blány se přenášejí mech. převody na stupnici dělenou na procenta relativní vlhkosti. V současné době se již téměř nepoužívají, jejich výroba byla ukončena.
česky: vlhkoměr blánový angl: goldbeater's-skin hygrometer slov: blanový vlhkomer něm: Goldschlägerhauthygrometer n  1993-a3
плоская молния
blesk, který je pozorován zejména při blýskavicích. Mohou to být všechny druhy blesků, u nichž pozorovatel nevidí jejich kanál blesku, nýbrž oblak osvětlený vzdálenějším výbojem.
česky: blesk plošný angl: sheet lightning slov: plošný blesk něm: Wetterleuchten n fr: éclair diffus m, éclair en nappe m  1993-a1
плоские
(hum) – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má podobu kup malého vert. rozsahu, které se jeví jako zploštělé. Užívá se u druhu cumulus. Termín humilis poprvé užil belgický meteorolog J. Vincent v Atlasu oblaků, vydaném v Bruselu v r. 1907. Viz též oblak kupovitý, mediocris, congestus.
česky: humilis angl: humilis slov: humilis něm: humilis  1993-a2
плотность влажного воздуха
hmotnost jednotky objemu vlhkého vzduchu. Hustotu vlhkého vzduchu ρ v kg.m–3 lze určit ze stavové rovnice vlhkého vzduchu podle vzorce
ρ=pRdTv
kde p = pd + e je tlak vlhkého vzduchu v Pa, pd tlak suchého vzduchu v Pa, e napětí vodní páry v Pa, Rd = 287,4 J.kg–1.K–1 je měrná plynová konstanta suchého vzduchu a Tv značí virtuální teplotu v K. Za stejné teploty a za stejného tlaku suchého a vlhkého vzduchu je hustota vlhkého vzduchu vždy menší než hustota suchého vzduchu.
česky: hustota vlhkého vzduchu angl: density of moist air slov: hustota vlhkého vzduchu něm: Dichte der feuchten Luft f  1993-a3
плотность водяного пара
hmotnost vodní páry v jednotce objemu vlhkého vzduchu. Udává se v kg.m–3. V meteorologii se užívá také tradiční označení absolutní vlhkost vzduchu.
česky: hustota vodní páry angl: water vapour density slov: hustota vodnej pary něm: Wasserdampfdichte f  1993-a3
плотность воздуха
syn. hmotnost vzduchu – měrná hmotnost jednotky objemu vzduchu. Udává se v kg.m–3 a je převrácenou hodnotou měrného objemu vzduchu. Plochy konstantní hustoty vzduchu se nazývají plochami izopyknickými. Viz též inverze hustoty vzduchu.
česky: hustota vzduchu angl: air density slov: hustota vzduchu něm: Luftdichte f  1993-a3
плотность снега
hmotnost objemové jednotky sněhové pokrývky vyjádřená v kg.m–3, případně v poměru k hustotě vody. Hustota nově napadlého sněhu se pohybuje v závislosti na teplotě vzduchu a rychlosti  větru od 50 do 150 kg.m–3, hustota starého sněhu často přesahuje 400 kg.m–3. Viz též firn.
česky: hustota sněhu angl: density of snow, snow density slov: hustota snehu něm: Schneedichte f  1993-a3
плотность сухого воздуха
hmotnost jednotky objemu suchého vzduchu. Hustotu suchého vzduchu ρd v kg.m–3 lze určit ze stavové rovnice suchého vzduchu podle vzorce
ρd=pd RdT,
kde pd je tlak suchého vzduchu v Pa, T teplota vzduchu v K, a Rd = 287,4 J.kg–1.K–1 je měrná plynová konstanta suchého vzduchu. Při teplotě 0 °C a tlaku suchého vzduchu 1 013,25 hPa je ρd = 1,293 kg.m–3.
česky: hustota suchého vzduchu angl: density of dry air slov: hustota suchého vzduchu něm: Dichte der trockenen Luft f  1993-a3
плотные облака
(spi) [spisátus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Označuje závojovitý oblak, který je opticky tak hustý, že se proti Slunci zdá šedavý. Označení spissatus se používá u druhu cirrus.
česky: spissatus angl: spissatus slov: spissatus něm: spissatus  1993-a2
плохая погода
vžité lidové označení pro počasí s trvalými nebo občasnými atm. srážkami. Špatné počasí je často spjato s výskytem oblaků tvaru fractus (stratus fractus nebo cumulus fractus „špatného počasí“). Viz též počasí cyklonální, počasí frontální.
česky: počasí špatné angl: bad weather slov: škaredé počasie něm: schlechtes Wetter n  1993-a1
плювиальный период
období s vydatnými srážkami v nižších zeměp. šířkách. Podle starších představ měly pluviály časově zhruba odpovídat glaciálům ve vyšších zeměp. šířkách, avšak např. poslední pluviál zřejmě nastal na konci glaciálu a přetrval až do období holocénního klimatického optima. Do většiny oblastí, kde dnes panuje horké suché klima, se rozšířilo klima savan, vytvořily se stálé vodní toky a rozsáhlá jezera, takže zde byla i vyšší hustota zalidnění než v současné době.
česky: pluviál angl: pluvial period slov: pluviál něm: Pluvialzeit f  1993-a3
плювиограмма
záznam ombrografu.
česky: ombrogram angl: pluviogram slov: ombrogram něm: Ombrogramm n  1993-a1
плювиограмма
viz ombrograf.
česky: pluviogram angl: pluviogram slov: pluviogram něm: Pluviogramm n  1993-a3
плювиограф
registrační přístroj zaznamenávající časový průběh kapalných srážek. V Česku byly ombrografy nahrazeny člunkovými nebo váhovými srážkoměry. Starší označení pro ombrograf je pluviograf nebo hyetograf. Záznam ombrografu se nazývá ombrogram (pluviogram, hyetogram). Plovákové ombrografy, které se v ČR užívaly, soustřeďují srážkovou vodu do plovákové komory, v níž je výška hladiny indikována polohou plováku spojeného s registračním perem.
česky: ombrograf angl: pluviograph, recording raingauge slov: ombrograf něm: Ombrograph m  1993-a3
плювиограф
viz ombrograf. Viz též mikropluviograf.
česky: pluviograf angl: pluviograph, recording raingauge slov: pluviograf něm: Pluviograph m, Niederschlagsschreiber m  1993-a3
плювиограф с опрокидывающимся сосудом
automatický srážkoměr, jehož měření je založeno na počtu impulzů vyvolaných překlápěním dvoudílného člunku srážkovou vodou. Po naplnění horní poloviny dvoudílného člunku se člunek překlopí, tím voda z nyní spodní poloviny člunku vyteče a pod zdroj vody se nastaví druhá, nyní horní polovina člunku. Pro měření srážek v zimním období musí být srážkoměr vytápěn. Z počtu impulzů je možné určit úhrn i okamžitou intenzitu srážek.
česky: srážkoměr člunkový angl: tipping bucket rain gauge slov: člnkový zrážkomer něm: Niederschlagswippe f  2014
плювиограф с опрокидывающимся сосудом
česky: srážkoměr překlápěcí angl: tipping bucket rain gauge, Niederschlagswippe f slov: člnkový zrážkomer  2019
плювиометр
zast. označení pro srážkoměr.
česky: pluviometr angl: pluviometer slov: pluviometer něm: Pluviometer n  1993-a3
плювиометрический коэффициент
syn. kvocient pluviometrický – charakteristika poměrného rozložení atm. srážek během roku, stanovená jako podíl skutečného úhrnu srážek za určitý měsíc a úhrnu, který by spadl v tomto měsíci v případě rovnoměrného rozložení srážek během roku. Je obdobou častěji používaných relativních srážek. Na klimatologických mapách se znázorňuje pomocí izomer.
česky: koeficient pluviometrický angl: hyetal coefficient, pluviometric coefficient slov: pluviometrický koeficient něm: pluviometrischer Koeffizient m  1993-a3
плювиометрический коэффициент
česky: kvocient pluviometrický angl: pluviometric quotient slov: pluviometrický kvocient něm: pluviometrischer Quotient m  1993-a1
плювиометрический коэффициент Майера
index humidity navržený A. Meyerem (1926) ve tvaru
QM=RD
kde R je prům. roč. úhrn srážek v mm a D prům. roč. sytostní doplněk v mm rtuťového sloupce neboli torrech.
česky: kvocient Meyerův angl: Meyer rain factor slov: Meyerov kvocient něm: Meyerscher Quotient m  1993-a3
плювиометрическое отношение
česky: kvocient pluviometrický angl: pluviometric quotient slov: pluviometrický kvocient něm: pluviometrischer Quotient m  1993-a1
плювиометрия
syn. ombrometrie.
česky: hyetometrie angl: hyetometry slov: hyetometria něm: Hyetometrie f, Niederschlagsmessung f  1993-a3
плювиометрия
syn. ombrometrie.
česky: pluviometrie angl: pluviometry slov: pluviometria něm: Pluviometrie f  1993-a1
плювиоскоп
zařízení pro určení výskytu, trvání, popř. i druhu atm. srážek. V ČR se nepoužíval. Viz též detektor počasí.
česky: pluvioskop angl: pluvioscope slov: pluvioskop něm: Pluvioskop n  1993-a3
побочная допольнительная радуга
úzké barevné oblouky, které se vyskytují uvnitř hlavní nebo vně vedlejší duhy; častěji se objevují u vedlejší duhy. Jde o interferenční jev související s uplatněním optického principu minimální odchylky. Někteří autoři používají pro duhové podružné oblouky méně vhodného označení „duhy sekundární“. Duhové podružné oblouky jsou jedním z fotometeorů.
česky: oblouky duhové podružné angl: supernumerary bows, supernumerary rainbows slov: podružné dúhové oblúky něm: Nebenregenbogen m  1993-a3
поверхность постоянного давления
hladina (plocha) s konstantním tlakem vzduchu, jejíž výška nad zemí nebo vzdálenost od jiné izobarické hladiny závisí na teplotních, resp. hustotních vlastnostech sloupce vzduchu, vyjádřených např. jeho stř. virtuální teplotou. Mapy izobarických hladin jsou označovány jako mapy absolutní a relativní topografie. Sklon izobarických hladin k stř. hladině moře je řádově zlomky minuty. Tangens úhlu sklonu izobarické hladiny je
tgβ=λgvg,
kde λ je Coriolisův parametr, vg rychlost geostrofického větru a g velikost tíhového zrychlení. Nevhodné označení pro izobarickou plochu je tlaková, příp. barická hladina.
česky: hladina izobarická angl: constant pressure level, constant pressure surface, isobaric level, isobaric surface slov: izobarická hladina něm: isobare Fläche f  1993-a2
поворот ветра
náhlá změna směru větru v horiz. směru nebo s výškou, způsobená především termodynamickými nebo orografickými vlivy. S výškou pozorujeme stočení větru zejména na hranicích inverzí teploty vzduchu a na frontálních plochách, v horiz. směru na atmosférických frontách, na mořském pobřeží, na orografických překážkách, pod oblaky druhu cumulonimbus apod. Obdobně mluvíme o stočení větru i v časovém smyslu, např. při přechodu fronty přes dané místo. Viz též střih větru, stáčení větru.
česky: stočení větru angl: sudden wind shift slov: stočenie vetra něm: Windsprung m  1993-a2
поглощение радиации
obecně pohlcování určitého, nejčastěji elektromagnetického záření v daném prostředí. V meteorologii jde o pohlcování krátkovlnného nebo dlouhovlnného záření atmosférou, svrchní vrstvou pedosféry nebo litosféry, vegetačním krytem a vodními plochami. V atmosféře se v průměru absorbuje přibližně 15 % slunečního záření, které do ní vstoupilo, a přibližně 90 % dlouhovlnného záření procházejícího ovzduším od zemského povrchu směrem nahoru. Na absorpci záření se podílejí plynné složky, oblaky, popř. různé aerosolové příměsi; u plynů jde o selektivní absorpci záření. Pevný povrch absorbuje dopadající záření v tenké svrchní vrstvičce, čímž se liší od vody, kde k absorpci dochází ve vrstvě silné až několik metrů. Absorpce záření významně ovlivňuje radiační i tepelnou bilanci planety Země. Absorpce slunečního záření vhodných vlnových délek zelenými rostlinami je v přírodě podmínkou pro fotosyntézu. Viz též koeficient absorpce.
česky: absorpce záření angl: absorption of radiation slov: absorpcia žiarenia něm: Absorption der Strahlung f fr: absorption du rayonnement f  1993-a3
поглощение радиации
česky: pohlcování záření angl: absorption of radiation slov: pohlcovanie žiarenia něm: Strahlungsabsorption f  1993-a1
погода
stav atmosféry charakterizovaný souhrnem hodnot všech meteorologických prvků a atm. jevy v určitém místě a čase. Počasím se zpravidla rozumí okamžitý stav atmosféry, někdy též změny (průběh) met. prvků a jevů v určitém krátkém časovém intervalu (řádově minuty nebo hodiny). Počasí se charakterizuje souborem okamžitých nebo krátkodobě průměrovaných hodnot, zvláště teploty vzduchu, oblačnosti nebo slunečního svitu, směru a rychlosti větru a atm. srážek. Počasí je v podstatě vázáno na troposféru, nad níž se již většinou nevytvářejí oblaky, hydrometeory, bouřky apod. Pro počasí je charakteristická velká časová a prostorová proměnlivost. Počasí ve smyslu této definice je neopakovatelné; počasí ale mohou být podobná a lze je shrnovat do typů počasí. Viz též stav počasí, průběh počasí, proměnlivost počasí, zlepšení počasí, zhoršení počasí, změna počasí, zvrat počasí, jevy počasí význačné, jevy počasí zvláštní, bodování počasí, předpověď počasí, měření meteorologické, pozorování meteorologické, povětrnost, klima.
česky: počasí angl: weather slov: počasie něm: Wetter n  1993-a3
погода в антициклонах
1. počasí v oblasti anticyklony. Závisí na stadiu vývoje anticyklony, na druhu vzduchové hmoty, která anticyklonu tvoří, a na roč. období. Je rozdílné v různých sektorech anticyklony. V chladném pololetí můžeme ve stř. Evropě pozorovat dva typy anticyklonálního počasí. První typ počasí se vyznačuje malou oblačností a nízkou teplotou vzduchu. Je obvyklý především ve stř. části anticyklony. Je charakteristický pro ostře vyjádřené procesy anticyklogeneze při subsidenci vzduchu v anticyklonách nad pevninou, které jsou tvořeny kontinentální vzduchovou hmotou s malou měrnou vlhkostí vzduchu. Při sněhové pokrývce klesá u nás noční teplota hluboko pod bod mrazu (–20 °C a níže). Druhý typ počasí je charakterizován velkou oblačností druhu stratus a stratocumulus a vyskytuje se v pomalu se vyvíjejících, popř. rozpadajících se anticyklonách, kdy sestupné pohyby vzduchu jsou velmi malé nebo jsou vystřídány výstupnými pohyby. Za této situace mohou dokonce vypadávat srážky ve tvaru mrholení. Často se vyskytují inverze teploty vzduchu obvykle začínající v blízkosti zemského povrchu a sahající do výšky 1 až 2 km. Při dostatečné vlhkosti jsou provázeny vývojem mlh, které zasahují rozsáhlé oblasti především v blízkosti středu anticyklony. Ve vyšších vrstvách anticyklony, v horských oblastech, bývá v tomto případě jasné a relativně velmi teplé počasí. V teplém pololetí nepozorujeme v anticyklonách počasí se spojitou vrstevnatou oblačností. Pro centrální oblasti anticyklony je typické málo oblačné, popř. bezoblačné počasí, v okrajových sektorech počasí s kupovitou oblačností, která bývá největší v předním sektoru tlakové výše. V jednotlivých případech, především v zadním sektoru letních anticyklon, lze pozorovat v horských oblastech stř. Evropy i bouřky. Nejvyšší teploty jsou v centrální části a v zadním sektoru výše.
2. označení pro počasí v oblasti anticyklony velmi zjednodušeně a nepřesně charakterizované malou oblačností beze srážek, nebo jasnem, slabým větrem, nebo bezvětřím a velkou denní amplitudou teploty vzduchu.
česky: počasí anticyklonální angl: anticyclonic weather slov: anticyklonálne počasie něm: Hochdruckwetter n  1993-a3
погода в циклонах
1. počasí v oblasti cyklony. Závisí na stadiu vývoje cyklony, na druhu vzduchových hmot, které ji tvoří, na dráze cyklony, roč. období a je rozdílné v různých sektorech cyklony.
mladé cykloně je počasí v její přední části charakteristické pro přibližující se teplou frontu a její přechod. Počasí stř. části mladé cyklony odpovídá počasí jejího teplého sektoru. V něm se v zimě ve stř. Evropě vyskytuje především rozsáhlá vrstevnatá oblačnost, srážky ve formě mrholení, advekční mlhy a prům. teplota vyšší než normální. Počasí v týlu cyklony odpovídá počasí při přechodu studené fronty a počasí ve studené vzduchové hmotě postupující za ní. Nejčastěji se při něm vyskytuje proměnlivá kupovitá oblačnost, srážky ve tvaru přeháněk, v horských oblastech se mohou vyskytovat srážky trvalého charakteru. V létě je přitom prům. teplota nižší než normální. Někdy se též hovoří o počasí sev. sektoru níže, které je typické velkou, často proměnlivou vrstevnatou i kupovitou oblačností, občasnými srážkami a při postupu cyklony od západu na východ vých. prouděním. Počasí i tam závisí do značné míry na vzdálenosti místa od středu cyklony.
V okludované cykloně je počasí v její přední části před okluzní frontou v chladném pololetí přibližně stejné jako v přední části mladé cyklony, protože v této roč. době se jeví okluzní fronta ve většině případů jako teplá. V teplém pololetí jsou v této části cyklony časté přeháňky, popř. bouřky. V týlové části okludované cyklony je počasí podobné jako v týlové části mladé cyklony s tím rozdílem, že protrhávání oblačnosti po přechodu okluzní fronty nenastává tak rychle. Popsané počasí v oblasti cyklony představuje jen zjednodušené schéma, ve skutečnosti cyklonální počasí podstatně závisí na mnoha dalších faktorech.
2. označení pro počasí v oblasti cyklony velmi zjednodušeně a nepřesně charakterizované velkou oblačností, trvalými srážkami a silným prouděním.
česky: počasí cyklonální angl: cyclonic weather slov: cyklonálne počasie něm: zyklonales Wetter n  1993-a3
погода, благоприятная для полета
met. podmínky, při nichž je horiz. dohlednost 10 km nebo více a není hlášena nejnižší dohlednost, není oblačnost provozního významu a nevyskytuje se význačné počasí pro letectví (atm. srážky, bouřka, nízko zvířený sníh, přízemní mlha, atd.). Uvedené podmínky se v pravidelných a mimořádných leteckých meteorologických zprávách (METAR a SPECI), stejně jako v letištních předpovědích počasí (TAF a trend), označují zkr. CAVOK (cloud and visibility OK), která nahrazuje údaje o vodorovné, popř. dráhové dohlednosti, o stavu počasí a o oblačnosti. Viz též minima letištní provozní a oblačnost provozního významu.
česky: počasí příznivé pro letecký provoz (CAVOK) angl: clouds and visibility okay slov: priaznivé počasie pre leteckú prevádzku něm: günstiges Wetter für den Flugverkehr n  1993-a3
пограничный слой атмосферы
obecně vrstva atmosféry, v níž se bezprostředně projevuje vliv zemského povrchu na pole meteorologických prvků. Pokud mezní vrstvu atmosféry posuzujeme z hlediska proudění, tj. uvažujeme ji jako vrstvu, v níž se projevuje tření proudícího vzduchu o zemský povrch, mluvíme o vrstvě tření. Obdobně definujeme teplotní nebo vlhkostní mezní vrstvu jako vrstvu, v níž je denní chod teploty nebo vlhkosti ovlivňován podkladem. Mezní vrstva atmosféry dosahuje od zemského povrchu do výše několika stovek m až přibližně 2 km a výška její horní hranice roste se zvětšující se drsností zemského povrchu, s rychlostí větru a s rostoucí instabilitou teplotního zvrstvení ovzduší. Součástí mezní vrstvy atmosféry je přízemní podvrstva atmosféry, též zvaná vrstva konstantního toku (viz vrstva atmosféry přízemní). Lze rozlišovat turbulentní a laminární mezní vrstvu podle toho, zda v ní je turbulentní nebo laminární proudění. Reálná mezní vrstva atmosféry je zpravidla turbulentní. Laminární proudění se vyskytuje pouze nad hladkými typy povrchu (např. nad vodní hladinou při slabém větru, nebo nad uhlazenou sněhovou pokrývkou) v tenké vrstvě vzduchu o tloušťce řádově 10–3 až 10–2 m v tzv. laminární vrstvě neboli laminární podvrstvě. Tato laminární vrstva je od turbulentní mezní vrstvy oddělena tenkou vrstvou s nedokonale vyvinutou turbulencí. Neúplně vyvinutá turbulence bývá často v nejtěsnější blízkosti zemského povrchu i tehdy, není-li plně vytvořena laminární vrstva. Viz též stáčení větru v mezní vrstvě atmosféry, klimatologie mezní vrstvy atmosféry, modely mezní vrstvy atmosféry, hranice mezní vrstvy atmosféry, typizace mezní vrstvy atmosféry.
česky: vrstva atmosféry mezní angl: atmospheric boundary layer, boundary layer of atmosphere slov: hraničná vrstva atmosféry něm: atmosphärische Grenzschicht f, Grenzschicht der Atmosphäre f  1993-a3
подветренная депрессия
česky: deprese závětrná angl: lee depression slov: záveterná depresia něm: Leezyklone f fr: dépression sous le vent f, thalweg orographique m  1993-a1
подветренная сторона
prostor za překážkou ve směru proudění vzduchu, v klimatologii po směru převládajícího větru, kde se ještě projevuje závětrný efekt. Jeho dosah může být i několik set km za překážkou v závislosti na jejích vlastnostech (relativním převýšení, tvaru), uvažovaném meteorologickém prvku a na podmínkách v atmosféře (rychlosti větru a jeho orientaci vůči orografii, na vertikální stabilitě atmosféry aj.). Závětří však pozorujeme i za menšími přírodními nebo umělými překážkami, např. větrolamy.
česky: závětří angl: downwind side, lee side, leeward side slov: závetrie, záveterná strana něm: Lee f, Leeseite f  1993-a3
подветренные волны
v praxi často používané označení pro gravitační vlny typu stojatých vln vznikající při přetékání stabilně zvrstvené vzduchové hmoty přes překážku v podobě horského pásma přibližně kolmo na jeho osu. Jsou řízeny Bruntovou–Vaisalovou frekvencí a v závětrném prostoru bývají spojeny s rotory vytvářejícími se pod jejich vrchy, s vlnovými oblaky, popř. s rotorovými oblaky.
česky: vlny závětrné angl: lee waves slov: záveterné vlny něm: Leewellen f/pl  1993-a3
подветренный вихрь
víry vyskytující se v závětří orografických překážek. Mezi závětrné víry patří víry s přibližné horiz. osou, tj. rotory, pozorované při vírovém proudění nebo při proudění ve tvaru vln, dále pak víry s přibližně vert. osou, vznikající při obtékání ostrovů nebo izolovaných horských vrcholů a vytvářející tzv. Kármánovu vírovou dráhu. Naposled zmíněné víry lze často sledovat na družicových snímcích v podobě oblačných vírů (např. za ostrovem Jan Mayen). Viz též proudění rotorové, perioda uvolňování vírů.
česky: víry závětrné angl: lee eddy, leeward eddy slov: záveterné víry něm: Leewirbel m  1993-a1
подветренный эффект
souborné označení pro změny hodnot meteorologických prvků, které lze pozorovat v závětří různých překážek. V případě horských pásem dochází kvůli předchozímu působení návětrného efektu a změnám atmosférické cirkulace vlivem orografické překážky ke vzniku srážkového stínu. K závětrným efektům dále patří zmenšování oblačnosti, nárůst dohlednosti, oteplování a zmenšení vlhkosti vzduchu působením fénového efektu, výskyt padavého větru, vlnového proudění, závětrných vírů, rotorových oblaků apod. Za výraznějšími pohořími může docházet k orografické cyklogenezi, orografické okluzi a k přechodnému zeslabování atmosférických front. K závětrným efektům však patří i srážkový stín a deformace pole proudění za menšími přírodními nebo umělými překážkami, které prostřednictvím větrného stínu zmenšují i výpar. Při existenci převládajícího větru se závětrný efekt uplatňuje i v klimatických poměrech určité oblastí nebo místa.
česky: efekt závětrný angl: lee effect slov: záveterný efekt něm: Lee-Effekt m, Leewirkung m fr: effet sous le vent du relief m, effet orographique m  1993-a3
подвижная метеорологическая станция
meteorologická stanice instalovaná dočasně na místě, kde není stálá met. stanice nebo kde je třeba provádět specializovaná měření. Mobilní met. stanice může provádět přízemní i aerologická měření.
česky: stanice meteorologická mobilní angl: mobile weather station slov: mobilná meteorologická stanica něm: mobile meteorologische Station f, mobile Wetterstation f  1993-a3
подвижная судовая станция
syn. stanice meteorologická lodní – meteorologická stanice umístěná na lodi, na níž se měření a pozorování provádí během plavby.
česky: stanice meteorologická na pohybující se lodi angl: mobile ship station slov: meteorologická stanica na pohybujúcej sa lodi něm: mobile Schiffsstation f  1993-b3
подвижный антициклон
syn. anticyklona putující – anticyklona, která se pohybuje ve směru řídícího proudění. Postupující anticyklona je zpravidla termicky asymetrická a vytváří se většinou za poslední cyklonou ze série cyklon polární fronty. Má tendenci směřovat do nižších zeměp. šířek, v nichž dochází k její stabilizaci, přičemž se postupně mění z nízké na vysokou a termicky symetrickou (teplou) anticyklonu. Postupující anticyklona se vytváří i mezi jednotlivými cyklonami ze série cyklon; v tom případě však zůstává většinou termicky asymetrická.
česky: anticyklona postupující angl: migratory anticyclone slov: postupujúca anticyklóna něm: sich verlagernde Antizyklone f fr: anticyclone migratoire m  1993-a3
подвижный антициклон
česky: anticyklona putující slov: putujúca anticyklóna fr: anticyclone mobile m  1993-a1
подвижный циклон
syn. cyklona putující – frontální cyklona hlavně v prvých stadiích vývoje. Postupuje ve směru řídicího proudění s rychlostí rovnající se 0,6 až 0,8 rychlosti geostrofického větru zjištěného v hladině tohoto proudění. Nad Evropou činí rychlost postupujících cyklon v průměru kolem 30 km.h–1, max. až 100 km.h–1.
česky: cyklona postupující angl: migratory cyclone, moving cyclone slov: postupujúca cyklóna něm: sich verlagernde Zyklone f fr: cyclone migrateur m  1993-a2
подвижный циклон
česky: cyklona putující slov: putujúca cyklóna fr: cyclone migrateur m  1993-a1
подинверсионный туман
syn. mlha vysoká.
česky: mlha podinverzní angl: subinversion fog slov: podinverzná hmla  2018
поднятие горизонта
česky: zvýšení horizontu slov: zdvihnutie horizontu něm: Horizonthebung f  1993-a1
поднятие горизонта
syn. zvýšení horizontu – opt. úkaz vznikající v případech, kdy hustota vzduchu nad zemským povrchem velmi rychle klesá s výškou, např. ve výrazné přízemní inverzi teploty vzduchu. Vlivem zvýšeného zakřivení světelných paprsků v tomto případě dochází ke zdánlivému zvednutí polohy objektů na obzoru, popř. k možnosti pozorovat předměty ležící blízko za geometrickým obzorem. Dojde-li přitom k totálnímu odrazu paprsků procházejících atmosférou šikmo vzhůru, vytváří se svrchní zrcadlení. Opačným jevem je snížení obzoru, pozorované nad přehřátými povrchy ve vrstvě inverze hustoty vzduchu, jež může být doprovázeno spodním zrcadlením. Viz též šíření elektromagnetického vlnění v atmosféře, fata morgána.
česky: zvýšení obzoru angl: looming of horizon slov: zdvihnutie obzoru něm: Horizonthebung f  1993-a2
подспутниковая точка
průsečík spojnice družice a středu Země se zemským povrchem, označovaný též jako nadir družice. Posloupnost poddružicových bodů daná pohybem družice po její dráze kolem Země vytváří průmět dráhy na zemský povrch, označovaný jako trajektorie družice.
česky: bod poddružicový angl: subsatellite point slov: poddružicový bod něm: Subsatellitenpunkt m, Subsatellitenpunkt m fr: point nadir m, nadir du satellite m  1993-a2
подъем дымового факела
syn. převýšení kouřové vlečky – výška nad úrovní ústí zdroje znečišťování ovzduší, v níž osa kouřové vlečky po počátečním vzestupu nabývá horiz. polohu. Je to tedy rozdíl mezi efektivní výškou komína a jeho skutečnou neboli stavební výškou. V praxi bývá hodnota vznosu kouřové vlečky nahrazována největší změřitelnou výškou osy vlečky nad ústím zdroje. Vznos kouřové vlečky se za jinak stejných podmínek zvětšuje, jestliže vzrůstá teplota exhalací, jejich objem a výstupní rychlost. Při růstu rychlosti větru se vznos kouřové vlečky zmenšuje. Při instabilním teplotním zvrstvení ovzduší dochází za jinak konstantních podmínek k většímu vznosu kouřové vlečky než při stabilním teplotním zvrstvení. Vznos kouřové vlečky významně ovlivňuje přízemní imise. Účinné zlepšení kvality ovzduší lze často dosáhnout dodržováním „pravidla jednoho komína“ (z angl. one stack rule): při vypouštění exhalací jedním společným komínem se obvykle dosáhne vyššího vznosu kouřové vlečky, a proto nižších přízemních imisí, než při vypouštění týchž exhalací několika komíny umístěnými blízko sebe a stejně vysokými nebo i poněkud vyššími než společný komín.
česky: vznos kouřové vlečky angl: plume rise slov: vznos dymovej vlečky něm: Rauchfahnenschwebe f  1993-a2
подъемная скорость шара-пилота
vert. rychlost volně letícího pilotovacího nebo radiosondážního balonu. Tento balon vystupuje v atmosféře působením celkové stoupací síly balonu, která je vyjádřena Archimédovým zákonem jako rozdíl tíhy balonem vytlačeného vzduchu a tíhy plynu lehčího než vzduch, který objem balonu vyplňuje. Když od této síly odečteme tíhu balonu, popř. i zavěšené zátěže, dostaneme užitečnou stoupací sílu balonu (A). Při ustáleném vert. výstupu balonu působí proti této síle odpor vzduchu. Výsledný vztah, který vyjadřuje stoupací rychlost balonu (w), můžeme napsat ve tvaru
w=dAcρ,
kde ρ je hustota vzduchu, c obvod balonu a d koeficient charakterizující odpor prostředí. Teor. výpočty i praktická měření ukazují, že při zmenšování hustoty vzduchu stoupací rychlost balonu s výškou vzrůstá, ve výšce 5 km o 10 % a ve výšce 30 km až o 100 %. V meteorologii se ke stanovení výšky základny oblaků, při pilotovacích měřeních anebo aerologických měřeních pomocí radiosond balony obvykle plní na počáteční stoupací rychlost 1,5 až 3,5 nebo 5 m.s–1.
česky: rychlost balonu stoupací angl: ascensional rate of balloon slov: výstupná rýchlosť balónu něm: Aufstiegsgeschwindigkeit des Ballons f  1993-a2
подьемный индекс
index stability odvozený ze Showalterova indexu a definovaný vztahem
LI=T500-TL,
kde T500 je teplota vzduchuhladině 500 hPa a teplota TL se v různých modifikacích Lifted indexu stanovuje různě, většinou se jedná o teplotu částice vyzdviženou adiabaticky do hladiny 500 hPa z různě definované spodní hladiny.
česky: Lifted index angl: Lifted index slov: Lifted index  2014
поземок
zvířený sníh, jehož částice jsou větrem zdviženy jen do malé výšky a unášeny při zemi, takže výrazně nesnižují vodorovnou dohlednost ve výšce očí pozorovatele (cca 150 cm).
česky: sníh nízko zvířený angl: drifting snow slov: nízko zvírený sneh něm: Schneefegen n  1993-a3
поземок или снежная низовая метель
hydrometeor, který se vyskytuje při sněhové pokrývce a vysoké rychlosti větru, jenž sněhové částice unáší. Může nastávat při sněžení nebo nezávisle na něm. Zvířený sníh způsobuje změny v rozložení sněhové pokrývky a vznik sněhových akumulací. Podle výšky zdvihu rozlišujeme sníh nízko zvířený a sníh vysoko zvířený. Viz též vánice sněhová, prach nebo písek zvířený.
česky: sníh zvířený angl: drifting or blowing snow slov: zvírený sneh něm: Schneefegen n  1993-a3
показатель
syn. index.
česky: ukazatel angl: index slov: ukazovateľ něm: Index m  1993-a2
показатель океаничности
syn. index maritimity – klimatologický index k vyjádření oceánity klimatu, v podstatě málo používané syn. k termínu index kontinentality.
česky: index oceánity angl: oceanity index slov: index oceánity (maritimity) něm: Index zur Maritimität m, Ozeanitätsindex m  1993-a3
показатель океаничности?
česky: index maritimity angl: maritimity index slov: index maritimity něm: Index zur Maritimität m  1993-a2
показатель преломления в атмосфере
index lomu elmag. vlnění pro oblast viditelného záření, tj. záření o vlnových délkách přibližně 0,4 až 0,7 μm. Viz též šíření elektromagnetického záření v atmosféře.
česky: index lomu světla ve vzduchu angl: refractive index in the atmosphere slov: index lomu svetla vo vzduchu něm: Refraktionsindex der Atmosphäre m, Brechungsindex der Atmospäre m  1993-a2
полoса тумана
mlha, která se vlivem místních podmínek vytvořila v pásu širokém nejvýše několik stovek metrů.
česky: pás mlhy angl: fog bank slov: pás hmly něm: Nebelstreifen m  1993-a1
поле ветра
vektorové spojité pole velikosti a směru rychlosti větru, nebo skalární spojité pole velikosti rychlosti větru. Pole větru je spjato s cirkulací atmosféry a významně ovlivňováno členitostí a drsností povrchu. V met. praxi se spíše setkáváme s dvojrozměrnými poli větru ve zvolených hladinách. Rozlišujeme např. pole přízemního větru, pole výškového větru v jednotlivých izobarických hladinách apod. Jiným příkladem může být pole větru ve zvoleném vertikálním řezu atmosférou. Dvojrozměrné pole větru lze graf. popsat např. pomocí izotach.
česky: pole větru angl: wind field slov: pole vetra něm: Windfeld n  1993-a3
поле влажности
skalární spojité pole některé z charakteristik vlhkosti vzduchu. V met. praxi se spíše setkáváme s dvojrozměrnými poli vlhkosti, např. v izobarických nebo i jiných hladinách atmosféry, v úrovni zemského povrchu (přízemní pole vlhkosti), popř. ve zvolených vertikálních řezech atmosférou. Dvojrozměrná pole vlhkosti lze popsat pomocí izogram nebo izolinií ostatních charakteristik vlhkosti.
česky: pole vlhkosti angl: humidity field, moisture field slov: pole vlhkosti něm: Feuchtefeld n  1993-a3
поле деформации
meteorologii oblast v poli větru, kde mají proudnice hyperbolický tvar se dvěma navzájem kolmými asymptotami nazývanými osa roztažení a osa stlačení. Deformační pole má rozhodující vliv na frontogenezi a frontolýzu prostřednictvím procesů, které závisejí na rozdělení izoterem vůči osám roztažení a stlačení. Typickým příkladem deformačního pole je oblast se šachovnicovým rozložením cyklon a anticyklon. V praxi rozeznáváme deformační pole:
a) symetrické, tvořené dvěma dvojicemi stejně velkých cyklon a anticyklon;
b) nesymetrické, odpovídající reálným podmínkám, kdy cyklony a anticyklony vytvářející pole mají zpravidla různé rozměry a intenzitu.
česky: pole deformační angl: deformation field slov: deformačné pole něm: Deformationsfeld n  1993-a3
поле метеорологического элемента
prostorové rozložení meteorologického prvku v atmosféře. Podle met. prvků rozlišujeme např. tlakové a teplotní pole, pole větru, srážek aj. Podle jejich charakteru dělíme pole met. prvků na skalární a vektorová, spojitá a nespojitá apod. Analýza polí met. prvků se provádí na meteorologických mapách a vertikálních řezech atmosférou pomocí izolinií, křivek změn met. prvků s výškou, obalových křivek aj. Důležitými charakteristikami polí met. prvků jsou vert. a horiz. gradienty met. prvků (např. teploty vzduchu).
česky: pole meteorologického prvku angl: field of meteorological element slov: pole meteorologického prvku něm: Feld des meteorologischen Elementes n  1993-b2
поле облачности
velmi složité, obvykle nespojité pole, skládající se z oblačných systémů, např. ve tvaru pásů a vírů různého měřítka i z jednotlivých oblaků. Vyskytuje se v troposféře, v některých případech zasahuje i do spodní stratosféry. K upřesnění znalostí o poli oblačnosti, získaných běžným přízemním pozorováním, se široce využívá údajů z meteorologických družic, meteorologického radiolokačního pozorování a letadlových průzkumů počasí. Viz též oblačnost.
česky: pole oblačnosti angl: cloud field slov: pole oblačnosti něm: Wolkenfeld n  1993-a2
поле осадков
1. plošné rozložení množství atm. srážek spadlých za určité období v dané oblasti zemského povrchu; graf. je vyjadřujeme pomocí izohyet;
2. prostorové rozložení atm. srážek měřených meteorologickým radiolokátorem.
česky: pole srážek angl: precipitation field slov: pole zrážok něm: Niederschlagsfeld n  1993-a1
поле радиации
prostorové rozložení záření pocházejícího z jednoho nebo více zdrojů. Pole záření, v jehož libovolném bodu nezávisí hodnota intenzity na směru zvoleného paprsku, nazýváme izotropním. V případě, že rozložení záření je prostorově konstantní, mluvíme o homogenním poli záření. Pro meteorologii jsou významná zejména pole přímého a rozptýleného slunečního záření, spolu s polem dlouhovlnného záření.
česky: pole záření angl: radiation field slov: pole žiarenia něm: Strahlungsfeld n  1993-a1
поле температуры
skalární spojité pole nejčastěji teploty vzduchu, složité v blízkosti zemského povrchu a shlazené ve volné atmosféře, s výjimkou oblastí atmosférických front. K největším prostorovým změnám v teplotním poli dochází na atmosférických frontách a při zemi v místech s rozdílným aktivním povrchem. Ke znázornění teplotního pole se používají izotermy, časové změny teplotního pole vyjadřují izalotermy. Ke znázornění teplotního pole na mapách relativní barické topografie se používají relativní izohypsy, které představují izotermy vert. zprůměrované virtuální teploty mezi dvěma příslušnými tlakovými hladinami. Časové změny teplotního pole na mapách rel. barické topografie znázorňují rel. izalohypsy. Důležitou charakteristikou teplotního pole je horiz. a vert. teplotní gradient. V meteorologii se dále sledují teplotní pole půdy, zemského povrchu, povrchu oceánů apod.
česky: pole teplotní angl: temperature field slov: teplotné pole něm: Temperaturfeld n  1993-a2
полет в сложных метеорологических условиях
let za podmínek, za nichž není možná nebo je velmi ztížená vizuální navigace s využitím viditelnosti povrchu Země. Obvykle jde o let v oblacích, nad oblaky pokrývajícími značnou část oblohy, při malé dohlednosti nad mořem nebo ve velkých výškách. Přesné vymezení ztížených meteorologických podmínek závisí zejména na typu letadla, na denní době a na kvalifikaci posádky letadla. V civilním letectvu se častěji používají termíny let s použitím přístrojů a podmínky meteorologické pro let podle přístrojů (IMC). Viz též dohlednost letová.
česky: let za ztížených meteorologických podmínek slov: let za zťažených meteorologických podmienok něm: Flug unter schwierigen meteorologischen Bedingungen m  1993-a3
полет по приборам
let, který se uskutečňuje, bez ohledu na příp. vizuální kontakt s povrchem Země, za met. podmínek zpravidla horších, než jsou stanoveny minimy pro dohlednost, vzdálenost od oblaků a od základny oblaků. Pro tyto lety platí speciální pravidla IFR (Instrument flight rules), která lze nalézt v publikaci Letecké informační služby ŘLP ČR s.p. AIP (Aeronautical Information Publication). Viz též podmínky meteorologické pro let s použitím přístrojů.
česky: let s použitím přístrojů angl: instrument flight slov: let podľa prístrojov něm: Instrumentenflug m  1993-a3
полетная метеорологическая документация
soubor mapových, tabulkových, popř. i dalších met. informací, které v souladu s příslušnými předpisy poskytuje letecká meteorologická služba při předletové přípravě posádkám letadel. Příslušné formuláře, měřítka map, soustava jednotek, čas vydávání předpovědí, symbolika, zkratky a další náležitosti dokumentace jsou stanoveny příslušnými doporučeními Mezinárodní organizace pro civilní letectví (ICAO), resp. národními předpisy. Poskytovaná dokumentace letecké meteorologie musí zahrnovat tyto informace: předpovědi výškového větru a teploty vzduchu ve výšce ve standardních izobarických hladinách a význačných jevů počasí (např. mapu význačného počasí), zprávy METAR nebo SPECI (včetně předpovědí trend, vydávané v souladu s regionálními postupy ICAO) pro letiště odletu a předpokládaného přistání a pro náhradní letiště při vzletu, na trati a určení; předpovědi TAF nebo opravené předpovědi TAF pro letiště odletu nebo předpokládaného přistání a pro náhradní letiště při vzletu, na trati a určení; informace SIGMET a příslušná mimořádná hlášení z letadel týkající se celé trati letu; informační zprávy o vulkanickém popelu a tropických cyklonách týkající se celé trati letu. Pro lety v nízkých hladinách pak i oblastní předpovědi GAMET a/nebo oblastní předpovědi pro lety v nízkých hladinách v mapovém formátu připravené jako podklad pro vydání informací AIRMET a informace AIRMET pro lety v nízkých hladinách, týkající se celé trati letu v souladu s regionálními postupy ICAO.
česky: dokumentace letová meteorologická angl: flight meteorological documentation slov: meteorologická letová dokumentácia něm: flugmeteorologische Dokumentation f fr: bulletin aéronautique m, bulletin d'information prévol m  1993-a3
полеты при всех типах погоды
letový provoz bez ohledu na nevhodné povětrnostní podmínky (All weather operations, zkr. AWO). K provozu za každého počasí se vztahují tzv. letištní provozní minima (kategorie ICAO):
I. kategorii představuje úroveň zabezpečení, která umožňuje provoz při hodnotách dráhové dohlednosti (VIS) ne méně než 800 m nebo RVR ne méně než 550 m a výšce základny význačné oblačnosti (výšce rozhodnutí, DH-decision height) ne nižší než 200 FT (60 m).
II. kategorie umožňuje provoz při hodnotách DH nižších než 200 FT, ale ne nižších než 100 FT (30 m) a RVR ne nižší než 300 m.
IIIa kategorii odpovídá dráhová dohlednost ne nižší než 175 m a DH nižší než 100 FT, nebo bez stanovené DH, IIIb kategorii odpovídá dráhová dohlednost nižší než 175 m, ale ne méně než 50 m a DH nižší než 50 FT (15 m) nebo bez stanovené DH a IIIc kategorií je provoz za každého počasí tj. bez stanoveného limitu pro DH a RVR.
V ČR je letiště Václava Havla Praha letištěm CAT IIIb a letiště Ostrava Mošnov CAT II. Letiště Karlovy Vary a Brno Tuřany letišti CAT I. Viz též let s použitím přístrojů, let za ztížených meteorologických podmínek.
česky: provoz za každého počasí (AWO) angl: all weather operations slov: prevádzka za každého počasia něm: Allwetterflugbetrieb m  1993-b3
полидисперсионная примесь
aerosolová příměs pevného nebo kapalného skupenství ve vzduchu, jejíž částice se při přenosu, difuzi, sedimentaci apod. v atmosféře chovají nehomogenně především pro svou nestejnou velikost, tvar nebo hustotu. Protikladem je příměs monodisperzní.
česky: příměs polydisperzní angl: polydispersal pollutant slov: polydisperzná prímes něm: polydisperse Beimengung f  1993-a3
полимер Ламбрехта
vlasový vlhkoměr upravený pro přibližné určení teploty rosného bodu. Má zákl. stupnici relativní vlhkosti vzduchu doplněnou souběžnou pomocnou stupnicí přibližných rozdílů mezi teplotou vzduchu a teplotou rosného bodu. Tyto rozdíly podstatně závisí na relativní vlhkosti, v menší míře i na teplotě vzduchu. O přečtený rozdíl se sníží teplota vzduchu změřená na připojeném teploměru.
česky: polymetr Lambrechtův angl: Lambrecht polymeter slov: Lambrechtov polymeter něm: Lambrechtsches Polymeter n  1993-a3
политропический процесс
vratný termodyn. děj v plynu, při němž zůstává konstantním měrné teplo a je splněna rovnice polytropy
p.αn=konst.,
kde p značí tlak, α měrný objem daného plynu a n blíže charakterizuje konkrétní probíhající děj. Speciálními případy polytropního děje jsou např. děj adiabatický (n = cp/cv, kde cp, resp. cv je měrné teplo plynu při stálém tlaku, resp. objemu), děj izotermický (n = 1), izobarický (n = 0) a izosterický (n → ∞).
česky: děj polytropní angl: polytropic process slov: polytropný dej něm: polytroper Prozess m fr: transformation polytropique f  1993-a1
политропная атмосфера
modelová atmosféra s konstantním vertikálním teplotním gradientem. Vert. rozložení tlaku a teploty vzduchu je dáno vztahem:
(pp0) Rγg=TT0,
kde p0 je počáteční a p konečný tlak vzduchu,T0 počáteční a T konečná teplota vzduchu v K, g velikost tíhového zrychlení, R měrná plynová konstanta a γ vertikální teplotní gradient. Zvláštním případem polytropní atmosféry je atmosféra adiabatická, izotermická a homogenní.
česky: atmosféra polytropní angl: polytropic atmosphere slov: polytropná atmosféra něm: polytrope Atmosphäre f fr: atmosphère polytropique f  1993-a2
полная барометрическая формула
česky: formule barometrická úplná slov: úplná barometrická formula  1993-a1
полная подъемная сила шара
aerostatická vztlaková síla směřující proti síle zemské tíže a rovnající se rozdílu tíhy vzduchu vytlačeného balonem o objemu V a tíhy plynu, kterým je tento balon naplněn. Její velikost F vyplývá z Archimédova zákona:
F=V(ρρn)g,
kde ρ je hustota vzduchu, ρn hustota plynu v balonu a g velikost tíhového zrychlení.
česky: síla balonu stoupací celková angl: total lift of a balloon slov: celková vzostupná sila balóna něm: Gesamtauftrieb eines Ballons m  1993-a3
полная радиация
česky: záření totální angl: total radiation slov: totálne žiarenie něm: Gesamtstrahlung f  1993-a1
полное давление
1. úhrnný tlak směsi plynů, který je součtem dílčích tlaků jednotlivých složek směsi;
2. součet dynamického tlaku a statického tlaku v proudících tekutinách. V meteorologii se měří jako jedna z tlakových veličin snímaných čidlem aerodyn. anemometru. Odečtením statického tlaku od celkového tlaku v převodníku anemometru lze pak získat dynamický tlak.
česky: tlak celkový angl: total pressure slov: celkový tlak  1993-a3
полномочный метеорологический орган
úřad poskytující nebo zařizující na základě souhlasu Ministerstva dopravy ČR poskytování met. služby mezinárodnímu letectví. V ČR je tímto pověřeným úřadem Úřad pro civilní letectví (ÚCL). Viz též autorita meteorologická.
česky: úřad meteorologický angl: meteorological office slov: meteorologický úrad něm: meteorologischer Dienst m  1993-a3
полные уравнения
méně vhodné označení pro základní rovnice.
česky: rovnice primitivní angl: primitive equations slov: primitívne rovnice něm: primitive Gleichungen f/pl  1993-a1
полные уравнения
1. v dynamické meteorologii obecně soustava rovnic, která dává do vzájemného vztahu zákl. dynamické a termodynamické veličiny popisující pole větru, teploty a tlaku včetně rozložení obsahu vody ve všech fázích. Počítáme do ní obvykle složkové vyjádření vektorové pohybové rovnice, rovnici kontinuity proudění a vody ve všech fázích, vhodné matematické vyjádření první hlavní věty termodynamické a stavovou rovnici ideálního plynu. Za předpokladu znalosti zdrojových funkcí a počátečních, popř. okrajových podmínek, je taková soustava uzavřeným systémem rovnic. Řešené veličiny jsou pak jednoznačnými funkcemi prostorových souřadnic a času.
2. v tematické oblasti numerické předpovědi počasí se takto obvykle označuje soustava prognostických rovnic, ve kterých jsou použity zjednodušující aproximace hydrostatické rovnováhy a aproximace tenké vrstvy. Filtrují zvukové vlny. Tento typ rovnic je velmi rozšířený pro předpověď počasí od 70. let 20. století a může realisticky pracovat od planetárních škál až po rozlišení přibližně 4 km, kdy popsané horiz. a vert. cirkulace již dosahují srovnatelných měřítek. V literatuře jsou někdy též označovány termínem primitivní rovnice.
česky: rovnice základní angl: primitive equations slov: základné rovnice něm: primitive Gleichungen f/pl  1993-a3
полоса повышенного давления
pásmo s vyšším tlakem vzduchu, ponejvíce rovnoběžkového směru, které se rozkládá mezi dvěma pásy nízkého tlaku vzduchu a během roku se přesouvá směrem na sever nebo na jih v závislosti na výšce Slunce. V tomto pásmu, které lze sledovat na klimatologických i synoptických mapách, se nacházejí jednotlivé anticyklony. Na Zemi jsou nejvýraznějšími subtropické pásy vysokého tlaku vzduchu, které v chladném pololetí zasahují ze subtropických částí oceánu i nad přilehlou pevninu a prakticky tak obepínají celou zeměkouli.
česky: pás vysokého tlaku vzduchu angl: high pressure belt, ridge of high pressure slov: pás vysokého tlaku vzduchu něm: Hochdruckgürtel m  1993-a3
полоса пониженного давления
pásmo s nižším tlakem vzduchu zhruba rovnoběžkového směru, které se rozkládá mezi dvěma pásy vysokého tlaku vzduchu a v průběhu roku se přesouvá na sever nebo na jih v závislosti na výšce Slunce. Takovým pásmem je např. rovníkový pás nízkého tlaku vzduchu, nazývaný též rovníková deprese, a pásy nízkého tlaku vzduchu v subpolárních oblastech obou polokoulí. V subpolárních pásech nízkého tlaku vzduchu se nacházejí jednotlivé cyklony.
česky: pás nízkého tlaku vzduchu angl: low pressure belt, trough slov: pás nízkeho tlaku vzduchu něm: Tiefdruckgürtel m  1993-a3
полосы падения
syn. vir, pruhy srážkové – jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Má tvar srážkových pruhů, které směřují svisle nebo šikmo pod základnu oblaku a nedosahují však k zemskému povrchu. Virga se řadí mezi zvláštnosti oblaků, protože srážkové pruhy lze považovat za prodloužení oblaku. Vyskytuje se nejčastěji u druhů cirrocumulus, altocumulus, altostratus, nimbostratus, stratocumulus, cumulus a cumulonimbus.
česky: virga angl: virga slov: virga něm: virga  1993-a2
полосы частот в микроволновом диапазоне
oblasti mikrovlnných frekvencí používané pro radiolokační měření jsou konvenčně značeny uvedenými písmeny. Tabulka ukazuje střední vlnové délky a střední frekvence pro jednotlivá pásma.
Pásmo Vlnová délka [cm] Frekvence [GHz]
K 1 30
X 3 10
C 5 6
S 10 3
L 20 1,5
česky: pásma frekvenční mikrovlnná K, X, C, S, L angl: microwave frequency bands K, X, C, S, L slov: frekvenčné mikrovlnné pásma K, X, C, S, L  2014
полюс ветров
zřídka užívané označení místa na Zemi s nejvyšší prům. rychlostí větru. Australský polárník D. Mawson tak označil pobřeží Adéliny země v jihovýchodní Antarktidě poté, co jeho expedice zaznamenala ve svém základním táboře na Cape Denison v letech 1912–1913 prům. roč. rychlost větru 19,4 m.s–1. Tento údaj byl odb. veřejností zpočátku přijat s nedůvěrou, avšak pozdější měření prokázala, že vých. pobřeží Antarktidy lze označit za největrnější oblast Země. Prům. rychlost větru na zdejších stanicích Mawson a Mirnyj je 11,3 m.s–1, přičemž denní maximum rychlosti větru po většinu rokudosahuje rychlosti orkánu. Srovnatelné podmínky se jinde na Zemi vyskytují na vybraných lokalitách, jako je např. Mount Washington ve státě New Hampshire (USA). Viz též klima antarktické, extrémy rychlosti větru.
česky: pól větrů angl: wind pole slov: pól vetrov něm: Windpol m  1993-a3
полюс дождей
zřídka užívané označení místa na Zemi s nejvyšším prům. roč. úhrnem atm. srážek. Jeho určení není jednoznačné, neboť záleží mj. na referenčním období; uvádí se např. Cherrapunji nebo sousední Mawsynram v Indii (11 777 mm, resp. 11 872 mm), Mt. Waialeale na Havajských ostrovech (11 684 mm) nebo Lloro v Kolumbii (zdejší prům. roč. úhrn 13 300 mm je pouze odhadován). Všechna tato místa mají tropické dešťové klima, přičemž zde dochází k orografickému zesílení srážek díky návětrnému efektu. Na rozdíl od ostatních, indické lokality mají kvůli monzunovému klimatu silně nevyrovnaný srážkový režim. Viz též extrémy srážek.
česky: pól dešťů angl: rain pole slov: pól dažďov něm: Regenpol m  1993-a3
полюс тепла
zřídka užívané označení místa na Zemi, kde bylo dosaženo absolutní maximum teploty vzduchu. Viz extrémy teploty vzduchu.
česky: pól tepla angl: warm pole slov: pól tepla něm: Wärmepol m  1993-a3
полюс холода
místo nebo oblast na Zemi, popř. na dané polokouli, kde bylo zaznamenáno absolutní minimum teploty vzduchu, viz extrémy teploty vzduchu. Méně často se za póly chladu považují místa s nejnižší prům. roč. teplotou vzduchu. Z obou hledisek je pólem chladu východní vnitrozemí Antarktidy, resp. zdejší ruská stanice Vostok s prům. roč. teplotou vzduchu –55 °C a s naměřeným absolutním minimem –89,2 °C. Na sev.polokouli lze z těchto hledisek rozlišit dva póly chladu. Jedním je východní Sibiř, kde stanice Ojmiakon, vyznačující se zřejmě největší termickou kontinentalitou klimatu na Zemi, zaznamenala abs. minimum teploty vzduchu –67,7 °C. Druhým pólem chladu severní polokoule je severnívnitrozemí Grónska, kde prům. roč. teplota vzduchu klesá až pod –30 °C.
česky: pól chladu angl: cold pole slov: pól zimy něm: Kältepol m  1993-a3
поляк
místní název pro studený a suchý padavý vítr charakteru bóry, vyskytující se v českém a moravském pohraničí, (zvl. v Orlických horách a v Jeseníkách) a na Slovensku v podtatranské oblasti při sz. a sev. proudění. Souvisí se vpády studeného polárního a arktického vzduchu postupujícího přes Polsko na naše území. Vyskytuje se nejčastěji na jaře, na počátku podzimu a v zimě. Zesiluje zvláště v Moravské bráně v důsledku proudění zúženým profilem. Viz též efekt tryskový.
česky: polák angl: polacke, polake slov: poliak  1993-a2
поляризация солнечной радиации в атмосфере
transformace přirozeného slun. záření v záření polarizované, ke které dochází při rozptylu zářenízemské atmosféře. Nejvíce jsou polarizovány paprsky kolmé ke směru šíření přímého slunečního záření. Rozptýlené sluneční záření s minimální polarizací naopak přichází od neutrálních bodů na obloze.
česky: polarizace slunečního záření v atmosféře angl: polarization of solar radiation in atmosphere slov: polarizácia slnečného žiarenia v atmosfére něm: Polarisation der Sonnenstrahlung in der Atmosphäre f  1993-a3
поляриметр
přístroj k měření velikosti polarizace světla oblohy, popř. k určování polohy neutrálních bodů. Polarimetry využívají opt. vlastností hranolů a destiček z vhodných opt. materiálů ke zjišťování procenta polarizace světla vstupujícího tubusem do přístroje. K tomuto účelu lze využit např. depolarizaci měřeného světla nebo porovnání jasů srovnávacích zorných polí v polarimetru. Výsledkem měření je zpravidla úhel natočení polarizačního hranolu, z něhož lze vypočítat procento polarizace v místě oblohy, na které byl zaměřen tubus. Viz též polarizace slunečního záření v atmosféře.
česky: polarimetr angl: polarimeter slov: polarimeter něm: Polarimeter n  1993-a1
полярное вторжение
nevh. označení pro vpád studeného vzduchu.
česky: vpád polární angl: polar invasion, polar outbreak slov: polárny vpád něm: Polarluftausbruch m  1993-a1
полярное сияние
jev vznikající ve vysoké atmosféře, obvykle ve výškách od 80 do 500 km nad zemským povrchem. Bývá pozorován v noci v podobě barevných oblouků, svitků, drapérií nebo závěsů. Příčinou polární záře je vtahování korpuskulárního záření Slunce do magnetického pole Země, kde ionizuje atm. částice, excituje atomy a molekuly a vyvolává tak světelné efekty. Polární záře se vyskytují především v období intenzívní sluneční činnosti při magnetických bouřích, a to zvláště v sev. a již. polárních oblastech v okolí zemských magnetických pólů. Mají složité spektrum, v jasných zářích je nejintenzivnější zelená nebo červená barva. Nejvyšší polární záře dosahují až 1 200 km, nejnižší asi 65 km nad zemí; vrstva, v níž se vyskytují, je nejčastěji silná 10–12 km. Podle toho, na které polokouli se vyskytuje, se též hovoří o sev. záři (aurora borealis) nebo již. záři (aurora australis). Zeměp. rozložení výskytu polární záře za určité období znázorňují izochasmy. Polární záře je jedním z elektrometeorů. Viz též ionizace atmosférická, magnetosféra zemská, záření kosmické.
česky: záře polární angl: aurora, polar aurora slov: polárna žiara něm: Polarlicht n  1993-a1
полярное сияние
jev vznikající ve vysoké atmosféře, obvykle ve výškách od 80 do 500 km nad zemským povrchem. Bývá pozorován v noci v podobě barevných oblouků, svitků, drapérií nebo závěsů. Příčinou polární záře je vtahování korpuskulárního záření Slunce do magnetického pole Země, kde ionizuje atm. částice, excituje atomy a molekuly a vyvolává tak světelné efekty. Polární záře se vyskytují především v období intenzívní sluneční činnosti při magnetických bouřích, a to zvláště v sev. a již. polárních oblastech v okolí zemských magnetických pólů. Mají složité spektrum, v jasných zářích je nejintenzivnější zelená nebo červená barva. Nejvyšší polární záře dosahují až 1 200 km, nejnižší asi 65 km nad zemí; vrstva, v níž se vyskytují, je nejčastěji silná 10–12 km. Podle toho, na které polokouli se vyskytuje, se též hovoří o sev. záři (aurora borealis) nebo již. záři (aurora australis). Zeměp. rozložení výskytu polární záře za určité období znázorňují izochasmy. Polární záře je jedním z elektrometeorů. Viz též ionizace atmosférická, magnetosféra zemská, záření kosmické.
česky: záře polární angl: aurora, polar aurora slov: polárna žiara něm: Polarlicht n  1993-a1
полярные восточные ветры
převládající vých. větry ve vysokých zeměp. šířkách na vnější straně subpolárního pásu nízkého tlaku vzduchu, které vanou při zemi a mají jen malý vertikální rozsah. Zvlášť stálé a silné východní větry se vyskytují na okrajích rozsáhlé a mohutné antarktické anticyklony.
česky: větry východní polární angl: polar easterlies slov: východné polárne vetry něm: polare Ostwinde m/pl  1993-a2
полярные орбитальные спутники
zkrácené označení pro meteorologickou družici na polární dráze. Družice s oběžnou dráhou přibližně kolmou na zemský rovník, takže při každém obletu Země přelétá (mimo jiné) i její polární oblasti – odtud název dráhy, resp. skupiny družic. Operativní meteorologické družice na polárních dráhách mají zpravidla oběžnou dobu blízkou 100 minutám a výšku kruhové dráhy přibližně v rozmezí 700 až 1 000 km. Dráha je zpravidla heliosynchronní.
česky: družice meteorologická polární slov: polárna meteorologická družica něm: polarumlaufender Wettersatellit m fr: satellite météorologique polaire m  1993-a3
полярные стратосферные облака
(PSC) – specifický typ oblaků vyskytujících se většinou v zimních měsících ve spodní polární stratosféře ve výškách 14–20 km. Polární stratosférické oblaky byly poprvé identifikovány pomocí družicových měření v r. 1979. Jejich výskyt je pozorován při velmi nízkých teplotách stratosféry (185–195 K) s podstatně větší četností v oblasti Antarktidy (až 100krát) než nad Arktidou. Polární stratosférické oblaky jsou tvořeny převážně krystalky vody, kyseliny dusičné a kyseliny sírové, jejichž rozměry jsou proměnlivé v závislosti na fázi vývoje oblaku. Rozlišují se dva základní typy těchto oblaků. Typ I se objevuje při teplotách nižších než –78 °C a je tvořen různými formami kyseliny dusičné, kyseliny sírové a vody. Typ II vzniká při teplotách nižších než –85 °C, tvoří ho vodní krystaly a vyskytuje se prakticky pouze v jižní polární stratosféře. Částice polárních stratosférických oblaků tvoří ve spodní stratosféře pevné skupenství. Na jejich povrchu probíhají heterogenní reakce, které velmi zvyšují účinnost sloučenin chloru a bromu při rozkladu ozonu. Proto jsou považovány za důležitý faktor působící při vzniku tzv. ozonové díry nad Antarktidou. Dosud není dostatečně určen vztah mezi polárními stratosférickými oblaky a tzv. perleťovými oblaky, které někteří odborníci považují za poddruh polárních stratosférických oblaků.
česky: oblaky stratosférické polární angl: polar stratospheric clouds slov: polárne stratosférické oblaky něm: polare Stratosphärenwolken f/pl  2014
полярный вихрь
syn. vír polární – ve všeobecné cirkulaci atmosféry cyklonální záp. proudění kolem geogr. pólů ve vyšších hladinách troposféry a ve spodní stratosféře. Na výškových mapách mu odpovídají uzavřené cyklonální izohypsy absolutní barické topografie.
česky: vír cirkumpolární angl: circumpolar vortex, circumpolar whirl , polar vortex slov: cirkumpolárny vír něm: Polarwirbel m, Zirkumpolarwirbel m  1993-a1
полярный воздух
1. zast. syn. pro vzduch mírných šířek;
2. ve starších pracích souborné označení pro vzduch mírných šířek a arktický nebo antarktický vzduch.
česky: vzduch polární angl: polar air slov: polárny vzduch něm: Polarluft f  1993-a3
полярный климат
obecné označení pro klima polárních oblastí. V Köppenově klasifikaci klimatu mu přibližněodpovídá sněhové klima, v Alisovově klasifikaci klimatu pak arktické klima a antarktické klima.
česky: klima polární angl: polar climate slov: polárna klíma něm: polares Klima n  1993-b3
полярный фронт
hlavní fronta oddělující vzduch mírných šířek, dříve nazývaný polární vzduch, od tropického vzduchu. Nad sev. polokoulí probíhá v několika větvích atmosférické fronty, z nichž pro Evropu mají největší význam tyto: větev probíhající v zimě od Mexického zálivu nad sev. částí Atlantského oceánu k záp. pobřeží Francie a v létě se nacházející o 1 000 až 1 500 km severněji; středomořská fronta; větev táhnoucí se od Černého moře nad horní Povolží. Viz též teorie polární fronty.
česky: fronta polární angl: polar front slov: polárny front něm: Polarfront f fr: front polaire m  1993-a3
понижение горизонта
syn. snížení horizontu – viz zvýšení obzoru.
česky: snížení obzoru angl: dip of horizon, sinking of horizon slov: zníženie obzoru něm: Horizontdepression f  1993-a1
поправка
(Radio Acoustic Sounding System, systém sondážní radioakustický) – systém distanční sondáže pro měření vertikálního profilu virtuální teploty v ovzduší s využitím zpětného rozptylu radiových vln na pohybující se akustické vlnové frontě. Systém se skládá z antény, emitující akustické vlny, a vysílací a přijímací antény radarové. Vertikálně se šířící akustické vlny představují posloupnost stlačení a zhuštění vzduchu a mění jeho dielektrické vlastnosti, což umožňuje rozptyl radarového signálu. Mezi vyslaným a přijatým radarovým signálem je frekvenční posuv v důsledku toho, že zdroj rozptýleného signálu se pohybuje (Dopplerův efekt). Z frekvenčního rozdílu lze stanovit rychlost pohybu vlnové fronty akustického signálu a následně virtuální teploty ovzduší, jíž je rychlost šíření zvuku úměrná. Za dobrých podmínek umožňuje RASS měření vertikálního profilu virtuální teploty do výšky cca 1 000 m nad povrchem.
česky: RASS angl: RASS (Radio Acoustic Sounding System) slov: RASS něm: Radio Acoustic Sounding Systém n  2014
поправка (исправление) спутниковых данных
potlačení či odstranění různých chyb a nepřesností měření přístroji na meteorologických družicích, případně cílená úprava některých jejich vlastností. Zahrnuje např. geometrické korekce, filtraci šumu, odstranění chybných dat, konverzi dat na určitou nominální polohu družice (u geostacionárních družic), aj.
česky: korekce družicových dat angl: satellite data corrections slov: korekcie družicových údajov něm: Korrektur der Satellitendaten f  1993-a3
поправки высотомера
z met. hlediska oprava údaje aneroidového výškoměru při zjišťování skutečných výšek nebo výškových rozdílů. Protože stupnice přístroje je konstruována podle rozložení tlaku vzduchu ve standardní atmosféře, má na tyto opravy vliv kolísání atm. tlaku v počátečním bodě nastavení a skutečný průběh teploty vzduchu ve vrstvě změřeného výškového rozdílu. Např. pro daný konstantní rozdíl výšek je hodnota barometrického rozdílu různá, při nadnormálním tlaku je vyšší než za normálu, stejně tak při chladnějším vzduchu a naopak. Podobně platí odvozené vztahy pro přepočet výšek z naměřeného barometrického rozdílu. Je proto nutné při přesném měření započítat opravy, které se dají odvodit např. z výpočtů podle barometrické formule.
česky: opravy údaje výškoměru angl: altimeter corrections slov: korekcia údaja výškomeru něm: Korrektur der Höhenmessung f  1993-a1
поправки показаний ртутного барометра
jedná se o opravu tlaku vzduchu na tíhové zrychlení, opravu tlaku vzduchu na teplotu, opravu tlaku vzduchu na kapilaritu a opravu tlaku vzduchu na vakuum. Oprava tlaku vzduchu na tíhové zrychlení převádí měřený údaj tlaku vzduchu na hodnotu, kterou by měl v místě s tíhovým zrychlením g = 9,80665 m.s–2. Oprava tlaku vzduchu na teplotu převádí měřený údaj tlaku vzduchu na hodnotu, kterou by měl při teplotě 0 °C. Oprava tlaku vzduchu na kapilaritu eliminuje vliv kapilární síly v menisku na horním konci rtuťového sloupce a je zahrnuta do přístrojové opravy. Oprava tlaku vzduchu na vakuum převádí měřený údaj tlaku vzduchu na hodnotu při dokonalém vakuu v barometrické trubici.
česky: opravy tlaku vzduchu měřeného rtuťovým tlakoměrem angl: mercury barometer correction slov: opravy tlaku vzduchu meraného ortuťovým tlakomerom něm: Korrektur des Quecksilberbarometers  2014
попутный ветер
v letectví označení pro vítr vanoucí ve směru letu.
česky: vítr zádový angl: tail wind slov: chrbtový vietor něm: Rückenwind m  1993-a1
порыв ветра
poryv větru krátkodobé zvýšení rychlosti větru, popř. krátkodobý odklon od trvalejšího směru větru, stanovený rozdílně pro různé tech. účely. Obecně se pro met. potřeby uznávají za kritéria pro náraz větru převýšení průměru o 5 m.s–1 na dobu alespoň 1 s, avšak nejvýše 20 s, anebo odklon směru o více než 45° na dobu alespoň 1 s, ne však více než 20 s. Kritéria pro směr větru nejsou dosud všeobecně uznávána. Náraz větru bývá vyvolán mech. nebo termickými vlivy a v některých případech má znatelnou opakovací frekvenci. Náraz větru se nesmí zaměňovat s pulsací větru. Viz též vítr nárazovitý, amplituda nárazu větru.
česky: náraz větru angl: gust slov: náraz vetra něm: Bö f, Windstoss m  1993-a1
порывистость ветра
česky: nárazovitost větru angl: gustiness slov: nárazovitosť vetra něm: Windböigkeit f  1993-a1
порывистый ветер
vítr krátkodobě měnící rychlost o více než 5 m/s (není normováno). V letecké meteorologii se jedná o nárazovitý vítr, pokud maximální rychlost větru přesáhne průměrnou rychlost větru o 10 kt (5 m/s) a vice během posledních 10 minut před pozorováním v případě zpráv METAR/SPECI a o 5 kt nebo více v místních pravidelných a mimořádných zprávách. Nejčastější příčinou nárazovitého větru je turbulence vyvolaná blízkými překážkami nebo přechod vírů v závětří větších překážek, popř. vírů vznikajících po uvolňování přehřátého stoupajícího vzduchu nebo přechod húlav, atmosférických front, gust front aj. Viz též náraz větru, pulzace větru.
česky: vítr nárazovitý angl: gusty wind slov: nárazovitý vietor něm: böiger Wind m  1993-a3
послеледниковый период
viz holocén.
česky: postglaciál angl: postglacial stage slov: postglaciál něm: Postglazialzeit f  1993-b3
постооянная судовая станция
námořní meteorologické stanice na stacionární meteorologické lodi nebo na majákové lodi.
česky: stanice meteorologická na „fixní“ lodi angl: fixed ship station slov: meteorologická stanica na „fixnej lodi něm: feste Schiffsstation f  1993-a3
постоянная Кармана
jedna z význačných aerodyn. veličin. Nemá fyz. rozměr a její hodnota je blízká 0,4. Vystupuje jako konstanta úměrnosti κ ve vztahu pro směšovací délku l turbulentních elementů
l=κ.(z+z0),
kde z značí výšku nad zemským povrchem a z0 parametr drsnosti zemského povrchu. V met. aplikacích se vyskytuje ve vztazích vyjadřujících vert. průběh rychlosti proudění v přízemní vrstvě atmosféry. Viz též měřítko vírů v atmosféře.
česky: konstanta von Kármánova angl: Karman constant slov: von Kármánova konštanta něm: Kármán-Konstante f  1993-a3
постоянный центр действия
syn. centrum atmosféry akční trvalé – akční centrum atmosféry, které je patrné na klimatologických mapách během celého roku. Poloha, rozsah a intenzita permanentních akčních center se nicméně do určité míry mění, a proto bývají označována i jako centra kvazipermanentní nebo semipermanentní. Takovými akčními centry jsou rovníková deprese, oceánské subtropické anticyklony (např. azorská anticyklona) a cyklony nad oceány ve vysokých zeměpisných šířkách (např. islandská cyklona).
česky: centrum atmosféry akční permanentní angl: permanent atmospheric center of action slov: permanentné akčné centrum atmosféry něm: stationäres Aktionszentrum n fr: centre d'action de caractère permanent m  1993-a3
постоянный центр действия
česky: centrum atmosféry akční trvalé angl: permanent atmospheric center of action slov: stále akčné centrum atmosféry něm: stationäres Aktionszentrum n fr: centre d'action de caractère permanent m  1993-a1
постоянство
v meteorologii jeden z rysů časových změn atm. dějů, který je protějškem jejich proměnlivosti a projevuje se tendencí k zachování existujícího typu počasí nebo existujících hodnot meteorologických prvků. V časových řadách met. prvků se persistence projevuje zachováváním současných hodnot i v blízké budoucnosti. Míra projevu persistence klesá s rostoucí délkou sledovaného období a obvykle závisí na zeměp. poloze, roč. době a řadě met. faktorů. Je různá podle toho, zda uvažujeme celkový charakter počasí nebo jednotlivé met. prvky. Z existence persistence vycházejí rovněž některé pomocné metody používané v předpovědích počasí, např. v souvislosti s využíváním přirozených synoptických období nebo při analýze klimatologických řad. Persistence je obecně podmíněna setrvačností dějů v atmosféře. Viz též předpověď počasí perzistentní.
česky: perzistence angl: persistence slov: perzistencia něm: Beständigkeit f, Persistenz f  1993-a2
потенциал Гиббса
syn. energie volná Gibbsova – termodynamický potenciál používaný v meteorologii především ve fyzice oblaků a srážek. Je definován výrazem
G=F+pV=HTS =UTS+pV,
kde F značí volnou energii dané termodyn. soustavy, H entalpii, U vnitřní energii, S entropii, T teplotu v K, p tlak a V objem. Gibbsův termodynamický potenciál zůstává konstantní při vratných dějích, které jsou izobarické a současně izotermické, tzn. že se nemění např. při fázových přechodech.
česky: potenciál Gibbsův angl: Gibbs potential slov: Gibbsov potenciál něm: Gibbs-Potential n, Gibbs-Energie f  1993-a3
потенциал скорости
česky: potenciál divergenční angl: velocity potential slov: divergenčný potenciál něm: Geschwindigkeitspotential n  1993-a1
потенциальная изобарическая эквивалентная температура
česky: teplota potenciální ekvivalentní izobarická angl: equivalent potential temperature slov: izobarická ekvivalentná potenciálna teplota  1993-b1
потенциальная неустойчивость атмосферы
instabilní teplotní zvrstvení atmosféry ve vrstvě vzduchu vyvolané vynuceným výstupem vrstvy, která je původně stabilní z hlediska vertikální stability atmosféry. Před dosažením výstupné kondenzační hladiny a za předpokladu adiabatického ochlazování se vrstva labilizuje, neboť vertikální teplotní gradient ve vrstvě se zvětšuje v důsledku adiabatické expanze. Vrstva však nadále zůstává stabilní. Pokud směšovací poměr vodní páry ve vrstvě klesá s výškou dostatečně rychle, aby spodní část vrstvy dosáhla výstupnou kondenzační hladinu dříve než její horní část, začne se od tohoto okamžiku spodní část vrstvy ochlazovat pomaleji v důsledku uvolňování latentního tepla kondenzace. Vrstva se tak dále labilizuje a nyní se již může stát instabilní. Potenciální instabilita se tedy projeví při dostatečně velkém poklesu směšovacího poměru s výškou a/nebo při dostatečně velkém vert. teplotním gradientu ve vrstvě. Stav, kdy je vrstva charakterizovaná instabilním teplotním zvrstvením až po svém vyzdvižení jako celku k nasycení, je též někdy označován jako konvekční instabilita. Uvažovaná vrstva je potenciálně (konvekčně) instabilní, pokud ve vrstvě klesá adiabatická ekvivalentní potenciální teplota s výškou. Viz též děj adiabatický, děj pseudoadiabatický.
česky: instabilita atmosféry potenciální angl: potential instability, potential instability of atmosphere slov: potenciálna instabilita atmosféry něm: potentielle Instabilität der Atmosphäre f  1993-a3
потенциальная псевдоэквивалентная температура
česky: teplota potenciální ekvivalentní adiabatická angl: pseudoequivalent potential temperature slov: adiabatická ekvivalentná potenciálna teplota  1993-b1
потенциальная температура
teplota, jakou by měla částice suchého vzduchu, kdybychom ji adiabaticky přivedli do izobarické hladiny 1 000 hPa. Z Poissonových rovnic vyplývá vztah:
Θ=T(1000p )R/cp,
kde T je teplota vzduchu v K, p tlak vzduchu v hPa, R měrná plynová konstanta suchého vzduchu a cp měrné teplo suchého vzduchu při stálém tlaku. Potenciální teplota zůstává konstantní při adiabatických dějích v suchém vzduchu, je tedy konzervativní vlastností vzduchové hmoty, pokud nedochází k fázovým změnám vody. V praxi lze potenciální teplotu používat jako termodyn. charakteristiku, v podstatě jako míru entropie nejen pro suchý, ale i pro vlhký, avšak nenasycený vzduch. Při stabilním teplotním zvrstvení atmosféry potenciální teplota s výškou vzrůstá, při indiferentním zvrstvení se s výškou nemění, při instabilním zvrstvení potenciální teplota s výškou klesá. K pojmu potenciální teplota dospěl v roce 1884 H. Helmholtz, nazýval ji však ještě obsah tepla (Wärmegehalt). Název potenciální teplota pochází od W. Bezolda (1888).
česky: teplota potenciální angl: potential temperature slov: potenciálna teplota  1993-a1
потенциальная температура смоченного термометра
česky: teplota vlhká izobarická potenciální angl: isobaric wet-bulb potential temperature slov: izobarická vlhká potenciálna teplota  1993-a1
потенциальный вихрь скорости
skalární veličina, která je úměrná skalárnímu součinu vektoru abs. vorticity a gradientu potenciální teploty. Potenciální vorticita P, někdy též nazývaná jako Ertelova potenciální vorticita, je definována vztahem:
P=1ρ(× va).θ= 1ρ(2Ω+× vr).θ,
kde ρ je hustota vzduchu, va vektor rychlosti proudění vzhledem k absolutní souřadnicové soustavě, vr vektor rychlosti proudění vzhledem k relativní souřadnicové soustavě, ∇ θ třídimenzionální gradient potenciální teploty v z-systému a Ω vektor úhlové rychlosti rotace Země. Hodnoty potenciální vorticity se obvykle uvádějí v jednotkách PVU, kde 1 PVU = 10–6 K.kg–1.m2.s–1. Uvedený definiční vztah je nejobecnějším vyjádřením potenciální vorticity. V praxi se často používají účelově zjednodušená matematická vyjádření. Potenciální vorticitu lze však vždy do určité míry považovat za míru podílu abs. vorticity a efektivní tloušťky víru. Například v dynamické meteorologii synoptického měřítka se obvykle používá forma vyjádření v theta-systému:
Pθ=g( ξθ+λ) (θp)θ
kde ξθ je vert. složka rel. vorticity v theta-systému, λ Coriolisův parametr, g velikost tíhového zrychlení a p tlak vzduchu. Potenciální vorticita je v tomto případě definována v daném bodě jako absolutní vorticita vztažená k vertikálnímu vzduchovému sloupci, jehož výšce přísluší jednotkový tlakový rozdíl a jehož obě podstavy se nalézají v hladinách konstantní entropie. Uvedené vyjádření vede k odvození tzv. teorému potenciální vorticity, podle kterého lze potenciální vorticitu vzduchové částice považovat za konstantní za předpokladu hydrostatické rovnováhy a adiabatického děje bez tření v atmosféře, tj. pro většinu pohybů synoptického měřítka. Důsledkem je např. zmenšování (zvětšování) velikosti abs. vorticity vzduchového sloupce v souladu s tím, jak se zmenšuje (zvětšuje) tloušťka sloupce na návětrné (zavětrné) straně horské překážky. Viz též anomálie potenciální vorticity.
česky: vorticita potenciální angl: potential vorticity slov: potenciálna vorticita něm: potentielle Vortizität f  1993-a3
поток излучения
syn. tok radiační – 
1. množství záření vyjádřené v energ. jednotkách, které za jednotku času dopadá na jednotkovou plochu dané orientace, popř. touto plochou prochází nebo je jí vyzařováno do určitého prostorového úhlu, event. do celého poloprostoru. Podle toho rozlišujeme tok záření dopadajícího, procházejícího nebo vyzařovaného. V meteorologii jde nejčastěji o toky přímého, rozptýleného nebo globálního slunečního záření, popř. o toky dlouhovlnného záření, a to buď v celém rozsahu spektra, nebo jen v určitých oborech vlnových délek. Základní jednotkou zářivého toku je Joule na metr čtvereční za s (J.m–2.s–1),resp. (W.m–2);
2. jako zářivý tok bodového zdroje označujeme množství záření, vyjádřené v energ. jednotkách, vyzařované tímto zdrojem za jednotku času do určitého prostorového úhlu nebo do celého prostoru. V tomto případě je jednotkou Joule za sekundu (J.s–1), resp. watt (W).
Viz též ozáření.
česky: tok zářivý angl: radiant flux, radiation flux slov: tok žiarenia  1993-a1
поток радиации
syn. tok radiační – 
1. množství záření vyjádřené v energ. jednotkách, které za jednotku času dopadá na jednotkovou plochu dané orientace, popř. touto plochou prochází nebo je jí vyzařováno do určitého prostorového úhlu, event. do celého poloprostoru. Podle toho rozlišujeme tok záření dopadajícího, procházejícího nebo vyzařovaného. V meteorologii jde nejčastěji o toky přímého, rozptýleného nebo globálního slunečního záření, popř. o toky dlouhovlnného záření, a to buď v celém rozsahu spektra, nebo jen v určitých oborech vlnových délek. Základní jednotkou zářivého toku je Joule na metr čtvereční za s (J.m–2.s–1),resp. (W.m–2);
2. jako zářivý tok bodového zdroje označujeme množství záření, vyjádřené v energ. jednotkách, vyzařované tímto zdrojem za jednotku času do určitého prostorového úhlu nebo do celého prostoru. V tomto případě je jednotkou Joule za sekundu (J.s–1), resp. watt (W).
Viz též ozáření.
česky: tok zářivý angl: radiant flux, radiation flux slov: tok žiarenia  1993-a1
почва под травой
půda, na níž je udržován trávník na stejné výšce pro účely srovnatelnosti meteorologických měření. V ČR je předepsaným druhem aktivního povrchu na meteorologických stanicích.
česky: půda porostlá trávníkem angl: grassy soil slov: pôda s porastom trávnika něm: Grasboden m  1993-a3
почвенная вода
část podpovrchové vody, včetně vodní páry, obsažená v půdě nebo v přilehlých horninách nad souvislou hladinou podzemní vody. Viz též hydrosféra, bilance půdní vody, vlhkost půdy.
česky: voda půdní angl: soil water slov: pôdna voda něm: Bodenwasser n  1993-a3
почвенная климатология
česky: klimatologie půdní angl: soil climatology slov: pôdna klimatológia něm: Bodenklimatologie f  1993-a1
почвенная оболочка Земли
nesouvislý půdní obal Země, který vznikl zvětrávacími a půdotvornými procesy z nejvrchnějších částí zemské kůry a z organických látek. Tyto procesy jsou ovlivňovány klimatem, takže současné rozmístění půd vypovídá o klimatu Země v době jejich vzniku. Zonalita klimatu způsobuje existenci zonálních půd; naopak při vzniku azonálních půd hrají podstatnější roli jiné faktory, především složení matečné horniny. Pedosféra je sférou průniku vrchní litosféry, přízemní vrstvy atmosféry, hydrosféry a biosféry. Viz též klima půdní, vzduch půdní, kvartér.
česky: pedosféra angl: pedosphere slov: pedosféra něm: Pedosphäre f  1993-a3
почвенный воздух
česky: atmosféra půdní slov: pôdna atmosféra něm: Bodenluft f  1993-a1
почвенный воздух
syn. atmosféra půdní – plynná fáze vyplňující póry, dutiny a trhliny v půdě, které nejsou vyplněny půdní vodou. Půdní vzduch se chem. složením i dynamikou liší od směsi plynů tvořících atmosféru Země. Složení půdního vzduchu během roku kolísá, přičemž většinou obsahuje více CO2 a vodní páry a méně O2 než vzduch nad zemským povrchem; půdní vzduch může obsahovat měřitelná množství NH3, H2S, CH4 a jiných uhlovodíků v důsledku rozkladu organických látek v půdě. Pohyb a výměna půdního vzduchu se uskutečňuje difuzí, změnami tlaku vzduchu, teploty vzduchu, teploty půdy, vlhkosti půdy, v důsledku pohybu vody v půdě, prouděním vzduchu nad půdou apod. Půdní vzduch je nezbytný pro život rostlin a půdních organizmů a půdní vzdušná kapacita často rozhoduje o úrodnosti půdy.
česky: vzduch půdní angl: soil air, soil atmosphere slov: pôdny vzduch něm: Bodenluft f  1993-a3
почвенный термометр
teploměr určený k měření teploty půdy v různých hloubkách. Používají se nejčastěji speciálně konstruované rtuťové nebo elektrické teploměry. V Česku se měření provádí běžně v hloubkách 5, 10, 20, 50 a 100 cm. Pro hloubky do 20 cm se používají lomené půdní teploměry, jejichž stonek svírá se stupnicí úhel 135°. Stonek teploměru se zapouští do svislého otvoru v půdě tak, aby nádobka teploměru byla v požadované hloubce. Pro větší hloubky se užívá hloubkový půdní teploměr, který má rozměrnou nádobku a zasazuje se do držáku, s nímž se spouštěl do svislé ochranné trubice. Na profesionálních stanicích ČR se údaje z půdních rtuťových teploměrů používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s elektrickými teploměry.
V současné době se v Česku používají elektrické odporové teploměry. Výhodou el. půdních teploměrů je možnost lepšího kontaktu čidla s půdou, jeho přesnější nastavení do požadované hloubky, vyloučení ovlivnění teploty způsobené při čtení a celkově větší odolnost proti mech. poškození než u skleněných teploměrů.
česky: teploměr půdní angl: earth thermometer, soil thermometer slov: pôdny teplomer  1993-a3
почти ясно
viz oblačnost.
česky: skoro jasno slov: takmer jasno něm: fast wolkenlos  1993-a1
пояса поглощения водяного пара
oblasti ve spektru slunečního nebo dlouhovlnného záření, v nichž se projevuje intenzivní selektivní absorpce záření, působená vodní párou obsaženou v atmosféře. Nejvýznamnější absorpční pásy vodní páry jsou u vlnových délek 1,4; 1,9; 2,7; 6,3 µm a v oblasti vlnových délek větších než zhruba 15 µm, v níž vodní pára prakticky úplně absorbuje dlouhovlnné záření. Viz též absorpce záření.
česky: pásy vodní páry absorpční angl: water vapour absorption bands slov: absorpčné pásy vodnej pary něm: Absorptionsbande des Wasserdampfes n  1993-a2
правила визуального полета
česky: pravidla pro let za viditelnosti (VFR) angl: visual flight rules slov: pravidlá pre let pri vidieteľnosti něm: Sichtflugregeln f/pl  1993-a1
правила для полета по приборам
česky: pravidla pro let podle přístrojů (IFR) angl: instrument flight rules slov: pravidlá pre let podľa prístrojov něm: Instrumentenflugregeln f/pl  1993-a1
пребореал
viz holocén.
česky: preboreál angl: preboreal slov: preboreál něm: Präboreal n  1993-a3
превышение над уровнем мoря
vert. vzdálenost hladiny, bodu nebo definovaného místa od stř. hladiny moře. V angl. terminologii se pro nadmořskou výšku používají termíny: „elevation“, jde-li o nadm. výšku objektů na zemském povrchu nebo objektů pevně spojených se zemským povrchem a „altitude“, jedná-li se o nadm. výšku objektů nad zemským povrchem; nebo obecnější termín „height above mean sea level“. V češtině a slovenštině existuje jediný termín „nadmořská výška“.
česky: výška nadmořská angl: altitude, elevation, height above mean sea level slov: nadmorská výška něm: Elevationswinkel m, Höhe über dem (mittleren) Meeresspiegel f, Meereshöhe f  1993-a3
предел духоты
česky: hranice dusna angl: limit of muggy slov: hranica dusna něm: Schwülegrenze f  1993-a1
предсказываемая погода
soubor údajů o očekávaném počasí, vztahující se k určitému prostoru a časovému intervalu. Do tohoto souboru se nejčastěji zahrnují údaje o očekávaných hodnotách teploty vzduchu, směru a rychlosti větru, o výskytu oblačnosti, atm. srážek, mlh, bouřek apod.
česky: počasí předpovídané angl: predicted weather slov: predpovedané počasie něm: vorhergesagtes Wetter n  1993-a1
предфронтальные осадки
srážky, které vypadávají v oblasti atmosférické fronty před frontální čarou. Předfrontální srážky mohou být jak trvalé, tak ve formě přeháněk. Jejich trvání na určitém místě závisí především na rychlosti postupu fronty, na její výraznosti, roč. a denní době. Nejdelší trvání obvykle mívají srážky před teplými frontami, někdy i více než 24 h, nejkratší před studenými frontami, někdy jen několik min. Viz též srážky frontální, srážky zafrontální.
česky: srážky předfrontální angl: pre-frontal precipitation slov: predfrontálne zrážky něm: präfrontaler Niederschlag m  1993-a2
предфронтальный туман
česky: mlha předfrontální angl: pre-frontal fog slov: predfrontálna hmla něm: Präfrontalnebel m  1993-a3
преломление света в атмосфере
česky: lom světla v atmosféře angl: atmospheric refraction of light slov: lom svetla v atmosfére  1993-a1
преломление электромагнитных волн в атмосфере
česky: lom elektromagnetických vln v atmosféře angl: atmospheric refraction of electromagnetic waves slov: lom elektromagnetických vĺn v atmosfére něm: atmosphärische Refraktion von elektromagnetischen Wellen f  1993-a1
преобладающее направление ветра
česky: směr větru převládající angl: prevailing wind direction slov: prevládajúci smer vetra něm: vorherrschende Windrichtung f  1993-a1
преобладающий ветер
syn. směr větru převládající – směr větru nejčastěji měřený nebo pozorovaný v daném místě za určité období, např. den, měsíc, sezonu nebo rok. Je jednou ze základních klimatických charakteristik určitého místa.
česky: vítr převládající angl: prevailing wind slov: prevládajúci vietor něm: vorherrschender Wind m  1993-a3
приближение Буссинеска
1. aproximace spočívající v uplatnění konceptu turbulentní vazkosti v teorii turbulentního proudění;
2. aproximace používaná při modelování atm. turbulence a konvekce. Představuje zjednodušení příslušných modelových rovnic, kdy se změny hustoty vzduchu uvažují pouze v tom členu rovnic, který představuje vztlakovou sílu, zatímco jinak se hustota vzduchu považuje za konstantní veličinu.
česky: aproximace Boussinesqova angl: Boussinesq approximation slov: Boussinesqova aproximácia něm: Boussinesq-Approximation f, Boussinesq-Approximation f fr: approximation de Boussinesq f  2014
приближение тонкого слоя
zjednodušení, při kterém se tloušťka zemské atmosféry považuje za zanedbatelnou ve srovnání s poloměrem Země. V soustavě prognostických rovnic je vzdálenost od středu Země nahrazena poloměrem Země. Aby soustava rovnic využívající aproximaci tenké vrstvy zachovávala moment hybnosti a energie, je nutné zanedbat některé metrické členy a vertikální členy Coriolisovy síly. Tato aproximace je jedním ze základních zjednodušení, používaných v meteorologii.
česky: aproximace tenké vrstvy angl: thin layer approximation slov: aproximácia tenkej vrstvy fr: approximation de couche mince f, approximation de la couche limite fine f  2014
прибор для измерения интенсивности осадков
zast. označení pro váhový srážkoměr.
česky: intenzograf srážkový angl: rainfall rate recorder slov: zrážkový intenzograf něm: Regenschreiber m  1993-a3
приведение
v meteorologii a klimatologii přepočty a opravy výsledků met. měření, prováděné za účelem srovnatelnosti a reprezentativnosti údajů. Používá se ve významu:
1. přepočet změřené hodnoty meteorologického prvku na hodnotu, kterou by měl v jiné nadm. výšce. Provádí se zpravidla podle jednotné metodiky k dosažení srovnatelnosti hodnot změřených v různých nadm. výškách, např. redukce tlaku vzduchu na dohodnutou hladinu (zpravidla hladinu moře), redukce teploty vzduchu na hladinu moře apod.;
2. přepočet hodnot klimatologických charakteristik z krátkých pozorovacích řad na hodnotu, která by odpovídala jednotnému, zpravidla normálnímu období ve snaze porovnat mnohaleté prům. hodnoty met. prvků na různých místech (stanicích). Např. redukce měs. nebo roč. průměrů teploty vzduchu, popř. srážek z různých stanic a různě dlouhých řad pozorování za období 1931–1960;
3. oprava tlaku vzduchu na normální podmínky, např. oprava na teplotu prováděná s ohledem na teplotu v místnosti, v níž je instalován tlakoměr, oprava na tíhové zrychlení apod.
Termín redukce se používá též jako nevhodné označení pro opravy met. přístrojů.
česky: redukce angl: reduction slov: redukcia něm: Reduktion f  1993-a1
приведение давления воздуха к стандартному уровню
výpočet tlaku vzduchu pro dohodnutou hladinu z hodnoty tlaku vzduchu v nadmořské výšce tlakoměru s přihlédnutím k virtuální teplotě. V synoptické meteorologii se provádí nejčastěji redukce tlaku vzduchu na střední hladinu moře, pro letecké účely na nadm. výšku vztažného bodu letiště podle mezinárodní standardní atmosféry ICAO. Viz též tlak vzduchu redukovaný na hladinu moře.
česky: redukce tlaku vzduchu na dohodnutou hladinu angl: reduction of pressure to a standard level slov: redukcia tlaku vzduchu na dohodnutú hladinu něm: Reduktion des Luftdrucks auf eine Standarddruckfläche f  1993-a3
приведение давления воздуха к уровню моря
česky: redukce tlaku vzduchu na hladinu moře angl: reduction of pressure to sea level slov: redukcia tlaku vzduchu na hladinu mora něm: Reduktion des Luftdrucks auf Meeresniveau f  1993-a3
приведение рядов осадков к одному периоду
v klimatologii zpravidla redukce prům. měs., sezonních a roč. srážkových úhrnů vypočtených z krátkých řad pozorování na normální období neboli klimatologický normál. Redukce se provádí pomocí výsledků souběžného pozorování blízké referenční stanice obvykle metodou podílů neboli kvocientů. Předpokladem této redukce je, že zvolená referenční stanice pozorovala po celé normální období, její pozorování je homogenní a proměnlivost podílů srážek obou stanic je kvazikonstantní.
česky: redukce srážek na jednotné období angl: precipitation reduction slov: redukcia zrážok na jednotné obdobie něm: Reduktion des Niederschlags auf gleiche Perioden f  1993-a1
приведение температуры воздуха (к уровню моря, к одному периоду)
1. přepočet teploty vzduchu na jinou nadm. výšku než ve které byla změřena, zpravidla na hladinu moře, viz teplota vzduchu redukovaná na hladinu moře. Provádí se pomocí konvenčně stanoveného nebo z dat odvozeného vertikálního teplotního gradientu, ve stř. Evropě např. podle Hannova vzorce
T0=T+0,005h,
kde T0 je redukovaná teplota, h nadm. výška stanice v metrech a T teplota vzduchu ve výšce h. Závislost teploty vzduchu na nadm. výšce se nicméně během roku mění a je ovlivňována i dalšími faktory, především reliéfem.
2. přepočet prům. měs., sezonní nebo roč. teploty vzduchu krátkých řad pozorování na jednotné, zpravidla normální období. Provádí se pomocí blízké referenční stanice s úplnou řadou pozorování metodou diferencí za předpokladu kvazikonstantnosti těchto diferencí.
česky: redukce teploty vzduchu angl: air temperature reduction slov: redukcia teploty vzduchu něm: Reduktion der Lufttemperatur f  1993-a3
привязной аэростат
syn. aerostat – balon obvykle aerodyn. tvaru, který se vypouští do spodních vrstev atmosféry na laně. Slouží jako nosič měřicích přístrojů umístěných při měření v přibližně konstantní výšce nad zemi. Upoutaný balon se používá k zjišťování meteorologických prvkůmezní vrstvě atmosféry, např. pro studium znečištění ovzduší.
česky: balon upoutaný angl: captive balloon, kite balloon, kytoon slov: upútaný balón něm: Fesselballon m, Drachenballon m fr: ballon captif m, ballon cerf-volant m  1993-a2
привязной зонд
přístroj zavěšený pod upoutaným balonem, měřící jeden nebo několik meteorologických prvků, např. vítr, tlak, vlhkost a teplotu vzduchu. Změřené údaje jsou přijímány pozemním přijímacím a vyhodnocovacím zařízením. Slouží k měření v přízemní a mezní vrstvě atmosféry, zejména v souvislosti se zjišťováním podmínek pro šíření příměsí v atmosféře. Viz též sondáž ovzduší upoutanou sondou.
česky: sonda upoutaná angl: wire sonde slov: pripútaná sonda něm: Fesselsonde f  1993-a3
приземная инверсия
teplotní inverze začínající bezprostředně od zemského povrchu. Z hlediska příčin svého vzniku patří zpravidla k radiačním, popř. advekčním inverzím teploty vzduchu. Viz též inverze teploty výšková.
česky: inverze teploty vzduchu přízemní angl: ground inversion, surface inversion slov: prízemná inverzia teploty vzduchu něm: Bodeninversion f  1993-a2
приземная карта
v meteorologii synoptická mapa sestavená z údajů sítě přízemních meteorologických stanic v hlavních a vedlejších synoptických termínech. Údaje zakreslené v přízemní mapě se však nevztahují přímo k zemskému povrchu, protože čidla met. přístrojů jsou umístěna v různé předepsané výšce nad povrchem; tlak vzduchu zaznamenávaný na přízemní mapě je redukován na hladinu moře, zakreslené oblaky se vyskytují v různých výškách nad zemským povrchem apod. Stav a průběh počasí je na přízemní mapě zaznamenán dohodnutým způsobem, a to buď čís. hodnotami meteorologických prvků (např. teplota a tlak vzduchu), v šifrách (vodorovná dohlednost, výška nejnižších oblaků), nebo v symbolech (druh oblaků, rychlost větru, oblačnost). Údaje z met. stanic jsou na přízemní mapě uspořádány kolem staničních kroužků podle staničního modelu.
Analyzovaná přízemní mapa (v současné době se může částečně jednat i o analýzu objektivní pomocí výpočetní techniky) obsahuje zákresy atm. frontizobar, izalobar, oblasti výskytu atm. srážek, mlh a bouřek a jsou v ní vyznačeny středy cyklon a anticyklon. Tlakové pole zobrazené na přízemní mapě lze orientačně považovat za absolutní topografii 1 000 hPa. Viz též analýza synoptických map, měření srážek, měření teploty vzduchu, měření tlaku vzduchu, redukce tlaku vzduchu na dohodnutou hladinu, mapa výšková.
česky: mapa přízemní angl: surface chart slov: prízemná mapa něm: Bodenkarte f  1993-a3
приземный ветер
v meteorologii vítr měřený na met. stanici v dohodnuté výšce nad zemským povrchem, obvykle ve výšce 10 m (v letectví v souladu s předpisem L3–Meteorologie standardně ve výšce 10±1 m), v níž je rušivý vliv místních překážek a terénu na proudění již výrazně menší než v těsné blízkosti povrchu. Měření přízemního větru by mělo být prováděno na otevřeném prostranství v místě bez vlivu okolních překážek. Za minimální vzdálenost od překážek se považuje desetinásobek jejich výšky, doporučuje se však větší vzdálenost, zejména od překážek z převládajících směrů větru.
česky: vítr přízemní angl: surface wind slov: prízemný vietor něm: bodennaher Wind m  1993-a3
приземный озон
část troposférického ozonu vyskytující se v přízemní vrstvě atmosféry. Jedná se o sekundární znečišťující látku, která nemá v atmosféře vlastní významný zdroj. Vzniká v důsledku řady komplikovaných fotochemických reakcí z prekurzorů, kterými jsou především NOx a VOC z přirozených i antropogenních zdrojů. Ve zvýšených koncentracích se vytváří za slunných letních dnů. Jde o tzv. letní znečisťující příměs s maximálními koncentracemi vyskytujícími se v období duben až září. Prostorové rozložení přízemního ozonu je velmi rozdílné v závislosti na umístění emisních zdrojů a na meteorologických podmínkách. Je indikátorem fotochemického neboli oxidačního smogu. Vzhledem ke svým silným oxidačním schopnostem je ozon toxický a má negativní vliv na biosféru.
Referenční metodou pro měření koncentrací přízemního ozonu je UV–absorbance. Imisní limit pro ochranu lidského zdraví je stanoven jako denní maximum klouzavého osmihodinového průměru koncentrace 120 µg.m–3, tolerovaný počet překročení je ve 25 dnech v průměru za 3 roky. Cílový imisní limit pro ochranu vegetace a ekosystémů je stanoven na základě expozičního indexu AOT40 a je roven 18 000 µg.m–3.h v průměru za 5 let.
česky: ozon přízemní angl: surface ozone slov: prízemný ozón něm: bodennahes Ozon n  2014
приземный слой атмосферы
syn. podvrstva atmosféry přízemní, vrstva konstantního toku – nejspodnější část mezní vrstvy atmosféry o tloušťce zpravidla několika desítek m, v níž se dyn. a termodyn. vlivy zemského povrchu projevují zvláště výrazně a závislost vert. toků hybnosti, tepla a vodní páry na výšce lze obvykle zanedbat. Vert. gradienty složek větru, teploty a dalších meteorologických prvků dosahují v této vrstvě zpravidla max. hodnot. Ve starším pojetí se jako přízemní vrstva atmosféry označovala vrstva 1 až 2 km nad zemským povrchem. Viz též modely přízemní vrstvy atmosféry, hranice přízemní vrstvy atmosféry.
česky: vrstva atmosféry přízemní angl: surface layer of atmosphere, surface sublayer of atmosphere, constant flux layer of atmosphere slov: prízemná vrstva atmosféry něm: bodennahe Luftschicht f  1993-a3
приземный туман
1. mlha v tenké vrstvě vzduchu při zemském povrchu zasahující nejvýše do 2 m nad zemí, nad níž je vodorovná dohlednost výrazně vyšší;
2. v širším smyslu mlha v poměrně tenké přízemní vrstvě atmosféry zasahující od země do výšky řádově metrů nebo desítek metrů. Vznik přízemní mlhy obvykle závisí na místních podmínkách, většinou se jedná o mlhu radiační. Viz též mlha vysoká.
česky: mlha přízemní angl: ground fog slov: prízemná hmla něm: Bodennebel m  1993-a3
приземный фронт
1. atmosférická fronta dosahující až na zemský povrch a projevující se tam ostrými změnami meteorologických prvků. Termín se používá jako protějšek fronty výškové;
2. atm. fronta nevelkého vert. rozsahu, obvykle do výšky 1 km až 3 km nad zemským povrchem. Viz též klasifikace atmosférických front.
česky: fronta přízemní angl: surface front slov: prízemný front něm: Bodenfront f fr: front au sol m  1993-a1
прикладная климатология
syn. klimatologie užitá – analýza a syntéza klimatologických údajů pro jejich využití v praxi (v zemědělství, průmyslu, zdravotnictví, při výstavbě, v dopravě, energetice apod.). Viz též klimatologie lékařská, lesnická, letecká, průmyslová, technická, urbanistická, zemědělská.
česky: klimatologie aplikovaná angl: applied climatology slov: aplikovaná klimatológia něm: angewandte Klimatologie f  1993-a1
прикладная климатология
česky: klimatologie užitá slov: aplikovaná klimatológia  1993-a1
прикладная метеорология
syn. meteorologie užitá – meteorologie bezprostředně zaměřená na využití v praxi aj. vědních oborech. Jde zejména o aplikace met. poznatků v jednotlivých oblastech průmyslu, energetiky, dopravy, zemědělství ale i dalších oborech lidské činnosti. Např. problematiky zemědělství se týká zemědělská meteorologie, letecké dopravy letecká meteorologie, zdravotnictví lékařská meteorologie apod. Součástí aplikované meteorologie je aplikovaná klimatologie.
česky: meteorologie aplikovaná angl: applied meteorology slov: aplikovaná meteorológia něm: angewandte Meteorologie f  1993-a3
прикладная метеорология
česky: meteorologie užitá angl: applied meteorology slov: aplikovaná meteorológia něm: angewandte Meteorologie f  1993-a1
приметы погоды
lid. průpovídka, často rýmovaná, která buď zachycuje typický průběh počasí v jednotlivých částech roku, nebo odhaduje vývoj počasí podle jeho charakteru v určitém referenčním dni nebo období. Většina povětrnostních pranostik se váže k vybraným kalendářním (tzv. kritickým) dnům roku a pro snadné zapamatování jsou spojeny se jménem příslušného světce (např. „Medardova kápě čtyřicet dní kape“). Část pranostik se týká vícedenních období, obvykle měsíců (např. „V lednu sníh a bláto, v únoru tuhé mrazy za to“). Řada pranostik má racionální jádro, u některých však obsah ustoupil rýmu, mnohé jsou pověrečné. Většina povětrnostních pranostik má jen regionální význam a pro jejich pochopení je nutné znát, kde a kdy vznikly, popř. obsah pojmů v době jejich zrodu. Poměrně značná část pranostik je odrazem povětrnostních singularit. Slovo pranostika vzniklo zkomolením slova prognostika, souvisejícího s prognózou čili předpovědí. Viz též počasí medardovské, obleva vánoční.
česky: pranostika povětrnostní angl: weather lore, weather proverb slov: poveternostná pranostika něm: Bauernregel f, Wetterregel f  1993-a1
примитивные уравнения
méně vhodné označení pro základní rovnice.
česky: rovnice primitivní angl: primitive equations slov: primitívne rovnice něm: primitive Gleichungen f/pl  1993-a1
приподнятый факел
jeden z tvarů kouřové vlečky. Kouřová vlečka má tvar kužele s osou nakloněnou vzhůru, takže se exhalace prakticky nedostávají k zemi. Objevuje se tehdy, když efektivní výška komína přesahuje horní hranici inverzní vrstvy. Unášení kouřové vlečky patří k nejpříznivějším podmínkám rozptylu v bližším okolí vysokých komínů. Obvykle je výskyt unášení kouřové vlečky spojen s tvořením přízemní radiační inverze teploty vzduchu před západem Slunce. Přiblíží-li se horní hranice tvořící se přízemní inverze úrovni efektivní výšky komína, přechází unášení kouřové vlečky do čeření kouřové vlečky.
česky: unášení kouřové vlečky angl: lofting slov: unášanie dymovej vlečky něm: Lofting n  1993-a1
природная окружающая среда
část materiálních činitelů životního prostředí, kterou vytvářejí biotické i abiotické složky přírody. Abiotickými složkami přírodního prostředí jsou atmosféra, hydrosféra a litosféra, biotickou složkou je biosféra; pedosféra se považuje obvykle za průnik abiotické a biotické složky přírodního prostředí. Předmětem zájmu meteorologie je ta část přírodního prostředí, pro niž jsou významné atm. jevy a děje. Protikladem přírodního prostředí je umělé životní prostředí, jehož složkami jsou uměle vytvořené objekty. Viz též potenciál krajiny klimatický.
česky: prostředí přírodní angl: natural environment slov: prírodné prostredie něm: natürliche Umgebung f  1993-a1
проанализированная карта
met. mapa přízemní nebo výšková, na níž jsou zakresleny izolinie meteorologických prvků, zejména izobary nebo izohypsy, izotermy, izotachy aj., určeny polohy atm. front, zakresleno rozložení atm. srážek a jejich druhů, výskyt mlh, bouřek atd. Analýza se vyjadřuje smluvenými značkami, symboly a barvami.
česky: mapa analyzovaná angl: analysed chart slov: analyzovaná mapa něm: analysierte Karte f  1993-a1
пробег ветра
délka křivky, kterou opisuje vzduchová částice za určitý časový interval.
česky: dráha větru angl: run of wind slov: dráha vetra něm: Windweg m fr: trajectoire d'une parcelle d'air f  1993-a3
прогноз в пункте посадки
letecká předpověď počasí obsahující předpovědi některých z těchto meteorologických prvků: přízemní vítr, dohlednost, význačné počasí (začátek a konec bouřky, mrznoucí srážky, húlava, kroupy, zvířený písek nebo prach aj.) a oblačnost. Období platnosti předpovědi nesmí přesahovat 2 hodiny. Tyto předpovědi jsou určeny pro letadla vzdálená od letiště přistání méně než 1 hodinu letu a vydávají se pravidelně, zpravidla každou půlhodinu, nebo nepravidelně pro jednotlivá přistávající letadla. Vydávají se v otevřené řeči nebo nejčastěji jako přistávací předpovědi typu „trend“, podle pokynů Mezinárodní organizace civilního letectví. Předpovědi typu „trend“ se připravují a mezi letišti se vyměňují spolu s let. met. zprávami v kódu METAR, k nimž jsou připojeny. Viz též indikátory změny v přistávacích a letištních předpovědích.
česky: předpověď přistávací angl: landing forecast slov: predpoveď pristávacia něm: Landevorhersage f  1993-b3
прогноз по данным одного наблюдателя
obvykle laický odhad budoucího počasí, který může být prováděn podle pozorování meteorologických prvků a jevů v daném místě nebo podle pozorování přírodních úkazů. Lidé žijící ve stálém styku s přírodou mohou někdy ze zvláštností průběhu počasí v určitém místě a na základě svých dlouhodobých zkušeností úspěšně odhadnout na krátkou dobu tamější budoucí počasí. Viz též počasí místní.
česky: předpověď počasí podle místního pozorování angl: single observer forecast, single station forecast slov: predpoveď počasia podľa miestneho pozorovania něm: Wettervorhersage nach lokalen Beobachtungen f, Landewettervorhersage f  1993-a2
прогноз по маршруту
syn. předpověď pro let nebo trať – oblastní předpovědi a předpovědi pro let nebo trať pokrývají tzv. letovou fázi letu (mimo vzlet a přistání). Obsahují předpovědi výškového větru, teploty vzduchu ve výšce a význačných met. jevů, spojených zpravidla s oblačností, jako např. atmosférických front, oblastí konvergence proudění, bouřek, tropických cyklon, čar instability, oblastí s kroupami, mírnou nebo silnou turbulencí, námrazou, výrazného vlnového proudění, mrznoucích srážek, rozsáhlých prachových nebo písečných vichřic aj. Je používána buď textová forma předpovědi, zpravidla ve zkrácené otevřené řeči, např. oblastní předpověď pro lety v nízkých hladinách GAMET nebo graf. forma předpovědi, tj. mapa význačného počasí se zkratkami a symboly pro význačné met. jevy podle doporučení Mezinárodní organizace pro civilní letectví, spolu s příslušnými mapami předpovědí směru a rychlosti větru a teploty ve standardních hladinách.
česky: předpověď počasí oblastní angl: area forecast, flight forecast, route forecast slov: oblastná predpoveď počasia něm: Flugstreckenvorhersage f, Flugwettervorhersage f, regionale Vorhersage f  1993-a3
прогноз по одной станции наблюдений
obvykle laický odhad budoucího počasí, který může být prováděn podle pozorování meteorologických prvků a jevů v daném místě nebo podle pozorování přírodních úkazů. Lidé žijící ve stálém styku s přírodou mohou někdy ze zvláštností průběhu počasí v určitém místě a na základě svých dlouhodobých zkušeností úspěšně odhadnout na krátkou dobu tamější budoucí počasí. Viz též počasí místní.
česky: předpověď počasí podle místního pozorování angl: single observer forecast, single station forecast slov: predpoveď počasia podľa miestneho pozorovania něm: Wettervorhersage nach lokalen Beobachtungen f, Landewettervorhersage f  1993-a2
прогноз по трассе
syn. předpověď pro let nebo trať – oblastní předpovědi a předpovědi pro let nebo trať pokrývají tzv. letovou fázi letu (mimo vzlet a přistání). Obsahují předpovědi výškového větru, teploty vzduchu ve výšce a význačných met. jevů, spojených zpravidla s oblačností, jako např. atmosférických front, oblastí konvergence proudění, bouřek, tropických cyklon, čar instability, oblastí s kroupami, mírnou nebo silnou turbulencí, námrazou, výrazného vlnového proudění, mrznoucích srážek, rozsáhlých prachových nebo písečných vichřic aj. Je používána buď textová forma předpovědi, zpravidla ve zkrácené otevřené řeči, např. oblastní předpověď pro lety v nízkých hladinách GAMET nebo graf. forma předpovědi, tj. mapa význačného počasí se zkratkami a symboly pro význačné met. jevy podle doporučení Mezinárodní organizace pro civilní letectví, spolu s příslušnými mapami předpovědí směru a rychlosti větru a teploty ve standardních hladinách.
česky: předpověď počasí oblastní angl: area forecast, flight forecast, route forecast slov: oblastná predpoveď počasia něm: Flugstreckenvorhersage f, Flugwettervorhersage f, regionale Vorhersage f  1993-a3
прогноз погоды
meteorologická předpověď slovně, popř. graficky vyjadřující budoucí stav povětrnostních podmínek. Předpověď počasí vychází z podrobné analýzy termobarického a vlhkostního pole atmosféry a fyz. stavu zemského povrchu. Klasické přepdovědi počasí vycházely především ze synoptické předpovědi, z níž meteorolog na základě svých subjektivních zkušeností a podle jistých empirických pravidel extrapoloval budoucí vývoj atmosférických dějů a počasí. V současné době vycházejí předpovědi počasí především z numerických předpovědí počasí založených na numerické integraci diferenciálních rovnic, jež v určitém modelovém přiblížení popisují dynamiku a termodynamiku atmosféry. K doplnění numerických předpovědí, dále pak pro jejich upřesňování nebo interpretaci na předpověď vlastních projevů počasí, se využívají i metody statistické předpovědi. Subjektivní zkušenosti meteorologa, spolu s některými empirickými pravidly však stále mají velkou roli a uplatňují se při interaktivní spolupráci člověka s počítačem, což vhodně vystihuje angl. termín „man-machine mix“. Platí to především při interpretaci výsledků numerických předpovědí pro místní podmínky, zvláště při výskytu extrémních jevů malého měřítka. Vzhledem k tomu, že jakékoliv předpovědní metody zachycují atm. děje pouze v určitém přiblížení, mají předpovědi počasí zpravidla pravděpodobnostní, a nikoli striktně deterministický charakter. Z toho vyplývá, že vytěžit z nich maximum informací může především uživatel, který je v potřebné míře obeznámen s možnostmi meteorologie a se základními vlastnostmi atmosféry. V dostatečném časovém předstihu vydaná a správně aplikovaná předpověď počasí umožňuje uživateli přijmout účinná praktická opatření v nejrůznějších oborech lidské činnosti. Viz též rovnice prognostické, úspěšnost předpovědi.
česky: předpověď počasí angl: weather forecast, weather prediction slov: predpoveď počasia něm: Wettervorhersage f  1993-a3
прогноз погоды для взлета
letecká předpověď počasí obsahující informace o met. podmínkách nad vzletovou a přistávací dráhou nebo systémem vzletových a přistávacích drah letiště. Jde nejméně o předpověď směru, rychlosti a nárazů přízemního větru, předpověď teploty vzduchu a tlaku vzduchu redukovaného na hladinu moře podle standardní atmosféry (QNH). Předpověď pro vzlet se vydává v otevřené řeči nebo ve formě zkratek Mezinárodní organizace civilního letectví v období 3 hodiny před plánovaným časem vzletu.
česky: předpověď pro vzlet angl: take-off forecast slov: predpoveď pre vzlet něm: Startwettervorhersage f  1993-b3
прогноз погоды по аэродрому
letecká předpověď počasí, která obsahuje stručné vyjádření předpovídaných met. podmínek na letišti během určitého období. Obsahuje vždy předpověď přízemního větru, dohlednosti, stavu počasí a oblačnosti. Dále může letištní předpověď počasí obsahovat také předpovědi teploty vzduchu. Doby platnosti letištní předpovědi počasí nejsou kratší než 9 hodin, nejčastějšími dobami jsou 9, 24 a max. 30 hodin. Letištní předpověď počasí s platností méně než 12 hodin se vydávají každé 3 hodiny, ostatní každých 6 hodin. Letištní předpovědi počasí se vydávají a mezi letišti vyměňují ve formě kódu TAF. Viz též indikátory změny v přistávacích a letištních předpovědích.
česky: předpověď počasí letištní angl: aerodrome forecast slov: letištná predpoveď počasia něm: Flughafenvorhersage f  1993-a3
прогнозист
v meteorologii vžité označení pro pracovníka předpovědní služby pověřeného vydáváním předpovědí počasí. Viz též meteorolog, synoptik.
česky: prognostik angl: forecaster slov: prognostík něm: Prognostiker m  1993-a1
прогностическая карта
česky: mapa prognózní angl: prognostic chart slov: prognózna mapa něm: Vorhersagekarte f  1993-a1
прогностическая карта
syn. mapa prognózní – v meteorologii obecně mapa, jež obsahuje předpověď kteréhokoli meteorologického prvku a jevu, např. mapa předpovědí atm. srážek, mapa výškového větru se zakreslením předpokládané polohy osy tryskového proudění nebo mapa předpovídaného počátku žní. V denní synop. praxi se význam pojmu předpovědní mapa zužuje na mapy předpovídaných hodnot budoucího rozložení přízemních a výškových polí meteorologických prvků, sestavované zpravidla pomocí numerických předpovědních modelů pro různě dlouhá období (na 24, 48 h atd.). Jedná se především o předpovědní mapy přízemní povětrnostní situace a předpovědní mapy barické topografie, sestavené na základě metod numerické předpovědi počasí v předpovědních centrech a rozšiřované zpravidla prostřednictvím internetu. Viz též mapa přízemní předpovědní, mapa absolutní topografie předpovědní, mapa relativní topografie.
česky: mapa předpovědní angl: forecast chart, prognostic chart slov: predpovedná mapa něm: Vorhersagekarte f  1993-a3
прогностическая карта абсолютной топографии
mapa předpovídaného budoucího rozložení izohyps některé standardní tlakové hladiny, sestavené pro určitý termín, nejčastěji pro 00 UTC. Tato mapa se v současné době zpravidla zpracovává ve větších předpovědních centrech na základě výstupů modelů numerické předpovědi počasí a rozšiřuje internetovým přenosem nebo pomocí meteorologických kódů, např. kódu GRID. Uvedená předpovědní mapa, která je podkladem krátkodobých nebo střednědobých předpovědí počasí, se dříve sestavovala zejména graf. způsobem (např. metodou R. Fjörtofta nebo A. Defanta). Viz též numerická předpověď počasí, mapa relativní topografie.
česky: mapa absolutní topografie předpovědní angl: prognostic constant pressure chart, prognostic isobaric chart, prognostic isobaric contour chart slov: predpovedná mapa absolútnej topografie něm: Vorhersagekarte der absoluten Topographie f  1993-a3
прогностическая приземная карта
předpovědní mapa, na níž je zobrazeno předpokládané rozložení některých meteorologických prvků při zemském povrchu v některých z příštích hlavních synoptických termínů. Jsou na ní obvykle zakresleny izobary, středy cyklon a anticyklon a předpovídané polohy atmosférických front. Pro zákres budoucí polohy rozložení tlaku vzduchu je v současné době používáno výstupů z některého numerického předpovědního modelu. Přízemní předpovědní mapa bývá v praxi nespr. označována jako prebaratik.
česky: mapa přízemní předpovědní angl: prognostic surface chart slov: predpovedná prízemná mapa něm: Bodenvorhersagekarte f  1993-a3
прогностические модели атмосферы
jsou matematickým vyjádřením poznatků o dynamice atmosféry a jejím energetickém a hydrologickém cyklu. Jedná se o rozsáhlou a vnitřně bohatě diferencovanou skupinu modelů, do níž mj. patří modely numerické předpovědi počasí používané v provozních meteorologických předpovědích, dále modely pro vývoj klimatu, např. cirkulační modely klimatu, a rovněž modely využívané v základním výzkumu atmosféry. Základem modelů atmosféry je dynamické jádro, které využívá nějaký typ soustavy prognostických rovnic, které byly v počátcích modelování atmosféry velmi jednoduché, viz například barotropní model. Podle účelu použití jsou modely vybaveny souborem parametrizací, včetně modelu zemského povrchu. Numerické předpovědní modely jsou doplněny o schémata a nástroje asimilace meteorologických dat, které připravují počáteční podmínky. Řešení všech typů rovnic ve všech součástech modelu atmosféry (dynamické jádro, parametrizace, asimilace dat) vyžaduje použití numerických metod. Pouze při zjednodušení systémů rovnic, např. jejich linearizací za účelem akademických studií, lze dojít k analytickému řešení.
česky: modely atmosféry prognostické angl: prognostic models of the atmosphere slov: prognostické modely atmosféry něm: prognostische Modelle der Atmosphäre n/ pl  2014
прогностические уравнения
rovnice obsahující časové derivace. V meteorologii se jejich časovou integrací tvoří předpověď, takže jsou součástí jak prognostických modelů atmosféry používaných při numerické předpovědi počasí, tak modelů klimatu. Soustavy prognostických rovnic se odvozují ze základních zákonů zachování hmoty, hybnosti a energie. Pokud jde o prognostické rovnice pro rychlost atmosférického proudění, popř. její složky, jsou obecnými prognostickými rovnicemi Navierovy–Stokesovy rovnice. Podle různých zjednodušujících aproximací lze pak odvozovat různé méně obecné systémy rovnic, např. Eulerovy rovnice, kvazi-geostrofické rovnice, tzv. základní rovnice, anelastické rovnice apod. Prognostické rovnice se formulují i pro další veličiny jako např. pro teplotu nebo vlhkost vzduchu nebo se vytvářejí odvozováním z pohybových rovnic. V tomto smyslu lze zmínit např. rovnici vorticity nebo rovnici divergence. Jako svého druhu protikladný pojem k prognostickým rovnicím lze uvažovat diagnostické rovnice, které neobsahují parciální časové derivace, a lze je proto použít pouze k diagnostickým studiím stavu daného systému za předpokladu jeho stacionarity.
česky: rovnice prognostické angl: prognostic equations slov: prognostické rovnice něm: prognostische Gleichungen f/pl  1993-a3
прогностический центр
středisko, kde se soustřeďují meteorologické informace a/nebo vypracovávají meteorologické předpovědi. Obvykle je předpovědní centrum blíže označováno podle území, které zabezpečuje, podle umístění centra nebo podle bližšího určení účelu, k jakému vydávané předpovědi slouží. Viz též centrum meteorologické světové, regionální, národní.
česky: centrum předpovědní angl: central forecasting office, forecasting center slov: predpovedné centrum něm: Vorhersagezentrum n fr: centre de prévision m, service central de prévision m, bureau central de prévision m  1993-a3
Программа Коперник, ранее известная как GMES (Глобальный мониторинг окружающей среды и безопасности)
program Evropské komise, dříve označovaný jako GMES (Global Monitoring for Environment and Security), zaměřený na získávání údajů o životním prostředí (včetně atmosféry a oceánů), především pomocí metod distančního měření. Program vychází z úzké spolupráce s ESA, z dalších partnerů se např. předpokládá zapojení organizace EUMETSAT při vývoji a provozu některých z družic/přístrojů Sentinel.
česky: Copernicus slov: Copernicus něm: Kopernikus, Kopernikus m fr: Copernicus m  2014
продвижение муссона
počáteční stadium letní monzunové cirkulace, kdy se do dané oblasti pomalu rozšiřuje vzduchová hmota přinášená letním monzunem. Má-li počátek monzunových dešťů prudký nástup, mluvíme o vpádu monzunu.
česky: nástup monzunu angl: progression of the monsoon slov: nástup monzúnu něm: Monsuneinsatz m  1993-a2
продолжительность грозы
doba od prvního do posledního zahřmění. V pozorovatelské praxi se považuje za konec bouřky, neozve-li se hřmění po dobu 10 až 15 min. Bouřka nejčastěji trvá 0,2 až 0,3 h, může však trvat i několik hodin. Viz též pozorování bouřek, mapa izobront, mapa izoceraunická, den s bouřkou.
česky: trvání bouřky angl: duration of thunderstorm slov: trvanie búrky  1993-a3
продолжительность солнечного сияния
česky: délka slunečního svitu angl: duration of sunshine, sunshine duration slov: dĺžka slnečného svitu něm: Sonnenscheindauer f fr: durée d'ensoleillement f, durée d'insolation f  1993-a1
продолжительность солнечного сияния
časový interval, po který svítilo slunce, vyjádřený zpravidla v pravém slunečním čase, např. od 10.45 do 11.32 h. Viz též trvání slunečního svitu.
česky: doba slunečního svitu angl: sunshine duration slov: doba slnečného svitu něm: Sonnenscheindauer f fr: durée d'ensoleillement f, durée d'insolation f  1993-a1
продолжительность солнечного сияния
časový interval, během něhož je intenzita přímého slunečního záření dopadajícího na jednotku plochy zemského povrchu kolmé k paprskům větší, než 120 W.m–2. Závisí nejen na délce dne, která je dána zeměp. š. a roční dobou, ale také na výskytu oblačnosti a na překážkách v okolí místa měření. Udává se v hodinách, popř. desetinách hodiny za den, měsíc nebo rok. Trvání slunečního svitu se měří slunoměry s přesností na 0,1 h. Trvání slunečního svitu patří k zákl. klimatickým prvkům. Kromě skutečného trvání slunečního svitu zjišťovaného slunoměrem se v klimatologii dále uvádí astronomicky možné trvání slunečního svitu a efektivně možné trvání slunečního svitu. Viz též svit sluneční, trvání slunečního svitu relativní.
česky: trvání slunečního svitu angl: sunshine duration slov: trvanie slnečného svitu  1993-a3
прозрачность
propustnost daného prostředí pro viditelné elmag. záření (světlo). Viz též propustnost atmosféry.
česky: transparence angl: transparency slov: transparentnosť  1993-a1
прозрачность атмосферы
syn. transmitance – v meteorologii schopnost atmosféry propouštět elmag. záření. V užším odb. smyslu je propustnost atmosféry definována jako poměr intenzity záření, které prošlo atmosférou nebo její určitou vrstvou, k počáteční intenzitě. Propustnost atmosféry se zpravidla vztahuje k jednotlivým spektrálním oblastem (ultrafialové, viditelné, infračervené záření) nebo spektrálním pásmům vymezeným krajními vlnovými délkami. V oboru viditelného záření se místo o propustnosti někdy mluví o průzračnosti atmosféry. Synonymy propustnosti atmosféry převzatými z angličtiny jsou transparence, transmitance, zatímco opakem je opacita.
česky: propustnost atmosféry angl: atmospheric transmittance, atmospheric transparency slov: priepustnosť atmosféry něm: atmosphärische Transparenz f  1993-a3
прозрачность воздуха
česky: průzračnost atmosféry angl: atmospheric transparency slov: priezračnosť atmosféry něm: Durchlässigkeit der Luft f  1993-a1
прозрачный воздух
vzduch s dobrou až výbornou dohledností (desítky až stovky km), umožňující rozeznat i značně vzdálené předměty a terénní tvary. Ve stř. Evropě se jedná nejčastěji o arktický vzduch nebo mořský vzduch mírných šířek po přechodu studené fronty. Průzračný vzduch se též udržuje nad inverzní vrstvou při výrazné inverzi teploty vzduchu. Viz též vzduch čistý.
česky: vzduch průzračný angl: clear air, transparent air slov: priezračný vzduch něm: klare Luft f  1993-a3
прозрачный лед
jeden z námrazových jevů. Hladká, kompaktní, obvykle průsvitná usazenina ledu s drsným povrchem. Průsvitná námraza je podobná ledovce, vytváří se však poměrně pomalým mrznutím kapek mlhy nebo oblaku při teplotách mezi –3 a 0 °C (řidčeji při teplotách do –10 °C). Při těchto teplotách mají kapky možnost před změnou své fáze zaplnit všechny skuliny na povrchu předmětů i mezi již zmrzlými kapkami. Narůstá zejména na hranách předmětů obrácených proti větru, je velmi přilnavá, odolává i silnému větru a od povrchu předmětu může být oddělena jedině rozbitím nebo táním. Působí škody na vegetaci, trhá el. a telefonní vedení, ohrožuje letecký provoz.
česky: námraza průsvitná angl: clear ice slov: priesvitná námraza něm: Klareis n  1993-a3
проливной дождь
lid. výraz pro přívalový déšť.
česky: lijavec slov: lejak  1993-a1
промежуточный стандартный срок
česky: termín synoptický vedlejší angl: intermediate standard time slov: vedľajší synoptický termín  1993-a1
промерзание почвы
tuhnutí půdního roztoku při poklesu teploty pod jeho bod mrznutí. Hloubka promrzání půdy závisí kromě intenzity mrazů a doby jejich trvání na vlastnostech a způsobu obdělávání půdy, na jejím pokrytí sněhovou pokrývkou, vegetací apod. Z hlediska promrzání půdy rozeznáváme teplotní režimy půd, které mohou být nepromrzající, sezónně promrzající nebo dlouhodobě zmrzlé, označované jako permafrost. Viz též měření promrzání půdy, teplota půdy.
česky: promrzání půdy angl: freezing of soil slov: premrzanie pôdy něm: Bodengefrornis f  1993-a3
промышленная мгла
zákal pozorovaný v průmyslových centrech a v průmyslových aglomeracích, způsobený umělými zdroji atmosférického prachu, kouře, exhaláty apod. Nejčastěji se vyskytuje za stabilního zvrstvení atmosféry, které bývá spojeno s malými horiz. pohyby a s nepatrnou vert. výměnou vzduchu. Zvláště výrazný průmyslový zákal bývá dobře pozorován z dálky, a to v podobě šedé, oblak připomínající čepice nad městem, z níž někdy vystupují jen vrcholky komínů a výškové stavby. Viz též smog.
česky: zákal průmyslový angl: industrial haze slov: priemyselný zákal něm: Industriedunst m  1993-a3
промышленная метеорология
oblast aplikované meteorologie, popř. klimatologie zaměřená na otázky aplikací meteorologických informací v průmyslu a komerčních aktivitách. Zabývá se zabezpečením průmyslu speciálními předpověďmi počasí a dalšími meteorologickými a klimatologickými informacemi. Jedná se o meteorologické zajištění technologických operací vázaných na počasí, např. o předpovědi bouří z hlediska dálkového přenosu elektrické energie, předpovědi a klimatologické charakteristiky sněhové pokrývky, teploty vzduchu, větru, srážkového režimu apod. Do oblasti meteorologie průmyslové dále patří problematika čistoty ovzduší, pokud jde o potenciální rozptyl exhalací, podklady pro regulaci výroby, pro volbu náhradních paliv v rozptylově nepříznivých meteorologických podmínkách apod. V poslední době se rozvíjí např. meteorologické zabezpečení jaderných energetických zařízení někdy nevhodně nazývané jaderná meteorologie. Někdy se průmyslová meteorologie chápe šířeji jako meteorologie soukromého sektoru, která zahrnuje i výrobu a poskytování meteorologických přístrojů a pozorovacích systémů (např. dálkového průzkumu), vývoj meteorologických systémů a systémové integrace, často i další konzultační služby či jiné produkty s přidanou hodnotou, včetně služeb pro další sektory, jako jsou média, letecká doprava, životní prostředí, zdraví, ovlivňování počasí, řízení zemědělských a lesnických aktivit i povrchové a letecké dopravy.
česky: meteorologie průmyslová angl: industrial meteorology slov: priemyselná meteorológia něm: Industriemeteorologie f  1993-a3
проницаемость атмосферы
syn. transmitance – v meteorologii schopnost atmosféry propouštět elmag. záření. V užším odb. smyslu je propustnost atmosféry definována jako poměr intenzity záření, které prošlo atmosférou nebo její určitou vrstvou, k počáteční intenzitě. Propustnost atmosféry se zpravidla vztahuje k jednotlivým spektrálním oblastem (ultrafialové, viditelné, infračervené záření) nebo spektrálním pásmům vymezeným krajními vlnovými délkami. V oboru viditelného záření se místo o propustnosti někdy mluví o průzračnosti atmosféry. Synonymy propustnosti atmosféry převzatými z angličtiny jsou transparence, transmitance, zatímco opakem je opacita.
česky: propustnost atmosféry angl: atmospheric transmittance, atmospheric transparency slov: priepustnosť atmosféry něm: atmosphärische Transparenz f  1993-a3
проницание кучеводождевых облаков в стратосферу
proniknutí vrcholků oblačnosti konvektivních bouří do spodní stratosféry. Meteorologická radarová a družicová měření prokázala, že tropopauza není limitující horní hranicí vertikálního vývoje oblaků druhu cumulonimbus (Cb). Proniknutí vrcholků Cb o 3 až 5 km nad tropopauzu bylo prokázáno i ve stř. zeměp. šířkách. Meteorologická radiolokační měření na území ČR zaznamenala vrcholky Cb až ve výšce 16 km nad zemí.
česky: průnik kumulonimbů do stratosféry angl: penetration of Cb into stratosphere slov: prienik kumulonimbov do stratosféry něm: Eindringen des Cumulonimbus in die Stratosphäre n  1993-a2
просвечивающие облака
(tr) [translucidus] – jedna z odrůd oblaků podle mezinárodní morfologické klasifikace oblaků. Menší nebo větší oblačné vrstvy, které jsou v převážné části tak průsvitné, že je jimi patrná poloha Slunce nebo Měsíce. Vyskytuje se u druhů altocumulus, altostratus, stratocumulus a stratus. Výskyt této odrůdy vylučuje odrůdu opacus.
česky: translucidus angl: translucidus slov: translucidus  1993-a2
противоизлучение в атмосферe
nevh. označení pro zpětné záření atmosféry.
česky: záření vstřícné angl: atmospheric counterradiation něm: atmosphärische Gegenstrahlung f  1993-a1
противоизлучение в атмосферe
česky: záření zpětné angl: atmospheric counterradiation slov: spätné žiarenie něm: atmosphärische Gegenstrahlung f  1993-a1
противоморозные вентиляторы
tech. zařízení používaná v ochraně před mrazíky ve vegetačním období. Jejich úkolem je při teplotách těsně nad nulou rozrušovat inverzi teploty vzduchu, která se při radiačním ochlazování vytváří v nočních a ranních hodinách v blízkosti zemského povrchu. Použitím protimrazových ventilátorů se sníží riziko poklesu teploty v této vrstvě pod nulu, při němž dochází v některých fázích vývoje ovocných stromů, vinné révy, popř. dalších plodin k značným ztrátám na výnosech. Protimrazové ventilátory jsou zpravidla vybaveny rozměrnou vrtulí, jíž se promíchává v kritickém období okolní vzduch. Obdobnou funkci mohou plnit i nízko letící vrtulníky.
česky: ventilátory protimrazové angl: frost fans slov: protimrazové ventilátory něm: Frostschutzventilatoren pl/m  1993-a0
противосияние
slabá světelná skvrna kruhového nebo oválného tvaru, která se objevuje za bezměsíčných jasných nocí v průzračném vzduchu na opačném místě oblohy než je Slunce. Jedná se pravděpodobně o Sluncem osvětlený kosmický prach vně zemské atmosféry, podobně jako u zvířetníkového světla.
česky: protisvit angl: gegenschein, zodiatical counterglow slov: protisvit něm: Gegenschein m  1993-a1
противосиянние
záře, jež se objevuje na opačné straně oblohy než vychází nebo zapadá Slunce. Vzniká zpětným rozptylem a odrazem slunečních paprsků v atmosféře.
česky: protisoumrak angl: anti-twilight, counterglow slov: protisúmrak něm: Gegendämmerung f  1993-a3
противосолнце
protislunce, viz kruh parhelický.
česky: antihélium angl: anthelion slov: antihélium něm: Gegensonne f fr: anthélie f  1993-a1
противосумерки
záře, jež se objevuje na opačné straně oblohy než vychází nebo zapadá Slunce. Vzniká zpětným rozptylem a odrazem slunečních paprsků v atmosféře.
česky: protisoumrak angl: anti-twilight, counterglow slov: protisúmrak něm: Gegendämmerung f  1993-a3
профиль атмосферного фронта
vertikální řez frontální plochou, který ukazuje, jak se mění sklon fronty s výškou. Profil atmosférické fronty závisí především na druhu fronty, rychlosti jejího postupu a na orografických poměrech oblasti, nad níž fronta postupuje. V mezní vrstvě atmosféry se vlivem tření sklon teplé fronty zmenšuje a studené fronty zvětšuje ve srovnání s jejich sklonem ve volné atmosféře. S deformací frontální plochy mohou souviset zvláštnosti v rozdělení frontální oblačnosti a srážek.
česky: profil atmosférické fronty angl: profile of atmospheric front slov: profil atmosférického frontu něm: Profil der atmosphärischen Front n  1993-a3
профиль ветра
graf. nebo mat. vyjádření změny rychlosti, popř. směru větru jako funkce výšky (vertikální profil větru) nebo horiz. vzdálenosti (horizontální profil větru).
česky: profil větru angl: wind profile slov: profil vetra něm: Windprofil n  1993-a1
профильное обледенение
technický termín pro tvar námrazy na letadle v době letu, vznikající obyčejně při nízkých teplotách vzduchu zpravidla pod –20 °C a při malém vodním obsahu oblaku. Tvoří se především na náběžné hraně křídla, jinak kopíruje povrch letadla, přičemž podstatně nemění jeho aerodyn. vlastnosti. Proto se v letectví považuje za málo nebezpečnou formu námrazy.
česky: námraza profilová slov: profilová námraza  1993-a1
процесс
viz též proces.
česky: děj angl: process slov: dej něm: Prozess m fr: processus m  1993-a1
прошедшая погода
charakteristické počasí, které se vyskytlo na met. stanici v určeném časovém intervalu před synoptickým termínem. Průběh počasí se vztahuje na období posledních 6 hodin ve zprávách z hlavních synop. termínů, na období posledních 3 hodin ve zprávách z vedlejších synop. termínů a na období poslední hodiny ve zprávách z hodinových synop. termínů. Průběh počasí se předepsaným způsobem zakresluje na synoptických mapách do staničního modelu. Viz též stav počasí.
česky: průběh počasí angl: past weather slov: priebeh počasia něm: Wetterverlauf m  1993-a3
прояснение
postupné ubývání oblačnosti až do úplného vymizení oblaků na obloze. Viz též protrhávání oblačnosti.
česky: vyjasňování angl: clearing slov: vyjasňovanie něm: Aufklaren n  1993-a1
прямая радиация
česky: záření přímé angl: direct radiation slov: priame žiarenie něm: direkte Strahlung f  1993-a1
прямая солнечная радиация
krátkovlnné záření přicházející z malého prostorového úhlu kolem středu slunečního kotouče (5.10-3 sr). Přímé sluneční záření dopadající na plochu kolmou k paprskům se měří pyrheliometry nebo aktinometry. Intenzita přímého slunečního záření klesá s růstem délky dráhy slunečních paprsků v atmosféře, tedy s poklesem nadm. výšky místa měření a s poklesem výšky Slunce nad obzorem, dále klesá i s růstem zakalení atmosféry. Je-li Slunce zakryto oblaky, je intenzita přímého slunečního záření nulová.
česky: záření sluneční přímé angl: direct solar radiation slov: priame slnečné žiarenie něm: direkte Sonnenstrahlung f  1993-a3
псевдоадиабатический градиент температуры
česky: gradient teplotní pseudoadiabatický angl: pseudoadiabatic lapse rate slov: pseudoadiabatický teplotný gradient něm: Pseudoadiabatischer Temperaturgradient m fr: gradient pseudo-adiabatique saturé m, pseudo-gradient adiabatique humide m  2014
псевдоадиабатический процесс
termodyn. proces, při němž dochází k ochlazování nasyceného vzduchu, který je tepelně izolován od okolí, a veškerá zkondenzovaná voda je okamžitě ze vzduchu odstraněna. Latentní teplo kondenzace tedy ohřívá pouze vlhký vzduch. Pokles teploty vzduchu při pseudoadiabatickém výstupu je znázorněn pseudoadiabatou na termodynamickém diagramu. Dojde-li k následnému sestupu vzduchu, probíhá růst teploty prakticky po suché adiabatě, neboť všechna zkondenzovaná voda byla při pseudoadiabatickém výstupu odstraněna. Pseudoadiabatický děj je tedy nevratný, a proto není adiabatickým dějem. Pojem pseudoadiabatický děj zavedl něm. meteorolog W. Bezold v r. 1888.
česky: děj pseudoadiabatický angl: pseudo-adiabatic process slov: pseudoadiabatický dej něm: pseudoadiabatischer Prozess m fr: transformation pseudoadiabatique f  1993-a2
псевдопотенциальная температура смоченного термометрa
česky: teplota vlhká adiabatická potenciální angl: pseudo wet-bulb potential temperature slov: adiabatická vlhká potenciálna teplota  1993-a1
псевдофронт
česky: pseudofronta angl: pseudo front slov: pseudofront něm: Pseudofront f  1993-a3
психометрическая формула
česky: formule psychrometrická slov: psychrometrická formula něm: Psychrometerformel f fr: rapport psychrométrique m, équation psychrométrique f  1993-a1
психрометр
přístroj užívaný k měření vlhkosti vzduchu. Je tvořen dvěma shodnými teploměry; jeden má čidlo suché a měří teplotu vzduchu (tzv. suchý teploměr), druhý má čidlo obalené navlhčovanou „punčoškou“, a tím pokryté filmem čisté vody nebo ledu (tzv. vlhký teploměr). Odpařováním vody z obalu se odnímá vlhkému teploměru teplo, a proto je jeho údaj zpravidla nižší než údaj suchého teploměru. V případě, že je vzduch vodní párou nasycen, např. v husté mlze, jsou si oba údaje rovny nebo dokonce při záporných teplotách je nad ledem údaj vlhkého teploměru vyšší. Charakteristiky vlhkosti vzduchu (tlak vodní páry a relativní vlhkost vzduchu) se určují z psychrometrické diference neboli psychrometrického rozdílu, tj. rozdílu údajů suchého a vlhkého teploměru, např. pomocí psychrometrických tabulek. Rozlišujeme psychrometry uměle ventilované neboli aspirační a uměle neventilované, umístěné zpravidla v meteorologické budce. Uměle ventilovaný psychrometr Assmannův (aspirační) má teploměrné nádobky v kovových trubicích a stejnoměrné proudění kolem nádobek zajišťuje ventilátor s rychlostí proudění nejčastěji 2,5 m.s–1. Je to přenosný přístroj, který umožňuje měřit teplotu a vlhkost vzduchu i na slunci. Byl často užíván při terénních meteorologických měřeních. Předchůdcem Assmannova psychrometru je psychrometr prakový, u nějž pozorovatel dosáhl požadované proudění vzduchu kolem nádobek točením přístroje zavěšeného na provázku nebo řetízku. Uměle neventilovaný psychrometr Augustův je používaný na meteorologických stanicích v meteorologických budkách. Je tvořen dvěma staničními teploměry, z nichž vlhký teploměr má nádobku obalenou punčoškou, jejíž dolní konec je ponořen do nádobky s vodou upevněné pod teploměrem. Přístroj navrhl E. F. August (1825). Psychrometrická metoda byla v meteorologii nejužívanější metodou měření vlhkosti vzduchu. Na profesionálních stanicích ČR se údaje z psychrometru používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem. Viz též vzorec psychrometrický, teplota vlhkého teploměru, koeficient psychrometrický.
česky: psychrometr angl: psychrometer slov: psychrometer něm: Psychrometer n  1993-a3
психрометрическая постоянная
česky: koeficient psychrometrický angl: psychrometric constant slov: psychrometrický koeficient něm: Psychrometerkonstante f  1993-a3
психрометрическая постоянная
česky: konstanta psychrometrická angl: psychrometric constant slov: psychrometrická konštanta něm: Psychrometerkonstante f  1993-a1
психрометрическая разность
česky: rozdíl psychrometrický angl: wet-bulb depression slov: psychrometrický rozdiel něm: Psychrometerdifferenz f  1993-a3
психрометрическая разность, косохлёст
česky: diference psychrometrická angl: psychrometric difference, wet-bulb depression slov: psychrometrická diferencia něm: Psychrometerdifferenz f fr: différence entre la température humide de l'air et sa température sèche f, différence entre la concentration sèche et humide f  1993-a2
психрометрическая формула
syn. formule psychrometrická – poloempirický vzorec používaný při výpočtu psychrometrických tabulek. Má tvar:
e=esAp( TT),
kde e je tlak vodní páry ve vzduchu, es tlak nasycené vodní páry určený s ohledem na fázi vody při teplotě udávané vlhkým teploměrem, A značí psychrometrický koeficient, p tlak vzduchu, T teplotu vzduchu udanou suchým teploměrem a T' teplotu udanou vlhkým teploměrem. Hodnota es závisí na skupenství vody ve vlhkém obalu teploměru. K praktickému určování vlhkosti vzduchu na základě měření Assmannovým psychrometrem se používá psychrometrický vzorec v úpravě Sprungově.
termodynamice atmosféry se psychrometrický vzorec uvádí též ve tvaru:
w=wc pd(TTiv) Lwv,
kde w je směšovací poměr, w" směšovací poměr ve vzduchové částici nasycené při izobarické vlhké teplotě Tiv, cpd měrné teplo při konstantním tlaku pro suchý vzduch a Lwv latentní teplo vypařování. Protože izobarickou vlhkou teplotu Tív lze v podstatě ztotožnit s teplotou naměřenou vlhkým teploměrem, umožňuje výše uvedený vztah vypočítat z naměřených teplot suchého a vlhkého teploměru, jakož i z hodnoty max. směšovacího poměru při teplotě Tiv aktuální směšovací poměr ve vzduchové částici při teplotě T. Viz též vzorec Sprungův.
česky: vzorec psychrometrický angl: psychrometric formula slov: psychrometrický vzorec něm: Psychrometerformel f  1993-a1
психрометрические таблицы
tabulky vypočtené podle psychrometrického vzorce, které slouží ke stanovení různých vlhkostních parametrů z údajů změřených psychrometrem. Jsou uspořádány tak, že v řádcích je uváděna suchá teplota a ve sloupcích vlhká teplota. V průsečíku příslušného řádku a sloupce je hodnota tlaku vodní páry a relativní vlhkosti vzduchu odpovídající změřenému psychrometrickému rozdílu. Zvláštním oddílem psychrometrických tabulek je zpravidla i tabulka umožňující vyhledání tlaku vodní páry z údajů relativní vlhkosti a teploty vzduchu. Tento oddíl se někdy označuje jako hygrometrické tabulky. Pro psychrometry uměle ventilované se užívají psychrometrické tabulky aspirační. Termín hygrometrické tabulky se používá někdy rovněž jako syn. termínu psychrometrické tabulky. Viz též koeficient psychrometrický, teplota suchého teploměru, teplota vlhkého teploměru.
česky: tabulky psychrometrické angl: psychrometric tables slov: psychrometrické tabuľky  1993-a2
пульсации ветра
opakované kolísání rychlosti a směru větru s malou amplitudou a s frekvencí pod 1 s, které je vyvoláváno zejm. prouděním vzduchu kolem objektů rel. malých rozměrů (např. věží, stožárů apod.). Viz též náraz větru.
česky: pulzace větru angl: wind pulsation slov: pulzácia vetra něm: Windpulsation f  1993-a1
пурга
regionální označení pro silnou sněhovou vánici v tundrových oblastech sev. Evropy a především sev. Sibiře v zimě. Název pochází z karelského slova „purgu“ nebo finského „purku“. Viz též blizard, buran, burga.
česky: purga angl: poorga, purga slov: purga něm: Purga m  1993-a1
пурпурный свет
jev pozorovaný za soumraku v horských oblastech. Zatímco údolní polohy jsou při nízké poloze Slunce ve stínu, jsou vrcholy přímo nebo odrazem ozářeny a nabývají růžové nebo žlutavé barvy. Místní název pro ozáření vrcholů je „Alpenglühen“.
česky: ozáření vrcholů angl: Alpine glow slov: ožiarenie vrcholov něm: Alpenglühen n  1993-a3
пурпурный свет
syn. světlo purpurové – záře pozorovaná na bezoblačné obloze ve tvaru výseče velkého světelného kruhu. Šíří se vzhůru od obzoru, za nímž se nalézá Slunce. Její intenzita i velikost se zvětšuje až do polohy Slunce 3 až 4° pod obzorem, mizí při poloze Slunce 6° pod obzorem. Celý jev trvá asi 20 až 30 minut. Fialová záře je jedním z jevů označovaných souborně jako soumrakové barvy. Intenzita fialové záře vzrůstá s průzračností vzduchu a s nadm. výškou místa pozorování.
česky: záře fialová angl: purple light slov: fialová žiara něm: Purpurlicht n  1993-a1
пустынный ветер
vítr vanoucí z pouště. Je velmi suchý a obvykle prašný, takže snižuje dohlednost, velmi horký v létě, chladnější v zimě, s velkými denními amplitudami teploty. Místní názvy pouštního větru jsou např. harmatan, chamsin, samum, gibli, případně scirocco. Viz též bouře písečná.
česky: vítr pouštní angl: desert wind slov: púšťový vietor něm: Wüstenwind m  1993-a3
пустынный климат
Köppenově klasifikaci klimatu typ suchého klimatu, označovaný BW; dále se dělí na horké (BWh) a chladné (BWk). Obecně se klima pouště vyznačuje velmi řídkým výskytem padajících srážek; pokud se vyskytnou, mají často charakter přívalového deště. Dalším znakem je malá oblačnost a dlouhé relativní trvání slunečního svitu. Nedostatek vegetace a vody v krajině vede k nízké spotřebě tepla na výpar, což spolu s velkým efektivním vyzařováním zemského povrchu způsobuje největší denní amplitudy teploty vzduchu na Zemi. Nechráněný povrch pouště je vystaven intenzivní větrné erozi; charakteristický je tedy velký zákal, často se vyskytují prachové víry a prachové bouře. Relativní vlhkost bývá hlavně přes den velmi nízká, s výjimkou tzv. mlžných pouští při pobřežích omývaných studenými oceánskými proudy. Tyto pouště patří mezi místa s vůbec největší ariditou klimatu; vyskytují se zde prakticky pouze usazené srážky. Viz též extrémy srážek.
česky: klima pouště angl: desert climate slov: púšťová klíma něm: Wüstenklima n  1993-b3
путь
spojnice bodů, jimiž prošla uvažovaná pohybující se částice. Při dostatečné hustotě těchto bodů se trajektorie blíží skutečné dráze částice. V meteorologii jde především o trajektorie vzduchových částicpoli atmosférického proudění. Lze rozlišit obecné trojrozměrné trajektorie od dvourozměrných trajektorií konstruovaných v určitých plochách (hladinách), např. v hladinách konstantní nadmořské výšky, konstantního tlaku vzduchu, konstantní entropie apod. V minulosti se v praxi často používaly trajektorie geostrofické, konstruované v poli geostrofického větru. Jako první, kdo zkonstruoval trajektorie vzduchových částic v atmosféře, se v literatuře obvykle uvádějí Angličané N. Shaw a R. G. K. Lempfert (1906).
česky: trajektorie angl: trajectory slov: trajektória  1993-a3
путЬ антициклонов, траектория антициклонов
koridor se zvýšenou frekvencí pohybu středů anticyklon přes určitou geogr. oblast. Na rozdíl od drah cyklon směřují dráhy anticyklon většinou do nižších zeměp. šířek. B. P. Multanovskij, který dráhy anticyklon označil jako osy anticyklonálních procesů nebo osy anticyklon, rozlišil v Evropě tři zákl. skupiny drah anticyklon: azorská, směřující k východoseverovýchodu, normální polární, směřující k jihovýchodu, a ultrapolární, směřující k jihu až jihozápadu.
česky: dráha anticyklon angl: trajectory of anticyclones slov: dráha anticyklón něm: Antizyklonenbahn f, Zugstrasse der Hochdruckgebiete f fr: trajectoire des anticyclones f  1993-b2
путь грозы
jedna z charakteristik zjišťovaných při pozorování bouřek. Znamená směr, kterým se pohybuje pozorovaná bouřka, resp. bouřkový oblak neboli cumulonimbus. Pozorovatel při začátku bouřky, tj. při prvním zablesknutí a zahřmění, určí směr, v němž je bouřka pozorována a podobně i na konci bouřky při posledním zahřmění. Tah bouřky se udává ve stupních, zpravidla s přesností na desítky stupňů, např. zápis 230-050 znamená, že bouřka postupovala přibližně směrem od jihozápadu k severovýchodu. U bouřky, která bez pohybu zanikne na místě vzniku, se udává jen směr místa vzniku bouřky.
česky: tah bouřky angl: thunderstorm movement slov: ťah búrky  1993-a3
путь перемешивания
veličina v klasické teorii atm. turbulence, definovaná L. Prandtlem jako vzdálenost, na níž se individuální částice turbulentní proudící tekutiny (v meteorologii vzduchové částice) během pohybu napříč proudu beze zbytku smísí s okolním prostředím při zachování své konstantní hybnosti. Z hlediska formální analogie mezi charakteristikami vazkého laminárního proudění a turbulentního proudění se v jistém smyslu jedná o protějšek pojmu volná dráha molekuly. Obdobnou teorii směšovací délky vypracoval G. I. Taylor, jenž však místo konzervace hybnosti individuální částice tekutiny (vzduchu) uvažoval konzervaci vorticity. Směšovací délka se používá k vyjádření koeficientu turbulentní difuze. V teoriích turbulence se používá kromě směšovací délky podobná veličina nazývaná charakteristický rozměr turbulentních vírů nebo měřítko vírů, která se obvykle interpretuje jako střední rozměr turbulentních vírů.
česky: délka směšovací angl: mixing length slov: zmiešavacia dĺžka něm: Mischungsweg m fr: longueur de mélange f  1993-a1
путь циклона
spojnice míst, jimiž prošel střed konkrétní cyklony. Sledování cyklon se provádí pomocí detekce lokálních minim tlaku vzduchu redukovaného na hladinu moře, geopotenciální výšky, příp. maxim relativní vorticity. Viz též dráhy cyklon.
česky: trajektorie cyklony angl: trajectory of a cyclone, trajectory of a depression slov: trajektória cyklóny  1993-a3
пылемер
syn. konimetr – přístroj nebo pomůcka pro měření spadu prachu nebo obsahu poletavého prachu v atmosféře. Větší částice prachu jsou zachycovány do sedimentačních nádob zčásti naplněných záchytným roztokem, které jsou umístěny v prašné lokalitě, nejčastěji na sloupech ve výši několika metrů nad zemí. Malé prachové částice neboli poletavý prach jsou nejčastěji zachycovány na filtr, přes který je prosáván definovaný objem vzduchu. Filtr může být pevný a je exponován po dobu několika hodin až dní. Zachycené množství prachu je pak zjišťováno váhově (gravimetricky), popř. opticky měřením zákalu filtru. Pohyblivý filtrační pás, přes který je prosáván vzduch, umožňuje průběžné měření poletavého prachu sledováním opt. zákalu filtru nebo měřením útlumu záření beta zachyceného prašnou stopou. Dříve bylo často užíván rovněž Aitkenův počítač jader, který však měří mimo poletavý prach i ostatní složky atmosférického aerosolu. Viz též měření znečištění ovzduší.
česky: prachoměr angl: dust counter, nuclei counter slov: prachomer něm: Staubzähler m, Kernzähler m  1993-a2
пыльная буря
velké množství prachu vyzdviženého do vzduchu silným větrem a unášeného zpravidla na velké vzdálenosti od zdroje. Prachové bouře mají značný horiz. i vert. rozsah. Vzdušný proud unášející pevný materiál se může pohybovat rychlostí desítek km.h–1, šířka proudu může dosahovat až několik stovek kilometrů, výška při silné turbulenci i několik kilometrů.
Prachové bouře jsou na rozdíl od častějších písečných bouří typické pro semiaridní klima, kde pedosféra obsahuje dostatek malých částic, které mohou být při výskytu sucha a omezeném vegetačním krytu větrem vyzdviženy. Vzhledem ke schopnosti větru unášet částice prachu v suspenzi může docházet k přenosu prachu na vzdálenost až tisíců kilometrů, kde je ukládán jako jemná navátina (tohoto eolického původu jsou i nánosy spraše na našem území). Během jedné prachové bouře se přenášejí často až milióny tun částic na ploše o velikosti tisíců km2. Prachové bouře tak působí značné hospodářské škody, neboť vyvolávají jednak odvátí ornice s osivem nebo i s malými rostlinami, jinde naopak dochází k zavátí vegetace, komunikací, studní apod. Během prachové bouře je navíc výrazně snížena dohlednost, což vyvolává potíže v dopravě. Prachové bouře mají různá místní označení, např. černý buran, černý blizard apod. Viz též bouře prachová nebo písečná, bouře černá, suchověj, seistan.
česky: bouře prachová angl: dust storm slov: prachová búrka něm: Staubsturm m fr: tempête de poussière f  1993-a3
пыльная или песчаная буря
méně vhodné označení pro bouři prachovou nebo písečnou.
česky: vichřice prachová nebo písečná angl: dust storm or sandstorm slov: prachová alebo piesočná víchrica něm: Staubsturm m, Sandsturm m  1993-a3
пыльная или песчаная стена
česky: zeď prachová nebo písečná angl: dust wall, sand wall slov: prachový alebo piesočný múr něm: Sandmauer f, Staubmauer f  1993-a3
пыльная мгла
zákal tvořený prachovými nebo malými písečnými částečkami, které byly před termínem pozorování zdviženy z povrchu Země prachovou nebo písečnou bouří. V našich oblastech patří k velmi zřídka se vyskytujícím litometeorům.
česky: zákal prachový angl: dust haze slov: prachový zákal něm: Staubdunst m  1993-a2
пыльный вихрь
česky: rarášek angl: dust devil slov: rarášok něm: Kleintrombe f, Staubteufel m, Staubwirbel m  1993-a2
пыльный вихрь
syn. rarášek – tromba vznikající odspodu termickou konvekcí ve vrstvě vzduchu u silně přehřátého zemského povrchu s výraznou vertikální instabilitou atmosféry. Poloměr víru s výškou roste, osa rotace je víceméně vertikální. Směr rotace může být po směru nebo proti směru otáčení hodinových ručiček, přičemž uprostřed víru nemusí být prach nebo písek přítomen. Byly zdokumentovány víry tohoto typu, které dosáhly výšku kolem 1 000 m, převažují však výšky kolem 30 m. Víry od výšky 100 m bývají už využitelné i pro bezmotorové létání. Rychlost rotace víru se může měnit od méně než 15 m/s do více než 30 m/s. Mohou se vyskytovat i za jasného počasí a mohou způsobovat škody v úzkém pásu o šířce několika metrů, jímž postupují. Prachový nebo písečný vír řadíme mezi litometeory.
česky: vír prachový nebo písečný angl: dust whirl or sand whirl, dust devil slov: prachový alebo piesočný vír něm: Sandwirbel m, Staubwirbel m  1993-a3
пыльный или песчаный поземок или пыльнная или песчаная низовая метель
litometeor tvořený částicemi prachu a/nebo písku zdviženého větrem nad zemský povrch. Podle výšky výzdvihu rozeznáváme nízko zvířený prach nebo písek a vysoko zvířený prach nebo písek. Viz též bouře prachová nebo písečná, vír prachový nebo písečný, sníh zvířený.
česky: prach nebo písek zvířený angl: drifting or blowing dust or sand slov: zvírený prach alebo piesok něm: aufgewirbelter Staub oder Sand m  1993-a3
пыльцевой анализ
rozbor četnosti a kvality pylových zrn různých druhů rostlin obsažených v povrchových nánosech, zvláště v rašeliništích, z nichž mohou být činěny závěry o změnách klimatu. Viz též proxy data.
česky: analýza pylová angl: pollen analysis slov: peľová analýza něm: Pollenanalyse f fr: analyse pollinique f  1993-a3
podpořila:
spolupracují: