Výklad hesel podle písmene и
идеальная атмосфера
neurčitý pojem, vyskytující se v odb. literatuře. Zpravidla pod ním rozumíme fiktivní (modelovou) atmosféru, která má z určitého hlediska ideální vlastnosti. V tomto smyslu se za ideální někdy označuje např. atmosféra standardní, jindy atmosféra suchá a čistá, atmosféra Rayleighova apod.
česky: atmosféra ideální; angl: ideal atmosphere; slov: ideálna atmosféra; něm: Idealatmosphäre f; fr: atmosphère normalisée f, atmosphère standard f 1993-a1
идеальный газ
syn. plyn dokonalý – plyn, jehož stavové veličiny přesně splňují stavovou rovnici
v níž p značí tlak, ρ hustotu, R měrnou plynovou konstantu a T teplotu v K. Plyny tvořící atmosféru Země, včetně vodní páry, pokud není nasycená, lze s velmi dobrým přiblížením považovat za plyny ideální. Viz též zákon Amagatův–Leducův, zákon Avogadrův, zákon Boyleův–Mariotteův, zákon Daltonův.
v níž p značí tlak, ρ hustotu, R měrnou plynovou konstantu a T teplotu v K. Plyny tvořící atmosféru Země, včetně vodní páry, pokud není nasycená, lze s velmi dobrým přiblížením považovat za plyny ideální. Viz též zákon Amagatův–Leducův, zákon Avogadrův, zákon Boyleův–Mariotteův, zákon Daltonův.
česky: plyn ideální; angl: ideal gas, perfect gas; slov: ideálny plyn; něm: ideales Gas n 1993-b2
идеальный газ
syn. plyn ideální.
česky: plyn dokonalý; angl: ideal gas, perfect gas; slov: ideálny plyn; něm: ideales Gas n 2019
идентификация воздушных масс
klimatologicky zpracované prům. vertikální profily teploty vzduchu v troposféře pro různé vzduchové hmoty, tříděné podle teplotních charakteristik (arktické, polární, tropické) a podle vlhkosti (maritimní, kontinentální) v jednotlivých měsících nebo ročních dobách v dané oblasti (místě). Porovnáním aktuální křivky radiosondážního měření s homologem se určoval typ a vert. rozsah vzduchové hmoty. Z historického hlediska zajímavý pojem s jehož používáním se přestalo ve druhé polovině 20. století.
česky: homology vzduchových hmot; angl: air mass homologues; slov: homology vzduchových hmôt; něm: Homologen der Luftmassen f/pl 1993-a3
изаллобара
izalolinie na přízemních synoptických mapách spojující místa se stejnou tlakovou tendencí za určitý časový interval (3, 6, 24 h apod.). Rozlišujeme analobary a katalobary. Viz též mapa izalobar, metoda izalobar, střed izalobarický, vítr izalobarický, vítr alobarický.
Termín zavedl švédský meteorolog N. G. Ekholm v r. 1906. Skládá se z řec. ἴσος [isos] „stejný, rovný“, ἄλλος [allos] „jiný“ a βάρος [baros] „tíha, váha“.
česky: izalobara; angl: isallobar; slov: izalobara; něm: Isallobare f 1993-a3
изаллобарическая карта
mapa, do níž jsou pomocí izalobar zakresleny změny tlaku vzduchu za určitý časový interval. Viz též metoda izalobar, mapa izalohyps.
česky: mapa izalobar; angl: isallobaric chart; slov: mapa izalobár; něm: Druckänderungskarte f, Isallobarenkarte f 1993-a3
изаллобарический ветер
syn. vítr alobarický – jedna ze složek ageostrofického větru. Lze ho interpretovat jako odchylku vektoru skutečného větru od vektoru rychlosti geostrofického větru, způsobenou časovými změnami tlaku vzduchu a v z-systému určit pomocí vztahu
kde viz značí vektor izalobarického větru, α měrný objem vzduchu, λ Coriolisův parametr, p tlak vzduchu, t čas a horiz. gradient. Z toho vyplývá, že vektor izalobarického větru směřuje do místa s největším časovým poklesem atm. tlaku, čili do izalobarického středu. V p-systému se k výpočtu izalobarického větru používá vztah:
v němž g je velikost tíhového zrychlení, z výška absolutní barické topografie uvažované tlakové hladiny a izobarický gradient. V tomto případě se však spíše používá názvu izalohyptický (méně vhodně alohyptický) vítr. Pojem izalobarický vítr definovali angl. meteorologové D. Brunt a C. K. M. Douglas r. 1928.
kde viz značí vektor izalobarického větru, α měrný objem vzduchu, λ Coriolisův parametr, p tlak vzduchu, t čas a horiz. gradient. Z toho vyplývá, že vektor izalobarického větru směřuje do místa s největším časovým poklesem atm. tlaku, čili do izalobarického středu. V p-systému se k výpočtu izalobarického větru používá vztah:
v němž g je velikost tíhového zrychlení, z výška absolutní barické topografie uvažované tlakové hladiny a izobarický gradient. V tomto případě se však spíše používá názvu izalohyptický (méně vhodně alohyptický) vítr. Pojem izalobarický vítr definovali angl. meteorologové D. Brunt a C. K. M. Douglas r. 1928.
česky: vítr izalobarický; angl: isallobaric wind; slov: izalobarický vietor; něm: isallobarischer Wind m 1993-a2
изаллобарический центр
místo na synoptické mapě, v němž byl za určitou dobu, nejčastěji za 3 hodiny, pozorován největší pokles nebo vzestup tlaku vzduchu. Viz též tendence tlaková, metoda izalobar, izalobara.
česky: střed izalobarický; angl: isallobaric center; slov: izalobarický stred; něm: isallobarisches Zentrum n 1993-a1
изаллогипса
izalolinie spojující místa se stejnou hodnotou změny výšky standardní izobarické hladiny (absolutní izalohypsa) nebo změny tloušťky vrstvy mezi dvěma izobarickými hladinami (relativní izalohypsa) za určitý časový interval (obvykle 12 nebo 24 h.). Izalohypsy se zakreslují zpravidla do výškových map, v nichž záporné abs. izalohypsy vymezují oblasti snižování izobarické hladiny. Záporné rel. izalohypsy vymezují oblasti, v nichž se zmenšuje tloušťka vrstvy mezi dvěma izobarickými hladinami, klesá tudíž prům. virtuální teplota této vrstvy. Obrácené vztahy platí pro oblasti vymezené kladnými abs. a rel. izalohypsami. Viz též izohypsa, vítr izalohyptický, vítr alohyptický.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“, ἄλλος [allos] „jiný“ a ὕψος [hypsos] „výše, výška“.
česky: izalohypsa; angl: isallohypse, height-change line; slov: izalohypsa; něm: Isallohypse f 1993-a2
изаллогиптический ветер
viz vítr izalobarický.
česky: vítr izalohyptický; angl: isallohyptic wind; slov: izalohyptický vietor 1993-a1
изаллолиния
syn. izotendence - druh izolinie spojující na mapě nebo grafu místa se stejnou hodnotou změny proměnné za určitý časový interval. V meteorologii izalolinie vyjadřují dynamiku polí meteorologických prvků. Mezi izalolinie patří např. izalobary, izalohypsy a izalotermy.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a ἄλλος [allos] „jiný“ a slova linie (z lat. linea „lněná nit, provázek, čára“).
česky: izalolinie; angl: isalloline; slov: izalolínia; něm: Isallolinie f 1993-a2
изаллотерма
izalolinie spojující na mapě nebo grafu místa se stejnou hodnotou změny teploty vzduchu za určitý časový interval (v předpovědní službě většinou za 24 h). Viz též mapa izaloterm.
Termín zavedl rakouský meteorolog A. Defant v r. 1910. Skládá se z řec. ἴσος [isos] „stejný, rovný“, ἄλλος [allos] „jiný“ a θερμóς [thermos] „teplý, horký“.
česky: izaloterma; angl: isallotherm; slov: izaloterma; něm: Isallotherme f 1993-a2
изамплитуда
syn. izoamplituda.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a slova amplituda (z lat. amplitudo „rozsah, šíře, velikost“).
česky: izamplituda; slov: izamplitúda; něm: Isamplitude f 1993-a1
изанемона
Termín zavedl L. Brault v r. 1880. Skládá se z řec. ἴσος [isos] „stejný, rovný“, ἄνεμος [anemos] „vítr“ a z přípony -ona vyjadřující ženský rod (z řec. přípony -ώνη [-óné], používané u pojmenování dcer, která se odvozují od jména otce).
česky: izanemona; angl: isanemone; slov: izanemóna; něm: Isanemone f 1993-a1
изаномала
druh izolinie spojující místa se stejnou odchylkou proměnné, v meteorologii a klimatologii se stejnou intenzitou meteorologické, resp. klimatické anomálie. Např. termoizanomály znázorňují teplotní anomálie, hyetoizanomály srážkové anomálie apod.
Termín zavedl pruský meteorolog H. W. Dove v r. 1852. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a ἀνωμαλία [anómalia] „nepravidelnost“, odvozeného od ἀνώμαλος [anómalos] „nerovný, nepravidelný“ (z předpony ἀν- [an-] vyjadřující zápor a ὁμαλός [homalos] „rovný“).
česky: izanomála; angl: isanomaly; slov: izanomála; něm: Isanomale f 1993-a3
изаритма
zast. syn. izolinie.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a ἀριθμός [arithmos] „číslo“.
česky: izaritma; angl: isarithm; slov: izaritma; něm: Isarithme f 1993-a1
избирательное поглощение
absorpce záření určitých vlnových délek radiačně aktivními plyny. Příčinou jsou změny kvantových stavů jejich atomů či molekul, k nimž dochází pouze na určitých absorpčních čárách, tvořících dohromady absorpční spektrum daného plynu. Z energ. hlediska se na selektivní absorpci záření podílejí největší měrou skleníkové plyny, pohlcující podstatnou část dlouhovlnného záření. Pro život na Zemi je neméně důležitá selektivní absorpce ultrafialového záření molekulami ozonu ve stratosféře a excitovaným atomárním kyslíkem v mezosféře a spodní termosféře. Viz též koeficient absorpce.
česky: absorpce záření selektivní; angl: selective absorption; slov: selektívna absorpcia žiarenia; něm: selektive Absorption f; fr: absorption sélective f 1993-a3
излучательная способность (полная)
syn. vyzařovací schopnost, relativní vyzařovací schopnost – bezrozměrná veličina, vyjadřující míru toho, jak dalece se vyzařující těleso, např. zemský povrch či oblačná vrstva, blíží svými radiačními vlastnostmi vyzařování absolutně černého tělesa. Emisivita abs. černého tělesa má hodnotu 1. Pro většinu oblačnosti se hodnoty emisivity pohybují v rozmezí od cca 0,6 do 1 v závislosti na mikrofyzikálním složení oblaků, jejich propustnosti a na vlnové délce ve které oblačnost pozorujeme. Emisivita zemského povrchu zpravidla nabývá hodnot od 0,8 do 1. Závislost emisivity na vlastnostech vyzařujících materiálů včetně oblačnosti (chemickém a mikrofyzikálním složení) je podstatou metod analýzy dat z distančních měření.
Termín pochází z lat. emissivus „schopný vypouštět, vysílat“, odvozeného od slovesa emittere „vysílat, vypouštět“ (z ex „z“ a mittere „posílat“).
česky: emisivita; angl: emissivity; slov: emisivita; něm: Emissivität f; fr: émissivité f 2014
излучениe
poměr L zářivosti dI elementu plošného zdroje o velikosti dS a průmětu této plochy do roviny kolmé k uvažovanému směru zářivého toku, tj.
kde α značí úhel sevřený normálou k ploše zdroje a směrem zářivého toku. Jednotkou záře je W.m–2.sr–1.
kde α značí úhel sevřený normálou k ploše zdroje a směrem zářivého toku. Jednotkou záře je W.m–2.sr–1.
česky: zář; angl: radiance, radiant intensity per unit area; slov: merná žiarivosť; něm: spektrale Strahldichte f 1993-a1
излучение
излучение
syn. radiace
1. přenos energie formou šíření elmag. vln (elmag. záření), nebo toku hmotných částic (korpuskulární záření). Velikost záření se vyjadřuje nejčastěji intenzitou toku energie, pro niž je v SI základní jednotkou W.m–2. Podle zdroje rozlišujeme kosmické záření, záření Slunce a záření Země, které je tvořeno zářením zemského povrchu a zářením atmosféry. Výsledný tok záření vznikající jako rozdíl jednotlivých složek záření se v meteorologii nazývá bilancí záření, jejíž hodnota určuje energ. zisk nebo ztrátu zemského povrchu nebo části atmosféry.
2. v meteorologii zkrácené značení pro elmag. záření. Vlnová délka elmag. záření různého původu se v atmosféře pohybuje od 10–14 do 10–2 m. Podle vlnové délky rozlišujeme záření krátkovlnné a záření dlouhovlnné, v podrobnějším členění pak záření gama, rentgenové, ultrafialové, viditelné, infračervené, mikrovlny a další radiové vlny. Pro energ. bilanci soustavy Země–atmosféra má rozhodující význam záření o vlnových délkách řádově 0,1 µm až 100 µm. V krátkovlnném oboru je to globální sluneční záření, tvořené přímým a rozptýleným slunečním zářením a jejich složkami odraženými zemským povrchem.
1. přenos energie formou šíření elmag. vln (elmag. záření), nebo toku hmotných částic (korpuskulární záření). Velikost záření se vyjadřuje nejčastěji intenzitou toku energie, pro niž je v SI základní jednotkou W.m–2. Podle zdroje rozlišujeme kosmické záření, záření Slunce a záření Země, které je tvořeno zářením zemského povrchu a zářením atmosféry. Výsledný tok záření vznikající jako rozdíl jednotlivých složek záření se v meteorologii nazývá bilancí záření, jejíž hodnota určuje energ. zisk nebo ztrátu zemského povrchu nebo části atmosféry.
2. v meteorologii zkrácené značení pro elmag. záření. Vlnová délka elmag. záření různého původu se v atmosféře pohybuje od 10–14 do 10–2 m. Podle vlnové délky rozlišujeme záření krátkovlnné a záření dlouhovlnné, v podrobnějším členění pak záření gama, rentgenové, ultrafialové, viditelné, infračervené, mikrovlny a další radiové vlny. Pro energ. bilanci soustavy Země–atmosféra má rozhodující význam záření o vlnových délkách řádově 0,1 µm až 100 µm. V krátkovlnném oboru je to globální sluneční záření, tvořené přímým a rozptýleným slunečním zářením a jejich složkami odraženými zemským povrchem.
česky: záření; angl: radiation; slov: žiarenie; něm: Strahlung f 1993-a3
излучение атмосферы
syn. vyzařování atmosféry – tok dlouhovlnného záření emitovaného molekulami vzduchu, oblačnými částicemi, popř. aerosolvými částicemi v atmosféře. Hlavními plynnými složkami podílejícími se na záření atmosféry jsou vodní pára a oxid uhličitý. Spektrum záření atmosféry je při jasné obloze závislé na aktuálním množství vyzařujících složek atmosféry a jeho intenzita může být až o řád menší než intenzita záření černého povrchu zářícího při stejné teplotě. Homogenní vrstva hustých oblaků naopak vyzařuje prakticky stejně jako absolutně černé těleso. Záření atmosféry pozorujeme jednak jako záření směřující dolů, které při pozorování na zemském povrchu nazýváme zpětným zářením atmosféry, jednak jako záření směřující nahoru. Při studiu radiační bilance soustavy Země – atmosféra se používá pojmu záření atmosféry Země, kterým označujeme úhrn záření atmosféry směřujícího vzhůru a unikajícího do kosmického prostoru.
česky: záření atmosféry; angl: atmospheric radiation; slov: žiarenie atmosféry; něm: atmosphärische Strahlung f, langwellige Strahlung der Atmosphhäre f 1993-a3
излучение Земли
dlouhovlnné záření, které soustava Země – atmosféra vyzařuje do kosmického prostoru. Jeho intenzita vzrůstá s teplotou této soustavy. Uvedený přenos energie se uskutečňuje jako záření zemského povrchu a záření atmosféry.
česky: záření Země; angl: terrestrial radiation; slov: žiarenie Zeme; něm: terrestrische Strahlung f, Austrahlung der Erde f 1993-a3
излучение земной поверхности
česky: vyzařování zemského povrchu; slov: vyžarovanie zemského povrchu; něm: Ausstrahlung der Erdoberfläche f 1993-a1
излучение земной поверхности
dlouhovlnné záření určité části zemského povrchu, které závisí na jeho teplotě i vyzařovací schopnosti a které směřuje nahoru. Poněvadž rel. vyzařovací schopnost různých přirozených povrchů Země, vzhledem k vyzařování černého tělesa je v dlouhovlnném oboru málo odchylná od 1, bývá záření zemského povrchu ztotožňováno se zářením absolutně černého tělesa o stejné teplotě, jakou má povrch Země. Intenzita tohoto záření se určuje pomocí Stefanova–Boltzmannova zákona. Vlnové délky záření zemského povrchu leží přibližně mezi 1 až 1 000 µm s maximem energie u vlnové délky kolem 10 µm. Intenzita záření zemského povrchu při teplotě 0 °C činí přibližně 0,3 kW.m–2. Při studiu radiační bilance soustavy Země – atmosféra se používá pojem záření povrchu Země, který označuje pro celou planetu úhrn záření zemského povrchu směřujícího nahoru a unikajícího do kosmického prostoru.
česky: záření zemského povrchu; angl: terrestrial surface radiation; slov: žiarenie zemského povrchu; něm: Strahlung der Erdoberfläche f 1993-a1
излучение земной поверхности и атмосферы направленное вверх
souhrnné označení pro úhrn záření zemského povrchu, záření atmosféry směřujícího nahoru a odraženého záření atmosféry, pozorovaný v určité výšce nad zemským povrchem.
česky: záření zemské směřující nahoru; angl: upward terrestrial radiation; slov: zemské žiarenie smerujúce nahor; něm: aufwärtsgerichtete terrestrische Ausstrahlung f 1993-a1
излучение поверхности Земли
česky: záření povrchu Země; angl: terrestrial surface radiation; slov: žiarenie povrchu Zeme; něm: Strahlung der Erdoberfläche f 1993-a1
излучение черного тела
elmag. záření, jehož spektrální složení je přesně dáno Planckovým zákonem. Viz též těleso absolutně černé.
česky: záření černého tělesa; angl: black body radiation; slov: žiarenie čierneho telesa; něm: Hohlraumstrahlung f, Strahlung eines schwarzen Körpers f 1993-a1
изменение погоды
větší změna jednoho nebo více meteorologických prvků, probíhající v daném místě nebo oblasti, popř. i začátek nebo ukončení určitého met. jevu. Změnou počasí se zpravidla nerozumí změna hodnot met. prvků v důsledku denního chodu. K nejvýraznější změnám počasí dochází při výměně vzduchových hmot na atmosférických frontách, při změně cirkulačního typu apod. Změna počasí se může uskutečňovat v průběhu několika minut, hodin až dní. Viz též zhoršení počasí, zlepšení počasí, proměnlivost počasí.
česky: změna počasí; angl: weather change; slov: zmena počasia; něm: Wetteränderung f 1993-a2
измерение ветра
stanovení vektoru větru, popř. jeho časových fluktuací. Zpravidla se měří jen horiz. složka tohoto vektoru, a to jeho velikost neboli rychlost větru a směr, jemuž opačný je směr větru. Vert. složka vektoru větru neboli vertikální rychlost se zjišťuje pouze pro speciální účely. K přímému měření rychlosti větru se používají různé druhy anemometrů, z nichž některé měří současně i směr větru. Ten lze určit i pomocí větrné směrovky, příp. větrného rukávu.
Přízemní vítr se měří během určitého časového intervalu, na čes. stanicích převážně od roku 2010 v délce 10 minut. Kromě desetiminutové rychlosti větru se v týchž časových invervalech stanovuje i průměrná a maximální rychlost větru a jim odpovídající směry větru; zaznamenává se i čas výskytu nejvyšší denní hodnoty maximální rychlosti větru. Před automatizací se na přízemních synoptických stanicích vyhodnocovala z anemogramů desetiminutová rychlost větru, dále pak rychlost větru v nárazu, a to v případě, že přesáhla průměrnou alespoň o 5 m.s-1. Na klimatologických stanicích se odhadovala 4-minutová rychlost větru podle měření anemoindikátoru. Pro odhad rychlosti větru se užívala a i v současnosti je v případě potřeby možné užít Beaufortovu stupnici větru.
Hlavními nástroji měření výškového větru jsou různé způsoby měření větru radiotechnickými prostředky, v mezní vrstvě atmosféry lze využít rovněž meteorologických stožárů.
Přízemní vítr se měří během určitého časového intervalu, na čes. stanicích převážně od roku 2010 v délce 10 minut. Kromě desetiminutové rychlosti větru se v týchž časových invervalech stanovuje i průměrná a maximální rychlost větru a jim odpovídající směry větru; zaznamenává se i čas výskytu nejvyšší denní hodnoty maximální rychlosti větru. Před automatizací se na přízemních synoptických stanicích vyhodnocovala z anemogramů desetiminutová rychlost větru, dále pak rychlost větru v nárazu, a to v případě, že přesáhla průměrnou alespoň o 5 m.s-1. Na klimatologických stanicích se odhadovala 4-minutová rychlost větru podle měření anemoindikátoru. Pro odhad rychlosti větru se užívala a i v současnosti je v případě potřeby možné užít Beaufortovu stupnici větru.
Hlavními nástroji měření výškového větru jsou různé způsoby měření větru radiotechnickými prostředky, v mezní vrstvě atmosféry lze využít rovněž meteorologických stožárů.
česky: měření větru; angl: measurement of wind; slov: meranie vetra; něm: Windmessung f 1993-a3
измерение видимости
meteorologické měření za účelem zjišťování definované dohlednosti, jakou je např. meteorologická dohlednost, šikmá dohlednost, vertikální dohlednost, dohlednost dráhových světel aj. Vzdálenosti, na které jsou vidět definovaná světla za soumraku nebo v noci, lze převádět na hodnoty met. dohlednosti, která se vyjadřuje v m nebo v km. Pro přístrojová měření bývá použit měřič průzračnosti neboli transmisometr, popř. měřič dohlednosti, používající dopředný rozptyl světla v atmosféře neboli forward scatterometr. Viz též měření dráhové dohlednosti, pozorování meteorologické dohlednosti.
česky: měření dohlednosti; angl: visibility measurement; slov: meranie dohľadnosti; něm: Sichtweitenmessung f 1993-a3
измерение видимости на взлетно-посадочных полосах
(RVR, Runway Visual Range) – objektivní postup při stanovení hodnot dráhové dohlednosti na letištích. Dráhová dohlednost se z praktických důvodů nemůže měřit přímo nad vzletovou a přistávací dráhou. Ve smyslu platných předpisů se její měření uskutečňuje rovnoběžně s osou vzletové a přistávací dráhy ve vzdálenosti maximálně 120 m od této osy a ve výšce 7,5 FT, přičemž údaj o dráhové dohlednosti, který reprezentuje podmínky v bodě dotyku, má být z prostoru zhruba 300 m od prahu a ve směru příslušné dráhy. Měření RVR se provádí v případě, když horizontální dohlednost klesne pod 2 000 m a to v kroku 25 m při RVR menší než 400 m, v kroku 50 m pro RVR v intervalu 400–800 m a v kroku 100 m při RVR větší než 800 m. Naměřené hodnoty jsou zakódovány jednak ve zprávách METAR, jednak při změně dráhové dohlednosti (v souladu s kritérii v předpisu L3 – Meteorologie a stanovenými poskytovatelem letecké meteorologické služby na základě konzultací s příslušným úřadem ATS, provozovateli a provozovatelelm letiště) ve zprávách SPECI. K měření dráhové dohlednosti se používají měřiče průzračnosti neboli transmisometry nebo měřiče dopředného rozptylu neboli forward scatterometry. Dráhová dohlednost není měřena přímo. Transmisometry nebo forward scatterometry měří MOR a RVR je následně vyhodnocována automatizovaným meteorologickým systémem (AWOS). Viz též systém RVR.
česky: měření dráhové dohlednosti; angl: measurement of runway visual range; slov: meranie dráhovej dohľadnosti; něm: Messung der Landebahnsicht f 1993-a3
измерение влажности воздуха
určení obsahu vodní páry ve vzduchu v určitém místě atmosféry, zpravidla relativní vlhkosti vzduchu nebo tlaku vodní páry. Relativní vlhkost se měří v %, tlak vodní páry v hPa. Ostatní vlhkostní charakteristiky se v případě potřeby stanoví výpočtem s použitím hodnoty teploty a tlaku vzduchu změřených současně s vlhkostí. Vlhkost vzduchu se měří vlhkoměrem; na met. stanicích v ČR se používá vlhkostní čidlo umístěné v radiačním krytu. Dříve se měřila Augustovým psychrometrem a vlasovým vlhkoměrem umístěným v meteorologické budce. Z údajů meteorologických družic lze v důsledku pohlcování odraženého nebo vlastního záření zemského povrchu v absorpčních pásech vodní páry určit vertikální profil vlhkosti vzduchu.
česky: měření vlhkosti vzduchu; angl: air humidity measurement; slov: meranie vlhkosti vzduchu; něm: Messung der Luftfeuchte f 1993-a3
измерение высоты нижней границы облаков
určení výšky základny oblaků nad zemí. Provádí se ceilometrem, příp. lidarem. Princip měření je založen na zjišťování času, který potřebuje krátký světelný impulz na průchod atmosférou z vysílače ceilometru k oblaku rozptylujícímu světlo a zpět do přijímače ceilometru. Okamžitá amplituda vráceného signálu pak poskytuje informace o charakteristikách zpětného rozptylu záření v atmosféře na určité výšce. Z přijatého rozptýleného signálu lze odvodit informace o oblačnosti a také o mlze a srážkách. V minulosti se výška základny oblaků určovala pomocí tzv. píchacího balonku se známou stoupací rychlostí, a to výpočtem z doby jeho letu od vypuštění do zmizení v základně oblaku, nebo trigonometrickou metodou z měření oblakoměrným světlometem.
česky: měření výšky základny oblaků; angl: measurement of cloud base height; slov: meranie výšky základne oblakov; něm: Wolkenhöhenmessung f 1993-a3
измерение давления воздуха
určení hydrostatického tlaku v určitém místě atmosféry. Tlak vzduchu se měří v N.m–2, tj. v pascalech (Pa). V meteorologii je povolena jednotka hPa, která souvisí s dalšími jednotkami používanými v dřívější době těmito převodními vztahy:
Tlak vzduchu na met. stanicích se měří staničními tlakoměry s přesností na desetiny hPa. V dříve používaných rtuťových tlakoměrech bylo nutné odečtený údaj tlaku redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. Ve volné atmosféře se tlak vzduchu měří aneroidovými tlakoměry neboli aneroidy, popř. hypsometry. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
Tlak vzduchu na met. stanicích se měří staničními tlakoměry s přesností na desetiny hPa. V dříve používaných rtuťových tlakoměrech bylo nutné odečtený údaj tlaku redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. Ve volné atmosféře se tlak vzduchu měří aneroidovými tlakoměry neboli aneroidy, popř. hypsometry. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
česky: měření tlaku vzduchu; angl: air pressure measurement; slov: meranie tlaku vzduchu; něm: Luftdruckmessung f 1993-a3
измерение загрязнения воздуха
zjišťování množství znečišťujících příměsí v atmosféře. Při měření znečištění ovzduší se používá buď aerochemických metod (např. zachycování dané příměsi do chem. reagentu při průchodu známého množství znečištěného vzduchu), nebo fyz. metod (opt. pohltivost v dané části spektra lidary apod.), atomové absorpce a dalších analytických metod. Výsledkem je zpravidla určení koncentrace znečišťujících látek, u nás obvykle v rozměru hmotnost příměsi na objem vzduchu, např. v µg.m–3, v anglosaské literatuře v poměrných číslech, často ppm (parts per million) nebo ppb (parts per billion). Měření znečištění ovzduší se organizuje zpravidla na více bodech kontinuálně či ve stacionárních nebo mobilních sítích měření. Časovou jednotkou měření je buď konečný časový interval čili odběrová doba, nebo se měří kontinuálně okamžité hodnoty. Informace v reálném čase poskytuje monitorování znečištění ovzduší. Viz též emise, imise.
česky: měření znečištění ovzduší; angl: air pollution monitoring; slov: meranie znečistenia ovzdušia; něm: Messung der Luftverunreinigung f, Messung der Schadstoffbelastung der Luft f 1993-a2
измерение испарения
určení množství vodní páry, které je za zvolený časový interval předáno do atmosféry sledovaným vodním nebo jiným vlhkým povrchem. Výpar se měří v mm vodního sloupce, který by se vytvořil z vypařené vody na ploše shodné velikosti s velikostí vypařujícího se povrchu. Výpar z volné vodní hladiny se měří výparoměry, které jsou umístěny v půdě nebo na jejím povrchu. V ČR se výpar měří na vybraných stanicích ČHMÚ výparoměrem EWM, který nahradil starší výparoměr GGI 3000.
česky: měření výparu; angl: measurement of evaporation; slov: meranie výparu; něm: Verdunstungsmessung f 1993-a3
измерение количества осадков
syn. pluviometrie – zast. označení pro měření atmosférických srážek, resp. obor zabývající se jeho metodikou. Viz též hydrologie.
Termín se skládá z řec. ὄμβρος [ombros] „dešťová přeháňka, příval“ a -μετρία [-metria] „měření“.
česky: ombrometrie; angl: pluviometry; slov: ombrometria; něm: Ombrometrie f 1993-a3
измерение метеорологических элементов в пограничном слое и в свободной атмосфере
meteorologické měření prováděné přístrojem umístěným nebo se pohybujícím v atmosféře nad její přízemní vrstvou. Tento druh měření zahrnuje především radiosondážní měření a většinu dalších přímých aerologických měření, včetně stožárových meteorologických měření. Do zavedení radiosond počátkem 30. let 20. století byla měření v mezní vrstvě a ve volné atmosféře prováděna pomocí meteorografů, vynášených do ovzduší balony nebo upoutanými meteorologickými draky, případně přímo posádkami volných balonů. Viz též sondáž ovzduší, stanice měřící v mezní vrstvě atmosféry.
česky: měření meteorologických prvků v mezní vrstvě a volné atmosféře; angl: measurement of meteorological elements in boundary layer and free atmosphere; slov: meranie meteorologických prvkov v hraničnej vrstve a vo voľnej atmosfére; něm: Messung von meteorologischen Größen in der Grenzschicht und in der freien Atmosphäre f 1993-a3
измерение обледенения
určování hmotnosti a rozměru námrazků. Pro operativní účely se podle doporučení Světové meteorologické organizace měří průměr vrstvy námrazků při výskytu jakéhokoliv typu námrazků v termínu pozorování. Za průměr námrazku se považuje max. průměr námrazku minus průměr měrné tyče. Cílem měření námrazků může být také stanovení max. hodnot námrazků ve víceletém období na daném místě. Kromě synoptických stanic se námrazky v České republice měří:
a) na běžných námrazkoměrných stanicích pomocí horizontálně exponovaných námrazkoměrných tyčí;
b) na speciálních námrazkoměrných stanicích, kde se zjišťuje usazování námrazků na různých materiálech a tvarech konstrukcí (tyče, úhelníky, lana atd.);
c) na el. vedeních pomocí Brinellových přístrojů. Podle tloušťky vrstvy námrazků, která se vyjadřuje jako kolmá vzdálenost od povrchu podkladu k povrchu námrazku, rozlišujeme slabou, mírnou a silnou „intenzitu“ jevu. Námrazky se měří ve výši 2, 6 nebo 10 m na tělesech o průměrech 5, 10 i 60 mm, někdy se používá i vert. expozice tyčí. K registraci změn hmotnosti námrazků s časem slouží námrazoměr, popř. na jeho principu upravená zařízení. Viz též intenzita námrazků.
a) na běžných námrazkoměrných stanicích pomocí horizontálně exponovaných námrazkoměrných tyčí;
b) na speciálních námrazkoměrných stanicích, kde se zjišťuje usazování námrazků na různých materiálech a tvarech konstrukcí (tyče, úhelníky, lana atd.);
c) na el. vedeních pomocí Brinellových přístrojů. Podle tloušťky vrstvy námrazků, která se vyjadřuje jako kolmá vzdálenost od povrchu podkladu k povrchu námrazku, rozlišujeme slabou, mírnou a silnou „intenzitu“ jevu. Námrazky se měří ve výši 2, 6 nebo 10 m na tělesech o průměrech 5, 10 i 60 mm, někdy se používá i vert. expozice tyčí. K registraci změn hmotnosti námrazků s časem slouží námrazoměr, popř. na jeho principu upravená zařízení. Viz též intenzita námrazků.
česky: měření námrazků; angl: icing measurement; slov: meranie námrazkov; něm: Vereisungsmessung m 1993-a3
измерение озона
určení množství ozonu v určitém bodě, vrstvě nebo hladině atmosféry. Nejčastěji se jedná o měření koncentrace ozonu v přízemní vrstvě atmosféry (parametr znečištění ovzduší), měření celkového množství ozonu v jednotkovém sloupci atmosféry (tloušťka ozonové vrstvy) nebo měření vertikálního profilu koncentrace ozonu (profil ozonové vrstvy). Celkový obsah ozonu v atmosféře se většinou měří Dobsonovým nebo Brewerovým spektrofotometrem a vyjadřuje se v Dobsonových jednotkách. Vert. rozložení ozonu v atmosféře se měří především pomocí balonových elektrochemických ozonových sond a ozonovými lidary. Kromě toho se k monitorování ozonu v atmosféře používají i družicová měření ozonu.
česky: měření ozonu; angl: ozone measurement; slov: meranie ozónu; něm: Ozonmessung f 1993-a3
измерение осадков
měření parametrů srážek, především jejich úhrnu a intenzity, různými druhy přístrojů na srážkoměrných, klimatologických a dalších meteorologických stanicích. Zákl. přístrojem je srážkoměr používaný k měření množství kapalných i tuhých srážek. K měření srážek na těžko dostupných místech se používá totalizátor. U tuhých srážek se měří výška sněhové pokrývky (v cm), někdy též vodní hodnota sněhové pokrývky (v mm nebo v kg.m–2) a hustota sněhu (v kg.m–3). U usazených srážek se jedná především o měření rosy různými typy rosoměrů, popř. drosografů a o měření námrazků. Měření srážek nespočívá jen v získávání dat z indikačních a registračních přístrojů, nýbrž i ve vizuálním pozorování usazených srážek (kondenzačních jevů a námrazků), v určování doby trvání padajících i usazených hydrometeorů.
česky: měření srážek; angl: precipitation measurement; slov: meranie zrážok; něm: Niederschlagsmessung f 1993-a3
измерение промерзания почвы
v agrometeorologii zjišťování hloubky pod povrchem země, v níž dochází k mrznutí půdní vody. Informace o hloubce promrznuti půdy je důležitá např. k posouzení nebezpečí poškození kořenové soustavy rostlin. Kromě zemědělství je využívána i některými technickými obory (nezámrzná hloubka ve stavebnictví). Měření promrzání půdy se provádí půdními mrazoměry. Viz též promrzání půdy, měření teploty půdy.
česky: měření promrzání půdy; angl: soil freezing measurement; slov: meranie premŕzania pôdy; něm: Messung der Bodengefrornis f 1993-a3
измерение радиоактивности атмосферы
určování radioaktivity atmosféry, srážek a suchého spadu. Zjišťuje se jako radioaktivita:
a) aerosolu zachyceného na filtru, jímž byl prosát známý objem vzduchu;
b) odparku ze srážkové vody zachycené za dané období (obvykle dny až 1 měsíc);
c) spadu, tj. pevných částic, které se usadily na vodorovném suchém nebo mokrém dnu sběrné nádoby za dané období (obvykle dny až 1 měsíc);
odebrané vzorky se měří pomocí zařízení indikujícího záření α, β, γ (popř. jen některých z nich) laboratorně nebo přímo v místě odběru (automatické systémy pro odběr a měření vzorků). V případě měření vzorků přímo v místě odběru výsledky zahrnují i příspěvek radionuklidů s krátkým poločasem přeměny, při laboratorních měřeních lze tento vliv eliminovat. Dále se provádí přímá měření příkonu dávky/dávkového ekvivalentu příslušnými detektory (např. Geiger-Müllerovy počítače, proporcionální počítače). Detektory mohou být umístěny na stacionárních měřicích místech, na přízemních mobilních stanicích nebo na radiosondách pro zjišťování vertikálních profilů beta a gama záření. V případě přímého měření příkonu dávky/dávkového ekvivalentu měřená hodnota zahrnuje kromě složky atmosférické radioaktivity i složky odpovídající terestriálnímu a kosmickému záření. Radioaktivita ovzduší se obvykle vyjadřuje v jednotkách becquerel (Bq), a to pro spad v Bq.m–2 a pro ovzduší v Bq.m–3. Dříve používaná jednotka aktivity curie (Ci) souvisí s novou jednotkou becquerel vztahem 1 Bq = 2,7.10–11 Ci, tj. 1 Bq = 27 pCi. Příkon dávkového ekvivalentu se vyjadřuje v jednotkách Sievert za hodinu (Sv.h–1). Odběry vzorků a měření příkonu se provádí na vybraných met. stanicích, odebrané vzorky se předávají do měřicích laboratoří Radiační monitorovací sítě (RMS), výsledky měření prováděných na místě se průběžně předávají na centrální pracoviště RMS. Viz též spad radioaktivní, zpráva o příkonu fotonového dávkového ekvivalentu (RAD).
a) aerosolu zachyceného na filtru, jímž byl prosát známý objem vzduchu;
b) odparku ze srážkové vody zachycené za dané období (obvykle dny až 1 měsíc);
c) spadu, tj. pevných částic, které se usadily na vodorovném suchém nebo mokrém dnu sběrné nádoby za dané období (obvykle dny až 1 měsíc);
odebrané vzorky se měří pomocí zařízení indikujícího záření α, β, γ (popř. jen některých z nich) laboratorně nebo přímo v místě odběru (automatické systémy pro odběr a měření vzorků). V případě měření vzorků přímo v místě odběru výsledky zahrnují i příspěvek radionuklidů s krátkým poločasem přeměny, při laboratorních měřeních lze tento vliv eliminovat. Dále se provádí přímá měření příkonu dávky/dávkového ekvivalentu příslušnými detektory (např. Geiger-Müllerovy počítače, proporcionální počítače). Detektory mohou být umístěny na stacionárních měřicích místech, na přízemních mobilních stanicích nebo na radiosondách pro zjišťování vertikálních profilů beta a gama záření. V případě přímého měření příkonu dávky/dávkového ekvivalentu měřená hodnota zahrnuje kromě složky atmosférické radioaktivity i složky odpovídající terestriálnímu a kosmickému záření. Radioaktivita ovzduší se obvykle vyjadřuje v jednotkách becquerel (Bq), a to pro spad v Bq.m–2 a pro ovzduší v Bq.m–3. Dříve používaná jednotka aktivity curie (Ci) souvisí s novou jednotkou becquerel vztahem 1 Bq = 2,7.10–11 Ci, tj. 1 Bq = 27 pCi. Příkon dávkového ekvivalentu se vyjadřuje v jednotkách Sievert za hodinu (Sv.h–1). Odběry vzorků a měření příkonu se provádí na vybraných met. stanicích, odebrané vzorky se předávají do měřicích laboratoří Radiační monitorovací sítě (RMS), výsledky měření prováděných na místě se průběžně předávají na centrální pracoviště RMS. Viz též spad radioaktivní, zpráva o příkonu fotonového dávkového ekvivalentu (RAD).
česky: měření radioaktivity atmosféry; angl: atmospheric radioactivity measurement; slov: meranie rádioaktivity atmosféry; něm: Messung der atmosphärischen Radioaktivität f 1993-a3
измерение снежного покрова
zjišťování výšky a vodní hodnoty sněhové pokrývky. U sněhové pokrývky se měří výška celkové sněhové pokrývky v klimatologickém termínu 7 h, na synoptických stanicích ještě také v termínu 06 UTC a 18 UTC. Měření se provádí pomocí sněhoměrné latě a na vybraných automatických meteorologických stanicích použitím ultrasonických nebo laserových senzorů. Výška nového sněhu se měří na sněhoměrném prkénku v klimatologickém termínu 7 h za období 24 hodin, na synoptických stanicích ČR také za 1 hodinu, pokud je výška nového sněhu 1 cm nebo více. U nesouvislé sněhové pokrývky se výška sněhové pokrývky neměří. Vodní hodnota sněhové pokrývky se měří sněhoměry a na vybraných meteorologických stanicích s použitím sněhového polštáře. Výška sněhové pokrývky se udává v cm, vodní hodnota sněhové pokrývky v mm vodního sloupce, nebo v kg.m–2 a ve stavebnictví také v kPa.
česky: měření sněhové pokrývky; angl: measurement of snow cover; slov: meranie snehovej pokrývky; něm: Schneedeckenmessung f 1993-a3
измерение суммарного испарения
viz evapotranspirometr.
česky: měření evapotranspirace; angl: measurement of evapotranspiration; slov: meranie evapotranspirácie; něm: Messung der Evapotranspiration f 1993-a2
измерение температуры воздуха
určení teploty čidla teploměru, které je v tepelné rovnováze s okolním vzduchem. Pro met. účely se teplota vzduchu měří na základě Celsiovy teplotní stupnice s přesností na desetiny °C, v některých zemích na základě Fahrenheitovy teplotní stupnice. Měří se elektrickým, případně také kapalinovým nebo bimetalickým teploměrem. Teploměr musí být stíněn nebo jinak chráněn před rušivými účinky přímého slunečního záření. Na met. stanicích se proto umísťuje v meteorologické budce nebo v radiačním krytu. Zákl. přístroj pro měření teploty vzduchu je elektrický teploměr s čidlem ve výšce 2 m nad zemským povrchem. K měření hodnot extrémní teploty vzduchu za určité časové období se někdy ještě používají maximální a minimální teploměr, většinou se však tyto hodnoty získávají automatickým zpracováním údajů el. teploměru. Viz též staniční teploměr.
česky: měření teploty vzduchu; angl: air temperature measurement; slov: meranie teploty vzduchu; něm: Messung der Lufttemperatur f 1993-a3
измерение температуры почвы
určení teploty čidla teploměru, které je v tepelné rovnováze s okolní vrstvou půdy. Teplota půdy se měří ve °C půdními teploměry v hloubkách 5, 10, 20, 50, 100, 150 a 300 cm (v ČR jen 5, 10, 20, 50 a 100 cm) na pozemku s přirozeným složením půdy, porostlém ošetřovaným trávníkem. K měření se používají půdní teploměry, a to elektrické, případně rtuťové. Viz též měření promrzání půdy.
česky: měření teploty půdy; angl: soil temperature measurement; slov: meranie teploty pôdy; něm: Messung der Bodentemperatur f 1993-a3
измерение тормозящего действия на взлетно-посадочных полосах
soubor měření a postupů, kterými jsou získávány veličiny potřebné pro určení stavu drah ovlivněných povětrnostními vlivy. Změřené hodnoty brzdných účinků poskytované provozovatelem letiště pak musí být v souladu s regionálními postupy ICAO uváděny ve zprávách METAR a SPECI v doplňujících informacích.
česky: měření brzdného účinku letištních drah; angl: measurement of braking action of runways; slov: meranie brzdného účinku letištných dráh; něm: Messung der Bremswirkung der Landebahnen f 1993-a3
измерение эвапотранспирации
viz evapotranspirometr.
česky: měření evapotranspirace; angl: measurement of evapotranspiration; slov: meranie evapotranspirácie; něm: Messung der Evapotranspiration f 1993-a2
измеритель видимости
viz měření dohlednosti.
česky: měřič dohlednosti; angl: visibility meter, visibility recorder; slov: dohľadomer; něm: Sichtweitenmessung f 1993-a1
измеритель обледенения
zařízení, průběžně zaznamenávající hmotnost námrazy (námrazků) usazené na svislé tyči kruhového průřezu. Kruhový průřez tyče vylučuje závislost hmotnosti usazeného námrazku na směru větru. Dříve se pro námrazoměr používalo označení geligraf. První námrazoměr s mech. převodem, registrující na chronografu hmotnost vrstvy usazených tuhých srážek na měrném válci, sestrojil M. Konček (geligraf Končekův). Používal se na několika horských stanicích na Slovensku. Novější námrazoměry užívají el. snímač hmotnosti s možností dálkové registrace a ukládání dat. Viz též měření námrazků.
česky: námrazoměr; angl: ice meter; slov: námrazomer; něm: Raufrostmesser m 1993-a2
измеритель обледенения Бринелла
jednoduchý přístroj na měření max. hmotnosti námrazků na vnějších el. vedeních zpravidla za celé námrazové období. Je založen na principu Brinellova tvrdoměru, jímž se zjišťuje působící síla z velikosti vtisku kuličky zatlačené do materiálu konstantní tvrdosti. Zavěšuje se na el. vedení do řetězce izolátorů. Užívané přístroje měří v rozsahu 102 až 3.103 kg. Přístroj je nazván podle švédského inženýra J. A. Brinella (1849–1925).
česky: přístroj Brinellův; angl: Brinell ice meter; slov: Brinellov prístroj; něm: Vereisungsmesser nach Brinell m 1993-a3
измеритель прозрачности
syn. měřič propustnosti, transmisometr – zařízení používané k určování meteorologické dohlednosti, kterým se nejčastěji měří zeslabení sondovacího paprsku po průchodu stanoveným sloupcem ovzduší. Ke generování paprsku slouží v opt. systému nejčastěji laserová dioda, přičemž úzký paprsek je směrován do přijímače, kde je zpravidla elektronicky srovnávána intenzita vyslaného a po průchodu atmosférou zeslabeného paprsku. Délka sondovaného vzorku ovzduší bývá zpravidla desítky metrů. Jinou skupinu tvoří měřiče dohlednosti, které měří dopředný rozptyl záření, tzv. forward scatterometry. Viz též měření dohlednosti, vztah Allardův.
česky: měřič průzračnosti; angl: transmissometer; slov: merač priezračnosti; něm: Transmissometer n 1993-a3
измеритель пропускания
измеритель суммарного испарения
přístroj pro měření evapotranspirace. Jeho zákl. částí je nádoba obsahující vzorek půdy s vegetační pokrývkou. Úbytek celkového množství vody způsobený výparem se určuje vážením nádoby s půdou a vegetací, nebo změřením spadlých srážek a množství odteklé vody z přístroje. Evapotranspirace se pak určuje jako rozdíl váhy půdy před a po skončení měření, popř. jako rozdíl srážek a množství zachycené vody. Viz též lyzimetr.
česky: evapotranspirometr; angl: evapotranspirometer; slov: evapotranspirometer; něm: Evapotranspirometer n; fr: évapotranspiromètre m 1993-a3
измеритель тумана
dříve používanné označení pro zařízení pro odběr kapalných usazených srážek. Jeho čidlem obvykle bývalo drátěné síto, které se umisťovalo v exponovaných horských polohách.
česky: mlhoměr; angl: fog gauge; slov: merač hmly; něm: Nebelmesser m 1993-a3
измеритель тумана
zařízení, které slouží k zachycování, odběru a měření kapek usazených srážek z mlhy nebo oblaku, nebo jen ke zjišťování doby ovlhnutí. Jeho čidlem je teflonové síto, případně jejich soustava. Monitorovací pasivní zařízení jsou používána např. v horských oblastech, nebo oblastech tropických mlžných pralesů. Aktivní zařízení, v nichž je proud vzduchu s kapkami mlhy podporován ventilátorem, mají převážně staniční využití a lze je využívat i v nižších nadmořských výškách. Nepřesně je zařízení pro odběr kapalných usazených srážek nazýváno mlhoměr.
darez, úprava podle Fišáka
česky: zařízení pro odběr kapalných usazených srážek; angl: fog gauge; slov: merač hmly , zariadenie pre odber kvapalných usadených zrážok; něm: Nebelmesser m 2019
изморозь
ledová usazenina tvořící se obvykle zmrznutím přechlazených kapek mlhy nebo oblaku na předmětech, jejichž povrchová teplota je pod nebo slabě nad 0 °C. Rozlišují se tři druhy námrazových jevů, a to krystalická námraza, nazývaná též jinovatkou, zrnitá námraza, nazývaná též zkráceně námrazou, a průsvitná námraza. Námrazové jevy patří mezi hydrometeory.
česky: jevy námrazové; angl: rime; slov: námrazové javy 1993-a3
изморозь при тумане
изоаврора
syn. izochasma.
Termín zavedl dánský astrofyzik S. Tromholt před r. 1885. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a angl. aurora „polární záře“ (z lat. aurora „svítání, ranní červánky; východ“).
česky: izoaurora; angl: isoaurore; slov: izoaurora; něm: Isoaurore f 1993-a1
изоамплитуда
syn. izamplituda – druh izolinie spojující místa se stejnou hodnotou amplitudy meteorologického prvku, např. teploty vzduchu. Izoamplitudami je možné znázorňovat plošné rozložení jak abs., tak prům. amplitud met. prvků, nejčastěji prům. roč. amplitudy teploty vzduchu. Viz též izodiafora, izotalantóza.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a lat. amplitudo „velikost, početnost“.
česky: izoamplituda; angl: isoamplitude; slov: izoamplitúda; něm: Isoamplitude f 1993-a1
изоатма
изобара
izolinie spojující místa se stejnou hodnotou tlaku vzduchu. Zejména v synoptické meteorologii patří k nejužívanějším izoliniím. Na přízemních synoptických mapách izobary spojují místa stejného tlaku redukovaného na hladinu moře a jsou průsečnicemi izobarických hladin (ploch) s hladinou moře. Pomocí izobar se provádí analýza tlakového pole (přízemního) a vymezují se tlakové útvary. Zakreslují se v intervalech v závislosti na měřítku synoptické mapy a meteorologického jevu, který má být znázorněn (obvykle po 5, resp. 2,5 hPa). Ačkoliv izobary jakožto izolinie mají hladký průběh, izobary na atmosférické frontě se mohou lomit; specifický tvar mají též orografické izobary. Viz též mapa izobar, plocha izobarická, zakřivení antickylonální, zakřivení cyklonální, izalobara, mezobara.
Termín poprvé použil něm. geograf H. K. W. Berghaus v předmluvě svého díla Physikalischer Atlas z r. 1838. Termín pochází z řec. ἰσοβαρής (z ἴσος [isos] „stejný, rovný“ a βάρος [baros] „tíha, váha“).
česky: izobara; angl: isobar; slov: izobara; něm: Isobare f 1993-a2
изобарическая карта
mapa rozložení tlaku vzduchu znázorněného pomocí izobar. Nejčastěji se používá map tlaku vzduchu redukovaného na hladinu moře na nichž izobary vymezují tlakové útvary. Mapy izobar znázorňují buď okamžité rozložení tlaku vzduchu, zpravidla na přízemních synoptických mapách, nebo rozložení prům., především dlouhodobých hodnot tlaku vzduchu na klimatologických mapách. Viz též redukce tlaku vzduchu na dohodnutou hladinu, mapa izohyps.
česky: mapa izobar; angl: isobaric chart; slov: mapa izobár; něm: Isobarenkarte f 1993-a1
изобарическая поверхность
syn. plocha izobarická – hladina s konstantním tlakem vzduchu, jejíž výška nad zemí nebo vzdálenost od jiné izobarické hladiny závisí na teplotních, resp. hustotních vlastnostech sloupce vzduchu, vyjádřených např. jeho stř. virtuální teplotou. Mapy izobarických hladin jsou označovány jako mapy absolutní a relativní topografie. Nevhodné označení pro izobarickou hladinu je tlaková, příp. barická hladina. Viz též izobara, sklon izobarické plochy, solenoidy izobaricko-izosterické.
česky: hladina izobarická; angl: constant pressure level, constant pressure surface, isobaric level, isobaric surface; slov: izobarická hladina; něm: isobare Fläche f 1993-a3
изобарическая поверхность
syn. izobarická hladina.
česky: plocha izobarická; angl: isobaric surface; slov: izobarická plocha; něm: isobare Fläche f 1993-a3
изобарическая синоптическая метеорология
synoptická meteorologie druhé poloviny 19. stol. Tehdejší synoptická analýza spočívala především v rozboru přízemního tlakového pole pomocí izobar a ještě nebyla prováděna frontální analýza. Izobarická synoptická meteorologie objevila tlakové útvary, jejich vzájemné působení a převládající směry pohybu, např. dráhy cyklon, statist. zkoumala rozložení met. prvků v tlakových útvarech, poznala souvislost mezi směrem větru a rozdělením tlaku vzduchu a stanovila řadu empir. pravidel dosud využívaných v synop. praxi. Na popsané stadium synop. meteorologie přímo navázaly objevy norské meteorologické školy.
česky: meteorologie synoptická izobarická; angl: isobaric synoptic meteorology; slov: izobarická synoptická meteorológia; něm: Druckfeldsynoptik f, Isobarensynoptik f 1993-a1
изобарическая система координат
syn. soustava souřadnicová p – pravoúhlá souřadnicová soustava se zobecněnou vertikální souřadnicí, kde tato souřadnice vyjadřuje tlak vzduchu. Kvazihorizontální osy x a y leží ve zvolené izobarické hladině a vert. osa je orientována ve směru poklesu tlaku vzduchu. Výhoda této soustavy proti z–systému spočívá v tom, že řada rovnic používaných v meteorologii má jednodušší tvar, neboť používá hydrostatickou aproximaci. P–systém se používá zejména při popisu dějů synoptického měřítka, zpracování výsledků aerologických měření a jejich zakreslování do výškových map a aerologických diagramů. Viz též sigma-systém, soustava souřadnicová hybridní.
Termín obsahuje symbol „p“ označující tlak jako fyzikální veličinu.
česky: p-systém; angl: p system, pressure coordinate system; slov: p-systém; něm: p-System n, p-Koordinaten f/pl 1993-a3
изобарическая эквивалентная температура
viz teplota ekvivalentní.
česky: teplota ekvivalentní izobarická; angl: equivalent temperature, isobaric equivalent temperature; slov: izobarická ekvivalentná teplota; něm: isobare Äquivalenttemperatur 1993-a1
изобарический полет
let v izobarické hladině, tj. prakticky při konstantním tlaku vzduchu. Tohoto způsobu letu se v meteorologii používá při měření ve volné atmosféře pomocí transoceánských sond, která se konají hlavně k výzkumným účelům.
česky: let izobarický; angl: pressure pattern flying; slov: izobarický let; něm: barometrische Navigation f 1993-a1
изобарический процесс
termodyn. děj, který probíhá při konstantním tlaku. Při izobarickém ději v ideálním plynu platí pro měrný objem α a teplotu T v K vztah
kde α0 a T0 jsou měrný objem a teplota v počátečním stavu.
kde α0 a T0 jsou měrný objem a teplota v počátečním stavu.
česky: děj izobarický; angl: isobaric process; slov: izobarický dej; něm: isobarer Prozess m; fr: processus isobare m 1993-a3
изобаро-изостерические соленоиды
termodynamické solenoidy v atmosféře, které vznikají při protínání izobarických a izosterických ploch.
česky: solenoidy izobaricko-izosterické; angl: isobaric-isosteric solenoids, isobaric-isosteric tubes; slov: izobaricko-izosterické solenoidy; něm: isobar-isostere Solenoide n/pl 1993-a2
изобары на атмосферном фронте
izobary na pohybujících se atmosférických frontách se obvykle lomí. Vzduchové hmoty stýkající se na frontě se s frontou obvykle nepohybují rovnoběžně, izobarické plochy v obou vzduchových hmotách mají rozdílný sklon. Z termické struktury fronty vyplývá dyn. pokles tlaku hlavně před frontou a izobary při lomení na frontě vytvářejí brázdu nízkého tlaku vzduchu. Její výraznost závisí na sklonu atmosférické fronty, čím je sklon větší, tím je brázda ostřejší. Proto izobary na studené frontě vytvářejí ostřejší brázdu než na teplé frontě. Na kvazistacionární (geostrofické) frontě jsou izobary s frontou rovnoběžné, protože horizontální tlakový gradient v obou vzduchových hmotách je kolmý na frontu a vzduchové hmoty se pohybují s frontou rovnoběžně.
česky: izobary na atmosférické frontě; angl: isobars on atmospheric front; slov: izobary na atmosférickom fronte; něm: Isobaren an der atmosphärischen Front f/pl 1993-a2
изобата
изобронта
izochrona spojující místa, v nichž v určitém dni byl ve stejné chvíli slyšet první hrom. Používá se např. ke sledování tahu bouřek. Viz též mapa izobront, izocerauna.
Termín zavedli něm. meteorologové W. von Bezold a C. Lang v r. 1879. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a βροντή [bronté] „hrom“.
česky: izobronta; angl: isobront; slov: izobronta; něm: Isobronte f 1993-a1
изовапора
izohumida spojující místa se stejným tlakem vodní páry.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a lat. vapor „pára“.
česky: izovapora; slov: izovapora; něm: Isovapore f 1993-a1
изовела
méně vhodné označení pro izotachu.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a lat. velox „rychlý“.
česky: izovela; angl: isovel; slov: izovela; něm: Isovele f 1993-a1
изогелa
izolinie spojující místa se stejným trváním slunečního svitu za určité období (den, měsíc, rok apod.).
Termín navrhl H. König v r. 1896. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a ἥλιος [hélios] „Slunce“.
česky: izohélie; angl: isohel, isoheliopleth; slov: izohélia; něm: Isohelie f 1993-a1
изогелия
izolinie spojující místa se stejným trváním slunečního svitu za určité období (den, měsíc, rok apod.).
Termín navrhl H. König v r. 1896. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a ἥλιος [hélios] „Slunce“.
česky: izohélie; angl: isohel, isoheliopleth; slov: izohélia; něm: Isohelie f 1993-a1
изогеотерма
čára spojující místa se stejnou teplotou pod zemským povrchem. Viz též stupeň geotermický.
česky: izogeoterma; angl: geoisotherm, isogeotherm; slov: izogeoterma; něm: Isogeotherme f 1993-a1
изогиета
v klimatologii často používaná izolinie spojující místa se stejnými úhrny srážek za určité období.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a ὕετος [hyetos] „déšť“.
česky: izohyeta; angl: isohyet; slov: izohyeta; něm: Isohyete f 1993-a1
изогипса
obecně izolinie spojující místa stejných hodnot nadm. výšky (vrstevnice), popřípadě převýšení oproti jiné hladině. Izohypsy jsou zakreslovány po smluvených intervalech. V meteorologii se používají absolutní a relativní izohypsy. Viz též mapa izohyps, izalohypsa.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a ὕψος [hypsos] „výška, vrchol“.
česky: izohypsa; angl: contour line, isohypse; slov: izohypsa; něm: Isohypse f 1993-a2
изогляцигипса
izolinie spojující místa se stejnou nadm. výškou klimatické sněžné čáry, resp. počínajícího zalednění.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“, lat. glacies „led“ a řec. ὕψος [hypsos] „výška, vrchol“.
česky: izoglacihypsa; slov: izoglacihypsa; něm: Isoglazihypse f 1993-a1
изогона
obecně izolinie spojující místa se stejnou hodnotou úhlu.
1. v meteorologii spojnice míst se stejným směrem větru;
2. v geofyzice spojnice míst se stejnou magnetickou deklinací.
1. v meteorologii spojnice míst se stejným směrem větru;
2. v geofyzice spojnice míst se stejnou magnetickou deklinací.
Termín zavedl švédský meteorolog J. W. Sandström v r. 1910. Pochází z řec. ἰσογώνιος [isogónios] „téhož úhlu, rovnostranný“ (z ἴσος [isos] „stejný, rovný“ a γωνίa [gónia] „roh, úhel“).
česky: izogona; angl: isogon; slov: izogóna; něm: Isogone f 1993-a1
изограмма
1. izohumida spojující místa se stejnou měrnou vlhkostí vzduchu, resp. stejnou hodnotou směšovacího poměru;
2. čára konstantního směšovacího poměru nasyceného vzduchu na aerologickém diagramu;
3. v češtině nevhodné syn. pro izolinii.
2. čára konstantního směšovacího poměru nasyceného vzduchu na aerologickém diagramu;
3. v češtině nevhodné syn. pro izolinii.
Termín v obecném významu izolinie navrhl angl. vědec F. Galton v r. 1889. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a γραμμή [grammé] „tah perem, čára“, což naznačuje spojitost izolinií. Zúžený význam v češtině (1,2) vznikl zřejmě nedorozuměním kvůli podobnosti s jednotkou měrné vlhkosti vzduchu, resp. směšovacího poměru, kterou je g.kg-1.
česky: izograma; slov: izograma 1993-a3
изоденса
syn. izopykna.
Termín navrhl švédský meteorolog N. G. Ekholm v r. 1890. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a lat. densus „hustý“.
česky: izodenza; angl: isodense; slov: izodenza; něm: Isodense f 1993-a1
изокеравническая карта
v techn. praxi mapa, na níž je znázorněno rozložení četnosti nebo intenzity bouřkové činnosti v dané oblasti pomocí izoceraun. Izocerauny na mapách spojují místa se stejným počtem blesků nebo se stejným počtem dní s bouřkou za určité období. Nejběžnější je znázorňování prům. roč. počtu dní s bouřkou.
česky: mapa izoceraunická; angl: isoceraunic chart; slov: izoceraunická mapa 1993-a1
изокеравническая линия
izolinie spojující místa se stejným počtem blesků za určitý časový interval. Při zpracování vizuálních pozorování bouřek se za izoceraunu považuje spojnice míst se stejným počtem dní, v nichž byly pozorovány bouřky na stanici nebo bouřky vzdálené. Viz též mapa izoceraunická, izobronta.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a κεραυνός [keraunos] „hromová rána, blesk, hrom“.
česky: izocerauna; angl: isoceraunic line, isokeraunic line; slov: izocerauna 1993-a1
изолиния
nevh. označení pro izolinii.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a slova čára.
česky: izočára; angl: isoline; slov: izočiara; něm: Isolinie f 1993-a2
изолиния
čára na mapě nebo grafu, spojující body se stejným číselným významem, v meteorologii a klimatologii nejčastěji se stejnou hodnotou určitého meteorologického, resp. klimatického prvku. Metoda izolinií patří ve vědách o atmosféře k nejpoužívanějším grafickým metodám, uplatňuje se při konstrukci synoptických map, klimatologických map, vertikálních řezů atmosférou, aerologických i klimatologických diagramů. Izolinie na mapách a vertikálních řezech rozdělují analyzované pole meteorologického prvku či jiné veličiny na oblast s vyšší a nižší hodnotou. Vzdálenost izolinií je nepřímo úměrná gradientu příslušné veličiny, nicméně může být ovlivněna i hustotou zákl. bodů (hustotou sítě meteorologických, resp. klimatologických stanic) a prostorovým rozlišením vstupních dat. V grafech hrají izolinie především roli souřadnicové soustavy.
Rozlišujeme velký počet různých izolinií, které dostaly své názvy podle veličin, které znázorňují. Můžeme je rozdělit do několika skupin na
a) izolinie znázorňující aktuální nebo průměrné hodnoty určité meteorologické veličiny; takovými izoliniemi jsou izoterma (a její varianty izomena, izotera, izochimena a izogeoterma), izobara, izohypsa, izobata, izostera a jí obdobná izopykna (izodenza), izentropa (izoentropa), izohumida (a její druhy izovapora a izograma, popř. izodrosoterma), izotacha (izovela, izanemona), izogona, izonefa a izofota;
b) izolinie znázorňující sumu určité veličiny za daný časový úsek; takovými izoliniemi jsou izohyeta (izopluvie), izoatma a izohélie;
c) izolinie porovnávající sumu určité meteorologické veličiny za daný časový úsek vůči roční sumě; mezi ně patří izomera a ekvipluva;
d) izoamplitudy (izamplitudy), mezi které patří izodiafora a izotalantóza;
e) izolinie hodnot určitých klimatologických indexů; takovými izoliniemi jsou izonotida a izokontinentály, konkrétně izotalantóza a termoizodroma;
f) izanomály, např. termoizanomála a hyetoizanomála;
g) izolinie vystihující četnost určitého jevu, jimiž jsou izocerauna, izochalaza, izochasma (izoaurora), izohygroterma a izoryma;
h) izolinie znázorňující délku období s určitým jevem; takovými izoliniemi jsou izolumchrona (izalumchrona), izofytochrona, izomonima a izohygromena (izohyomena);
ch) izochrony; konkrétními příklady jsou izobronta a izofena;
i) izalolinie neboli izotendence, a to izalobara, izalohypsa a izaloterma;
j) další izolinie, např. izoglacihypsa, izochiona či izoecho.
Nevh. syn. izolinie je izočára, zastaralým izaritma. V zahr. literatuře se používají i výrazy izograma a izopleta, ty však mají v češtině zúžený význam.
Rozlišujeme velký počet různých izolinií, které dostaly své názvy podle veličin, které znázorňují. Můžeme je rozdělit do několika skupin na
a) izolinie znázorňující aktuální nebo průměrné hodnoty určité meteorologické veličiny; takovými izoliniemi jsou izoterma (a její varianty izomena, izotera, izochimena a izogeoterma), izobara, izohypsa, izobata, izostera a jí obdobná izopykna (izodenza), izentropa (izoentropa), izohumida (a její druhy izovapora a izograma, popř. izodrosoterma), izotacha (izovela, izanemona), izogona, izonefa a izofota;
b) izolinie znázorňující sumu určité veličiny za daný časový úsek; takovými izoliniemi jsou izohyeta (izopluvie), izoatma a izohélie;
c) izolinie porovnávající sumu určité meteorologické veličiny za daný časový úsek vůči roční sumě; mezi ně patří izomera a ekvipluva;
d) izoamplitudy (izamplitudy), mezi které patří izodiafora a izotalantóza;
e) izolinie hodnot určitých klimatologických indexů; takovými izoliniemi jsou izonotida a izokontinentály, konkrétně izotalantóza a termoizodroma;
f) izanomály, např. termoizanomála a hyetoizanomála;
g) izolinie vystihující četnost určitého jevu, jimiž jsou izocerauna, izochalaza, izochasma (izoaurora), izohygroterma a izoryma;
h) izolinie znázorňující délku období s určitým jevem; takovými izoliniemi jsou izolumchrona (izalumchrona), izofytochrona, izomonima a izohygromena (izohyomena);
ch) izochrony; konkrétními příklady jsou izobronta a izofena;
i) izalolinie neboli izotendence, a to izalobara, izalohypsa a izaloterma;
j) další izolinie, např. izoglacihypsa, izochiona či izoecho.
Nevh. syn. izolinie je izočára, zastaralým izaritma. V zahr. literatuře se používají i výrazy izograma a izopleta, ty však mají v češtině zúžený význam.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a slova linie.
česky: izolinie; angl: isogram, isoline, contour line; slov: izolínia; něm: Isolinie f 1993-a3
изолиния интенсивности гроз
izolinie spojující místa se stejným počtem blesků za určitý časový interval. Při zpracování vizuálních pozorování bouřek se za izoceraunu považuje spojnice míst se stejným počtem dní, v nichž byly pozorovány bouřky na stanici nebo bouřky vzdálené. Viz též mapa izoceraunická, izobronta.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a κεραυνός [keraunos] „hromová rána, blesk, hrom“.
česky: izocerauna; angl: isoceraunic line, isokeraunic line; slov: izocerauna 1993-a1
изолиния повтараемости гроз
izolinie spojující místa se stejným počtem blesků za určitý časový interval. Při zpracování vizuálních pozorování bouřek se za izoceraunu považuje spojnice míst se stejným počtem dní, v nichž byly pozorovány bouřky na stanici nebo bouřky vzdálené. Viz též mapa izoceraunická, izobronta.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a κεραυνός [keraunos] „hromová rána, blesk, hrom“.
česky: izocerauna; angl: isoceraunic line, isokeraunic line; slov: izocerauna 1993-a1
изомера
První použití ekvipluv je doloženo v díle franc. klimatologa A. Angota z r. 1895, nicméně termín zavedl až B. C. Wallis v r. 1914. Termín se skládá z lat. aequus „stejný“ a pluvia „déšť“.
česky: ekvipluva; angl: equipluve; slov: ekviplúva; něm: Equipluve f; fr: équipluve f, isomère f 1993-a1
изомера
izolinie používaná v klimatologii ke znázornění roč. rozdělení srážek. Spojuje místa se stejným úhrnem relativních srážek v daném kalendářním měsíci. V principu je totožná s ekvipluvou.
Izomery poprvé využil a termín navrhl angl. klimatolog M. de Carle Salter v r. 1914. Pochází z řec. ἰσομερής [isomerés] „mající stejný podíl“ (z ἴσος [isos] „stejný, rovný“ a μέρος [meros] „podíl, účast“).
česky: izomera; angl: isomer; slov: izomera; něm: Isomere f 1993-a1
изонефа
izolinie spojující na mapě místa se stejnou oblačností, tj. stejným stupněm pokrytí oblohy oblaky vyjádřeným v %.
Termín zavedl franc. meteorolog E. Renou v r. 1879. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a νέφος [nefos] „oblak“.
česky: izonefa; angl: isoneph; slov: izonefa; něm: Isonephe f 1993-a1
изопауза
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a slova pauza.
česky: izopauza; angl: isopause; slov: izopauza; něm: Isopause f 1993-a1
изопикна
syn. izodensa – izolinie spojující místa se stejnou hustotou, v meteorologii zejména hustotou vzduchu. V principu je totožná s izosterou. Viz též plocha izopyknická.
Termín zavedl švédský meteorolog N. G. Ekholm v r. 1890. Skládá z řec. ἴσος [isos] „stejný, rovný“ a πυκνός [pyknos] „hustý, pevný“.
česky: izopykna; angl: isopycnic line; slov: izopykna; něm: Isopykne f 1993-a2
изопикническая поверхность
syn. hladina izopyknická – v meteorologii plocha konstantní hustoty (měrné hmotnosti) vzduchu. Je současně plochou izosterickou. Průsečnice izopyknické plochy s libovolnou jinou plochou se nazývá izopykna.
česky: plocha izopyknická; angl: isopycnic surface; slov: izopyknická plocha; něm: isopykne Fläche f 1993-a2
изопикнический процесс
termodyn. děj, který probíhá při konstantní hustotě. Je totožný s dějem izosterickým.
česky: děj izopyknický; angl: isopycnic process; slov: izopyknický dej; něm: isopykner Prozess m; fr: processus isopycnique m 1993-a3
изопикнический уровень
syn. plocha izopyknická.
česky: hladina izopyknická; angl: isopycnic level; slov: izopyknická hladina; něm: isopykne Fläche f 1993-a1
изоплета
1. izolinie ve speciálním klimatologickém diagramu, který v pravoúhlé souřadnicové soustavě znázorňuje současně závislost určité veličiny na dvou navzájem nezávislých proměnných. Těmi bývají často denní a roční doba, jedna z proměnných však může mít i geometrický charakter (např. nadm. výška, hloubka, zeměp. šířka nebo délka). Proměnné tvoří souřadnicovou síť diagramu, takže každá izopleta spojuje body se stejnou hodnotou analyzované veličiny, přičemž hodnoty jednotlivých izoplet jsou pravidelně odstupňované na způsob vrstevnic. Před termín izopleta je možné doplnit název analyzované veličiny, jako je tomu např. u termoizoplety.
2. v češtině nevh. syn. izolinie.
2. v češtině nevh. syn. izolinie.
Metodu izoplet zavedl franc. inženýr L. L. Chrétien-Lalanne v r. 1843, termín navrhl Ch. A. Vogler v r. 1877. Pochází z řec. ἰσοπληθής [isopléthés] „mající stejné množství“ (z ἴσος [isos] „stejný, rovný“ a πλῆθος [pléthos] „množství, kvantita“).
česky: izopleta; angl: isopleth; slov: izopléta; něm: Isoplethe f 1993-a3
изоплювия
1. nevh. označení izohyety;
2. zast. označení izolinie spojující místa se stejnou hodnotou úhrnu srážek s dobou opakování 100 roků.
2. zast. označení izolinie spojující místa se stejnou hodnotou úhrnu srážek s dobou opakování 100 roků.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a lat. pluvia „déšť“. Souvisí se zast. angl. termínem pluvial index pro označení tzv. stoleté srážky.
česky: izopluvie; angl: isopluvial; slov: izopluvia; něm: Isopluvie f 1993-a3
изостера
izolinie spojující místa se stejným měrným objemem, v meteorologii zejména se stejným měrným objemem vzduchu. V principu je totožná s izopyknou. Viz též plocha izosterická.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a angl. stere/stère označujícího kdysi jednotku tuhé míry, metr krychlový (z řec. στερεός [stereos] „tuhý, pevný“).
česky: izostera; angl: isostere; slov: izostera; něm: Isostere f 1993-a2
изостерическая поверхность
syn. hladina izosterická – v meteorologii plocha konstantního měrného objemu vzduchu. Je současně plochou izopyknickou. Viz též izostera, solenoidy izobaricko-izosterické.
česky: plocha izosterická; angl: isosteric surface; slov: izosterická plocha; něm: isostere Fläche f 1993-a2
изостерический процесс
termodyn. děj, který probíhá při konstantním měrném objemu systému. Při izosterickém ději v ideálním plynu platí pro tlak p a teplotu T v K vztah
kde p0 a T0 jsou tlak a teplota v počátečním stavu. Je totožný s dějem izopyknickým.
kde p0 a T0 jsou tlak a teplota v počátečním stavu. Je totožný s dějem izopyknickým.
česky: děj izosterický; angl: isosteric process; slov: izosterický dej; něm: isosterer Prozess m; fr: processus isostérique m 1993-a3
изостерический уровень
syn. plocha izosterická.
česky: hladina izosterická; angl: isosteric level; slov: izosterická hladina; něm: isostere Fläche f 1993-a1
изосфера
nepříliš časté označení nižší části stratosféry, která se rozkládá mezi tropopauzou a izopauzou a je charakteristická přibližnou izotermií.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“). Termín je tedy zkrácením logičtějšího označení „izotermosféra“.
česky: izosféra; angl: isosphere; slov: izosféra; něm: Isosphäre f 1993-a1
изоталана
zast. označení izoamplitudy spojující místa se stejnou průměrnou roční amplitudou teploty vzduchu. Lze ji řadit i mezi izokontinentály, a to z hlediska termické kontinentality klimatu.
Termín zavedl rakouský geograf A. Supan v r. 1880. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a ταλάντωσις [talantósis] „vážení, kolísání“, čímž odkazuje na výraznější roční chod teploty vzduchu v kontinentálním klimatu.
česky: izotalantóza; angl: isotalantose; slov: izotalantóza; něm: Isotalantose f 1993-a2
изотаха
syn. izovela – v meteorologii:
1. izolinie spojující místa se stejnou rychlostí větru. Izotachy jsou používány především v letecké meteorologii a jsou zakreslovány na synoptických mapách nebo na vertikálních řezech atmosférou k vyznačení oblastí se silným větrem. Viz též izoanema, izogona.
2. čára spojující místa se stejnou rychlostí postupu určitých met. jevů nebo útvarů, např. atmosférické fronty nebo bouřky.
1. izolinie spojující místa se stejnou rychlostí větru. Izotachy jsou používány především v letecké meteorologii a jsou zakreslovány na synoptických mapách nebo na vertikálních řezech atmosférou k vyznačení oblastí se silným větrem. Viz též izoanema, izogona.
2. čára spojující místa se stejnou rychlostí postupu určitých met. jevů nebo útvarů, např. atmosférické fronty nebo bouřky.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a ταχύς [tachys] „rychlý“.
česky: izotacha; angl: isotach; slov: izotacha; něm: Isotache f 1993-a3
изотенденция
málo používané syn. pro izalolinii.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a slova tendence (tj. směr vývoje, z lat. tendere „natahovat, směřovat“).
česky: izotendence; angl: isotendence; slov: izotendencia 1993-a1
изотера
zast. označení izotermy spojující místa se stejnými prům. teplotami vzduchu v létě. Viz též izochimena.
Termín navrhl něm. přírodovědec A. von Humboldt v r. 1817. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a θέρος [theros] „léto“.
česky: izotera; angl: isothere; slov: izotera; něm: Isothere f 1993-a1
изотерма
izolinie spojující místa se stejnou teplotou, v meteorologii především teplotou vzduchu. Izotermy jsou zakreslovány do synoptických map (především výškových), vertikálních řezů atmosférou a do klimatologických map, zpravidla se vyskytují i v souřadnicových sítích aerologických diagramů. Na mapách relativní topografie plní úlohu izoterem relativní izohypsy. Viz též izotermie, izotera, izochimena.
Izotermy jsou nejstarší ze všech meteorologických izolinií. Poprvé je použil v r. 1817 něm. přírodovědec A. von Humboldt, který také zavedl jejich název. Ten se skládá z řec. ἴσος [isos] „stejný, rovný“ a θέρμη [thermé] „teplo, horko“.
česky: izoterma; angl: isotherm; slov: izoterma; něm: Isotherme f 1993-a2
изотерма по фактическим данным
zřídka používané označení pro izotermu, sestrojenou z teplotních údajů neredukovaných na hladinu moře, v protikladu k pojmu redukovaná izoterma.
česky: izoterma aktuální; angl: actual isotherm; slov: aktuálna izoterma; něm: wahre Isotherme f 1993-a1
изотерма приведенная к уровню моря
izoterma sestrojená z hodnot teploty vzduchu redukované na hladinu moře, případně na jinou nadm. výšku. Viz též izoterma aktuální.
česky: izoterma redukovaná; angl: reduced isotherm; slov: redukovaná izoterma; něm: reduzierte Isotherme f 1993-a3
изотермическая атмосфера
modelová atmosféra, ve které je teplota vzduchu s výškou konstantní. Vertikální teplotní gradient je nulový, tedy konstantní, proto lze izotermickou atmosféru považovat za druh polytropní atmosféry. Její horní hranice je v nekonečnu.
česky: atmosféra izotermická; angl: isothermal atmosphere; slov: izotermická atmosféra; něm: isotherme Atmosphäre f; fr: atmosphère isotherme f 1993-a3
изотермическая поверхность
syn. hladina izotermická – v meteorologii plocha konstantní teploty vzduchu. Viz též izoterma.
česky: plocha izotermická; angl: isothermal surface; slov: izotermická plocha; něm: isotherme Fläche f 1993-a2
изотермический процесс
termodyn. děj, který probíhá při konstantní teplotě. Při izotermickém ději v ideálním plynu platí zákon Boyleův–Mariotteův.
česky: děj izotermický; angl: isothermal process; slov: izotermický dej; něm: isothermer Prozess m; fr: processus isotherme m 1993-a3
изотермический слой
atm. vrstva, ve které se s výškou teplota vzduchu nemění.
česky: vrstva izotermická; angl: isothermal layer; slov: izotermická vrstva; něm: isotherme Schicht f 1993-a2
изотермический уровень
syn. plocha izotermická.
česky: hladina izotermická; angl: isothermal level; slov: izotermická hladina; něm: isotherme Fläche f 1993-a1
изотермия
1. druh teplotního zvrstvení atmosféry, při němž se teplota vzduchu v určité vrstvě s výškou nemění. V izotermické vrstvě se vertikální teplotní gradient rovná nule a potenciální teplota v nenasyceném vzduchu za běžných meteorologických teplot a v blízkosti hladiny 1 000 hPa s výškou vzrůstá zhruba o 1 °C na 100 m. Izotermie se vytváří nejčastěji v mezní vrstvě atmosféry při přestavbě normálního zvrstvení na inverzní a naopak. Ve volné atmosféře jsou nejstálejší a nejmohutnější izotermie ve spodní stratosféře, nazývané proto izosféra. Zast. označení izotermie v uvedeném smyslu je homotermie; tento termín se nadále používá v hydrologii. Viz též inverze teploty vzduchu;
2. stálost teploty při určitém fyz. ději. Viz též děj izotermický.
2. stálost teploty při určitém fyz. ději. Viz též děj izotermický.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a θέρμη [thermé] „teplo, horko“.
česky: izotermie; angl: isothermy; slov: izotermia; něm: Isothermie f 1993-a1
изотермо-изэнтропические соленоиды
termodynamické solenoidy v atmosféře, které vznikají při protínání izotermických a izosterických ploch.
česky: solenoidy izotermicko-izosterické; angl: isotherm-isostericic solenoids; slov: izotermicko-izentropické solenoidy; něm: isotherm-isostere Solenoide n/pl 1993-a2
изотропная турбулентность
speciální případ turbulence, kdy charakteristiky turbulentního proudění, tj. střední hodnoty vzájemných součinů a kvadrátů složek turbulentních fluktuací rychlosti proudění, prostorové derivace těchto stř. hodnot, koeficienty turbulentní difuze, výměny apod., jsou v jednotlivých bodech prostoru nezávislé na prost. orientaci os souřadného systému. Turbulence v atmosféře se většinou v praxi považuje za přibližně izotropní s výjimkou vrstvy vzduchu silné kolem 20 m a bezprostředně přiléhající k zemskému povrchu nad rovinným terénem. Pojetí homogenní a izotropní turbulence zavedl do meteorologie G. I. Taylor v roce 1935. Trvale existující přesně izotropní turbulence je však pouze teoretickým pojmem, v praxi se nevyskytuje.
česky: turbulence izotropní; angl: isotropic turbulence; slov: izotropná turbulencia; něm: isotrope Turbulenz f 1993-a2
изофена
čára spojující místa se stejným datem výskytu určitého sezonního jevu v životě rostlin nebo zvířat, tj. fenologické fáze.
Termín zavedl něm. botanik H. Hoffmann nejpozději v r. 1885. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a z řec. komponentu -φανης [-fanés], odvozeného od slovesa φάινειν [fainein] „jevit se“, srov. fenomén.
česky: izofena; angl: isophane, isophene; slov: izofena; něm: Isophane f 1993-a2
изофитохрона
izolinie spojující místa se stejnou délkou vegetačního období.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“, φυτόν [fyton] „co vyrostlo, rostlina“ a χρόνος [chronos] „čas“.
česky: izofytochrona; slov: izofytochróna; něm: Isophytochrone f 1993-a1
изофота
čára spojující místa se stejnou intenzitou osvětlení krajiny nebo plochy, popř. se stejnou intenzitou světlosti oblohy.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a φῶς [fós, gen. fótos] „světlo“.
česky: izofota; angl: isophote; slov: izofota; něm: Isophote f 1993-a1
изохасма
syn. izoaurora – izolinie spojující místa se stejnou četností výskytu polární záře.
Termín zavedl H. Fritz v r. 1867. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a χάσμα [chasma] „díra, prohlubeň, propast“, u Aristotela „polární záře“.
česky: izochasma; angl: isaurore, isochasm; slov: izochazma; něm: Isochasme f 1993-a1
изохимена
Termín navrhl něm. přírodovědec A. von Humboldt v r. 1817. Skládá se z řec. ἴσος [isos] „stejný, rovný“ a χεῖμα [cheima] „zimní počasí, zima“.
česky: izochimena; angl: isocheim, isocheimal, isochimene; slov: izochimena; něm: Isochimene f 1993-a1
изохиона
izolinie používaná ke znázorňování plošného rozložení jevů souvisejících se sněhem. Význam pojmu izochiona není ustálen. Znamená čáru spojující místa:
a) se stejnou výškou sněhové pokrývky,
b) se stejným trváním sněhové pokrývky vyjádřeným ve dnech,
c) se stejným počtem dní se sněžením,
d) se stejnou výškou sněžné čáry,
e) se stejným vodním obsahem sněhu.
a) se stejnou výškou sněhové pokrývky,
b) se stejným trváním sněhové pokrývky vyjádřeným ve dnech,
c) se stejným počtem dní se sněžením,
d) se stejnou výškou sněžné čáry,
e) se stejným vodním obsahem sněhu.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a χιών [chión] „sníh“.
česky: izochiona; angl: isochion; slov: izochiona; něm: Isochione f 1993-a2
изохрона
izolinie spojující na mapě místa s výskytem určitého jevu ve stejném čase, např. spojuje místa se současným přechodem fronty. Viz též izobronta, izofena.
Termín použil angl. vědec F. Galton v r. 1881, ovšem v jiném než meteorologickém významu. Pochází z řec. ἰσόχρονος [isochronos] „stejného času“ (z řec. ἴσος [isos] „stejný, rovný“ a χρόνος [chronos] „čas“).
česky: izochrona; angl: isochrone; slov: izochróna; něm: Isochrone f 1993-a1
изоэхо
1. v radarové meteorologii čára spojující body se stejnou intenzitou signálu odraženého od sledovaného cíle nebo body se stejnou radarovou odrazivostí;
2. název technického zařízení starších analogových radarů ke konturování radiolokačních cílů prostřednictvím zařazení kalibrovaných útlumů (uváděných v dB).
2. název technického zařízení starších analogových radarů ke konturování radiolokačních cílů prostřednictvím zařazení kalibrovaných útlumů (uváděných v dB).
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a ἠχώ [échó] „ozvěna“.
česky: izoecho; angl: isoecho; slov: izoecho; něm: Isoecho n 1993-a3
изэнтальпический процесс
termodyn. děj, který probíhá při konstantní hodnotě entalpie. Adiabatický děj, který probíhá při konstantním tlaku, je dějem izentalpickým. V meteorologii např. izentalpické vypařování vodních kapek v nenasyceném vzduchu. Viz též děj adiabatický, děj izobarický.
česky: děj izentalpický; angl: isenthalpic process; slov: izentalpický dej; něm: isenthalper Prozess m; fr: transformation isenthalpique f 1993-a3
изэнтропа
izolinie spojující místa se stejnou mírou entropie. V nenasyceném vzduchu spojuje též místa se stejnou potenciální teplotou. Viz též mapa izentropická, promíchávání izentropické.
Termín se skládá z řec. ἴσος [isos] „stejný, rovný“ a slova entropie.
česky: izentropa; angl: isentrope; slov: izentropa; něm: Isentrope f 1993-a1
изэнтропическая карта
mapa topografie dané izentropické plochy, která je v případě nenasyceného vzduchu totožná s mapou topografie určité potenciální teploty. Do izentropické mapy se zakreslují nadm. výšky ploch určité potenciální teploty a hodnoty směšovacího poměru nebo měrné vlhkosti vzduchu v této ploše. Jako doplňující údaje mohou být do izentropické mapy zakreslovány údaje o větru, izentropické potenciální vorticitě, relativní vlhkosti vzduchu a oblačnosti.
česky: mapa izentropická; angl: isentropic chart; slov: izentropická mapa; něm: Isentropenkarte f 1993-a3
изэнтропическая поверхность
viz plocha izentropická.
česky: hladina izentropická; angl: isentropic level, isentropic surface; slov: izentropická hladina; něm: isentrope Fläche f 1993-a1
изэнтропическая поверхность
syn. hladina izentropická – v meteorologii plocha konstantní hodnoty entropie vzduchu. Ve vzduchu nenasyceném vodní párou jsou izentropické plochy současně plochami konstantní potenciální teploty. Viz též izentropa, solenoidy izotermicko-izentropické.
česky: plocha izentropická; angl: isentropic surface; slov: izentropická plocha; něm: isentrope Fläche f, Isentropenfläche f 1993-a2
изэнтропический анализ
analýza procesů v atmosféře, která je založena na rozboru polohy a konfigurace izentropických ploch a rozložení vlastností vzduchu a jeho pohybu na těchto plochách. Je dobře aplikovatelná na adiabatické děje v synoptickém měřítku, které nenarušují kontinuitu izentropických ploch, a ve volné atmosféře v místech se stabilním teplotním zvrstvením, kde je vert. rozložení izentropických ploch jednoznačnou funkcí tlaku vzduchu. Izentropická analýza je vhodnou součástí analýzy počasí, a to zejména vertikálních pohybů vzduchu, procesů na atmosférických frontách, advekce vlhkosti vzduchu a stabilitních poměrů. Izentropická analýza se provádí na izentropických mapách a vertikálních řezech atmosférou. Viz též anomálie potenciální vorticity.
česky: analýza izentropická; angl: isentropic analysis; slov: izentropická analýza; něm: Isentropenanalyse f; fr: analyse isentropique f 1993-a3
изэнтропический процесс
termodyn. děj, při němž zůstává konstantní hodnota entropie. V nenasyceném vzduchu je izentropickým každý adiabatický děj. Označení děj izentropický zavedl amer. fyzik J. W. Gibbs v r. 1883. Viz též izentropa.
česky: děj izentropický; angl: isentropic process; slov: izentropický dej; něm: isentroper Prozess m; fr: processus isentropique m 1993-a1
изэнтропический уровень
viz plocha izentropická.
česky: hladina izentropická; angl: isentropic level, isentropic surface; slov: izentropická hladina; něm: isentrope Fläche f 1993-a1
изэнтропическое перемешивание
promíchávání vzduchu, při němž si jednotlivé vzduchové částice zachovávají konstantní entropii. K izentropickému promíchávání dochází např. tehdy, jestliže ve vzduchových částicích nenasycených vodní párou probíhají při turbulentním promíchávání adiabatické děje, tzn. potenciální teplota se s časem nemění.
česky: promíchávání izentropické; angl: isentropic mixing; slov: izentropické premiešavanie; něm: isentrope Mischung f 1993-a1
иммиссия
množství znečišťujících příměsí přecházejících z ovzduší na příjemce (receptor). Mírou imise je koncentrace znečišťující látky v ovzduší, vyjadřovaná hmotností na objem (µg.m–3), popř. hmotností příměsi na 1 kg vzduchu. V anglosaské literatuře se setkáváme s vyjádřením ppb (parts per billion), čímž se zpravidla rozumí poměr objemu znečišťujících příměsí k objemu směsi. Viz též emise, transmise exhalátů.
Termín pochází z lat. immissio „vpouštění“, odvozeného od immitere „vpouštět“ (z in- „v, do“ a mittere „posílat, pouštět“).
česky: imise; angl: ambient air pollution; slov: imisia; něm: Immission f 1993-a3
импульсный метеорологический радиолокатор
často se používá pouze termín meteorologický radiolokátor – radiolokátor pracující v impulzním režimu jehož technické parametry jsou uzpůsobeny pro detekci meteorologických cílů. Jedná se o nejužívanější typ radiolokátoru v meteorologii. Viz též poloměr efektivní, sodar, lidar, potenciál radiolokační meteorologický.
česky: radiolokátor meteorologický impulzní; angl: impulse meteorological radar; slov: impulzný meteorologický radiolokátor; něm: Impuls-Wetterradargerät n 1993-a3
инверсионная облачность
oblaky podmíněné výškovou inverzí teploty vzduchu. Patří k nim nejčastěji oblaky druhu stratus, popř. stratocumulus a altostratus. Vyskytují se v oblasti dolní hranice inverze a v důsledku vlnění této hranice mívají vlnovou strukturu. K vývoji inverzní oblačnosti dochází při nahromadění vodní páry pod zadržující vrstvou výškové inverze a radiačním ochlazením podinverzní vrstvy pod teplotu rosného bodu. Inverzní oblačnost se vytváří především v noci, v zimním období se však může udržet po dobu několika dnů.
česky: oblačnost inverzní; angl: inversion cloudiness; slov: inverzná oblačnosť; něm: Inversionsbewölkung f 1993-a2
инверсионный слой
vrstva v ovzduší, v níž dochází k inverzi neboli zvratu vert. průběhu některého meteorologického prvku. O inverzi teploty, vlhkosti, popř. hustoty vzduchu mluvíme, jestliže teplota, absolutní vlhkost, popř. hustota vzduchu v inverzní vrstvě s výškou roste. V praxi mají největší význam inverze teploty vzduchu neboli inverze teplotní, které jsou typem velmi silně stabilního zvrstvení inverzní vrstvy, a proto značně omezují vert. pohyby a promíchávání vzduchu v atmosféře. Rozeznáváme inverze přízemní a inverze výškové. Někdy se používá též pojem inverze vyvýšená, což zpravidla značí výškovou teplotní inverzi s dolní hranicí v nevelké výšce (obvykle řádově stovky metrů) nad zemským povrchem. V oblasti dolní hranice teplotní inverzní vrstvy a těsně pod ní obvykle dochází ke hromadění vodní páry, popř. i kondenzačních jader, což mívá za následek vznik vrstevnaté inverzní oblačnosti. Teplotní inverze mají značný význam z hlediska ochrany čistoty atmosféry, neboť jejich výskyt má velký vliv na prostorový rozptyl znečišťujících příměsí. Podle způsobu vzniku rozlišujeme např. radiační, subsidenční, advekční, frontální a turbulentní inverze teploty vzduchu. Vrstvy s inverzemi vlhkosti vzduchu mají mj. význam při vytváření vrstevnatých oblaků a ovlivňují též šíření centimetrových rádiových vln.
česky: vrstva inverzní; angl: inversion layer; slov: inverzná vrstva; něm: Inversionsschicht f 1993-a2
инверсионный туман
syn. mlha vysoká.
česky: mlha inverzní; angl: inversion fog; slov: inverzná hmla; něm: Inversionsnebel m 1993-a2
инверсия
v meteorologii opačný průběh změn meteorologického prvku s výškou, než je v reálné atmosféře obvyklé. Může jít jak o okamžitý stav, tak o klimatickou zvláštnost místního měřítka. Podle met. prvku, který bereme v úvahu, rozlišujeme inverzi teploty vzduchu, vlhkosti vzduchu, hustoty vzduchu, srážek apod. Viz též vrstva inverzní.
Termín pochází z lat. inversio „obrácení“, odvozeného od inversus „obrácený“, což je příčestí minulé slovesa invertere „obrátit, převrátit“ (z in- „v, do“ a vertere „obracet“).
česky: inverze; angl: inversion; slov: inverzia; něm: Inversion f 1993-a2
инверсия влажности
vzrůst absolutní, příp. měrné vlhkosi vzduchui nebo směšovacího poměru vodní páry v atmosféře s výškou v určité vertikálně omezené vrstvě. Vytváří se především v mezní vrstvě atmosféry v noci a v zimě pod zadržujícími vrstvami. Má mimo jiné význam pro šíření centimetrových elmag. vln v troposféře. Viz též profil vlhkosti vzduchu vertikální.
česky: inverze vlhkosti vzduchu; angl: moisture inversion; slov: inverzia vlhkosti vzduchu; něm: Feuchteinversion f 1993-a3
инверсия осадков
úbytek atm. srážek (pokles měs. a roč. úhrnů) s nadm. výškou, který se vyskytuje v horách ve vyšších polohách. Obvykle pozorovaný růst srážek s nadm. výškou probíhá až po tzv. výšku pásma maximálních srážek, které se nachází nejčastěji 2 až 3 km nad hladinou moře a jehož poloha souvisí s kondenzační hladinou, nad níž vznikají oblaky. V horách mírných šířek (Alpy, Kavkaz) se inverze srážek pozoruje jen v létě, v Alpách začíná od 2 500 do 2 800 m. V Himálaji při letním monzunu se inverze srážek projevuje přibližně od nadm. výšky 1 300 m. Viz též gradient srážkový.
česky: inverze srážek; angl: inversion of precipitation; slov: inverzia zrážok; něm: Niederschlagsinversion f 1993-a2
инверсия оседания
česky: inverze teploty vzduchu sesedáním; slov: inverzia teploty vzduchu zosadaním; něm: Absinkinversion f 1993-a1
инверсия оседания
syn. inverze teploty vzduchu sesedáním – výšková teplotní inverze způsobená sesedáním neboli subsidencí vzduchu z vyšších vrstev atmosféry do nižších. Vývoj subsidenční inverze je důsledkem další stabilizace původně stabilní vrstvy vzduchu při jejím adiabatickém sestupu. Subsidenční inverze se mohou vyskytovat nad rozsáhlými územími, je-li dobře vyvinut mechanizmus subsidenčních pohybů vzduchu, především v anticyklonách nebo v blízkosti os hřebenů vysokého tlaku vzduchu. Tyto inverze představují významný faktor podílející se na zhoršování rozptylových podmínek v oblastech vysokého tlaku vzduchu, v létě za slunečného anticyklonálního počasí často omezují vznik nebo vert. vývoj kupovité oblačnosti apod.
česky: inverze teploty vzduchu subsidenční; angl: subsidence inversion; slov: subsidenčná inverzia teploty vzduchu; něm: Absinkinversion f 1993-a3
инверсия плотности воздуха
růst hustoty vzduchu v dané vrstvě atmosféry s výškou. Nastává tehdy, když teplota vzduchu s výškou klesá o více než o 3,42 °C na 100 m, což se v reálné atmosféře zpravidla vyskytuje pouze za silného přehřátí rel. tenké vrstvy vzduchu v bezprostřední blízkosti zemského povrchu. Při inverzi hustoty vzduchu vzniká jev zrcadlení. Viz též gradient autokonvekční.
česky: inverze hustoty vzduchu; angl: air density inversion; slov: inverzia hustoty vzduchu; něm: Luftdichteinversion f 1993-a1
инверсия температуры воздуха
nevh. zvrat teploty – zvláštní případ vert. rozložení teploty vzduchu, při kterém v určité vrstvě atmosféry, v tzv. inverzní vrstvě, teplota s nadm. výškou vzrůstá. Podle výšky inverzní vrstvy nad zemí rozlišujeme přízemní a výškovou inverzi teploty vzduchu, podle příčiny vzniku např. inverzi teploty vzduchu advekční, frontální, radiační, subsidenční, turbulentní a pasátovou. Inverze teploty vzduchu mají značný význam mimo jiné proto, že stabilní teplotní zvrstvení ovzduší v inverzní vrstvě brzdí promíchávání vzduchu ve vert. i horiz. směru. Tím dochází v nižších a zvláště v uzavřených polohách k vytváření mlh, jezer studeného vzduchu se silnými mrazy v zimě, v průmyslových a městských oblastech s větší hustotou zdrojů znečištění ovzduší ke zvýšeným koncentracím znečišťujících látek, vzniku smogu apod. V oblasti dolní hranice výškových inverzí teploty se často vytváří vrstevnatá oblačnost, která zejména v zimě způsobuje výrazné zkrácení slunečního svitu v nižších polohách oproti nadinverzním horským polohám. Inverze teploty vzduchu charakterizujeme výškou, v níž ji pozorujeme, tloušťkou (vert. rozsahem) vrstvy, v níž teplota vzduchu s výškou vzrůstá, a teplotním gradientem v této vrstvě. Někdy se nepřesně hovoří o „intenzitě" inverze jako rozdílu mezi teplotou horní a spodní hranice inverze. Nejpříznivější podmínky pro vznik inverzí teplot vzduchu jsou v kvazistacionárních anticyklonách. Viz též izotermie, oblak vrstevnatý, oblačnost inverzní.
česky: inverze teploty vzduchu; angl: air temperature inversion; slov: inverzia teploty vzduchu; něm: Temperaturinversion f 1993-a3
индейское лето
období málo větrného, ve dne abnormálně teplého a slunného počasí, ale s chladnými nocemi a ranními (později i celodenními) mlhami, které se vyskytuje přibližně uprostřed podzimu v USA a v Kanadě. Nemusí se vyskytnout každým rokem, naopak v některých letech jsou dvě nebo dokonce tři období indiánského léta, a to i ke konci podzimu. Pojem indiánské léto byl poprvé zaznamenán v r. 1778. Amer. indiáni zřejmě využívali tohoto příznivého počasí k zvýšení svých zimních zásob dřeva apod. Jedná se o typické anticyklonální počasí, které je podmíněno meridionálním cirkulačním typem. Odpovídá babímu létu ve stř. Evropě.
česky: léto indiánské; angl: Indian summer; slov: indiánske leto; něm: Indian summer m 1993-a1
индекс LIFT
index stability odvozený ze Showalterova indexu a definovaný vztahem
kde T500 je teplota vzduchu v hladině 500 hPa a teplota TL se v různých modifikacích Lifted indexu stanovuje různě, většinou se jedná o teplotu vzduchové částice vyzdviženou adiabaticky do hladiny 500 hPa z různě definované spodní hladiny.
kde T500 je teplota vzduchu v hladině 500 hPa a teplota TL se v různých modifikacích Lifted indexu stanovuje různě, většinou se jedná o teplotu vzduchové částice vyzdviženou adiabaticky do hladiny 500 hPa z různě definované spodní hladiny.
česky: Lifted index; angl: Lifted index; slov: Lifted index 2014
индекс аридности
nevh. označení pro index aridity.
česky: faktor aridní; slov: aridný faktor; něm: Ariditätsindex m; fr: indice d'aridité m 1993-a3
индекс аридности
syn. index suchosti – 1. klimatologický index k vyjádření aridity klimatu, v podstatě syn. k termínu index humidity;
2. část Thornthwaiteova indexu vlhkosti, vyjadřující sezonní nedostatek srážek v měsících, kdy je úhrn srážek menší než potenciální výpar.
2. část Thornthwaiteova indexu vlhkosti, vyjadřující sezonní nedostatek srážek v měsících, kdy je úhrn srážek menší než potenciální výpar.
česky: index aridity; angl: aridity index; slov: index aridity; něm: Ariditätsindex m, Ariditätsfaktor m, Trockenheitsindex m 1993-a3
индекс аридности
syn. index aridity.
česky: index suchosti; angl: aridity index; slov: index suchosti; něm: Ariditätsindex m, Trockenheitsindex m 1993-a2
индекс аридности по Де Мартонну
index humidity, který navrhl E. de Martonne (1926) ve tvaru
kde R je prům. roč. úhrn srážek v mm a T je prům. roč. teplota vzduchu ve °C. Lze ho aplikovat i na stanicích se zápornou hodnotou T > –10 °C, na rozdíl od staršího Langova dešťového faktoru. Prahové hodnoty pro stanovení aridity klimatu, resp. humidity klimatu bývají přizpůsobeny klimatu studovaného území.
kde R je prům. roč. úhrn srážek v mm a T je prům. roč. teplota vzduchu ve °C. Lze ho aplikovat i na stanicích se zápornou hodnotou T > –10 °C, na rozdíl od staršího Langova dešťového faktoru. Prahové hodnoty pro stanovení aridity klimatu, resp. humidity klimatu bývají přizpůsobeny klimatu studovaného území.
česky: index aridity de Martonneův; angl: de Martonne aridity index; slov: de Martonneov index aridity; něm: Ariditätsindex nach de Martonne m 2014
индекс влажности
1. syn. index humidity;
2. klimatologický index, který navrhl C. W. Thornthwaite (1948) jako kritérium Thornthwaiteovy klasifikace klimatu. Vyjadřuje míru humidity klimatu, a to porovnáním sezonního nadbytku srážek (viz index humidity) se sezonním nedostatkem srážek (viz index aridity). Výsledný index vlhkosti má tvar
kde n je roční úhrn potenciálního výparu a s resp. d vyjadřují sumu kladných, resp. abs. hodnotu sumy záporných rozdílů měs. úhrnů srážek a potenciálního výparu v příslušných měsících.
2. klimatologický index, který navrhl C. W. Thornthwaite (1948) jako kritérium Thornthwaiteovy klasifikace klimatu. Vyjadřuje míru humidity klimatu, a to porovnáním sezonního nadbytku srážek (viz index humidity) se sezonním nedostatkem srážek (viz index aridity). Výsledný index vlhkosti má tvar
kde n je roční úhrn potenciálního výparu a s resp. d vyjadřují sumu kladných, resp. abs. hodnotu sumy záporných rozdílů měs. úhrnů srážek a potenciálního výparu v příslušných měsících.
česky: index vlhkosti; angl: moisture index; slov: index vlhkosti; něm: Feuchtigkeitsindex m 1993-a3
индекс выпавших осадков
(API, z angl. Antecedent Precipitation Index) – veličina k vyjádření nasycenosti povodí, založená na sumaci denních úhrnů srážek za sledované období s klesající vahou směrem do minulosti. Byl navržen Köhlerem a Linsleyem (1951) ve tvaru
kde n je počet uvažovaných dní (nejčastěji n = 30) a Ri je denní úhrn srážek v i-tém dni sledovaného období, přičemž i = 1 pro předchozí den a směrem do minulosti roste. Tzv. evapotranspirační konstanta k odráží vlastnosti daného povodí. Pro celé území ČR se zpravidla používá její průměrná hodnota k = 0,93.
kde n je počet uvažovaných dní (nejčastěji n = 30) a Ri je denní úhrn srážek v i-tém dni sledovaného období, přičemž i = 1 pro předchozí den a směrem do minulosti roste. Tzv. evapotranspirační konstanta k odráží vlastnosti daného povodí. Pro celé území ČR se zpravidla používá její průměrná hodnota k = 0,93.
česky: index předchozích srážek; angl: Antecedent Precipitation Index; slov: index predchádzajúcich zrážok 2014
индекс гумидности
1. klimatologický index k vyjádření humidity klimatu (syn. index vlhkosti). Vzhledem k tomu, že nejrůznější indexy humidity hodnotí současně i ariditu klimatu, můžeme je označit i jako indexy aridity. Kromě charakteristik srážek zohledňují další veličiny, např. teplotu vzduchu, výpar nebo sytostní doplněk. Mohou být proto využity pro klasifikaci klimatu a pro studium vazeb mezi klimatem a vegetací. Mezi indexy humidity patří např. Langův dešťový faktor, de Martonneův index aridity, Thornthwaiteův index vlhkosti, Končkův index zavlažení, Seljaninovův hydrotermický koeficient, Meyerův kvocient aj. Pokud nahradíme dlouhodobé průměry hodnotami reprezentujícími např. konkrétní roky, můžeme indexy humidity použít i k hodnocení dlouhodobého sucha.
2. část Thornthwaiteova indexu vlhkosti, vyjadřující sezonní nadbytek srážek v měsících, kdy je úhrn srážek větší než potenciální výpar.
2. část Thornthwaiteova indexu vlhkosti, vyjadřující sezonní nadbytek srážek v měsících, kdy je úhrn srážek větší než potenciální výpar.
česky: index humidity; angl: humidity index; slov: index humidity; něm: Feuchtefaktor m 1993-a3
индекс засушливости
veličina pro kvantitativní vyhodnocení sucha (především ve smyslu nahodilého sucha), sloužící též k vymezení epizod sucha. Vzhledem k nejednoznačnosti definice sucha a různým hlediskům pro jeho hodnocení existuje takových indexů velké množství. Mnohé jsou založeny na zvolených prahových hodnotách úhrnů srážek nebo např. počtu bezsrážkových dní. Pokročilejší indexy reflektují časovou distribuci srážek (např. index předchozích srážek) nebo míru abnormality srážek (např. standardizovaný srážkový index). Další skupinu indexů sucha tvoří ty, které kromě deficitu srážek zohledňují i podmínky pro výpar (např. Palmerův index intenzity sucha). Mnoho indexů sucha lze využít i k hodnocení vlhkých období. K hodnocení celých roků, případně jejich vegetačních období, pak mohou sloužit i některé indexy aridity.
česky: index sucha; angl: drought index; slov: index sucha; něm: Ariditätsfaktor m, Trockenheitsindex m 2014
индекс засушливости
syn. index aridity.
česky: index suchosti; angl: aridity index; slov: index suchosti; něm: Ariditätsindex m, Trockenheitsindex m 1993-a2
индекс К
index instability definovaný podle vzorce:
kde T850, resp. T700 a T500, jsou hodnoty teploty vzduchu v hladinách 850 hPa, resp. 700 a 500 hPa a TD850, resp. TD700, je teplota rosného bodu v hladině 850 hPa, resp. 700 hPa. V praxi se neočekávají bouřky pro hodnotu K-indexu nižší než 20, pro hodnoty indexu mezi 20 a 25 se očekávají ojedinělé bouřky, pro hodnoty indexu 25 až 30 bouřky místy a pro hodnoty K-indexu nad 30 se očekávají četné bouřky.
kde T850, resp. T700 a T500, jsou hodnoty teploty vzduchu v hladinách 850 hPa, resp. 700 a 500 hPa a TD850, resp. TD700, je teplota rosného bodu v hladině 850 hPa, resp. 700 hPa. V praxi se neočekávají bouřky pro hodnotu K-indexu nižší než 20, pro hodnoty indexu mezi 20 a 25 se očekávají ojedinělé bouřky, pro hodnoty indexu 25 až 30 bouřky místy a pro hodnoty K-indexu nad 30 se očekávají četné bouřky.
K-index formuloval amer. meteorolog J. J. George v roce 1960.
česky: K-index; angl: K-index; slov: K-index; něm: K-index m 2014
индекс континентальности
klimatologický index, který vyjadřuje míru kontinentality klimatu, tedy v opačném smyslu i oceánity klimatu. Nejčastěji bývá sledována termická kontinentalita klimatu, a to zpravidla některým z řady empir. vzorců, které hodnotí roční chod teploty vzduchu, přičemž eliminují zonalitu prům. roční amplitudy potenciální insolace. Klasický index L. Gorczyńského (1920) má původní podobu
kde A značí prům. roční amplitudu teploty vzduchu, tedy rozdíl prům. měs. teploty vzduchu nejteplejšího a nejchladnějšího měsíce, a φ vyjadřuje zeměpisnou šířku. Index měl nabývat hodnot mezi 0 a 100, v případě silně oceánického klimatu se však vyskytují i záporné hodnoty, proto byly konstanty později různě upravovány. Index navíc nelze aplikovat na oblasti v blízkosti rovníku, proto se pro globální studie častěji používá index upravený Johanssonem (1926), nazývaný Conradův index
Jiné indexy kontinentality jsou založeny na porovnání teploty vzduchu na jaře a na podzim, viz např. termodromický kvocient. Ombrická kontinentalita klimatu se hodnotí vzhledem k ročnímu chodu srážek, např. prostřednictvím doby polovičních srážek nebo analýzou relativních srážek pomocí Markhamova indexu.
kde A značí prům. roční amplitudu teploty vzduchu, tedy rozdíl prům. měs. teploty vzduchu nejteplejšího a nejchladnějšího měsíce, a φ vyjadřuje zeměpisnou šířku. Index měl nabývat hodnot mezi 0 a 100, v případě silně oceánického klimatu se však vyskytují i záporné hodnoty, proto byly konstanty později různě upravovány. Index navíc nelze aplikovat na oblasti v blízkosti rovníku, proto se pro globální studie častěji používá index upravený Johanssonem (1926), nazývaný Conradův index
Jiné indexy kontinentality jsou založeny na porovnání teploty vzduchu na jaře a na podzim, viz např. termodromický kvocient. Ombrická kontinentalita klimatu se hodnotí vzhledem k ročnímu chodu srážek, např. prostřednictvím doby polovičních srážek nebo analýzou relativních srážek pomocí Markhamova indexu.
česky: index kontinentality; angl: continentality index; slov: index kontinentality; něm: Kontinentalitätsindex m, Grad der Kontinentalität m 1993-a3
индекс континентальности по Горчинскoму
viz index kontinentality.
česky: index Gorczyńského; angl: Gorczyński index; slov: Gorczyńského index 2014
индекс континентальности по Конраду
индекс Мархамa
charakteristika rovnoměrnosti ročního chodu srážek, navržená C. G. Markhamem (1970). Určuje se jako velikost vektorového součtu dvanácti vektorů relativních srážek, vynesených na polopřímky se společným počátkem a svírající úhly 30°. Minimálních hodnot dosahuje při rovnoměrném rozdělení srážek během roku, případně při existenci více srážkových maxim v navzájem opačných částech roku. Jedním z faktorů, které způsobují nerovnoměrnost rozdělení srážek během roku, je ombrická kontinentalita klimatu, proto v rámci jednoho klimatického typu může Markhamův index sloužit i jako index kontinentality. Je však třeba uvažovat i směr výsledného vektoru. Ombrická oceánita klimatu se projevuje nízkými hodnotami Markhamova indexu, silně oceánické klima ve stř. zeměp. šířkách se nicméně vyznačuje vyššími hodnotami indexu s vektorem orientovaným do zimních měsíců.
česky: index Markhamův; angl: Markham index; slov: Markhamov index 2014
индекс неустойчивости
viz index stability.
česky: index instability; angl: instability index; slov: index instability; něm: Labilitätsindex m 1993-a1
индекс неустуйчивости по Фаусту
jeden z tradičních a nejčastěji používaných indexů instability v ČR, jehož hodnota se stanoví podle vzorce
,
kde T500 je teplota vzduchu v hladině 500 hPa a Tf značí tzv. teplotu nulového výparu, která vyjadřuje ochlazení vzduchu při výparu vody do stavu nasycení. Hodnota Tf se získává z tabulek v závislosti na teplotě v hladině 850 hPa a na součtu hodnot deficitu teploty rosného bodu v hladinách 850 hPa, 700 hPa a 500 hPa. V České republice se předpokládá, že při hodnotách Faustova indexu FI > 0 lze očekávat konvektivní srážky ve formě přeháněk pro hodnoty indexu 0 ≤ FI ≤ 3 a výskyt bouřek pro FI > 3. Index odvodil něm. meteorolog H. Faust v roce 1951 a účinnost Faustova indexu byla rozsáhle testována na datech z území ČR.
,
kde T500 je teplota vzduchu v hladině 500 hPa a Tf značí tzv. teplotu nulového výparu, která vyjadřuje ochlazení vzduchu při výparu vody do stavu nasycení. Hodnota Tf se získává z tabulek v závislosti na teplotě v hladině 850 hPa a na součtu hodnot deficitu teploty rosného bodu v hladinách 850 hPa, 700 hPa a 500 hPa. V České republice se předpokládá, že při hodnotách Faustova indexu FI > 0 lze očekávat konvektivní srážky ve formě přeháněk pro hodnoty indexu 0 ≤ FI ≤ 3 a výskyt bouřek pro FI > 3. Index odvodil něm. meteorolog H. Faust v roce 1951 a účinnost Faustova indexu byla rozsáhle testována na datech z území ČR.
česky: index Faustův; angl: Faust index; slov: Faustov index; něm: Faust-Index m 2014
индекс преломления электромагнитных волн в воздухе
poměr rychlosti šíření elmag. vlnění ve vakuu k rychlosti šíření téhož vlnění ve vzduchu. Vzhledem k tomu, že vzduch je nemagnetickým prostředím s nepatrnou elektrickou vodivostí, lze v něm index lomu n vyjádřit vztahem
v němž εr značí rel. permitivitu vzduchu. Index lomu v oblasti viditelného záření závisí na vlnové délce elmag. vlnění (s rostoucí vlnovou délkou poněkud klesá) a na hustotě vzduchu (se zvětšující se hustotou vzduchu roste). V oboru centimetrových rádiových vln, používaných např. meteorologickými radary, je index lomu v nezanedbatelné míře ovlivňován i vlhkostí vzduchu. Pro tento obor vlnových délek se v literatuře uvádí např. vztah
kde T je teplota vzduchu v K, p tlak vzduchu a e tlak vodní páry v hPa. U zemského povrchu se hodnoty (n – 1) . 106 pohybují při různých met. situacích zhruba v rozmezí 260 až 460. Výraz N = (n – 1) . 106 se někdy nazývá v literatuře radiorefrakce nebo N – jednotky. V troposféře můžeme podle časového hlediska rozlišovat sezonní, denní a neperiodické změny indexu lomu, podmíněné změnami teplotního zvrstvení ovzduší, turbulencí apod. Index lomu elmag. vlnění v popsaném smyslu nazýváme též abs. indexem lomu. Rel. indexem lomu pak rozumíme vzájemný poměr rychlostí šíření elmag. vlnění ve dvou různých prostředích, v meteorologii např. ve dvou vzduchových hmotách odlišných vlastností. Viz též šíření elektromagnetického vlnění v atmosféře.
v němž εr značí rel. permitivitu vzduchu. Index lomu v oblasti viditelného záření závisí na vlnové délce elmag. vlnění (s rostoucí vlnovou délkou poněkud klesá) a na hustotě vzduchu (se zvětšující se hustotou vzduchu roste). V oboru centimetrových rádiových vln, používaných např. meteorologickými radary, je index lomu v nezanedbatelné míře ovlivňován i vlhkostí vzduchu. Pro tento obor vlnových délek se v literatuře uvádí např. vztah
kde T je teplota vzduchu v K, p tlak vzduchu a e tlak vodní páry v hPa. U zemského povrchu se hodnoty (n – 1) . 106 pohybují při různých met. situacích zhruba v rozmezí 260 až 460. Výraz N = (n – 1) . 106 se někdy nazývá v literatuře radiorefrakce nebo N – jednotky. V troposféře můžeme podle časového hlediska rozlišovat sezonní, denní a neperiodické změny indexu lomu, podmíněné změnami teplotního zvrstvení ovzduší, turbulencí apod. Index lomu elmag. vlnění v popsaném smyslu nazýváme též abs. indexem lomu. Rel. indexem lomu pak rozumíme vzájemný poměr rychlostí šíření elmag. vlnění ve dvou různých prostředích, v meteorologii např. ve dvou vzduchových hmotách odlišných vlastností. Viz též šíření elektromagnetického vlnění v atmosféře.
česky: index lomu elektromagnetického vlnění ve vzduchu; angl: refraction (refractive) index of electromagnetic waves in the air; slov: index lomu elektromagnetického vlnenia vo vzduchu; něm: Refraktionsindex (Brechungsindex) der elektromagnetischen Wellen in der Luft m 1993-a3
индекс станции (международный, местный)
označení met. stanice čísly nebo písmeny, které nahrazuje nebo doplňuje její název při předávání zpráv o počasí. Číselné označení WMO se skládá z dvoumístného oblastního indikativu a trojmístného indikativu stanice. Oblastní indikativ může být společný pro několik menších zemí (např. oblastní indikativ 11 je určen pro Rakousko, Českou republiku a Slovensko). Vlastní indikativ stanice je určen pro Českou republiku v rozsahu 400–799 (např. Praha-Ruzyně má 518, takže úplné WMO označení je 11518).Oblastní indikativy i indikativy stanic přiděluje Světová meteorologická organizace. Písmenné označení stanice CCCC (směrovací značka ICAO) se používá při předávání met. zpráv určených k zabezpečení letectví. Skládá se ze čtyř písmen, z nichž první dvě udávají stát (Česká republika má přiděleno LK) a další dvě označují letiště (např. Praha-Ruzyně má PR). Směrovací značky ICAO přiděluje Mezinárodní organizace pro civilní letectví (ICAO).
česky: indikativ stanice; angl: station designator, station index number, station number; slov: indikatív stanice; něm: Kennziffer der Station f, Stationskennziffer f 1993-a3
индекс увлажнения Кончека
index vláhový Končkův index humidity, který navrhl M. Konček (1955) ve tvaru
kde R je úhrn srážek za období od dubna do září, Δr kladná odchylka srážek za tři zimní měsíce (prosinec až únor) od hodnoty 105 mm, T je prům. teplota vzduchu za období od dubna do září ve °C, v je prům. rychlost větru ve 14 hodin za totéž období v m.s–1.
Index byl použit při klimatologické rajonizaci bývalého Československa, přičemž byly vymezeny následující oblasti: suché (Iz < –20), mírně suché (–20 ≤ Iz < 0), mírně vlhké (0 ≤ Iz < 60), vlhké (60 ≤ Iz < 120) a velmi vlhké (120 ≤ Iz).
kde R je úhrn srážek za období od dubna do září, Δr kladná odchylka srážek za tři zimní měsíce (prosinec až únor) od hodnoty 105 mm, T je prům. teplota vzduchu za období od dubna do září ve °C, v je prům. rychlost větru ve 14 hodin za totéž období v m.s–1.
Index byl použit při klimatologické rajonizaci bývalého Československa, přičemž byly vymezeny následující oblasti: suché (Iz < –20), mírně suché (–20 ≤ Iz < 0), mírně vlhké (0 ≤ Iz < 60), vlhké (60 ≤ Iz < 120) a velmi vlhké (120 ≤ Iz).
česky: index zavlažení Končkův; slov: Končekov index zavlaženia 1993-a2
индекс угрозы суровой погоды - SWEAT индекс
index stability, který je definován jako
kde TT je index Total Totals, TD850 je teplota rosného bodu v hladině 850 hPa, V850 resp. V500 jsou rychlosti větru v uzlech v hladinách 850 hPa resp. 500 hPa, a ΔV500–850 je rozdíl hodnot směru větru v hladinách 850 a 500 hPa. Pokud je hodnota indexu TT nižší než 49, je první člen definován jako nulový a pokud je teplota rosného bodu v hladině 850 hPa záporná, je druhý člen definován jako nulový. Poslední člen je definován jako nulový, pokud nejsou splněny všechny tyto podmínky:
1) směr větru v hladině 850 hPa je v rozmezí 130–250°,
2) směr větru v hladině 500 hPa je v rozmezí 210–310°,
3) rozdíl směrů větrů v pátém členu je kladný,
4) rychlost větru v hladině 850 hPa nebo 500 hPa se rovná nebo přesahuje 15 uzlů.
Žádný člen rovnice pak není záporný. Hodnoty indexu SWEAT nad 300 značí možnost výskytu silných konvektivních bouří.
kde TT je index Total Totals, TD850 je teplota rosného bodu v hladině 850 hPa, V850 resp. V500 jsou rychlosti větru v uzlech v hladinách 850 hPa resp. 500 hPa, a ΔV500–850 je rozdíl hodnot směru větru v hladinách 850 a 500 hPa. Pokud je hodnota indexu TT nižší než 49, je první člen definován jako nulový a pokud je teplota rosného bodu v hladině 850 hPa záporná, je druhý člen definován jako nulový. Poslední člen je definován jako nulový, pokud nejsou splněny všechny tyto podmínky:
1) směr větru v hladině 850 hPa je v rozmezí 130–250°,
2) směr větru v hladině 500 hPa je v rozmezí 210–310°,
3) rozdíl směrů větrů v pátém členu je kladný,
4) rychlost větru v hladině 850 hPa nebo 500 hPa se rovná nebo přesahuje 15 uzlů.
Žádný člen rovnice pak není záporný. Hodnoty indexu SWEAT nad 300 značí možnost výskytu silných konvektivních bouří.
česky: index SWEAT; angl: SWEAT index; slov: index SWEAT 2014
индекс устойчивости (неустойчивости)
číselně vyjádřená míra vertikální stability atmosféry. Indexy stability zpravidla hodnotí kombinovaný vliv teploty a vlhkosti vzduchu ve vybraných hladinách nebo vrstvách. Využívají se zejména pro předpověď vývoje konv. jevů, zejména vývoje přeháněk a bouřek. Výhodou indexů stability je jednoduchost výpočtu, která umožňuje stanovení indexů na základě údajů získaných radiosondážním měřením. V současné době se řada indexů stanoví i z výsledků modelu numerické předpovědi počasí. Mezi nejznámější indexy stability patří Faustův index, K-index, Lifted index, Showalterův index, SWEAT index, Total Totals index. Hodnota indexu stability roste s růstem vertikální stability atmosféry. Pokud se index vyjádří ve tvaru, kdy jeho hodnota roste s růstem vertikální instability atmosféry, označuje se také jako index instability.
česky: index stability; angl: stability index, convective index; slov: index stability; něm: Stabilitätsindex m 1993-a3
индекс циркуляции
číselná charakteristika intenzity atmosférické cirkulace, často ve volné atmosféře, v dané oblasti větších měřítek, popř. nad celou polokoulí. Je jím např. rozdíl tlaku vzduchu mezi vybranými body nebo zeměpisnými šířkami, průměrná rychlost větru v určité oblasti, číselná charakteristika cyklonální činnosti apod. Někdy indexem cirkulace rozumíme index zonální cirkulace, který charakterizuje intenzitu západo-východní složky všeobecné cirkulace atmosféry nejčastěji v mírných šířkách (např. mezi 35 a 55° s. š.). Dnes je tento pojem často spojen i s charakteristikou intenzity cirkulačních systémů analyzovaných v globální cirkulaci atmosféry, jejích akčních center a dálkových vazeb, např. severoatlantické oscilace, jižní oscilace apod.
česky: index cirkulace; angl: circulation index; slov: index cirkulácie; něm: Zirkulationsindex m 1993-a3
индекс Шоуолтера
index stability definovaný podle vzorce
kde T500 je teplota vzduchu v hladině 500 hPa a TL je teplota vzduchové částice adiabaticky zdvižené z hladiny 850 hPa do hladiny 500 hPa nejprve po suché adiabatě do nasycení a dále po nasycené adiabatě. Kladné hodnoty Showalterova indexu značí stabilní zvrstvení, záporné instabilní. Index formuloval A. K. Showalter v roce 1963.
kde T500 je teplota vzduchu v hladině 500 hPa a TL je teplota vzduchové částice adiabaticky zdvižené z hladiny 850 hPa do hladiny 500 hPa nejprve po suché adiabatě do nasycení a dále po nasycené adiabatě. Kladné hodnoty Showalterova indexu značí stabilní zvrstvení, záporné instabilní. Index formuloval A. K. Showalter v roce 1963.
česky: index Showalterův; angl: Showalter index; slov: Showalterov index; něm: Showalter-Index m 2014
индекс экспозиции (воздействия)
číselná charakteristika, umožňující kvantifikovat míru vystavení (expozice) živého organizmu působení vnějších vlivů, obvykle se škodlivými účinky (záření, koncentrace znečišťujících látek). Expoziční index může být konstruován různým způsobem, obecně by měl v sobě zahrnovat jak délku expozice vnějším vlivům, tak i míru intenzity jejich působení (např. stupeň překročení vhodně zvolené prahové koncentrace).
česky: index expoziční; angl: exposure index; slov: expozičný index 2014
индекс экспозиции АОТ40
ukazatel používaný v Evropě k hodnocení potenciálního rizika ze zvýšených koncentrací přízemního ozonu pro vegetaci ekosystémy. Pomocí expozičního indexu je českou legislativou stanoven i imisní limit pro ochranu vegetace.
česky: index expoziční AOT40; angl: exposure index AOT 40, ozone exposure index AOT 40; slov: expozičný index AOT40 2014
индекс южного колебания
(SOI) – ukazatel aktuální fáze jižní oscilace a jeden z indikátorů ENSO, založený na porovnání tlaku vzduchu redukovaného na hladinu moře na Tahiti ve Francouzské Polynésii (pT) a v australském Darwinu (pD). Má více variant; např. NOAA používá vztah
kde aktuální měsíční průměry tlaku vzduchu redukovaného na hladinu moře jsou standardizovány dlouhodobým průměrem a směrodatnou odchylkou od průměru (σT a σD) v daném kalendářním měsíci, načež je jejich rozdíl normován směrodatnou odchylkou hodnot pT od pD pro daný kalendářní měsíc (σTD).
kde aktuální měsíční průměry tlaku vzduchu redukovaného na hladinu moře jsou standardizovány dlouhodobým průměrem a směrodatnou odchylkou od průměru (σT a σD) v daném kalendářním měsíci, načež je jejich rozdíl normován směrodatnou odchylkou hodnot pT od pD pro daný kalendářní měsíc (σTD).
česky: index jižní oscilace; angl: Southern Oscillation Index; slov: index južnej oscilácie; něm: Southern Oscillation Index m 2014
индивидуальное изменение метеорологического элемента
změna hodnoty meteorologického prvku v „individuální“ vzduchové částici, pohybující se vzhledem ke zvolenému souřadnicovému systému. Mat. se vyjadřuje pomocí totální derivace, např. individuální změna teploty vzduchu T za jednotku času t jako dT / dt. Individuální časová změna veličiny A je dána Eulerovým vztahem
v němž vx, vy, vz jsou složky rychlosti proudění v souřadnicovém systému tvořeném osami x, y, z. Viz též změna meteorologického prvku lokální.
v němž vx, vy, vz jsou složky rychlosti proudění v souřadnicovém systému tvořeném osami x, y, z. Viz též změna meteorologického prvku lokální.
česky: změna meteorologického prvku individuální; angl: individual change of meteorological element; slov: individuálna zmena meteorologického prvku; něm: individuelle Änderung des meteorologischen Elementes f 1993-a1
индикатриса рассеяния
prostorové rozložení intenzity záření rozptýleného určitou částicí nebo souborem částic. Vyjadřuje se pomocí rozptylového diagramu.
česky: indikatrice rozptylová; angl: indicatrix of diffusion, scattering indicatrix; slov: rozptylová indikatrica; něm: Streufunktion f, Streuindikatrix f 1993-a2
индустриальная климатология
část technické klimatologie, která se zabývá vlivem průmyslu na klima a studuje též účinky klimatu na průmyslová zařízení. Viz též meteorologie průmyslová.
česky: klimatologie průmyslová; angl: industrial climatology; slov: priemyselná klimatológia; něm: Industrieklimatologie f 1993-a1
индустриальное облако
oblak, jehož vznik a vývoj souvisí s uvolňováním odpadního tepla, vodní páry, popř. různých znečišťujících příměsí při provozu průmyslových¨a energetických zařízení. Průmyslový oblak řadíme mezi tzv. umělé oblaky.
česky: oblak průmyslový; angl: cloud generated by industry; slov: priemyselný oblak; něm: Industriewolke f 1993-a3
индустриальные облака
starší, v současnosti jen zřídka užívané označení pro tzv. průmyslový oblak.
česky: cumulus „industrialis“; slov: cumulus „industrialis; fr: Cumulus homogenitus m 1993-a3
индуцированный циклон
cyklona, jejíž vznik je podmíněn existencí a postupem jiné cyklony. Např. postup cyklony ze stř. části vých. Atlantiku přes Britské ostrovy na sv. často vyvolává vznik cyklony nad záp. Středomořím a sev. Itálií. Tento proces nejčastěji nastává v důsledku přibližování hluboké brázdy nízkého tlaku vzduchu ve stř. a horní troposféře.
česky: cyklona indukovaná; angl: induced cyclone; slov: indukovaná cyklóna; něm: induzierte Zyklone f; fr: dépression induite f 1993-a3
иней
lid. mráz šedý, šedivák, šedivec – druh tuhých usazených srážek, který vzniká přímou depozicí vodní páry při záporných teplotách aktivního povrchu. Má dobře patrnou jemnou krystalickou strukturu, kterou zmrzlá rosa nemá. Jíní se tvoří na předmětech na zemi nebo blízko povrchu země. Je jedním z hydrometeorů, který se podle platné klasifikace nezahrnuje do námrazků.
Termín vychází z praslovanského *inьjь, které je snad příbuzné s něm. Eis a angl. ice „led“.
česky: jíní; angl: hoar-frost; slov: osuheľ; něm: Raureif m 1993-a3
инерционное движение
syn. proudění inerční, viz kružnice inerční.
česky: pohyb inerční; angl: inertial current; slov: inerciálny pohyb; něm: Trägheitsströmung f 1993-a1
инерционное течение
syn. pohyb inerční – viz kružnice inerční.
česky: proudění inerční; angl: inertial flow; slov: inerciálne prúdenie; něm: Trägheitsströmung f 1993-a1
инерционные волны
syn. vlny setrvačné – kmity v horizontálně příčném směru vznikající v atmosféře působením setrvačnosti proudění vzduchu a Coriolisovy síly. Jde o teor. pojem používaný v dynamické meteorologii. Viz též kružnice inerční.
česky: vlny inerční; angl: inertia waves; slov: inerciálne vlny; něm: Trägheitswellen f/pl 1993-a3
инерционный период
viz kružnice inerční.
česky: perioda inerční; angl: inertial period; slov: inerciálna perióda; něm: Trägheitsperiode f 1993-a1
инерционный прогноз
česky: předpověď počasí inerční; slov: inerciálna predpoveď počasia; něm: Blindlingsvorhersage f 1993-a3
инерционный прогноз
předpověď počasí inerční – setrvačná primitivní předpověď počasí založená na předpokladu, že počasí nebo hodnota daného meteorologického prvku se nezmění v období, na které předpovídáme, ve srovnání s nedávnou minulostí. Nejjednodušší a nejpoužívanější způsob perzistentní předpovědi počasí se zakládá na předpokladu, že „jak bylo dnes, bude i zítra“. Někdy se používá jako referenční předpověď pro porovnání s jinými metodami předpovědi počasí.
česky: předpověď počasí perzistentní; angl: persistence forecast; slov: perzistentná predpoveď počasia; něm: Persistenzvorhersage f 1993-a3
инерционный прогноз
česky: předpověď počasí setrvačná; angl: persistent forecast; slov: zotrvačná predpoveď počasia; něm: permanente Vorhersage f 1993-a3
инерционный радиус
viz kružnice inerční.
česky: poloměr inerční; angl: inertial radius; slov: inerciálny polomer; něm: Radius des Trägheitskreises m 1993-a1
инженерная климатология
инициализация входных данных
souhrnný název pro metody upravující vstupní data (počáteční podmínky) modelů numerické předpovědi počasí. Cílem úpravy je modifikovat počáteční podmínky tak, aby přibližně splňovaly modelové rovnice. Pokud je tato podmínka výrazně narušena, dochází během začátku integrace numerického modelu k významným změnám hodnot modelových proměnných, což se projevuje oscilací předpověděných hodnot, a k znehodnocení předpovědi. Po určité délce integrace tyto oscilace mizí. V některých případech, když nesoulad mezi modelovými proměnnými je příliš velký, může dojít i k předčasnému ukončení integrace modelu kvůli numerické chybě. Původně se inicializace dat zaměřovala na korekci polí větru a tlaku tak, aby byla alespoň přibližně splněna rovnice kontinuity. Proto se místo skutečného větru používal vítr geostrofický. Později se používala metoda normálních módů. V současnosti se téměř výhradně užívá metoda založená na aplikaci digitálního filtru a inicializují se i ostatní základní meteorologické prvky. Samotná inicializace základních modelových veličin postupně ztrácí svůj význam a to jednak tím, že probíhá v rámci asimilace dat a objektivní analýzy a také proto, že současné numerické metody použité v modelech jsou dostatečně robustní, aby jejich běh nebyl významně narušen nekonzistencí vstupních dat. Inicializace vstupních dat se stále využívá, ale inicializují se jiné než základní meteorologické prvky např. srážky a oblačnost.
česky: inicializace vstupních dat; angl: input data initialization; slov: inicializácia vstupných dát; něm: Initialisierung von Eingangsdaten f 1993-a3
инсоляция
množství přímého (v některých studiích i rozptýleného) slunečního záření, dopadající na jednotku vodorovné nebo nakloněné plochy za jednotku času. Insolace se vyjadřuje v jednotkách energie, obvykle MJ / m2 nebo v J / cm2. Ekvivalentem termínu je oslunění.
Termín pochází z lat. insolatio „vystavení slunci“, odvozeného od insolare „umístit na slunce“ (z in „v, na“ a sol „slunce“).
česky: insolace; angl: insolation; slov: insolácia; něm: Einstrahlung f 1993-a3
инсоляция
v meteorologii nejednoznačný pojem používaný ve více významech. Např.:
1. ozáření určitého místa přímým slunečním zářením. Doby astronomicky možného oslunění (bez ohledu na oblačnost) se zakreslují pomocí izolinií do map oslunění;
2. v bioklimatologii někdy syn. insolace;
3. v humánní bioklimatologii expozice těla přímému slunečnímu záření.
1. ozáření určitého místa přímým slunečním zářením. Doby astronomicky možného oslunění (bez ohledu na oblačnost) se zakreslují pomocí izolinií do map oslunění;
2. v bioklimatologii někdy syn. insolace;
3. v humánní bioklimatologii expozice těla přímému slunečnímu záření.
česky: oslunění; angl: insolation; slov: oslnenie; něm: Sonneneinstrahlung f 1993-a1
Институт физики атмосферы ЧСАН
veřejná výzkumná instituce, která náleží k vědeckým ústavům Akademie věd ČR. Předmětem hlavní činnosti ÚFA AV ČR, v. v. i., je vědecký výzkum atmosféry Země v celém jejím vertikálním rozsahu, tedy studium přízemní vrstvy, troposféry, horní atmosféry, ionosféry a magnetosféry Země pomocí experimentálních a teoretických metod, včetně numerických simulací. Činnost ústavu zahrnuje též monitorovací a speciální měření, vyhodnocování dat a jejich předávání do světových datových sítí a databází, vývoj speciálních přístrojů a odborné expertizy. ÚFA AV ČR, v. v. i., byl založen 1. ledna 1964 pod názvem Ústav fyziky atmosféry ČSAV jako pokračovatel předchozí Laboratoře meteorologie ČSAV. V současné době se ÚFA AV ČR, v. v. i., člení na pět vědeckých oddělení (meteorologie, klimatologie, aeronomie, horní atmosféry a kosmické fyziky) a jednu pracovní skupinu (numerických simulací heliosférického plazmatu). Ústav má pět observatoří (Meteorologické observatoře Milešovka, Kopisty, Dlouhá Louka, Observatoř a telemetrická stanice Panská Ves, Ionosférická observatoř Průhonice). Pracovníci ÚFA vyučují na Univerzitě Karlově (Praha), ČVUT (Praha), Masarykově univerzitě (Brno) a Univerzitě Pardubice. Podílejí se na postgraduální výchově. Ústav koordinuje a pořádá mezinárodní vědecká setkání a sympozia. Dále spolupracuje s mnoha domácími a zahraničními ústavy, univerzitami a agenturami a podílí se na výuce specialistů z rozvojových zemí. Viz též meteorologie v ČR.
česky: Ústav fyziky atmosféry AV ČR, v. v. i.; angl: Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic; slov: Ústav fyziky atmosféry AV ČR; něm: Institut für Physik der Atmosphäre der Tschechischen Akademie der Wissenschaften n 1993-a3
инструментальная поправка
oprava, která převádí údaj indikovaný přístrojem na správnou hodnotu měřené veličiny v používané soustavě jednotek. Vylučuje z měření chyby, které jsou vyvolány vlastním přístrojem.
česky: oprava přístrojová; angl: instrument correction; slov: prístrojová korekcia; něm: Instrumentenkorrektur f 1993-a3
интенсивность
charakteristika záporných teplot vzduchu, vycházející z rozdělení těchto teplot do stanovených intervalů. V klimatologickém pojetí patří spolu s délkou mrazového období a počtem mrazových dní k nejdůležitějším charakteristikám teplotních poměrů místa nebo oblasti v chladném půlroku. Na našem území používané klasifikace zahrnují členění dle L. A. Čubukova. Ten pro účely komplexní klimatologie podle intenzity mrazů rozlišil počasí slabě mrazivé s prům. denní teplotou vzduchu T ≥ –2,4 °C, mírně mrazivé (–2,5 °C > T ≥ –7,4 °C), značně mrazivé (–7,5 °C > T ≥ –12,4 °C), silně mrazivé (–12,5 °C > T ≥ –17,4 °C) a krutě mrazivé (T < –17,5 °C). Pro teplotní poměry v rámci bývalé ČSSR upravil toto třídění S. Petrovič. V zemědělské meteorologii se podle P. Uhlíře rozlišují mrazíky slabé (teplota na povrchu půdy poklesne na –1 °C až –2 °C), silné (–3 °C až –4 °C), popř. velmi silné (–5 °C až –6 °C).
česky: intenzita mrazů; slov: intenzita mrazov 1993-a2
интенсивность грозовой деятельности
parametr stanovený z dlouhodobého pozorování bouřek, vycházející z prům. počtu dní s bouřkou (s bouřkou na stanici nebo vzdálenou bouřkou) za rok, nebo z prům. doby trvání bouřek v hodinách za rok. Intenzita bouřkové činnosti je zákl. charakteristikou pro stanovení četnosti škod na techn., zejména elektrotechnických zařízeních. Pro tyto účely se používá k vyjádření intenzity bouřkové činnosti ještě dalších upřesňujících údajů, jako jsou prům. počet blesků mezi oblakem a zemi směřujících do země (n.rok–1.km–2) a prům. počet blesků mezi oblaky se stejným rozměrem. Ke stanovení těchto parametrů, které jsou časově značně proměnlivé, se užívá systémů detekce blesků. Za min. dobu pozorování se považuje desetileté období. Viz též mapa izobront, mapa izoceraunická, intenzita blesků do země, intenzita blesků mezi oblaky.
česky: intenzita bouřkové činnosti; angl: thunderstorm intensity; slov: intenzita búrkovej činnosti; něm: Intensität der Gewittertätigkeit f, Gewitterintensität f 1993-a3
интенсивность грозы
intenzita a četnost el. výbojů blesků bouřky na stanici nebo vzdálené bouřky, nikoliv však intenzita průvodních jevů, jako jsou srážky, húlava nebo rychlost nárazů větru. Rozlišuje se bouřka slabá, mírná a silná, přesná kritéria pro určování intenzity bouřky nejsou stanovena. Viz též intenzita bouřkové činnosti.
česky: intenzita bouřky; angl: thunderstorm intensity; slov: intenzita búrky; něm: Gewitterintensität f 1993-a3
интенсивность дождя
viz intenzita srážek.
česky: intenzita deště; angl: rainfall intensity, rate of rainfall; slov: intenzita dažďa; něm: Regenintensität f, Regenrate f 1993-a1
интенсивность обледенения
množství námrazku na el. vodičích utvořené za jednotku času. Měří se zařízením, tvořeným vodorovnou tyčí natáčenou kolmo na směr větru, jejíž změny hmotnosti se zjišťují v závislosti na čase. Viz též měření námrazku, intenzita námrazy na letadlech.
česky: intenzita námrazku; angl: icing intensity; slov: intenzita námrazku; něm: Vereisungsgrad m 1993-a1
интенсивность обледенения самолета
množství krystalické nebo ledové usazeniny na letadlech, která se utvoří za jednotku času. I. G. Pčolko sestavil stupnici intenzity námrazy, v níž hodnoty do 0,5 mm.min–1 znamenají slabou námrazu, 0,6 až 1,0 mm.min–1 mírnou, 1,0 až 2,0 mm.min–1 silnou a nad 2,0 mm.min–1 velmi silnou námrazu. V extrémních případech byl pozorován nárůst až 6 mm.min–1. Intenzita námrazy závisí přímo na vodním obsahu oblaku a zachycovací účinnosti, udávající množství kapalné vody zachycené letadlem. Toto množství je přímo závislé na velikosti kapek a rychlosti letadla a nepřímo závislé na geometrii sběrného povrchu, zejména na poloměru zakřivení náběžných hran. Tzn., že se námraza vytváří intenzivněji v prostředí s velkými kapkami na tenčích profilech. Při rychlostech do 500 km.h–1 intenzita námrazy při stejném vodním obsahu se vzrůstem rychlosti letadla roste. Při rychlosti nad 500 km.h–1 však se zvyšováním rychlosti klesá, a to vlivem adiabatického stlačení a tření okolního vzduchu, čímž se povrch letadla zahřívá. Viz též ohřev letadla kinetický.
česky: intenzita námrazy na letadlech; angl: rime intensity; slov: intenzita námrazy na lietadlách; něm: Raufrostintensität f, Intensität der Vereisung an Flugzeugen f 1993-a3
интенсивность осадков
množství srážek vypadlých za jednotku času. Podle doporučení Světové meteorologické organizace se intenzita srážek udává v mm.h–1 s přesností na 10–2 mm.h–1, resp. v kg.m–2.s–1 s přesností na 10–5 kg.m–2.s–1.
Intenzita srážek má zásadní význam v hydrologii, ve vodním hospodářství a celé řadě dalších odvětví. Prům. intenzita srážek se vyhodnocuje z údajů srážkoměrů, tzv. okamžitá intenzita srážek se měří váhovým srážkoměrem. Intenzita srážek je na met. stanicích subjektivně odhadována pozorovateli s přihlédnutím na hodnotu intenzity srážek, získanou zpracováním dat srážkoměru, a zaznamenávána kódovými čísly pro stav počasí kódu SYNOP. Viz též měření srážek, extrémy srážek, vztah Wussowův, vztah Z–I.
Intenzita srážek má zásadní význam v hydrologii, ve vodním hospodářství a celé řadě dalších odvětví. Prům. intenzita srážek se vyhodnocuje z údajů srážkoměrů, tzv. okamžitá intenzita srážek se měří váhovým srážkoměrem. Intenzita srážek je na met. stanicích subjektivně odhadována pozorovateli s přihlédnutím na hodnotu intenzity srážek, získanou zpracováním dat srážkoměru, a zaznamenávána kódovými čísly pro stav počasí kódu SYNOP. Viz též měření srážek, extrémy srážek, vztah Wussowův, vztah Z–I.
česky: intenzita srážek; angl: precipitation intensity; slov: intenzita zrážok; něm: Niederschlagsintensität f 1993-a3
интенсивность разрядов молний в землю
veličina vyjadřující plošnou hustotu blesků mezi oblakem a zemí směřujících do země za jednu bouřkovou událost, den s bouřkou nebo rok. V tech. praxi se udává prům. hustota úderů blesku na 1 km2 za rok, odvozená z dlouhodobého pozorování. Mapy intenzity výbojů blesku do země jsou nejvhodnějším výchozím podkladem pro stanovení pravděpodobnosti úderu blesku do objektu.
česky: intenzita blesků do země; angl: ground discharge rate; slov: intenzita bleskov do zeme; něm: Stärke des Erdblitzes f 1993-b3
интенсивность разрядов молний между облаками
veličina vyjadřující plošnou hustotu blesků mezi oblaky za jednu bouřkovou událost, den s bouřkou nebo za rok. V tech. praxi se udává prům. hustota výbojů na 1 km2 za rok, odvozená z dlouhodobého pozorování.
česky: intenzita blesků mezi oblaky; angl: cloud to cloud lightning intensity; slov: intenzita bleskov medzi oblakmi; něm: Stärke des Wolkenblitzes f 1993-b2
интенсивность турбулентности
1. v teorii turbulence poměr směrodatné odchylky krátkoperiodických fluktuací podélné, resp. příčné, resp. vertikální složky rychlosti větru k velikosti zprůměrované horizontální rychlosti větru. Její přesné určení v praxi závisí na frekvenci snímání okamžité rychlosti větru (typicky 1 s) a délce průměrovaného intervalu (typicky 10 min).
2. pojem užívaný v letecké meteorologii. Intenzita turbulence je mírou silových účinků turbulentních pohybů vzduchu na letící letadlo („přetížení letadla"). Je měřena akcelerometry nebo akcelerografy, které mohou měřit i registrovat velikosti zrychlení udělované turbulencí letadlu, a vyjadřuje se v násobcích tíhového zrychlení (n). V případě hodnot n menších než 0,2 mluvíme o slabé turbulenci, při hodnotách od 0,2 do 0,5 jde o mírnou turbulenci, od 0,5 do 1,0 o silnou turbulenci a nad 1,0 o extrémní turbulenci.
2. pojem užívaný v letecké meteorologii. Intenzita turbulence je mírou silových účinků turbulentních pohybů vzduchu na letící letadlo („přetížení letadla"). Je měřena akcelerometry nebo akcelerografy, které mohou měřit i registrovat velikosti zrychlení udělované turbulencí letadlu, a vyjadřuje se v násobcích tíhového zrychlení (n). V případě hodnot n menších než 0,2 mluvíme o slabé turbulenci, při hodnotách od 0,2 do 0,5 jde o mírnou turbulenci, od 0,5 do 1,0 o silnou turbulenci a nad 1,0 o extrémní turbulenci.
česky: intenzita turbulence; angl: turbulence intensity; slov: intenzita turbulencie; něm: Intensität der Turbulenz f 1993-a3
интенсивность фронта
kvalitativně posuzovaná charakteristika a tendence dějů probíhajících na atmosférické frontě včetně frontogeneze a frontolýzy. Opírá se zpravidla o velikost změn hodnot meteorologických prvků a průběh povětrnostních jevů při přechodu fronty.
česky: intenzita fronty; angl: intensity of front; slov: intenzita frontu; něm: Stärke der Front f 1993-a1
интенсивный тайфун
označení pro mimořádně silný tajfun, v němž desetiminutový (v USA minutový) průměr rychlosti přízemního větru dosahuje hodnoty nejméně 67 m.s–1. Viz též extrémy tlaku vzduchu.
Termín se skládá z angl. předpony super-, která má u podstatných jmen význam „vynikající, předčící ostatní“ (z lat. předložky super „nad, nahoře, přes“; srov. superman), a ze slova tajfun.
česky: supertajfun; angl: super typhoon; slov: supertajfún; něm: besonders starker Taifun m 1993-a3
интенсивный ураган
česky: hurikán silný; angl: major hurricane; slov: silný hurikán; něm: schwerer Hurrikan m 2014
ИНТЕР
do dubna 2010 vnitrostátní meteorologická zpráva obsahující meteorologické, klimatologické a agrometeorologické údaje za uplynulých 24 hodin s případnými dodatky za uplynulý týden.
česky: zpráva INTER; slov: správa INTER; něm: INTER-Meldung 1993-a3
интергляциал
syn. interglaciál.
česky: doba meziledová; angl: interglacial, interglacial period; slov: medziľadová doba; něm: Interglazial n, Zwischeneiszeit f; fr: période interglaciaire f, interglaciation f 1993-a1
интергляциальная фаза
syn. interglaciál.
česky: doba meziledová; angl: interglacial, interglacial period; slov: medziľadová doba; něm: Interglazial n, Zwischeneiszeit f; fr: période interglaciaire f, interglaciation f 1993-a1
интергляциальная фаза
syn. doba meziledová – fáze kvartérního klimatického cyklu mezi dvěma glaciály, vyznačující se ve stř. zeměp. šířkách značným zmírněním klimatu, a tím i ústupem zalednění, především pevninského ledovce. Nástup relativně kratších interglaciálů bývá náhlý a následuje bezprostředně po nejchladnější fázi předchozího glaciálu. Pro interglaciál je typický nárůst zalesnění krajiny a intenzivní vývoj půd. Viz též kvartér, holocén.
Termín se skládá z lat. inter „mezi“ a slova glaciál.
česky: interglaciál; angl: interglacial; slov: interglaciál; něm: Interglazial n 1993-a3
интерцепция осадков
zadržování (zachycování) části padajících srážek, v širším smyslu i tvorba usazených srážek na vegetaci nebo na vyvýšených předmětech, takže tyto srážky nedosáhnou povrchu půdy. Pokud nejsou využity rostlinami, dochází k evaporaci, případně sublimaci těchto srážek, takže se nepodílejí na odtoku ani na infiltraci. Intercepce srážek tak má nezanedbatelný vliv na hydrologickou bilanci a bilanci půdní vody, zejména u lesních porostů s velkou záchytnou plochou.
česky: intercepce srážek; angl: interception of precipitation; slov: intercepcia zrážok; něm: Niederschlagsinterzeption f 1993-a3
интрузия (вторжение) сухого воздуха
relativní proudění suchého vzduchu se sestupnou složkou pohybu ve frontální cykloně popisované v teorii přenosových pásů. Formuje se v týlu vyvíjející se cyklony, je charakteristické velmi nízkou izobarickou vlhkou potenciální teplotou a hraje důležitou roli při cyklogenezi. Intruze suchého vzduchu je obvykle velmi dobře detekovatelná na družicových snímcích, které reagují na obsah vodní páry v troposféře. Má svůj původ v blízkosti místního snížení tropopauzy, jisté množství vzduchu může pocházet až ze stratosféry, proto se vyznačuje vysokými hodnotami potenciální vorticity. Při svém sestupu se vzduch postupně cyklonálně stáčí kolem středu cyklony a adiabaticky se otepluje. V případě, že se dostane do blízkosti teplého přenosového pásu, může mít podobnou teplotu jako vzduch v něm. Výšková studená fronta, která na styku obou vzduchových hmot vzniká, je pak definována zejména gradientem vlhkosti a nikoliv teploty.
česky: intruze (průnik) suchého vzduchu; angl: dry intrusion; slov: intrúzia suchého vzduchu; něm: Einmischung trockener Luft f 2014
инфильтрация
syn. vsak – pohyb vody ze zemského povrchu do půdního nebo horninového prostředí, popř. objem této vody.
Termín pochází ze středolat. infiltratio „prostoupení, pronikání“.
česky: infiltrace; angl: infiltration; slov: infiltrácia; něm: Infiltration f, Versickerung f 1993-a2
информация
soubor dat a/nebo informací sestavených a předávaných podle platných mezinárodních nebo vnitrostátních předpisů. Viz též zpráva meteorologická.
česky: zpráva; angl: message, report; slov: správa; něm: Nachricht f, Bericht m 1993-a3
информация AIRMET
výstražná informace vydávaná ve zkrácené otevřené řeči leteckou meteorologickou výstražnou službou. Obsahuje stručný popis výskytu nebo očekávaného výskytu specifikovaných meteorologických jevů v prostoru a čase, které mohou ovlivnit bezpečnost letového provozu v nízkých hladinách, a které již nebyly uvedeny v sekci 1 oblastní předpovědi pro lety v nízkých hladinách GAMET v dané informační oblasti nebo její části. Období platnosti informace AIRMET nesmí přesáhnout 4 hodiny.
česky: informace AIRMET; angl: AIRMET information; slov: informácia AIRMET; něm: AIRMETs n/pl, AIRMET-Information f 2014
информация SIGMET
(Significant Meteorological Phenomena) – informace vydaná leteckou meteorologickou výstražnou službou týkající se výskytu nebo očekávaného výskytu určitých meteorologických jevů na trati, které mohou ovlivnit bezpečnost letového provozu. Informace SIGMET jsou předmětem mezinárodní výměny a vydávají se v souladu s postupy ICAO ve zkrácené otevřené řeči (anglické) vždy na jeden z následujících jevů: bouřky, tropická cyklona, silná turbulence, silná námraza, silná horská vlna, silná prachová vichřice, silná písečná vichřice, vulkanický popel a radioaktivní oblak. Období platnosti informací SIGMET je maximálně čtyři hodiny, v případě vulkanického popela a tropické cyklony je období platnosti šest hodin.
česky: informace SIGMET; angl: SIGMET information; slov: informácia SIGMET; něm: SIGMET-Meldung f 2014
инфракрасная радиация
elmag. záření o vlnových délkách 0,7 µm až 1 000 µm. Infračervené záření zahrnuje záření dlouhovlnné. Viz též záření Slunce.
česky: záření infračervené; angl: infrared radiation; slov: infračervené žiarenie; něm: infrarote Strahlung f 1993-a3
инфралатеральная дуга
dva duhově zbarvené světelné oblouky, které jakoby vybíhaly z obzoru vzhůru po obou stranách Slunce. Jejich části nejbližší Slunci jsou od něj vzdáleny cca 46°. Vytvářejí se na šestibokých ledových krystalcích s horizontální orientací při lámavém úhlu 90° a s růstem výšky Slunce nad obzorem se jejich spodní konce k sobě navzájem přibližují. Patří k méně častým halovým jevům.
česky: oblouky infralaterální; angl: infralateral bows; slov: infralaterálne oblúky; něm: Infralateralbogen m 2014
ион Ланжевена
česky: iont Langevinův; angl: Langevin's ion; slov: Langevinov ión; něm: Langevin-Ion n 1993-a1
ионизация атмосферы
proces vzniku atmosférických iontů a volných elektronů, který ovlivňuje elektrickou vodivost vzduchu, a tím i další el. jevy v atmosféře. Koncentrace iontů je v atmosféře dána výslednicí dvou navzájem protichůdných procesů, a to ionizace neutrálních částic, zpravidla molekul, a rekombinace iontů. Hlavním iniciátorem atmosférické ionizace je ionizující záření, jmenovitě
a) do atmosféry shora pronikající kosmické záření, které má převážně charakter korpuskulárního záření; o dominantní roli tohoto záření prakticky v celém vertikálním profilu atmosféry svědčí růst koncentrace atmosférických iontů s výškou;
b) radioaktivní záření od radioaktivních příměsí obsažených v půdě, popř. odtud rozptýlených do vzduchu; uplatňuje se v nejspodnějších vrstvách atmosféry ve vertikálním rozsahu přibližně odpovídajícím mezní vrstvě atmosféry.
Kromě toho dochází v atmosféře i k tzv. ionizaci nárazem, která se zde však projevuje pouze v relativně malých objemech vzduchu v souvislosti s el. výboji blesků nebo hrotovými výboji. Princip spočívá v tom, že v lokálně dostatečně silných elektrických polích získávají volné elektrony takovou kinetickou energii svého pohybu, že při nárazech na neutrální molekuly působí jejich ionizaci. Viz též ionosféra.
a) do atmosféry shora pronikající kosmické záření, které má převážně charakter korpuskulárního záření; o dominantní roli tohoto záření prakticky v celém vertikálním profilu atmosféry svědčí růst koncentrace atmosférických iontů s výškou;
b) radioaktivní záření od radioaktivních příměsí obsažených v půdě, popř. odtud rozptýlených do vzduchu; uplatňuje se v nejspodnějších vrstvách atmosféry ve vertikálním rozsahu přibližně odpovídajícím mezní vrstvě atmosféry.
Kromě toho dochází v atmosféře i k tzv. ionizaci nárazem, která se zde však projevuje pouze v relativně malých objemech vzduchu v souvislosti s el. výboji blesků nebo hrotovými výboji. Princip spočívá v tom, že v lokálně dostatečně silných elektrických polích získávají volné elektrony takovou kinetickou energii svého pohybu, že při nárazech na neutrální molekuly působí jejich ionizaci. Viz též ionosféra.
česky: ionizace atmosférická; angl: ionization of atmosphere; slov: atmosférická ionizácia; něm: Ionisation der Atmosphäre f 1993-a3
ионизирующая радиация
v meteorologii označení pro záření způsobující atmosférickou ionizaci. Může jím být korpuskulární i elektromagnetické záření. Viz též záření radioaktivní.
česky: záření ionizující; angl: ionizing radiation; slov: ionizujúce žiarenie; něm: ionisierende Strahlung f 1993-a1
ионосфера
ionizovaná část atmosféry, tj. elektricky vodivé vrstvy v atmosféře rozkládající se ve výšce přibližně od 60 až do 1 000 km, kde postupně přechází v plazmasféru. V ionosféře, která zahrnuje část mezosféry, termosféru a spodní část exosféry, je většina částic ionizována, tj. nalézá se v plazmatickém stavu. Vysoká koncentrace iontů a volných elektronů způsobuje odraz některých frekvencí elmag. vln zpět k zemskému povrchu, čímž je ovlivňováno rádiové spojení. Směrem vzhůru přechází ionosféra v zemskou magnetosféru. Viz též bouře ionosférická, ionizace atmosférická, slapy ionosférické, vítr ionosférický, vrstvy ionosférické, vodivost vzduchu elektrická, ionosférická porucha náhlá, atmosféra horní.
Termín navrhl skotský radiotechnik R. A. Watson-Watt v r. 1926. Vytvořil ho analogicky k pojmům troposféra a stratosféra z řec. ἰόν (viz ionty atmosférické) a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: ionosféra; angl: ionosphere; slov: ionosféra; něm: Ionosphäre f 1993-a3
ионосферная буря
prudké a nepravidelné změny koncentrace iontů v ionosféře, spojené s poruchami v celé horní atmosféře, včetně magnetosféry a termosféry. Hlavním spouštěcím mechanizmem ionosférických bouří je sluneční vítr, který působí na magnetosféru. Důsledkem těchto interakcí je přenos energie do zemské atmosféry. Nejvíce se projevuje v poruchách vrstvy F2. Korpuskule pronikají buď z interplanetárního prostoru, nebo z vnějšího zemského radiačního pásu. Ionosférické bouře jsou doprovázeny magnetickými bouřemi, tj. poruchami v zemském magnetickém poli, které se často projevují polárními zářemi a kolísáním intenzity rádiového příjmu. Jev trvá většinou několik dnů.
česky: bouře ionosférická; angl: ionospheric storm; slov: ionosférická búrka; něm: lonosphärensturm m; fr: tempête magnétique f, orage magnétique m 1993-a3
ионосферные приливы
kolísání ionosféry způsobené gravitačním vlivem Měsíce a gravitačním i radiačním vlivem Slunce.
česky: slapy ionosférické; angl: ionospheric tides; slov: ionosférické slapy; něm: lonosphärengezeiten pl, Gezeiten in der Ionosphäre pl 1993-a3
ионосферные слои
vrstvy v ionosféře ve výšce 60 až 500 km, které se vyznačují velkou elektrickou vodivostí vzduchu způsobenou vysokou koncentrací molekulárních i atomárních iontů a volných elektronů. Rozlišujeme několik vrstev s max. koncentrací iontů, které se označují písmeny D, E, F1 a F2. Výška a intenzita těchto vrstev se mění v závislosti na denní a roč. době a intenzitě sluneční činnosti. Jednotlivé ionosférické vrstvy lámou, pohlcují a odrážejí elmag. vlny různých vlnových délek, a jsou proto významné pro rádiové spojení na Zemi. K poznatkům o existenci el. vodivých vrstev ve vysokých hladinách atmosféry dospěli v r. 1902 současně Američan A. E. Kennelly a Angličan O. Heaviside. Předpoklad o jejich výskytu však vyslovil už v r. 1878 B. Stewart při studiu teorie denních variací magnetického pole Země. Viz též vrstva D, vrstva E, vrstva F1, vrstva F2.
česky: vrstvy ionosférické; angl: ionospheric layers; slov: ionosférické vrstvy; něm: ionosphärische Schichten f/pl 1993-a3
ионосферный ветер
označení pro shluky (oblaky) ionizovaných částic v nižší ionosféře, které se pohybují spolu s nenabitými částicemi se vzdušným proudem v dané hladině.
česky: vítr ionosférický; angl: ionospheric wind; slov: ionosférický vietor; něm: lonosphärenwind m 1993-a1
иридесценция
v atmosférické optice synonymum pro irizaci oblaků. V současné odborné literatuře, zejména anglosaského původu, se tento termín vůči irizaci upřednostňuje. V obecném smyslu však jde o širší optický pojem označující vznik barevných odstínů na některých površích, kdy vzhled těchto odstínů závisí na úhlu pohledu, event. na úhlu dopadu světelných paprsků.
Termín pochází z lat. iris (gen. iridis) „duha“ (z řec. Ἶρις [Iris] „bohyně duhy, duha“) a přípony -escens „stávající se nějakým“, doslova tedy znamená „zduhovění“.
česky: iridescence; angl: iridescence; slov: iridescencia 2014
иризация
barevné, často velmi proměnlivé zabarvení okrajů nebo průsvitných částí oblaků. V barvách převládá zelená a růžová. Irizace je převážně ohybovým jevem zvláště do úhlové vzdálenosti 10° od Slunce. U vodních, popř. smíšených oblaků jev zpravidla vzniká ohybem slunečních paprsků na konturách sférických oblačných kapek, u ledových oblaků se uplatňuje ohyb na souborech náhodně orientovaných jehlicovitých ledových krystalků, což je typické např. pro perleťové oblaky. Viz též iridescence.
Termín pochází z lat. iris „duha“ (z řec. Ἶρις [Iris] „bohyně duhy, duha“), doslova tedy znamená „zduhovění“.
česky: irizace; angl: irisation; slov: irizácia; něm: Irisieren n 1993-a3, ed. 2024
искусственная радиоактивность атмосферы
radioaktivita atmosféry vyvolaná lidskou činností, např. nukleárními nebo termonukleárními výbuchy, únikem z jaderných reaktorů, manipulací s radioaktivními materiály apod.
česky: radioaktivita atmosféry umělá; angl: artificial radioactivity; slov: umelá rádioaktivita atmosféry; něm: künstliche Radioaktivität f 1993-a2
искусственное воздействие на погоду
každý umělý zásah člověka do přirozeného průběhu atm. procesů cestou zpravidla krátkodobé a lokální změny fyz. nebo chem. vlastností části atmosféry technickými prostředky. Je to především ovlivňování vývoje oblaků, srážek a mlh, zeslabení nebo likvidace přízemních mrazíků apod. Patří sem i tzv. antropogenní ovlivňování počasí jako označení pro obvykle nežádoucí ovlivňování průběhu počasí negativními účinky lidské činnosti, zejména průmyslu a energetiky. Umělé ovlivňování počasí může mít význam v různých oborech, zejména v zemědělství, dopravě, ve vojenství atd. Viz též infekce oblaků umělá, ventilátory protimrazové.
česky: ovlivňování počasí umělé; angl: artificial weather modification; slov: umelé ovplyvňovanie počasia; něm: künstliche Wetterbeeinflussung f 1993-a3
искусственное облако
oblak vznikající v důsledku lidské činnosti. Mezi umělé oblaky řadíme kupovité oblaky vytvářející se nad komíny nebo chladícími věžemi průmyslových a energetických komplexů, při požárech způsobených člověkem, jaderných výbuších, dále kondenzační pruhy za letadly apod. Většinou jde o místní oblačnost. Viz též oblak průmyslový, oblak radioaktivní.
česky: oblak umělý; angl: artificial cloud; slov: umelý oblak; něm: künstliche Wolke f 1993-a3
искусственный климат
klima přetvářené lidskou společností, a to zvláště v procesu kolonizace, industrializace a urbanizace. Člověk ovlivňuje klima tím, že mění některé geografické klimatotvorné faktory, především aktivní povrch, při rozsáhlém odlesňování, vysoušení bažin, výstavbě vodních děl, městských sídel a průmyslových aglomerací. Viz též faktory klimatotvorné antropogenní.
česky: klima civilizační; angl: artificial climate, civilization climate; slov: civilizačná klíma 1993-b1
искусственный дождь
česky: déšť umělý; angl: artificial rain; slov: umelý dážď; něm: künstlicher Regen m; fr: pluie artificielle f 1993-a1
исландский минимум
syn. cyklona severoatlantická – permanentní akční centrum atmosféry nad sev. částí Atlantského oceánu, s nejčastější polohou středu v oblasti Islandu. Islandská cyklona je důležitým článkem severoatlantického deformačního pole ve všeobecné cirkulaci atmosféry. Je permanentně oživována sériemi cyklon vytvářejících se na atlantické polární frontě, která probíhá jižně od ní, jakož i arktickou frontou, která probíhá na sever od ní. Islandská cyklona je rozsáhlý tlakový útvar, který má často několik samostatných středů cyklony, zvláště v prostoru mezi Kanadou a Barentsovým mořem. Má v průběhu celého roku rozhodující význam pro počasí a klima převážné části Evropy, protože usměrňuje postup frontálních systémů z Atlantiku nad evropskou pevninu, a tím i transport vláhy do vnitrozemí. Podmiňuje typickou proměnlivost počasí i nad naším územím.
česky: cyklona islandská; angl: Icelandic low; slov: islandská cyklóna; něm: Islandtief n; fr: dépression d'Islande f 1993-a3
испарение
výpar z vlhkých povrchů, tj. z volné vodní hladiny, z půdy, zvlhčeného povrchu rostlin apod. Zpravidla pod evaporaci zahrnujeme i sublimaci sněhové pokrývky a ledu. Intenzita evaporace závisí na fyz. vlastnostech daného povrchu (míře nasycení vodou, teplotě, drsnosti, barvě apod.) i na met. podmínkách, především na vlhkosti vzduchu, vyjádřené např. sytostním doplňkem, dále na rychlosti větru, tlaku vzduchu aj. V bioklimatologii je evaporace označována též jako neproduktivní výpar, protože není v přímé souvislosti s produkcí biomasy.
Termín pochází z lat. evaporatio „vypařování“ (z ex „z, od“ a vapor „pára, výpar“).
česky: evaporace; angl: evaporation; slov: evaporácia; něm: Verdunstung f; fr: évaporation f 1993-a3
испарение
syn. výpar celkový – souborné označení pro evaporaci a transpiraci. Viz též výpar, evapotranspirometr.
Termín zavedl amer. klimatolog C. W. Thornthwaite v r. 1944. Vytvořil ho spojením slov evaporace a transpirace.
česky: evapotranspirace; angl: evapotranspiration; slov: evapotranspirácia; něm: Evapotranspiration f; fr: évapotranspiration f 1993-a3
испарение
1. fázový přechod vody z kapalného do plynného skupenství, jímž vzniká vodní pára, přičemž dochází ke spotřebování latentního tepla výparu. V případě, že probíhá do nenasyceného vzduchu, převažuje nad opačným procesem, kondenzací vodní páry.
2. meteorologický prvek vyjadřující množství vody, které se za určitou dobu vypaří z nejrůznějších povrchů (evaporace) popř. i prostřednictvím rostlinných těl (transpirace) nebo oběma způsoby (evapotranspirace). Přitom se rozlišuje výpar potenciální (někdy též maximálně možný) a výpar skutečný (někdy též aktuální nebo efektivní). Vyjadřuje se obdobně jako úhrn srážek výškou vodního sloupce v mm. Provádí se měření výparu pomocí výparoměru, častěji však je výpar určován výpočtem. Představuje jednu z hlavních složek hydrologické bilance a významně ovlivňuje tepelnou bilanci zemského povrchu a přilehlého vzduchu. V tomto smyslu se pod výpar řadí i vznik vodní páry sublimací. Viz též vzorec Kuzminův, izoatma, izoombra, vztah Šatského.
2. meteorologický prvek vyjadřující množství vody, které se za určitou dobu vypaří z nejrůznějších povrchů (evaporace) popř. i prostřednictvím rostlinných těl (transpirace) nebo oběma způsoby (evapotranspirace). Přitom se rozlišuje výpar potenciální (někdy též maximálně možný) a výpar skutečný (někdy též aktuální nebo efektivní). Vyjadřuje se obdobně jako úhrn srážek výškou vodního sloupce v mm. Provádí se měření výparu pomocí výparoměru, častěji však je výpar určován výpočtem. Představuje jednu z hlavních složek hydrologické bilance a významně ovlivňuje tepelnou bilanci zemského povrchu a přilehlého vzduchu. V tomto smyslu se pod výpar řadí i vznik vodní páry sublimací. Viz též vzorec Kuzminův, izoatma, izoombra, vztah Šatského.
česky: výpar; angl: evaporation; slov: výpar; něm: Verdunstung f 1993-a3
испаритель
u nás nepoužívané označení pro výparoměr.
Termín se skládá z řec. ἀτμός [atmos] „pára“ a μέτρον [metron] „míra, měřidlo“.
česky: atmometr; angl: atmidometer, atmometer, evaporimeter; slov: atmometer; něm: Atmometer n, Verdunstungsmesser m; fr: évaporomètre m, atmomètre m, atmidomètre m 1993-a1
испаритель
syn. evaporimetr – přístroj k měření výparu. Nejčastěji se měří výpar z volné vodní hladiny výparoměry a výpar z půdy s vegetací evapotranspirometry. Pro mikroklimatická měření v porostech je používán tzv. Picheův výparoměr.
česky: výparoměr; angl: atmidometer, atmometer, evaporimeter; slov: výparomer; něm: Atmometer n, Evaporimeter n, Verdunstungsmesser m 1993-a3
испаритель Вильда
nejstarší výparoměr pro měření potenciálního výparu vody z vodní hladiny v meteorologické budce. Je tvořen listovními vahami, na nichž je umístěna kruhová miska o průřezu 250 cm2, naplněná destilovanou vodou. Úbytek vody vypařováním za interval měření se určí podle poklesu hmotnosti misky. Přístroj zkonstruoval švýcarský meteorolog H. Wild (1871). Tento výparoměr je jediný, který umožňuje měření výparu z povrchu ledu v zimním období. Údaje Wildova výparoměru jsou však zatíženy řadou systematických chyb a špatně korelují s výparem z vodní hladiny v přírodních i umělých nádržích. Proto se na území ČR přestal v 50. letech 20. století používat. V současné době je provozován na meteorologické stanici Praha Karlov.
česky: výparoměr Wildův; angl: Wild evaporimeter; slov: Wildov výparomer; něm: Verdunstungswaage nach Wild f, Wild-Waage f 1993-a3
испаритель ГГИ-3000
česky: výparoměr GGI 3000; angl: evaporimeter GGI 3000; slov: výparomer GGI 3000 1993-a3
испаритель Пише
výparoměr sloužící k přibližnému určení hodnoty potenciálního výparu na různých místech v témže časovém období. Používá se hlavně při terénních průzkumech. Je tvořen kalibrovanou skleněnou odměrkou, která má ve svém dně oko k zavěšení. Otevřený konec odměrky naplněné destilovanou vodou se uzavře kotoučkem zeleného savého papíru ve středu propíchnutého a přitlačovaného k otvoru trubice pružinou. Picheův výparoměr se při měření zavěšuje otevřeným koncem směrem k zemi. Z papíru trvale nasyceného vodou z odměrky se voda vypařuje. Její úbytek se určí z poklesu výšky hladiny v odměrce. Přístroj zkonstruoval A. Piche v r. 1873.
česky: výparoměr Picheův; angl: Piché evaporimeter; slov: Picheov výparomer; něm: Evaporimeter nach Piche n 1993-a2
испарительный бассейн
výparoměr tvořený dostatečně rozměrným zásobníkem vody, ve kterém lze přesně měřit výšku vodní hladiny. Pro svou nákladnost, velké rozměry a náročnost obsluhy a údržby se používá jen na specializovaných pracovištích.
česky: bazén výparoměrný; angl: evaporation tank; slov: výparomerný bazén; něm: Verdunstungsgefäß n; fr: bac d'évaporation m 1993-a1
испаряемость
syn. výparnost – maximálně možný výpar, který by nebyl limitován množstvím vody k vypařování, jako je tomu u skutečného výparu. Vyjadřuje schopnost atmosféry za daných meteorologických podmínek odnímat vodu příslušnému povrchu, tedy vodní hladině nebo povrchu vlhké půdy (potenciální evaporace), popř. i rostlinám bohatě zásobeným vodou (potenciální transpirace) nebo obojímu (potenciální evapotranspirace). Potenciální výpar může být vypočten pomocí nejrůznějších empirických vzorců, případně ho lze měřit pomocí výparoměrů se stálým dostatkem vody.
česky: výpar potenciální; angl: evaporativity, potential evaporation; slov: potenciálny výpar; něm: potentielle Verdunstung f 1993-a3
исследовательский спутник
syn. sounder – radiometr na meteorologické družici, jehož primárním zaměřením je družicová sondáž atmosféry, doplňující radiosondážní nebo další měření ze zemského povrchu. Např. družice MTG, konkrétně MTG-S, bude vybavena sondážním radiometrem IRS.
česky: radiometr družicový sondážní; angl: sounder; slov: sondážny družicový rádiometer 2014
истинное суточное среднее метеорологического элемента
prům. denní hodnota meteorologického prvku stanovená integrací průběžně pozorovaných nebo plynule registrovaných hodnot tohoto prvku za 24 hodin. Lze ji např. určit graf. planimetrováním. V praxi se nejčastěji určuje jako průměr vypočtený z 24 hodinových pozorování vykonaných během jednoho dne.
česky: průměr meteorologického prvku denní pravý; angl: true daily (diurnal) mean of meteorological element; slov: pravý denný priemer meteorologického prvku; něm: wahres Tagesmittel des meteorologischen Elementes n 1993-a2
истинный ветер
vektor rychlosti větru v souřadnicové soustavě pevně spojené se zemským povrchem. Viz též vítr zdánlivý.
česky: vítr pravý; angl: true wind; slov: pravý vietor; něm: wahrer Wind m 1993-a3
историческая климатология
část klimatologie, která se zabývá studiem historického klimatu, především z hlediska kolísání klimatu. Opírá se přitom o poznatky z referenčního období, kdy je možné určit závislosti mezi meteorologickými měřeními a údaji z historických dokumentárních pramenů. K rekonstrukci klimatu období před počátkem pravidelných met. měření pak využívá záznamů pravidelných meteorologických pozorování bez přístrojů, dále pak kronikářských a jiných zpráv o povětrnostních extrémech, o charakteru jednotlivých sezon apod. Kromě přímých pozorování má k dispozici i proxy data dokumentární povahy, např. údaje o stavu vodních toků (o povodních, hydrologickém suchu, ledových jevech apod.) nebo záznamy hospodářského charakteru (o neúrodách, počátcích žní apod.). Stejně jako paleoklimatologie může využívat i proxy data přírodního charakteru, především poznatky z dendroklimatologie, archeologie a palinologie, která se zabývá pylovou analýzou.
česky: klimatologie historická; angl: historical climatology; slov: historická klimatológia; něm: historische Klimatologie f 1993-a3
источник загрязнения атмосферы
přírodní nebo umělý objekt, z něhož se šíří do ovzduší znečišťující látky. Podle umístění nad zemským povrchem rozeznáváme zpravidla zdroje znečišťování ovzduší přízemní a vyvýšené; podle tvaru zdroje bodové, liniové, plošné a prostorové; podle časového režimu emise rozlišujeme zdroje plynulé (kontinuální) s konstantní nebo spojitě proměnnou emisí, přerušované a okamžité (exploze). Dále lze zdroje znečišťování ovzduší dělit na pohyblivé a nepohyblivé (stacionární). Mezi těmito kategoriemi zdrojů jsou různé přechodné a kombinované formy. Významným typem zdrojů je v našich podmínkách tovární komín, který je zpravidla možno považovat za bodový, vyvýšený a plynulý zdroj. Viz též vlečka kouřová.
česky: zdroj znečišťování ovzduší; angl: source of air pollution; slov: zdroj znečisťovania ovzdušia; něm: Quelle der Luftverunreinigung f 1993-a2
июньский «овечий холод»
ochlazení ve stř. Evropě, které nastává dosti pravidelně v první polovině června v důsledku vzestupu tlaku vzduchu v oblasti Azorských ostrovů, a tím zesílení sz. složky proudění. Příliv chladnějšího mořského vzduchu se projevuje i zvýšenou srážkovou činností. Název této singularity pochází z něm. hovořících zemí a souvisí s tím, že v uvedeném období bývají čerstvě ostříhány ovce, které potom trpí chladem. Chladna ovčí jsou součástí delšího období chladnějšího deštivého počasí nazývaného medardovské počasí. Viz též muži ledoví.
česky: chladna ovčí; slov: ovčie chladno; něm: Schafkälte f 1993-a1
облакомер
syn. ceilometr.
česky: měřič základny oblaků; angl: ceilometer; slov: merač základne oblakov; něm: Wolkenhöhenmesser m 1993-b3