Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene т

X
таблицы для приведения атмосферного давления к данному уровню
všeobecné označení pro tabulky, které se dříve používaly k redukci tlaku vzduchu v určité nadm. výšce na jinou nadm. výšku. Nejčastěji byly tyto tabulky zpracovány pro redukci tlaku vzduchu změřeného ve výšce nádobky tlakoměru nebo v úrovni aneroidu na nadm. výšku vztažného bodu letiště (tlak QFE) nebo na stř. hladinu moře podle mezinárodní standardní atmosféry ICAO (tlak QNH) nebo pro redukci tlaku na hladinu moře podle výškové barometrické formule.
česky: tabulky barometrické redukční angl: barometric reduction tables slov: redukčné barometrické tabuľky  1993-a3
тавтохрона
čára spojující místa, na nichž byl pozorován výskyt určitého jevu nebo daná hodnota meteorologického prvku ve stejném čase. Např. na mapě nástupu určité fenologické fáze tautochrona spojuje místa, na nichž byl tento nástup pozorován ve stejný den. Název tautochrona zavedl W. Bezold (1892) původně pro znázornění časového průběhu teplot v půdním profilu na daném místě. Viz též izobronta.
česky: tautochrona slov: tautochrona  1993-a1
тайфун
regionální označení plně vyvinuté tropické cyklony v oblasti sz. Tichého oceánu západně od datové hranice. Desetiminutový (v USA minutový) průměr rychlosti přízemního větru v něm dosahuje nejméně 33 m.s–1; pokud dosáhne 67 m.s–1, mluvíme o supertajfunu. Na Filipínách se pro tajfun používá označení baguio.
česky: tajfun angl: typhoon slov: tajfún  1993-a3
таяние
rozpouštění sněhu nebo ledu v důsledku zvýšení jejich teploty nad 0 °C. Ke změně pevného skupenství vody na kapalné dochází v přírodě především:
a) následkem advekce teplého vzduchu nad povrch sněhu nebo ledu;
b) účinkem přímého slunečního záření, které je absorbováno sněhem nebo ledem;
c) v důsledku deště s teplotou kapek vyšší než 0 °C. Dále tání nastává i vedením tepla z půdy, na vozovkách při stlačení sněhu za teplot slabě pod nulou, při chemickém posypu apod.
česky: tání sněhu nebo ledu angl: thaw slov: topenie snehu alebo ľadu  1993-a2
твердые осадки
ve smyslu české odborné meteorologické terminologie hydrometeor pevného skupenství, který je tvořený ledovými částicemi dopadajícími z oblaků na zemský povrch nebo usazenými na předmětech na zemském povrchu, popř. v atmosféře, např. na plochách letadla, na povrchu balonu apod. Mezi tuhé padající srážky patří sníh, sněhové krupky, sněhová zrna, zmrzlý déšť nebo krupky, kroupy a ledové jehličky. K usazeným tuhým srážkám řadíme zmrzlou rosu, jíní, námrazu a ledovku. Viz též srážky smíšené, srážky kapalné.
česky: srážky tuhé angl: solid precipitation slov: tuhé zrážky něm: fester Niederschlag m  1993-a3
твистер
hovorové označení pro tornáda (používané především v USA).
česky: twister angl: twister slov: twister  1993-a3
текущая погодa
charakteristika především význačných atmosférických jevů na meteorologické stanici nebo v jejím dohledu v termínu pozorování. Při výskytu více jevů se jako stav počasí uvádí nejdůležitější jev, tj. nejvyšší kódové číslo z příslušné kódové tabulky. Pokud se v termínu pozorování nevyskytuje významný jev, považuje se za stav počasí vývoj vzhledu oblohy (změny vývoje oblačnosti) a výskyt atm. jevů v poslední hodině předcházející termínu pozorování. Údaje o stavu počasí se uvádějí ve zprávách SYNOP, SHIP, METAR aj. Viz též průběh počasí, počasí skutečné.
česky: stav počasí angl: present weather slov: stav počasia něm: aktuelles Wetter n, Wetterzustand m  1993-a3
текущая погода
soubor údajů o skutečném stavu ovzduší, vztahující se k určitému místu a času. Skutečné počasí zpravidla popisujeme údaji o teplotě, tlaku a vlhkosti vzduchu, o směru a rychlosti větru, o stavu počasí (déšť, sněžení, bouřka, mlha apod.), o oblačnosti, dohlednosti, popř. dalšími charakteristikami. V letecké meteorologii se pro počasí skutečné používá i termín počasí aktuální nebo aktuál.
česky: počasí skutečné angl: current weather slov: skutočné počasie něm: tatsächliches Wetter n  1993-a2
текущая погода, реальная погода
slang. označení pro počasí skutečné.
česky: aktuál slov: aktuál fr: météo en temps réel f  1993-a1
телебарометр
málo používané označení pro tlakoměr přizpůsobený k dálkovému přenosu údajů o tlaku vzduchu. Viz též měření tlaku vzduchu.
česky: telebarometr angl: telebarometer slov: telebarometer  1993-a1
ТЕМП
zpráva o tlaku a teplotě vzduchu, o deficitu teploty rosného bodu a o směru a rychlosti větru ve standardních izobarických hladinách a také v hladinách významných změn vert. průběhu teploty a rychlosti větru. Zpráva se sestavuje podle kódu TEMP. Část A, resp. C této zprávy obsahuje údaje o všech uvedených parametrech volné atmosféry ve standardních izobarických hladinách do 100, resp. nad 100 hPa. V části B, resp. D, jsou uvedeny hodnoty teploty a deficitu teploty rosného bodu v hladinách významných změn vert. průběhu teploty do hladiny 100, resp. nad 100 hPa (sekce 5) a významné změny větru (sekce 6). Zpráva TEMP obsahuje i údaje o tropopauze, o max. rychlosti a vert. střihu větru v rozsahu daného měření. Zprávy TEMP se vysílají každých šest nebo každých dvanáct hodin a slouží kromě rozboru teplotního zvrstvení ovzduší a vertikálního profilu větru na daném místě také k sestavování výškových met. map. Zpráva z mořské stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách se sestavuje podle kódu TEMP SHIP. Viz též měření aerologické, měření meteorologických prvků v mezní vrstvě a volné atmosféře.
česky: zpráva z pozemní stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách (TEMP) angl: Upper level pressure, temperatur, humidity and wind report from a fixed land station (TEMP) slov: správa z pozemnej stanice o tlaku, teplote, vlhkosti a vetre vo vyšších hladinách  1993-a3
температура
jedna ze zákl. fyz. veličin. Je mírou stř. kinetické energie termického pohybu molekul a její jednotkou je v soustavě SI kelvin (K). V met. praxi se však teplota vzduchu nebo půdy dodnes nejčastěji udává ve stupních Celsiovy teplotní stupnice. Viz též stupnice teplotní Kelvinova, stupnice teplotní Fahrenheitova.
česky: teplota angl: temperature slov: teplota  1993-a1
температура в градусах Кельвина
česky: teplota Kelvinova angl: Kelvin temperature slov: Kelvinova teplota  1993-a3
температура в градусах Реомюра
česky: teplota Réaumurova angl: Réaumur temperature slov: Réaumurova teplota  1993-a1
температура в градусах Цельсия
česky: teplota Celsiova angl: Celsius temperature slov: Celziova teplota  1993-a1
температура воздуха
meteorologický prvek udávající tepelný stav ovzduší. Měří se teploměrem, který je v dobrém tepelném kontaktu se vzduchem a dokonale chráněn před přímým slunečním zářením. Podle doporučení Světové meteorologické organizace mají být čidla teploměrů ve výšce 1,25 až 2,0 m nad zemí. Údaje teploty vzduchu z přízemních stanic ČR teploty vzduchu představují hodnoty teploty vzduchu ve výšce 2 m nad zemským povrchem měřené v meteorologické budce nebo radiačním krytu. Hodnota teploty vzduchu se udává v příslušné teplotní stupnici. Viz též měření teploty vzduchu, inverze teploty vzduchu, gradient teplotní, profil teploty vzduchu, izoterma, pole teplotní, extrémy teploty vzduchu, suma záporných teplot.
česky: teplota vzduchu angl: air temperature slov: teplota vzduchu  1993-a3
температура воздуха приведенная к уровню моря
teoretická hodnota teploty vzduchu na stanici, pokud by její nadm. výška byla nulová. Určuje se redukcí teploty vzduchu. Používá se v klimatologii k eliminaci vlivu nadm. výšky na teplotu vzduchu, což umožňuje zvýraznit vliv jiných klimatických faktorů. Znázorňuje se především na klimatologických mapách větších území, a to pomocí redukovaných izoterem.
česky: teplota vzduchu redukovaná na hladinu moře angl: temperature reduced to sea level slov: teplota vzduchu redukovaná na hladinu mora  1993-a3
температура воздуха у земной поверхности
syn. teplota přízemní – 
1. teplota vzduchu měřená ve výšce 5 cm nad zemí nebo nad povrchem sněhové pokrývky.
2. v aerologii teplota vzduchu ve výšce 2 m nad zemí, na rozdíl od teploty vzduchu měřené aerol. prostředky v mezní vrstvě atmosféry a ve volné atmosféře.
česky: teplota vzduchu přízemní angl: grass temperature, ground temperature, surface temperature slov: prízemná teplota vzduchu  1993-a3
температура замерзания
syn. bod mrznutí.
česky: teplota mrznutí angl: freezing point slov: teplota mrznutia  1993-a1
температура излучения
syn. teplota jasová – fiktivní teplota vyzařujícího reálného tělesa, která odpovídá teplotě absolutně černého tělesa, emitujícího v daném spektrálním pásmu (kanálu), resp. vlnové délce, záření stejné intenzity jako je záření reálného tělesa naměřené radiometrem. Někdy se používá termín teplota jasová. Radiační teplota oblačnosti je silně závislá na mikrofyzikálním složení, optické hustotě a na vlnové délce spektrální oblasti, ve které oblačnost pozorujeme. Vzhledem k tomu, že většina reálných objektů má emisivitu menší než jedna, je radiační teplota ve většině případů (s výjimkou částečně transparentní oblačnosti) nižší než teplota reálná (termodynamická).
česky: teplota radiační angl: black-body temperature, brightness temperature slov: radiačná teplota  2014
температура конвективного уровня конденсации
česky: teplota konvekční kondenzační hladiny angl: temperature of the convection condensation level slov: teplota konvekčnej kondenzačnej hladiny  1993-a1
температура конвекции
hodnota přízemní teploty vzduchu, při jejímž dosažení v denním chodu nastanou podmínky vhodné pro spontánní vývoj konvektivních oblaků. Na termodynamickém diagramu se určí jako průsečík přízemní izobary a suché adiabaty, která prochází bodem vyznačujícím na křivce teplotního zvrstvení polohu konvektivní kondenzační hladiny. Hodnotu konv. teploty lze použít při předpovědi vývoje konv. oblačnosti za předpokladu, že poloha přízemní teploty rosného bodu se významně nezmění. Viz též instabilita atmosféry termická.
česky: teplota konvekční angl: convection temperature, convective temperature slov: konvekčná teplota  1993-a3
температура наружного воздуха
ve stavebně tech. praxi označení pro teplotu vzduchu, měřenou na meteorologické stanici, které se užívá pro odlišení od teploty uvnitř budov nebo místností.
česky: teplota venkovní angl: external temperature slov: vonkajšia teplota  1993-a2
температура плавления
syn. bod tání.
česky: teplota tání angl: melting point, temperature of fusion slov: teplota topenia  1993-a1
температура по сухoму ртутному термометру
teplota udávaná suchým teploměrem psychrometru, který je v dobrém tepelném kontaktu se vzduchem, správně ventilovaný a dokonale chráněný před přímým slunečním zářením. Jde o teplotu vzduchu v met. významu. Nevhodně je někdy označována jako suchá teplota.
česky: teplota suchého teploměru angl: dry-bulb temperature slov: teplota suchého teplomeru  1993-a2
температура поверхности моря
(SST, Sea Surface Temperature) – teplota vody na mořské hladině nebo v její blízkosti do hloubky několika metrů. V prvním případě se určuje na základě družicových meteorologických měření, v druhém případě na námořních meteorologických stanicích. Teplota povrchové vrstvy vody vykazuje podstatně menší gradienty a méně výrazný denní a roční chod než teplota půdy, což je způsobeno neustálým promícháváním vody, jejím větším objemovým měrným teplem a určitou propustností pro přímé sluneční záření. Teplota povrchu moře významně ovlivňuje interakci atmosféry a oceánu, proto patří k důležitým vstupům do modelů numerické předpovědi počasí i do modelů klimatu.
česky: teplota povrchu moře angl: sea-surface temperature slov: teplota povrchu mora  1993-a3
температура почвы
teplota složek půdy v různých hloubkách pod zemským povrchem. Pedosféra se vyznačuje obecně malou tepelnou vodivostí, což platí především v případě pórovitých půd o nízké vlhkosti půdy. Z tohoto důvodu směrem do hloubky prudce klesá vliv výkyvů přízemní teploty vzduchu a dalších meteorologických prvků na teplotu půdy, který může být dále zeslaben sněhovou pokrývkou, hustou vegetací, vrstvou opadanky apod. Při promrzání půdy i při opětovném tání je její teplota podstatně ovlivňována latentním teplem mrznutí, resp. tání. Půdní klima z hlediska denního a ročního chodu teploty půdy v různých hloubkách popisují Fourierovy zákony. Viz též měření teploty půdy.
česky: teplota půdy angl: soil temperature slov: teplota pôdy  1993-a3
температура смоченного термометра
1. teplota, které teor. nabude původně nenasycený vzduch po nasycení vodní párou. Proběhne-li tento proces jako děj adiabatický nebo děj izobarický, rozlišujeme:
a) adiabatickou vlhkou teplotu Tav. Pomocí termodynamického diagramu ji přibližně určíme tak, že uvažovanou vzduchovou částici převedeme po suché adiabatě do výstupné kondenzační hladiny, kde se vystupující vzduch stane nasyceným vodní párou. Odtud pak vzduchovou částici necháme sestoupit po nasycené adiabatě do výchozí hladiny, na níž přečteme Tav. Převedeme-li částici po nasycené adiabatě dále do tlakové hladiny 1 000 hPa, dostaneme adiabatickou vlhkou potenciální teplotu. Adiabatická vlhká potenciální teplota má ve vzduchu obsahujícím nasycenou vodní páru z hlediska podmínek pro vertikální stabilitu atmosféry analogický význam jako potenciální teplota v nenasyceném vzduchu;
b) izobarickou vlhkou teplotu Tiv. Při jejím určení předpokládáme, že k nasycení (vzhledem k rovinnému vodnímu povrchu) dojde za stálého tlaku vypařováním vody do uvažované vzduchové částice, jíž se odnímá teplo spotřebované na výpar. Tuto teplotu lze vypočítat podle vzorce
Tiv=TL wv(wsw) cp,
kde T značí teplotu vzduchu, Lwv latentní teplo vypařování, cp měrné teplo vzduchu při stálém tlaku, w, resp. ws skutečný směšovací poměr vodní páry, resp. směšovací poměr vodní páry odpovídající stavu nasycení.
Izobarická vlhká teplota je vždy vyšší než adiabatická vlhká teplota. Spolu s ní se v meteorologii používá k analýze termodyn. vlastností vzduchových hmot. Přejdeme-li na termodyn. diagramu z bodu určeného teplotou Tiv v uvažované tlakové hladině po nasycené adiabatě do hladiny 1 000 hPa, zjistíme na teplotní stupnici izobarickou vlhkou potenciální teplotu;
2. v meteorologii běžné zkrácené označení pro teplotu vlhkého teploměru, která se v ideálním případě (z hlediska funkce vlhkého teploměru a na něj působících vnějších faktorů) blíží izobarické vlhké teplotě. Ztotožňování teoreticky určené izobarické vlhké teploty a změřené teploty vlhkého teploměru, k čemuž někdy v praxi dochází, však není zcela přesné.
česky: teplota vlhká angl: wet-bulb temperature slov: vlhká teplota  1993-a1
температура смоченного термометра
česky: teplota vlhká izobarická angl: isobaric wet-bulb temperature slov: izobarická vlhká teplota  1993-a1
температура смоченного термометра
teplota udávaná vlhkým teploměrem psychrometru, který je v dobrém tepelném kontaktu se vzduchem, správně ventilovaný a dokonale chráněný před přímým slunečním zářením. Blíží se teplotě vlhké izobarické. Při záporné teplotě je třeba údaj doplnit o informaci, zda je nádobka obalena ledem.
česky: teplota vlhkého teploměru angl: wet-bulb temperature slov: teplota vlhkého teplomeru  1993-a3
температура таяния
syn. bod tání.
česky: teplota tání angl: melting point, temperature of fusion slov: teplota topenia  1993-a1
температура точки росы
syn. bod rosný – hodnota teploty, při níž se vlhký vzduch o dané hodnotě směšovacího poměru vodní páry stane nasyceným vzhledem k vodě následkem izobarického ochlazování. Při poklesu teploty pod hodnotu teploty rosného bodu dochází ke kondenzaci vodní páry obsažené ve vzduchu a vzniká rosa nebo mlha. Při relativní vlhkosti vzduchu menší než 100 % je teplota rosného bodu vždy nižší než teplota vzduchu. Deficit teploty rosného bodu je tím větší, čím je při dané teplotě vzduchu menší relativní vlhkost vzduchu. Na stanicích ČR se teplota přízemního rosného bodu získává výpočtem ze staničního tlaku vzduchu, hodnoty teploty vzduchu a relativní vlhkosti, měřených pomocí teplotně–vlhkostních senzorů HUMICAP, v případě nefunkčnosti tohoto přístroje pak výpočtem z údajů psychrometru. Teplotu rosného bodu lze také určit z psychrometrických tabulek. Na aerologickém diagramu se vynáší vertikální profil teploty rosného bodu jako charakteristika vertikálního profilu vlhkosti vzduchu. Teplotu rosného bodu v dané izobarické hladině lze např. určit z definice směšovacího poměru a vhodného řešení Clausiovy–Clapeyronovy rovnice. Přibližnou hodnotu teploty rosného bodu lze též měřit přímo kondenzačním vlhkoměrem nebo termohygroskopem. Teplota rosného bodu ve spojení s měřenou teplotou vzduchu patří k zákl. charakteristikám vlhkosti vzduchu a zakresluje se do synoptických map a aerologických diagramů. Využívá se v řadě empir. vzorců, např. ve Ferrelově vztahu, při předpovědi přízemních mrazů, mlhy apod. Patří ke konzervativním vlastnostem vzduchových hmot. Viz též teplota výstupné kondenzační hladiny, teplota bodu ojínění.
česky: teplota rosného bodu angl: dew point temperature slov: teplota rosného bodu  1993-a3
температура уровня конденсации
syn. teplota kondenzační adiabatická – teplota, při níž vzduchová částice ochlazovaná adiabaticky při konstantním směšovacím poměru dosáhne nasycení. Graficky je určena průsečíkem suché adiabaty, procházející bodem o daných souřadnicích p a T, s izogramou, procházející teplotou rosného bodu v izobarické hladině p. Tuto teplotu nelze zaměňovat s teplotou rosného bodu, i když v obou případech jde o teplotu částice přivedené k nasycení při konstantním směšovacím poměru. Nasycení je však u teploty kondenzační hladiny dosahováno dějem adiabatickým, zatímco u teploty rosného bodu dějem izobarickým. Teplota výstupné kondenzační hladiny je vždy nižší než teplota rosného bodu, jen v případě nasycené vzduchové částice se obě teploty rovnají a jsou shodné s teplotou vzduchu. Viz též teplota konvekční kondenzační hladiny.
česky: teplota výstupné kondenzační hladiny angl: temperature of lifting condensation level slov: teplota výstupnej kondenzačnej hladiny  1993-a1
температура уровня свободной конвекции
teplota určená na aerologickém diagramu průsečíkem křivky teplotního zvrstvenínasycenou adiabatou, vycházející z charakteristického bodu aerologického výstupu, tj. z průsečíku suché adiabaty vycházející z přízemní teploty vzduchu a izogramy, jež vychází z teploty rosného bodu. Viz též hladina volné konvekce.
česky: teplota hladiny volné konvekce angl: temperature of free convection level slov: teplota hladiny voľnej konvekcie  1993-a1
температурная радиация
elmag. záření emitované každým fyz. tělesem o teplotě vyšší než 0 K. V met.literatuře se pojem tepelné záření často užívá jako syn. dlouhovlnného záření. V případě měření z meteorologických družic se pod pojmem tepelné záření zpravidla rozumí záření ve spektrálním pásmu 3,5 až 12,5 µm.
česky: záření tepelné angl: thermal radiation slov: tepelné žiarenie  1993-a1
температурная стратификация атмосферы
syn. stratifikace atmosféry teplotní – průběh teploty vzduchu s výškou, vyjádřený vertikálním profilem teploty vzduchu, resp. vertikálním teplotním gradientem γ. V troposféře teplota s výškou obvykle klesá, tedy γ > 0; může však nastat i izotermie (γ = 0) nebo inverze teploty vzduchu (γ < 0). Vztah mezi hodnotou γ v určité hladině atmosféry, suchoadiabatickým teplotním gradientem γD a nasyceně adiabatickým teplotním gradientem γS určuje vertikální stabilitu atmosféry. Jestliže v suchém nebo nenasyceném vzduchu γ = γD, označujeme teplotní zvrstvení jako indiferentní; při γ < γD jde o stabilní zvrstvení, při γ > γD je teplotní zvrstvení atmosféry instabilní, viz absolutní instabilita atmosféry. V nasyceném vzduchu platí totéž při γ = γS, γ < γS (viz absolutní stabilita atmosféry) a γ > γS. Podmíněně instabilní zvrstvení, kdy γ < γD a zároveň γ > γS, způsobuje podmíněnou instabilitu atmosféry. Viz též vrstva inverzní, vrstva teplotní zadržující.
česky: zvrstvení atmosféry teplotní angl: thermal stratification slov: teplotné zvrstvenie ovzdušia  1993-a3
температурная шкала Кельвина
syn. stupnice teplotní absolutní, stupnice teplotní termodynamická – základní fyzikální teplotní stupnice. Vyjadřuje tzv. termodynamickou teplotu, označovanou též jako Kelvinova teplota nebo slangově absolutní teplota. Jednotkou této stupnice je kelvin (K); navrhl ji v roce 1848 angl. fyzik W. Thomson, pozdější lord Kelvin. Nulová hodnota (0 K) je přiřazena absolutní nule, tj. nejnižší teplotě, jíž lze teoreticky dosáhnout. Druhým referenčním bodem je trojný bod vody (273,16 K). V binárních kódech GRIB a BUFR se teploty uvádějí výhradně v K. Mezi Kelvinovou teplotní stupnicí a Celsiovou teplotní stupnicí platí vztah T(°C)=T(K)273,15.
česky: stupnice teplotní Kelvinova angl: Kelvin temperature scale slov: Kelvinova teplotná stupnica něm: Kelvin-Temperaturskala f  1993-b3
температурная шкала Ранкина
teplotní stupnice, jejíž nula je shodná s 0 K, tj. –273,15 °C, a velikost stupně je stejná jako u Fahrenheitovy teplotní stupnice. Má k Fahrenheitově stupnici analogický vztah jako stupnice KelvinovaCelsiově stupnici. Byla zavedena Skotem W. J. M. Rankinem.
česky: stupnice teplotní Rankinova angl: Rankin temperature scale slov: Rankinova teplotná stupnica něm: Rankin-Temperaturskala f  1993-a3
температурная шкала Реомюра
teplotní stupnice, dnes již nepoužívaná, která dělí teplotní interval mezi bodem mrznutí a bodem varu čisté vody při normálním tlaku vzduchu 1 013,25 hPa na 80 dílů (°R). Zavedl ji v roce 1731 franc. přírodovědec R. A. Ferchault de Réaumur. Mezi Réaumurovou teplotní stupnicí a Celsiovou teplotní stupnicí platí převodní vztah:
T(°R)=45T( °C)
česky: stupnice teplotní Réaumurova angl: Réaumur temperature scale slov: Réaumurova teplotná stupnica něm: Réaumur-Thermometerskala f  1993-a3
температурная шкала Фаренгейта
teplotní stupnice, která je se stupnicí Celsiovou spjata převodním vztahem:
T(°F)=95T (°C)+32,
v němž T(°F), resp. T(°C) značí údaj teploty ve stupních Fahrenheita, resp. Celsia. Fahrenheitova stupnice se nazývá podle D. G. Fahrenheita, který ji navrhl v roce 1714 a stanovil jako 0 °F rovnovážnou teplotu chladící směsi ledu, vody a salmiaku, jako 32 °F teplotu mrznutí vody a jako 212 °F teplotu varu vody. Normální teplota lidského těla je 96 °F. Fahrenheitova teplotní stupnice se doposud používá v některých anglosaských zemích, např. v USA. Viz též stupnice teplotní Rankinova.
česky: stupnice teplotní Fahrenheitova angl: Fahrenheit temperature scale slov: Fahrenheitova teplotná stupnica něm: Fahrenheit-Temperaturskala f  1993-a3
температурная шкала Цельсия
teplotní stupnice, která dělí teplotní interval mezi bodem mrznutí a bodem varu čisté vody při normálním tlaku vzduchu 1 013,25 hPa na 100 dílů (°C). Prvému z uvedených bodů přiřazuje teplotu 0 °C, druhému 100 °C. Celsiova teplotní stupnice je pojmenována podle švédského matematika a geodeta A. Celsia, který ji navrhl v roce 1736, avšak bod mrznutí označil jako 100° a bod varu 0°. Obrácení stupnice tak, jak se používá nyní, doporučil C. Linné (1745). Je to nejužívanější teplotní stupnice. Mezi Celsiovou teplotní stupnicí a stupnicí teplotní Kelvinovou platí vztah T(°C)=T (K)273,15.
česky: stupnice teplotní Celsiova angl: Celsius temperature scale slov: Celziova teplotná stupnica něm: Celsius-Temperaturskala f  1993-a3
тень Земли
česky: stín Země angl: shadow of the Earth slov: tieň Zeme něm: Erdschatten m  1993-a1
теорема Нормана
1. poznatek, že suchá adiabata vedená z naměřené teploty vzduchu v dané hladině, izograma vedená z odpovídající teploty rosného bodu a nasycená adiabata vedená z odpovídající teploty vlhkého teploměru, se protínají v charakteristickém bodě aerologického diagramu.
2. Meteorologický slovník AMS alternativně označuje jako Normandův teorém poznatek, že teplota rosného bodu je vždy nižší nebo rovna teplotě vlhkého teploměru, která je vždy nižší nebo rovna teplotě měřené suchým teploměrem. Tato relace však neplatí v přesyceném vzduchu nebo při teplotě pod bodem mrznutí, jestliže je vzduch přesycený vzhledem k ledu. Tzv. Normandův teorém v obou variantách se využíval v psychrometrii a je nazván podle C. W. B. Normanda (1921).
česky: teorém Normandův angl: Normand theorem slov: Normandova teoréma  1993-a3
теорема о циркуляции
vztah mezi cirkulací, rozdělením tlaku a měrného objemu v atmosféře. Podle něj jsou v absolutní souřadnicové soustavě změny cirkulace podél libovolné uzavřené křivky v každém čase rovny počtu izobaricko-izosterických solenoidů na ploše vymezené touto křivkou. Bjerknesův cirkulační teorém je obecným základem pro teoretické objasnění libovolných cirkulačních pohybů v atmosféře. Odvodil jej V. Bjerknes v letech 1898–1902.
česky: teorém cirkulační Bjerknesův angl: circulation theorem of Bjerknes slov: Bjerknesova cirkulačná teoréma  1993-a1
теорема циркуляции Бьеркнеса
vztah mezi cirkulací, rozdělením tlaku a měrného objemu v atmosféře. Podle něj jsou v absolutní souřadnicové soustavě změny cirkulace podél libovolné uzavřené křivky v každém čase rovny počtu izobaricko-izosterických solenoidů na ploše vymezené touto křivkou. Bjerknesův cirkulační teorém je obecným základem pro teoretické objasnění libovolných cirkulačních pohybů v atmosféře. Odvodil jej V. Bjerknes v letech 1898–1902.
česky: teorém cirkulační Bjerknesův angl: circulation theorem of Bjerknes slov: Bjerknesova cirkulačná teoréma  1993-a1
теория Бержерона-Финдейзена
teorie, která vysvětluje vznik srážkových částic ve smíšených oblacích. Základem vysvětlení je skutečnost, že při dané teplotě pod bodem mrazu je hodnota tlaku nasycené vodní páry nad ledem nižší než hodnota tlaku nasycené vodní páry nad vodou. Největší rozdíl mezi oběma hodnotami je při –12 °C. V oblaku nebo v jeho části, která sestává z drobných přechlazených vodních kapek, odpovídá tlak vodní páry hodnotě nasycení nad vodou a vodní pára nad ledem je tedy přesycená. Dojde-li ke vzniku ledových krystalků heterogenní nukleací na ledových jádrech nebo jiným mechanizmem (viz sekundární nukleace ledu), mohou krystalky v prostředí přesyceném vzhledem k ledu rychle růst depozicí vodní páry na účet vypařujících se vodních kapek. Narostou-li krystalky do dostatečné velikosti, budou padat k zemi a na své cestě dále porostou zachycováním a namrzáním přechlazených kapek. Tímto způsobem mohou ledové oblačné částice narůstat do rozměrů srážkových částic během 10 až 20 min, kdy začnou ve formě srážek z oblaku vypadávat. V nižších teplejších vrstvách atmosféry pak případně tají, a mění se v kapky deště. Tento proces je důležitý zejména při vývoji srážek z vrstevnaté oblačnosti v mírných zeměpisných šířkách. Základy této teorie, kterou dnes označujeme jako teorie vzniku srážek ledovým procesem, položil švédský meteorolog T. Bergeron v roce 1935 a teorii rozvinul něm. fyzik W. Findeisen v roce 1938. Část této teorie, vztahující se ke vzniku a růstu krystalků heterogenní nukleací ledu, popsal již v roce 1911 A. Wegener. Proto se tento proces růstu ledových částic a jejich transformace na déšť někdy označuje jako Bergeronův–Findeisenův–Wegenerův.
česky: teorie vzniku srážek Bergeronova–Findeisenova angl: Bergeron-Findeisen theory, ice crystal theory slov: Bergeronova-Findeisenova teória vzniku zrážok  1993-b3
теория Ми
česky: teorie Mieho angl: Mie theory slov: teória Mieho  1993-a1
теория осадкообразования Бержерона-Финдейзена
teorie, která vysvětluje vznik srážkových částic ve smíšených oblacích. Základem vysvětlení je skutečnost, že při dané teplotě pod bodem mrazu je hodnota tlaku nasycené vodní páry nad ledem nižší než hodnota tlaku nasycené vodní páry nad vodou. Největší rozdíl mezi oběma hodnotami je při –12 °C. V oblaku nebo v jeho části, která sestává z drobných přechlazených vodních kapek, odpovídá tlak vodní páry hodnotě nasycení nad vodou a vodní pára nad ledem je tedy přesycená. Dojde-li ke vzniku ledových krystalků heterogenní nukleací na ledových jádrech nebo jiným mechanizmem (viz sekundární nukleace ledu), mohou krystalky v prostředí přesyceném vzhledem k ledu rychle růst depozicí vodní páry na účet vypařujících se vodních kapek. Narostou-li krystalky do dostatečné velikosti, budou padat k zemi a na své cestě dále porostou zachycováním a namrzáním přechlazených kapek. Tímto způsobem mohou ledové oblačné částice narůstat do rozměrů srážkových částic během 10 až 20 min, kdy začnou ve formě srážek z oblaku vypadávat. V nižších teplejších vrstvách atmosféry pak případně tají, a mění se v kapky deště. Tento proces je důležitý zejména při vývoji srážek z vrstevnaté oblačnosti v mírných zeměpisných šířkách. Základy této teorie, kterou dnes označujeme jako teorie vzniku srážek ledovým procesem, položil švédský meteorolog T. Bergeron v roce 1935 a teorii rozvinul něm. fyzik W. Findeisen v roce 1938. Část této teorie, vztahující se ke vzniku a růstu krystalků heterogenní nukleací ledu, popsal již v roce 1911 A. Wegener. Proto se tento proces růstu ledových částic a jejich transformace na déšť někdy označuje jako Bergeronův–Findeisenův–Wegenerův.
česky: teorie vzniku srážek Bergeronova–Findeisenova angl: Bergeron-Findeisen theory, ice crystal theory slov: Bergeronova-Findeisenova teória vzniku zrážok  1993-b3
теория подобия
ve fyzice mezní vrstvy atmosféry teorie turbulentního přenosu hybnosti, tepla a vodní páry, vypracovaná v 50. letech 20. století A. S. Moninem a A. M. Obuchovem. Používá se při studiu procesů v přízemní vrstvě atmosféry, někdy i v celé mezní vrstvě atmosféry. Je založena na aplikaci Obuchovovy délky L. Roli charakteristiky podobnosti má poměr z/L, kde z je výška nad rovinným zemským povrchem. Je-li hodnota tohoto poměru konstantní, zůstává např. zachován poměr mezi mech. a termickou produkcí kinetické energie, příslušející turbulentním fluktuacím rychlosti proudění. Viz též proudění turbulentní.
česky: teorie podobnosti Moninova–Obuchovova angl: similarity theory slov: Moninova a Obuchovova teória podobnosti  1993-b3
теория полярного фронта
teorie vycházející z poznatků norské meteorologické školy, která vysvětluje vznik a vývoj mimotropických cyklon vývojem polární fronty, oddělující polární a tropický vzduch. Tyto cyklony zesilují a postupují podél polární fronty, přičemž během svého života procházejí řadou typických vývojových stadií. Teorie polární fronty, kterou rozpracovali v letech 1921–1922 V. Bjerknes, J. Bjerknes a H. Solberg, zahájila nové období atm. analýzy a představuje jeden z mezníků ve vývoji synoptické meteorologie.
česky: teorie polární fronty angl: polar front theory slov: teória polárneho frontu  1993-a3
теория развития Сатклифа
kvantitativní vyjádření vývoje tlakového pole v atmosféře publikované v roce 1947 R. C. Sutcliffem. Tato teorie vychází z aplikace rovnice vorticity ve dvou hladinách atmosféry, např. v izobarických hladinách 1 000 hPa a 500 hPa. Sutcliffeova vývojová teorie je jedním z významných mezníků v rozvoji dynamické meteorologie.
česky: teorie vývojová Sutcliffeova angl: Sutcliffe development theory slov: Sutcliffeova vývojová teória  1993-a1
теория Релея
česky: teorie Rayleighova angl: Rayleigh theory slov: Rayleighova teória  1993-a1
теория столкновений
česky: teorie koalescenční angl: coalescence theory slov: koalescenčná teória  1993-a1
теория столкновений
syn. teorie koalescenční – v rovníkovém pásu se běžně pozoruje vypadávání intenzivních srážek z teplých oblaků, v nichž vývoj srážek nemůže probíhat za účasti ledové fáze. Vznik srážek v této oblasti vysvětluje koalescenční teorie, podle níž, pokud v oblaku vznikne určitý počet oblačných kapek značně větších než většina ostatních, pohybují se větší kapky ve výstupném proudu pomaleji a mohou koalescencí s malými kapkami růst. Narostou-li do takových rozměrů, že jejich pádová rychlost převýší rychlost výstupných pohybů vzduchu v oblaku, padají oblakem a během svého pádu dále narůstají koalescencí. Po dosažení kritické velikosti se tříští a větší zbytky rozpadlých kapek jsou pak výstupními pohyby znovu unášeny vzhůru, rostou koalescencí s malými oblačnými kapičkami a celý proces se může opakovat. Tímto způsobem se „řetězovou reakcí" v oblaku zvětšuje počet velkých kapek, které posléze mohou vypadnout ve formě kapalných srážek. Podmínkou účinného působení popsaného mechanismu je velký vodní obsah oblaku a výstupná vertikální rychlost, která umožní koalescenční růst kapek do takové velikosti, že se nevypaří u vrcholku oblaku, ale budou padat dolů a dále růst koalescencí. Příčina počátečního rozdílu ve velikosti kapek není jednoznačně určena. Velké kapky mohou vznikat přednostně na řídkých obřích kondenzačních jádrech, mohou být důsledkem změn vertikální rychlosti nebo koncentrace kondenzačních jader v oblasti kondenzační hladiny. V mírných zeměp. šířkách může obdobný koalescenční růst nastat i s účastí ledových částic, ktere přednostně rostou zachycováním přechlazených vodních kapek. Po pádu pod ledovou izotermu tyto ledové částice tají obdobně jako v případě Bergeronovy–Findeisenovy teorie vzniku srážek, která však předpokládá vznik srážkových částic pouze depozicí. Viz též instabilita oblaku koloidní.
česky: teorie vzniku srážek koalescencí angl: coalescence theory slov: koalescenčná teória vzniku zrážok  1993-a3
теория циклогенеза
souhrnné označení pro teorie vzniku cyklon, popř. zesílení cyklonální cirkulace. V historii meteorologie byla vypracována řada teorií cyklogeneze, z nichž nejvýznamnější byly teorie cyklogeneze advekčně dynamická, divergenčnítermická a vlnová. Jejich společným znakem bylo, že si všímaly jen určitých vybraných dějů probíhajících v atmosféře a neřešily otázku vzniku a vývoje cyklony komplexně. Viz též cyklogeneze, cyklolýza, anticyklogeneze, anticyklolýza.
česky: teorie cyklogeneze angl: theory of cyclogenesis slov: teória cyklogenézy  1993-a3
теория циклонообразования
souhrnné označení pro teorie vzniku cyklon, popř. zesílení cyklonální cirkulace. V historii meteorologie byla vypracována řada teorií cyklogeneze, z nichž nejvýznamnější byly teorie cyklogeneze advekčně dynamická, divergenčnítermická a vlnová. Jejich společným znakem bylo, že si všímaly jen určitých vybraných dějů probíhajících v atmosféře a neřešily otázku vzniku a vývoje cyklony komplexně. Viz též cyklogeneze, cyklolýza, anticyklogeneze, anticyklolýza.
česky: teorie cyklogeneze angl: theory of cyclogenesis slov: teória cyklogenézy  1993-a3
теплая депрессия
cyklona, která se v celém svém vert. rozsahu vyskytuje v rel. teplejším vzduchu vzhledem k okolí. Teplé cyklony jsou většinou málo pohyblivé termické cyklony, které vznikají v létě nad přehřátou pevninou a v zimě nad teplým mořem. Patří obvykle k nízkým tlakovým útvarům a jen zřídka přesahují izobarickou hladinu 700 hPa.
česky: cyklona teplá angl: warm low, warm-core cyclone slov: teplá cyklóna něm: warme Zyklone f fr: dépression à coeur chaud f, cyclone à noyau chaud m  1993-a2
теплая зона склонов
část svahů kopců a hor spolu s přilehlou vrstvou vzduchu, jejíž teplota je v dlouhodobém průměru vyšší než teplota míst položených na svahu níže i výše. U svahů s jednoduchým profilem se teplá svahová zóna vyskytuje v místech nejvyššího sklonu. Na jejím vytváření se podílejí např. rozdílný příjem slunečního záření ve dne v závislosti na sklonu a orientaci svahů, vytváření inverzí teploty vzduchu v dolní části svahů ve večerních a nočních hodinách, večerní a noční stékání ochlazeného vzduchu po svazích, větší rychlosti větru ve vrcholových partiích kopců a hor. Výskyt teplé svahové zóny, znamenající anomálii v rozložení teploty vzduchu s nadmořskou výškou, se projevuje v odlišné skladbě rostlinných společenstev, v časnějším nástupu fenologických fází a byl prokázán i topoklimatologickými měřeními. Viz též topoklima.
česky: zóna svahová teplá angl: warm slope zone slov: teplá svahová zóna  1993-a3
теплая несущая полоса
relativní proudění obecně teplého a vlhkého vzduchu s výstupnou složkou pohybu ve frontální cykloně popisované v teorii přenosových pásů. Formuje se na přední straně studené fronty do souvislého proudu, který se obvykle táhne stovky kilometrů a při výstupu postupně zasahuje celou troposféru. Teplý přenosový pás je charakterizovaný vysokými hodnotami izobarické vlhké potenciální teploty, transportuje teplý a vlhký vzduch z nižších hladin do vyšších a často je hlavním mechanismem produkce srážek. Teplý přenosový pás probíhá ve vyvíjející se cykloně zpravidla rovnoběžně s přízemní studenou frontou, zhruba kolmo protíná čáru teplé fronty, následně se anticyklonálně stáčí a ve zhruba rovnoběžné poloze vůči čáře teplé fronty přestává stoupat. Během výstupu se podílí na vzniku frontálních oblačných systémů, zejména teplé fronty, a částečně také na vzniku oblačných systémů v teplém sektoru.
česky: pás přenosový teplý angl: warm conveyor belt slov: teplý prenosový pás něm: warmes Förderband n  2014
тепловая гроза, термическая гроза
lid. označení pro bouřku uvnitř vzduchové hmoty.
česky: bouřka z tepla angl: heat thunderstorm, thermal thunderstorm slov: búrka z tepla něm: Wärmegewitter n fr: orage de chaleur m, orage lointain m, orage thermique m  1993-a3
тепловая депреcия
syn. cyklona místní – cyklona vzniklá jako důsledek termické cyklogeneze. Termická cyklona je nízkou, kvazistacionární a teplou cyklonou bez dalšího vývoje.
česky: cyklona termická angl: heat low, thermal low slov: termická cyklóna něm: Hitzetief n, Wärmezyklone f fr: dépression thermique f, dépression d'origine thermique f  1993-a2
тепловая эффективность
česky: efektivnost tepelná angl: thermal efficiency slov: tepelná efektívnosť něm: Wirksamkeit der Temperatur f fr: efficacité thermique f  1993-a1
тепловой баланс
rozdíl příjmu a výdeje tepla libovolného povrchu nebo systému. Podstatnou část tepelné bilance tvoří zpravidla bilance záření. Kromě této formy přenosu tepla se na tepelné bilanci podílí turbulentní výměna, latentní teplo vydávané nebo spotřebovávané při fázových přechodech a molekulární vedení tepla. V klimatologii se zpravidla rozlišuje tepelná bilance zemského povrchu, tepelná bilance atmosféry a tepelná bilance soustavy Země-atmosféra.
česky: bilance tepelná angl: heat balance slov: bilancia tepla něm: Wärmebilanz f, Wärmehaushalt m fr: bilan thermique m, bilan calorifique m  1993-a1
тепловой баланс атмосферы
součet radiační bilance atmosféry, množství tepla uvolňovaného, resp. spotřebovávaného při fázových přechodech v atmosféře, a tepla, které přechází mezi atmosférou a zemským povrchem turbulentní výměnou. Tepelná bilance atmosféry se vztahuje buď ke sloupci atmosféry o jednotkovém horiz. průřezu a výšce rovné tloušťce atmosféry, nebo k celé atmosféře Země. Úhrn celkové tepelné bilance atmosféry za delší období je prakticky roven nule.
česky: bilance atmosféry tepelná angl: heat balance of the atmosphere slov: tepelná bilancia atmosféry něm: Wärmebilanz der Atmosphäre f, Wärmehaushalt der Atmosphäre m fr: bilan thermique de l'atmosphère m  1993-a1
тепловой баланс земной поверхности
součet radiační bilance zemského povrchu R, množství tepla odváděného ze zemského povrchu do atmosféry, resp. přiváděného z atmosféry k zemskému povrchu turbulentní výměnou P, tepla spotřebovaného na výpar nebo uvolňovaného při tvorbě kondenzačních produktů na zemském povrchu V a tepla odváděného do půdy nebo přiváděného z hlubších půdních vrstev k zemskému povrchu S. Tyto složky bilance jsou kladné (záporné), představují-li pro zemský povrch zisk (ztrátu) tepla. Zemský povrch lze obvykle považovat za plochu s nulovou tepelnou kapacitou a v tomto případě musí platit vztah
R+P+V+S=0
který nazýváme rovnicí tepelné bilance zemského povrchu. V případě, že na zemském povrchu existují nezanedbatelné tepelné kapacity (budovy apod.), lze jejich vliv zahrnout do členu S a rovnici tepelné bilance zemského povrchu zachovat jinak beze změny. Viz též oběh vody na zemi.
česky: bilance tepelná zemského povrchu angl: heat balance of the Earth's surface slov: tepelná bilancia zemského povrchu něm: Wärmebilanz der Erdoberfläche f fr: bilan thermique de surface m  1993-a1
тепловой баланс системы Земля–атмосфера
1. z hlediska celé soustavy Země-atmosféra je tato bilance totožná s bilancí radiační soustavy Země-atmosféra;
2. pod tepelnou bilancí soustavy Země-atmosféra se někdy rozumí též rozdíl zisků a ztrát tepla ve vert. sloupci o jednotkovém průřezu, sahajícím přes celou atmosféru do takové hloubky pod zemském povrchem, v níž teplota přestává být ovlivněna met. faktory.
česky: bilance tepelná soustavy Země-atmosféra angl: heat balance of the Earth-atmosphere system slov: tepelná bilancia sústavy Zem–atmosféra něm: Wärmebilanz des Systems Erde-Atmosphäre f fr: bilan thermique du système surface de la Terre-atmosphère m  1993-a1
тепловой экватор
čára, popř. pás obepínající Zemi a protínající jednotlivé poledníky v místech s nejvyšší prům. teplotou vzduchu redukovanou na hladinu moře, a to buď z hlediska ročního, nebo měsíčního průměru. Pojem termický rovník se používá ve více významech, každopádně není totožný s geogr. rovníkem, neboť jeho poloha je určována mnoha klimatickými faktory, především rozložením pevnin a vlastnostmi oceánských proudů. Někdy tak bývá označována nejteplejší rovnoběžka na Zemi (10° s. š.), avšak skutečná spojnice nejteplejších míst zasahuje až k 20° s. š. (v Mexiku) nebo naopak i na jižní polokouli (v Oceánii). Někteří autoři za termický rovník považují pás ohraničený např. prům. roč. izotermou 27 °C, popř. osu tohoto pásu.
V čes. literatuře je častější použití pojmu termický rovník z hlediska průměrné měsíční teploty vzduchu, takže během kalendářního roku mění svou polohu. Tento sezonní pohyb je menší nad oceány, kde poloha termického rovníku odpovídá průměrné poloze intertropické zóny konvergence v dané fázi roku. Nad kontinenty je sezonní pohyb větší v důsledku větší prům. roční amplitudy teploty vzduchu oproti oceánům.
česky: rovník termický angl: heat equator, thermal equator slov: termický rovník něm: thermischer Äquator m  1993-a3
теплое облако
oblak, který se celý vyskytuje v oblasti teploty vyšší než 0 °C; jeho horní hranice tedy nezasahuje nad hladinu nulové izotermy. Významnější srážky vypadávají z teplých oblaků pouze v nízkých zeměp. šířkách. Pojem teplý oblak používají někteří autoři nevhodně jako syn. pro oblak vodní. Viz též teorie vzniku srážek koalescencí.
česky: oblak teplý angl: warm cloud slov: teplý oblak něm: warme Wolke f  1993-a2
теплое полугодие
na sev. polokouli období od 1. dubna do 30. září, někdy nevhodně označované jako letní pololetí nebo vegetační období.
česky: pololetí teplé angl: warm half-year slov: teplý polrok něm: warmes Halbjahr n  1993-a3
теплопроводность почвы
česky: vedení tepla v půdě angl: heat conduction in soil slov: vedenie tepla v pôde  1993-a1
теплый антициклон
anticyklona, která se v celém svém vert. rozsahu vyskytuje v rel. teplejším vzduchu vzhledem k okolí. Teplé anticyklony jsou termicky symetrické a obvykle se projevují v celé troposféře. Nad teplou anticyklonou dosahuje v dané zeměpisné šířce tropopauza největších výšek. Při subsidenci vzduchu dochází při adiabatickém ději k jeho oteplování. Do teplých anticyklon patří především subtropické anticyklony.
česky: anticyklona teplá angl: warm anticyclone slov: teplá anticyklóna něm: warme Antizyklone f fr: anticyclone à cœur chaud m  1993-a2
теплый воздух
zkrácené označení pro teplou vzduchovou hmotu, vymezenou v rámci termodynamické klasifikace vzduchových hmot.
česky: vzduch teplý angl: warm air slov: teplý vzduch  1993-a3
теплый волновой фронт
česky: fronta teplá zvlněná angl: waving warm front slov: zvlnený teplý front něm: Warmfrontwelle f fr: front chaud ondulant m  1993-a1
теплый сектор циклона
část mladé cyklony mezi teplou frontou v její přední části a studenou frontou v části týlové. Teplý sektor cyklony je tvořen teplou vzduchovou hmotou a počasí v tomto sektoru závisí na jejích vlastnostech, roční době i vzdálenosti od středu cyklony. V blízkosti středu cyklony, a především v chladné polovině roku, je v teplém sektoru cyklony velká vrstevnatá oblačnost, často provázená srážkami ve tvaru mrholení. V teplé polovině roku se v teplém sektoru vyskytuje, zvláště ve větších vzdálenostech od středu cyklony, jen zvětšená vrstevnatá oblačnost, nad pevninou ve dne i kupovitá oblačnost. V procesu dalšího vývoje cyklony se teplý sektor zpravidla postupně zmenšuje, v závislosti na rychlosti okluzního procesu je vytlačován na okraj cyklony, až postupně zanikne (u zemského povrchu).
česky: sektor cyklony teplý angl: warm sector of cyclone slov: teplý sektor cyklóny něm: Warmsektor der Zyklone m  1993-a3
теплый фронт
fronta nebo její část, která se pohybuje směrem na stranu studeného vzduchu. Je anafrontou. V teplém vzduchu, který vykluzuje po frontální ploše, vzniká charakteristický oblačný systém s pásmem trvalých srážek širokým obvykle 300 až 400 km. Podle teorie přenosových pásů může za vznik oblačnosti z velké části hlavně teplý přenosový pás, nízké oblaky mohou vznikat i ve studeném přenosovém pásu. Srážky obvykle vypadávají před frontální čarou. Frontální oblačnost začíná většinou oblaky druhu cirrus a cirrostratus, které přecházejí v altostratus a nimbostratus. V oblasti srážek se pod nimi může vyskytovat stratus fractus. V případě typu „warm front shield“ se v teplém přenosovém pásu vytváří oblačnost i za frontou a mohou z ní vypadávat i trvalé srážky. Průměrný sklon teplé fronty je 1:150 až 1:250, v blízkosti zemského povrchu je v důsledku tření ještě menší. Před přechodem teplé fronty pozorujeme pokles tlaku vzduchu, čili zápornou hodnotu tlakové tendence, v zimě i předfrontální mlhy. Teplá fronta vzniká v přední části frontální cyklony. Viz též fronta studená
česky: fronta teplá angl: warm front slov: teplý front něm: Warmfront f fr: front chaud m  1993-a3
теплый циклон
cyklona, která se v celém svém vert. rozsahu vyskytuje v rel. teplejším vzduchu vzhledem k okolí. Teplé cyklony jsou většinou málo pohyblivé termické cyklony, které vznikají v létě nad přehřátou pevninou a v zimě nad teplým mořem. Patří obvykle k nízkým tlakovým útvarům a jen zřídka přesahují izobarickou hladinu 700 hPa.
česky: cyklona teplá angl: warm low, warm-core cyclone slov: teplá cyklóna něm: warme Zyklone f fr: dépression à coeur chaud f, cyclone à noyau chaud m  1993-a2
термики
v meteorologii širší pojem označující:
a) stabilní a silné vertikální konvektivní pohyby, kterých mohou využívat např. kroužící ptáci a plachtaři k získávání výšky. Tyto termiky bývají dále označovány jako čisté, spojené jen s termickou konvekcí bezoblačnou nebo oblačnou, nebo jako větrné, na jejichž vzniku se podílí zejména mechanická turbulence. V letecké terminologii se užívá též pojmu termické stoupavé proudy nebo slang, „termika". Mají horiz. rozměry v řádu desítek až stovek m, vert. několik stovek až tisíců metrů;
b) v oboru met. měření, zejména prováděných sodary, vzduchové bubliny o vzájemně různé teplotě nebo i vlhkosti, které vznikají buď při formování uspořádaných termických vert. proudů nebo po dosažení hladiny inverze teploty vzduchu těmito stoupavými proudy. Takto pojímané termiky mající rozměr řádově jednotek metrů, vyvolávají akust. ozvěnu.
česky: termiky angl: thermals slov: termiky  1993-a1
термистор
česky: teploměr termistorový angl: thermistor thermometer slov: termistorový teplomer  1993-a1
термическая депрессия
oblast sníženého tlaku vzduchu vlivem termických příčin především nad přehřátou pevninou v létě. Viz též cyklona termická.
česky: deprese termická angl: thermal depression slov: termická depresia něm: thermisches Tief n fr: dépression thermique f  1993-a1
термическая завихренность
rozdíl rel. vorticity na horní a dolní hranici dané vrstvy v atmosféře. Lze ji též vyjádřit vorticitou rychlosti termálního větru příslušejícího této vrstvě. Pole termální vorticity je úzce spjato s vývojem tlakového pole. Viz též teorie vývojová Sutcliffeova.
česky: vorticita termální angl: thermal vorticity slov: termálna vorticita  1993-a3
термическая конвекция
konvekce vyvolaná působením vztlaku vzniklého následkem horiz. teplotních nehomogenit, které jsou zpravidla způsobeny nerovnoměrným radiačním ohříváním zemského povrchu. Rozvoji termické konvekce významně napomáhá instabilní teplotní zvrstvení atmosféry, zatímco stabilní zvrstvení ji potlačuje. Leží-li horní hladina konvekce výše než kondenzační hladina, dochází ke vzniku konv. oblaků. V tomto případě se hovoří o oblačné konvekci. Leží-li horní hladina konvekce níže než kondenzační hladina, mluvíme o bezoblačné konvekci. Termická konvekce bývá doprovázena termickou turbulencí. Pro termickou konvekci se zvláště ve sportovním letectví používá slang. označení „termika". Viz též termiky.
česky: konvekce termická angl: thermal convection slov: termická konvekcia něm: thermische Konvektion f  1993-a3
термическая континентальность климата
zákl. druh kontinentality klimatu, podmíněný specifickými tepelnými vlastnostmi aktivní vrstvy pevniny. Je silně ovlivněna tvary reliéfu, přičemž je větší v údolích a kotlinách než na hřebenech hor. Projevuje se především velmi výrazným ročním chodem teploty vzduchu i zvýrazněním jejího denního chodu, s výskytem ročního maxima i minima brzy po slunovratech. Míru termické kontinentality, resp. oceánity klimatu lze zjednodušeně vyjádřit pomocí prům. roční amplitudy teploty vzduchu, ta je nicméně ovlivňována i radiačními faktory, proto místa s různou zeměp. šířkou musí být porovnána pomocí některého indexu kontinentality.
česky: kontinentalita klimatu termická angl: thermal continentality of climate slov: termická kontinentalita klímy něm: thermische Kontinentalität f  1993-a3
термическая неустойчивость атмосферы
vertikální instabilita atmosféry vyvolaná insolačním ohříváním zemského povrchu a způsobující termickou konvekci. Při překročení konvektivní teploty dochází k vývoji konvektivních oblaků. Množství oblaků vznikajících v důsledku termické instability atmosféry se vyznačuje výrazným denním chodem obvykle s maximem v odpoledních hodinách. V našich podmínkách je nejběžnějším druhem instability.
česky: instabilita atmosféry termická angl: thermal instability of atmosphere slov: termická instabilita ovzdušia něm: thermische Instabilität der Atmosphäre f  1993-a3
термическая теория циклонообразования
teorie, podle níž se rozhodující význam pro vznik cyklony přisuzuje rozdělení a změnám teploty vzduchu. Vznikla koncem 19. století, kdy se předpokládalo, že první impulz ke vzniku cyklony dává místní kladná odchylka teploty podkladu a přízemní vrstvy atmosféry. Vznikají-li místní teplotní rozdíly v důsledku nerovnoměrného přehřívání spodní troposféry, mluvíme o konv. teorii cyklogeneze; dochází-li k teplotním změnám nad určitou lokalitou v důsledku advekce, potom se používá názvu advekční teorie cyklogeneze. Při termické cyklogenezi u zemského povrchu se cyklonální cirkulace postupně rozšiřuje do vyšších hladin. Ve volné atmosféře se tak termická cyklogeneze projevuje zpravidla vývojem brázdy nízkého tlaku vzduchu. Tato teorie je z hlediska současných poznatků již překonána. Viz též cyklona termická (místní).
česky: teorie cyklogeneze termická angl: thermal theory of cyclogenesis slov: termická teória cyklogenézy  1993-a3
термическая турбулентность
turbulence vznikající vlivem vztlaku podmíněného nehomogenitou teplotního pole. V hydrodynamice a aerodynamice je považována za součást termické konvekce, při vymezení pojmu konvekce, obvyklém v meteorologii, však rozměry vlastních turbulentních vírů jsou zde řádově menší než rozměry konv. elementů (buněk) nebo uspořádaných konv. vzdušných proudů. Někteří autoři však považují pojmy termická turbulence a termická konvekce za synonymické. Tento přístup lze přijmout zejména v případech méně vyvinuté konvekce, kdy nemůžeme aplikovat uvedené velikostní rozlišení charakteristických elementů. Viz též termiky.
česky: turbulence termická angl: thermal turbulence slov: termická turbulencia  1993-a2
термическая эффективность
syn. efektivnost tepelná – v klimatologii charakteristika teplotních poměrů určitého místa z hlediska růstu rostlin za předpokladu dostatku vláhy. Princip navrhli B. E. a G. J. Livingstonovi a použil ho C. W. Thornthwaite ve své klasifikaci klimatu. Thornthwaitův index tepelné účinnosti, označovaný jako T/E, udává roč. sumu hodnot teploty vyšší než práh pro vegetační období, což je např. pro hrách 40 °F (+4,4 °C) a pro kukuřici 50 °F (10 °C). Určité hodnoty indexu T/E sloužily k vymezení klimatických oblastí, tzv. provincií, podle teplotního charakteru.
česky: účinnost tepelná angl: thermal efficiency slov: tepelná účinnosť  1993-a2
термически асимметричный антициклон
anticyklona, ve které se vyskytují v horiz. směru dost značné teplotní rozdíly. Na sev. polokouli je nejčastěji vých. a jv. část anticyklony studená, zatímco záp. a sz. část teplá. Rozdíly mezi teplou a stud. částí anticyklony dosahují obvykle 5 až 15 °C. Termicky asymetrické anticyklony bývají většinou uzavírajícími anticyklonami, které ukončují sérii cyklon.
česky: anticyklona termicky asymetrická angl: thermal asymmetric anticyclone slov: termicky asymetrická anticyklóna něm: thermisch asymmetrische Antizyklone f fr: anticyclone cyclone à cœur chaud/froid asymétrique m  1993-a2
термически асимметричный циклон
frontální cyklona, ve které, především v její přední a týlové části, svírají na synoptické mapě izotermy a izohypsy velký úhel advekce. Teplou advekci v přední části termicky asymetrické cyklony ukončuje čára teplé fronty, čára studené fronty vyznačuje počátek studené advekce v týlové části cyklony. Oblast teplého vzduchu mezi zmíněnými frontálními čarami tvoří teplý sektor cyklony, který v počátečním stadiu vývoje zasahuje na sev. polokouli obvykle z již. části cyklony do jejího středu a bývá nejlépe vyjádřen v izobarické hladině 850 hPa. V pozdějším vývojovém stadiu frontální cyklony se teplý sektor zužuje, posouvá se do přední části cyklony a projevuje se i ve vyšších hladinách nebo na mapách relativní topografie. V zahraniční odborné literatuře se pro termicky asymetrickou cyklonu obvykle používá označení baroklinní cyklona. Viz též jazyk studeného vzduchu, jazyk teplého vzduchu.
česky: cyklona termicky asymetrická angl: baroclinic cyclone, thermal asymmetric cyclone slov: termicky asymetrická cyklóna něm: thermisch asymmetrische Zyklone f fr: cyclone asymétrique à coeur chaud/froid m  1993-a3
термически симметричный антициклон
anticyklona, v níž jsou malé teplotní rozdíly v horiz. směru mezi jejími jednotlivými částmi. Termicky symetrické anticyklony jsou především kvazistacionární anticyklony, které mohou být teplé nebo studené; teplé jsou subtropické anticyklony; do studených lze zahrnout arktickou a antarktickou anticyklonu a dále pak všechny kontinentální anticyklony.
česky: anticyklona termicky symetrická angl: thermal symmetric anticyclone slov: termicky symetrická anticyklóna něm: thermisch symmetrische Antizyklone f fr: anticyclone cyclone à cœur chaud/froid symétrique m  1993-a3
термически симметричный циклон
cyklona, v níž jsou při zemi izobary a izotermy, ve volné atmosféře izohypsy a izotermy, téměř rovnoběžné. Termicky symetrické cyklony jsou většinou studené cyklony, v nichž výskyt rel. nejnižších teplot souhlasí se středem cyklony. Termicky symetrické cyklony jsou i nízké cyklony, které vznikají v důsledku termické nebo orografické cyklogeneze. V zahraniční odborné literatuře se pro termicky symetrickou cyklonu obvykle používá označení barotropní cyklona.
česky: cyklona termicky symetrická angl: barotropic cyclone, thermal symmetric cyclone slov: termicky symetrická cyklóna něm: thermisch symmetrische Zyklone f fr: cyclone symétrique à coeur chaud/froid m  1993-a3
термические зоны Земли
klimatické pásmo vymezené pouze na základě rozložení teploty vzduchu na Zemi, tedy bez ohledu na další klimatické prvky. Obvykle rozeznáváme horké pásmo, ohraničené izotermou prům. roč. teploty vzduchu 20 °C, dále na každé polokouli jedno mírné pásmo (po izotermu prům. teploty vzduchu v nejteplejším měsíci 10 °C), chladné pásmo (po izotermu nejteplejšího měsíce 0 °C) a pásmo trvalého mrazu. Tohoto dělení částečně využívá mj. Köppenova klasifikace klimatu.
česky: pásmo teplotní angl: temperature zone, thermal zone slov: teplotné pásmo něm: Wärmezonen der Erde f/pl  1993-b3
термический антициклогенез
anticyklogeneze vedoucí ke vzniku nebo mohutnění studené anticyklony vlivem neadiabatického ochlazení vzduchu od aktivního povrchu, popř. vlivem výrazné studené advekce. Tímto způsobem vznikají např. nízké anticyklony nad pevninou v zimě a termické anticyklony relativně malého rozsahu.
česky: anticyklogeneze termická angl: thermal anticyclogenesis slov: termická anticyklogenéza něm: thermische Antizyklogenese f fr: anticyclogénèse thermique f  1993-a3
термический антициклон
nízká, studená a kvazistacionární anticyklona rel. malého rozsahu, tvořená v zimním období stagnujícím stud. vzduchem, ochlazovaným od zemského povrchu. Viz též anticyklogeneze termická.
česky: anticyklona termická angl: thermal anticyclone slov: termická anticyklóna něm: thermische Antizyklone f fr: anticyclone thermique m  1993-a3
термический ветер
vektorový rozdíl rychlosti větru v1ve výše ležící hladině z1 a rychlosti větru v2 v níže ležící hladině z2 ( vT=v1v2 , z1>z2, ). Vektor vT směřuje podél izoterem prům. virtuální teploty ve vrstvě vzduchu mezi hladinami z1 a z2 tak, že postavíme-li se čelem po směru vektoru vT, máme na sev. polokouli po pravé ruce vyšší a po levé ruce nižší hodnoty prům. virtuální teploty. Na již. polokouli je tomu naopak. Velikost termálního větru je úměrná hustotě těchto izoterem a vyjadřuje míru baroklinity atmosféry. Zpravidla se vyhodnocuje jako rozdíl skutečné rychlostí větru v hladině 500 a 850 hPa a zakresluje se do map relativní topografie5001000 . Viz též vorticita termální, stáčení větru studené, stáčení větru teplé.
česky: vítr termální angl: thermal wind slov: termálny vietor  1993-a1
термический вихрь скорости
rozdíl rel. vorticity na horní a dolní hranici dané vrstvy v atmosféře. Lze ji též vyjádřit vorticitou rychlosti termálního větru příslušejícího této vrstvě. Pole termální vorticity je úzce spjato s vývojem tlakového pole. Viz též teorie vývojová Sutcliffeova.
česky: vorticita termální angl: thermal vorticity slov: termálna vorticita  1993-a3
термический подъем дымового факела
dílčí převýšení horiz. osy kouřové vlečky nad ústím komínu, které je způsobené tím, že unikající spaliny mají teplotu vyšší než okolní vzduch. Velikost termického vznosu kouřové vlečky roste se zvětšováním tohoto teplotního rozdílu a klesá s rostoucí rychlostí proudění v hladině ústí komínu. K určení termického vznosu kouřové vlečky se používají různé empir. vzorce a za bezvětří nebo při velmi slabém proudění lze aplikovat hrubě orientační pravidlo, podle něhož na každý tepl. stupeň, o který teplota unikajících spalin převyšuje teplotu okolního vzduchu, připadá převýšení 1,4 m. Připočteme-li k tomuto vznosu vliv výstupní rychlostí spalin v ústí komínu, dostaneme celkový vznos kouřové vlečky.
česky: vznos kouřové vlečky termický angl: thermal plume rise slov: termický vznos dymovej vlečky  1993-a3
термический циклогенез
cyklogeneze spojená s turbulentním přenosem zjevného tepla od podkladu. Termická cyklogeneze se vyskytuje především nad oblastmi přehřáté pevniny (např. v létě cyklona nad Pyrenejským poloostrovem) nebo při proudění studeného vzduchu nad teplý vodní povrch (např. v zimě cyklona nad Černým mořem).
česky: cyklogeneze termická angl: thermal cyclogenesis slov: termická cyklogenéza něm: thermische Zyklogenese f fr: formation de dépression thermique f  1993-a3
термический циклон
syn. cyklona místní – cyklona vzniklá jako důsledek termické cyklogeneze. Termická cyklona je nízkou, kvazistacionární a teplou cyklonou bez dalšího vývoje.
česky: cyklona termická angl: heat low, thermal low slov: termická cyklóna něm: Hitzetief n, Wärmezyklone f fr: dépression thermique f, dépression d'origine thermique f  1993-a2
термический экватор
čára, popř. pás obepínající Zemi a protínající jednotlivé poledníky v místech s nejvyšší prům. teplotou vzduchu redukovanou na hladinu moře, a to buď z hlediska ročního, nebo měsíčního průměru. Pojem termický rovník se používá ve více významech, každopádně není totožný s geogr. rovníkem, neboť jeho poloha je určována mnoha klimatickými faktory, především rozložením pevnin a vlastnostmi oceánských proudů. Někdy tak bývá označována nejteplejší rovnoběžka na Zemi (10° s. š.), avšak skutečná spojnice nejteplejších míst zasahuje až k 20° s. š. (v Mexiku) nebo naopak i na jižní polokouli (v Oceánii). Někteří autoři za termický rovník považují pás ohraničený např. prům. roč. izotermou 27 °C, popř. osu tohoto pásu.
V čes. literatuře je častější použití pojmu termický rovník z hlediska průměrné měsíční teploty vzduchu, takže během kalendářního roku mění svou polohu. Tento sezonní pohyb je menší nad oceány, kde poloha termického rovníku odpovídá průměrné poloze intertropické zóny konvergence v dané fázi roku. Nad kontinenty je sezonní pohyb větší v důsledku větší prům. roční amplitudy teploty vzduchu oproti oceánům.
česky: rovník termický angl: heat equator, thermal equator slov: termický rovník něm: thermischer Äquator m  1993-a3
термическое загрязнение воздуха
tepelná energie antropogenního (průmyslového, dopravního apod.) původu, která vstupuje do atmosféry a účastní se tam met. dějů, zejména v mezní vrstvě atmosféry. V širším smyslu se za složku tepelného znečištění ovzduší považuje i sálání tepla z umělých povrchů (např. stěn a střech budov, asfaltových a betonových ploch). S tepelným znečištěním ovzduší pak souvisí souborný efekt, označovaný často jako tepelný ostrov města.
česky: znečištění ovzduší tepelné angl: heat air pollution, thermal air pollution slov: tepelné znečistenie ovzdušia  1993-a3
термоанемометр
přístroj, který k měření rychlosti větru využívá zchlazování el. odporového čidla ventilací. Čidlo je tvořeno tenkým (tlouštka řádu jednotek mikrometru) kovovým drátkem (platina, wolfram) a využívá změny odporu většiny kovů s teplotou. Je vyhříváno el. proudem. Měřením změn teploty je stanoven odvod tepla z čidla, jenž výrazně závisí na rychlosti větru. U starších typů je charakteristika čidla značně nelineární. Původně měl proto termoanemometr dostatečnou přesnost jen v poměrně malém rozpětí rychlostí větru. Dnešní termoanemometry svými rozsahy a přesností umožňují i běžná meteorologická měření. Kromě toho se ovšem pro velmi malý rozměr čidla a jeho malou setrvačnost termoanemometru používá především pro určení malých rychlostí větru a turbulentních pulzací při nich. Viz též měření větru, anemometr.
česky: termoanemometr angl: hot wire anemometer, thermoanemometer slov: termoanemometer  1993-a3
термобарическое поле
kombinované teplotní a tlakové pole čili současné prostorové rozložení teploty a tlaku vzduchu, v praxi sledované především na výškových synoptickách mapách. V synop. službě má význam především mapa absolutní topografie 700 hPa a mapa relativní topografie izobarických hladin 500 a 1 000 hPa, která se používá jako zákl. pomůcka při advekčně dynamických rozborech a prognózách. Viz též mapa termobarického pole, teorie cyklogeneze advekčně dynamická.
česky: pole termobarické angl: thermobaric field slov: termobarické pole něm: thermobarisches Feld n  1993-a3
термобарометр
syn. termobarometr zřídka používaná označení pro hypsometr.
česky: barotermometr slov: barotermometer něm: Barothermometer m fr: baro-thermomètre m  1993-a3
термобарометр
barotermometr zřídka používaná označení pro hypsometr.
česky: termobarometr angl: hypsometer slov: termobarometer  1993-a3
термобароскоп
nejstarší přístroj pro měření změn teploty vzduchu, který zkonstruoval G. Galilei (1597) na principu tepelné roztažnosti vzduchu. Šlo o typ teploměru bez vakua s otevřenou trubicí, který proto reagoval rovněž na změny tlaku vzduchu. Viz též teploměr plynový.
česky: termobaroskop slov: termobaroskop  1993-a2
термогигрограмма
záznam termohygrografu.
česky: termohygrogram angl: thermohygrogram slov: termohygrogram  1993-a1
термогигрограф
syn. hygrotermograf – přístroj pro současný záznam průběhu teploty a vlhkosti vzduchu na jeden registrační pásek.
česky: termohygrograf angl: thermohygrograph slov: termohygrograf  1993-a2
термогигроскоп
přístroj pro přibližné určení teploty rosného bodu. Jeho indikační mechanizmus je ovládán současně bimetalickým teploměrem a vlasovým vlhkoměrem.
česky: termohygroskop angl: hygrothermoscope slov: termohygroskop  1993-a1
термограмма
záznam termografu.
česky: termogram angl: thermogram slov: termogram  1993-a1
термограф
přístroj zaznamenávající časový průběh teploty vzduchu na registrační pásku (týdenní nebo denní). Na meteorologických stanicích byl umístěn v meteorologické budce.
česky: termograf angl: thermograph slov: termograf  1993-a3
термодинамика атмосферы
část meteorologie zabývající se aplikacemi termodyn. zákonů a metod na atmosféru Země. Lze ji rozdělit např. na termodynamiku nenasyceného vzduchu, která popisuje vlhký vzduch jako směs ideálních plynů a termodynamiku nasyceného vzduchu, studující zejména fázové přechody vody v atmosféře a s nimi spojené transformace energie. K nejlépe prostudovaným a teoreticky popsaným termodyn. procesům v atmosféře patří především adiabatické děje. Poznatky termodynamiky atmosféry se uplatňují prakticky ve všech odvětvích meteorologie, nejvíce ve fyzice oblaků a srážek, v dynamické, synoptické a letecké meteorologii. Za počátek vývoje termodynamiky atmosféry se považuje rok 1843, kdy franc. fyzik J. C. E. Péclet aplikoval Poissonovy rovnice na výstupné vzdušné proudy.
česky: termodynamika atmosféry angl: atmospheric thermodynamics, thermodynamics of atmosphere slov: termodynamika atmosféry  1993-a2
термодинамическая диаграмма
diagram používaný pro vyjádření termodyn. stavu vzduchu, charakterizovaného třemi proměnnými veličinami, a to tlakem, teplotou a vlhkostí nebo jinými veličinami, na kterých tento stav závisí. Podle konstrukce a speciálního použití se některé termodyn. diagramy nazývají aerologické, energetické, adiabatické apod. V meteorologii se pojmy termodyn. a aerol. diagram obvykle používají jako synonyma.
česky: diagram termodynamický angl: thermodynamic diagram slov: termodynamický diagram něm: thermodynamisches Diagramm n fr: diagramme thermodynamique m  1993-a2
термодинамическая классификация воздушных масс
rozdělení vzduchových hmot podle termodynamických vlastností. Podle nich rozlišujeme vzduchové hmoty teplé, studené a místní. Studené vzduchové hmoty jsou ty, které při pohybu z ohniska vzniku vzduchové hmoty se dostávají nad teplejší povrch, a teplé vzduchové hmoty, ty, které se při pohybu z ohniska dostávají nad chladnější povrch. Podle vert. teplotního zvrstvení rozlišujeme vzduchové hmoty stabilní a instabilní (labilní). Postupující teplé vzduchové hmoty se od chladnějšího povrchu ochlazují a stávají se stabilními, postupující studené vzduchové hmoty se od teplejšího povrchu oteplují, a proto se stávají instabilními. Místní vzduchové hmoty mohou být stabilní i instabilní.
česky: klasifikace vzduchových hmot termodynamická angl: thermodynamic air masses classification slov: termodynamická klasifikácia vzduchových hmôt něm: thermodynamische Luftmassenklassifikation f  1993-a3
термодинамические соленоиды
fiktivní čtyřhranné trubice v atmosféře, které vznikají při protínání ploch konstantních hodnot termodyn. stavových veličin. Se základními termodyn. veličinami v atmosféře, tj. s tlakem vzduchu, teplotou vzduchu a hustotou vzduchu (měrným objemem vzduchu) pak souvisejí solenoidy izobaricko-izosterické, solenoidy izobaricko-izotermické a solenoidy izotermicko-izosterické. Při konstrukci termodynamických solenoidů lze však využít i plochy konstantních hodnot dalších (odvozených) termodyn. veličin, např. plochy izentropické. Termodynamické solenoidy souvisejí s atmosférickými cirkulacemi různých měřítek a mohou existovat pouze v baroklinní atmosféře. V barotropní atmosféře je jejich počet nulový, neboť plochy konstantních hodnot tlaku, teploty a hustoty vzduchu jsou vzájemně rovnoběžné. Viz též termodynamika atmosféry.
česky: solenoidy termodynamické angl: thermodynamic solenoids slov: termodynamické solenoidy něm: thermodynamische Solenoide n/pl  1993-a2
термодромический коэффициент
index kontinentality, který navrhl F. Kerner von Marilaun (1905) k vyjádření termické kontinentality klimatu. Index je založen na porovnání teplotních poměrů jara a podzimu. Počítá se z rovnice
q=100δA
kde δ je rozdíl prům. teploty vzduchu v říjnu a v dubnu a A je průměrná roční amplituda teploty vzduchu. Kladné hodnoty termodromického kvocientu vyjadřují oceánitu klimatu, záporné jeho kontinentalitu; ty se v ČR vyskytují na již. Moravě. Izolinie termodromického kvocientu byly nazvány termoizodromami.
česky: kvocient termodromický angl: thermodromic quotient slov: termodromický kvocient něm: thermodromischer Quotient m  1993-a3
термоизаномала
viz izanomála.
česky: termoizanomála angl: thermoisanomal slov: termoizanomála  1993-a3
термоизоплета
izopleta teploty vyjadřující časový průběh teploty v závislosti na dvou souřadnicích. Využívá se v klimatologických diagramech. Pomocí termoizoplet se znázorňuje na jednom grafu např. denní a roční chod teploty vzduchu v jednotlivých klimatických typech, průběh roč. chodu teploty vzduchu v závislosti na nadm. výšce nebo roč. chodu teploty půdy v závislosti na hloubce. Pojem navrhl A. Humboldt a do meteorologie zavedl L. Lalanne.
česky: termoizopleta angl: thermoisopleth slov: termoizopléta  1993-a1
термометр
v meteorologii přístroj pro měření teploty vzduchu a měření teploty půdy, popř. teploty vody. Nepřímo slouží také k měření jiných meteorologických prvků, např. vlhkosti vzduchu, krátkovlnného slunečního záření, zchlazování, a to jako součást psychrometrů, aktinometrů nebo frigorimetrů. V met. praxi se používají teploměry kapalinové, a to rtuťové a lihové, deformační, k nimž patří teploměry bimetalické a teploměry s Bourdonovou trubicí, a elektrické teploměry, které se dělí na odporové a termoelektrické čili termočlánky. Teploměr patří k nejstarším met. přístrojům. Prvním přístrojem pro sledování teplotních změn byl termobaroskop zkonstruovaný G. Galileiem (1597), který byl v podstatě plynovým teploměrem. Galilei sestrojil též první kapalinový teploměr (1611), jehož teploměrnou látkou byl vinný líh. Název odpovídající čes. slovu "teploměr" použil poprvé J. Laurechon (1624).
česky: teploměr angl: thermometer slov: teplomer  1993-a2
термометр Сикса
teploměr zkonstruovaný J. Sixem pro měření jak maximální, tak i minimální teploty vzduchu ve zvoleném časovém intervalu, obvykle 24 hodin. Teploměr je plněný dvěma kapalinami, lihem a rtutí. Má dvě stupnice, které obě ukazují aktuální teplotu. Extrémní teploty udávají dvě skleněné tyčinky se zatavenými drátky (indexy), které se pohybují v ramenech trubice ve tvaru písmene U, ve spodní části vyplněné rtutí. V důsledku změny objemu teploměrné kapaliny se mění poloha obou menisků rtuti, a tím i poloha indexů. Nastavení přístroje k měření se provádí pomocí magnetu, kterým se stahují indexy na hladinu rtuti. Sloužil původně jako staniční přístroj pro měření denních extrémů teploty vzduchu a byl umísťován v meteorologické budce. V současné době se pro svou menší přesnost na met. stanicích již nepoužívá.
česky: teploměr Sixův angl: Six thermometer slov: Sixov teplomer  1993-a3
термометр сопротивления
elektrický teploměr, který využívá závislost el. odporu většiny kovů a polovodičů na teplotě. U kovů je tato závislost dána vztahem:
RT=R0( 1+αT+βT2),
kde RT je odpor vodiče při teplotě T, R0 odpor vodiče při 0 °C, α > 0, β jsou koeficienty závislé na druhu kovu a T je teplota ve °C. Zatímco el. odpor kovových vodičů se vzrůstající teplotou narůstá, odpor polovodičů (termistorů) exponenciálně klesá. Míra tohoto poklesu je ve srovnání se vzrůstem odporu kovových vodičů výrazně vyšší, a proto mají termistorové teploměry vyšší citlivost než kovové odporové teploměry. Na meteorologických stanicích ČR se používají odporová platinová čidla Pt100.
česky: teploměr odporový angl: resistance thermometer slov: odporový teplomer  1993-a3
термометр-атташе
[atašé] – rtuťový teploměr připevněný k ochranné trubici rtuťového tlakoměru přibližně v těžišti přístroje. Má nádobku umístěnou tak, aby udával hodnotu co nejbližší teplotě rtuti tlakoměru. Používá se pro redukci údajů tlakoměru na teplotu 0 °C. 
  1993-a2
термометр-пращ
skleněný teploměr upevněný na provázku, řetízku nebo v držadle. Při měření jím pozorovatel otáčí tak, aby dosáhl dostatečné ventilace nádobky, tj. rychlosti pohybu větší než 2 m.s–1. Používal se jako předchůdce aspiračního psychrometru k měření teploty vzduchu mimo meteorologickou budku.
  1993-a1
термопауза
horní vrstva termosféry ve výšce nad 200 km (Prölss, G. W., 2003). Různí autoři uvádějí výšku termopauzy v rozmezí 450 až 700 km. Ve výšce termopauzy se teplota asymptoticky blíží k hraniční hodnotě nazývané teplotou termopauzy neboli exosférickou teplotou, jejíž hodnota je přibližně 1 000 K, ale může se pohybovat v rozmezí 330 až 2 200 K. Termopauza odděluje termosféru a exosféru.
česky: termopauza angl: thermopause slov: termopauza  1993-a3
термоскоп
nejstarší přístroj k indikaci teplotních změn (tepelných stavů), předchůdce teploměru. Vzduchový termoskop popsal a používal již Heron Alexandrejský. Koncem 16. stol. sestrojil "skleněný" termoskop Galileo Galilei. Viz též anemoskop, hygroskop, termobaroskop.
česky: termoskop angl: thermoscope slov: termoskop  1993-a1
термосфера
vrstva atmosféry Země nad mezopauzou. Sahá zhruba od výšek 80 až 90 km do výšek nad 200 km nad zemským povrchem. Podle některých autorů se jako termosféra označuje celá část zemské atmosféry nad mezopauzou bez horního omezení, jiní uvažují termosféru do výšek, v nichž se ještě vyskytují polární záře, tj. 600 až 700 km. Do výšky 200 až 300 km je pro termosféru typický výrazný vert. růst teploty většinou v rozmezí přibližně od 200 K až do 1 000 K. Vzhledem k vysokému stupni zředění vzduchu však tuto teplotu nelze měřit běžnými termometrickými metodami, ale určuje se na základě kinetické energie pohybu jednotlivých molekul. Z tohoto důvodu mluvíme někdy o tzv. kinetické teplotě. Viz též termopauza.
česky: termosféra angl: thermosphere slov: termosféra  1993-a3
термоциклогенез
teorie cyklogeneze, kterou vypracoval něm. meteorolog G. Stüve (1926). Podle ní souvisí změny tlaku vzduchu v troposféře s charakterem advekce a termickými procesy ve stratosféře. V tomto pojetí má termocyklogeneze jiný smysl než termická teorie cyklogeneze.
česky: termocyklogeneze angl: thermocyclogenesis slov: termocyklogenéza  1993-a2
территориальная область ВМО
oblasti, na které Světová meteorologická organizace (WMO) rozdělila svět za účelem plnění úkolů s přihlédnutím ke specifickým podmínkám v různých regionech. V rámci územních oblastí řídí činnost jednotlivých met. a hydr. služeb oblastní sdružení (RA, Regional Associations), která jsou vedle kongresu a tech. komisí zákl. orgány WMO. RA I zaujímá Afriku, RA II Asii, RA III Jižní Ameriku, RA IV Severní a Střední Ameriku, RA V Austrálii a RA VI zaujímá Evropu a středomořské země Blízkého východu a bývalé sovětské republiky v oblasti Kavkazu.
česky: oblast územní WMO angl: WMO Regional Association slov: územná oblasť WMO něm: WMO-Territorialgebiet n  1993-a3
территориальная область Международной Организации Гражданской Авиации (МОГА)
jedna ze sedmi oblastí světa podle členění Mezinárodní organizace pro civilní letectví (ICAO), které se vzájemně liší z hlediska podmínek pro létání. V každé z nich je zřízena regionální kancelář ICAO, která tuto oblast spravuje. Jedná se o tyto regionální kanceláře ICAO: Paříž pro Evropu a severní Atlantik, Bangkok pro Asii a Pacifik, Káhira pro Střední Východ, Dakar pro západní a centrální Afriku, Lima pro Jižní Ameriku, Mexiko pro Severní Ameriku, centrální Ameriku a Karibik, a Nairobi pro východní a jižní Afriku.
česky: oblast územní ICAO angl: ICAO Region slov: územná oblasť ICAO něm: ICAO-Territorialgebiet n  1993-a3
территория ВМО
oblasti, na které Světová meteorologická organizace (WMO) rozdělila svět za účelem plnění úkolů s přihlédnutím ke specifickým podmínkám v různých regionech. V rámci územních oblastí řídí činnost jednotlivých met. a hydr. služeb oblastní sdružení (RA, Regional Associations), která jsou vedle kongresu a tech. komisí zákl. orgány WMO. RA I zaujímá Afriku, RA II Asii, RA III Jižní Ameriku, RA IV Severní a Střední Ameriku, RA V Austrálii a RA VI zaujímá Evropu a středomořské země Blízkého východu a bývalé sovětské republiky v oblasti Kavkazu.
česky: oblast územní WMO angl: WMO Regional Association slov: územná oblasť WMO něm: WMO-Territorialgebiet n  1993-a3
тетаграмма
termodynamický diagram navržený G. Schinzem (1932), který vyjadřuje závislost izobarické ekvivalentní potenciální teploty na výšce. Tato teplota se vynáší linárně na osu x, osa y je buď lineární stupnicí výšky, nebo logaritmickou stupnicí tlaku vzduchu. Na základě četných aerologických měření sestavili O. Moese a G. Schinze (1932) charakteristické thetagramy pro různé geografické typy vzduchových hmot ve stř. Evropě. Název thetagram souvisí s obvyklým označením potenciální teploty řeckým písmenem Θ (theta). V současné době má tento diagram pouze historický význam. Viz též klasifikace vzduchových hmot geografická.
česky: thetagram angl: thetagram slov: thetagram  1993-a2
тефиграмма
termodynamický diagram s pravoúhlými nebo kosoúhlými souřadnicovými osamiT a Φ (podle nichž byl diagram nazván tefigram), kde T je teplota vzduchu v K (v některých verzích tefigramu ve °C) a Φ entropie suchého vzduchu. Protože entropie je úměrná logaritmu potenciální teploty Θ podle vztahu:
Φ=cplnΘ+konst.,
kde cp je měrné teplo vzduchu při stálém tlaku, má osa y současně stupnici lnΘ. Autorem tohoto energetického diagramu, užívaného zejména v anglosaských zemích k vyhodnocování aerol. údajů, je W. N. Shaw (1923).
česky: tefigram angl: tephigram slov: tefigram  1993-a2
техническая климатология
syn. klimatologie inženýrská – klimatologie aplikovaná v technice. Poskytuje klimatologické podklady k realizaci investičních záměrů, pro urbanistické řešení územních celků, problematiku životního prostředí, zřizování a provoz složitých technol. zařízení, pro výstavbu inženýrských sítí (např. kanalizace), vnějších el. vedení, vysokých komínů, rozhlasových a televizních vysílačů, pro vodohosp. účely, zeměď. praxi apod. Klimatologické podklady se sestavují na základě archivovaného klimatologického materiálu nebo se opírají o výsledky terénního klimatologického průzkumu.
česky: klimatologie technická angl: technical climatology slov: technická klimatológia něm: Ingenieur-Klimatologie f, technische Klimatologie f  1993-a1
Технический регламент ВМО
publikace vydávaná Světovou meteorologickou organizací (WMO), která kodifikuje podmínky, formy a způsoby mezin. spolupráce v meteorologii a hydrologii. Technická pravidla WMO obsahují zásady, postupy a doporučení pro met. a hydr. služby. První díl této publikace se týká Světové služby počasí (WWW), včetně systému pozorování, zpracování údajů a met. komunikací (část A), dále obsahuje doporučení pro klimatologii, měření chem. komponent atmosféry a pro výukovou, publikační a výzk. činnost (část B), a pro zabezpečení námořní dopravy a zemědělství (část C). Druhý díl je věnován problematice met. služeb letectví a třetí díl se zabývá otázkami hydrologie.
česky: pravidla technická WMO angl: Technical Regulations WMO slov: technické pravidlá WMO něm: technische Vorschriften der WMO f  1993-a3
течение
viz vítr.
česky: proudění angl: flow slov: prúdenie něm: Strömung f  1993-a1
тип климата
klima s určitými charakteristickými vlastnostmi, které se vyskytují v různých částech Země, především v rámci téhož klimatického pásma. Klimatické typy jsou rozlišovány při klasifikaci klimatu buď z hlediska genetického (např. monzunový typ, typ klimatu záp. pobřeží), nebo konvenčně hodnotami klimatických prvků, popř. klimatologckými indexy (např. pouštní typ).
česky: typ klimatický angl: climatic type slov: klimatický typ  1993-a3
тип погоды
1. v komplexní klimatologii soubor meteorologických prvků a jevů daného dne, který je charakterizován jejich hodnotami uvnitř vhodně zvolených intervalů. Týká se zvláště teploty a vlhkosti vzduchu, oblačnosti, atm. srážek, sněhové pokrývky a větru. Znamená zobecnění případů počasí jako jevů prakticky se neopakujících, např. počasí mírně mrazivé, bez větru, málo oblačné. Typy počasí lišící se jen v jednom anebo dvou znacích se shrnují do tříd počasí;
2. v synoptické meteorologii charakter počasí odpovídající určitému synop. objektu, tj. atm. (tlakovému) útvaru, vzduchové hmotě nebo atmosférické frontě, a to zejména v závislosti na roč. době. Např. anticyklonální počasí, počasí v týlu cyklony, počasí teplé fronty. Viz též typ synoptický.
česky: typ počasí angl: weather type slov: typ počasia  1993-a1
тип циркуляции
dříve často používané označení atmosférické cirkulace s definovanými vlastnostmi nad vymezenou oblastí. Cirkulační typ vystihuje podstatné rysy makrosynoptických procesů, jako polohu řídících tlakových útvarů, polohu frontální zóny apod. V. A. Vangengejm rozlišil v oblasti sev. Atlantiku a Eurasie 3 základní cirkulační typy:
a) západní (W), charakterizovaný záp. přenosem v troposféře;
b) východní (E), charakterizovaný vých. přenosem v troposféře nebo vývojem stacionární anticyklony nad pevninou;
c) meridionální (C), charakterizovaný silným přenosem vzduchových hmot mezi vyššími a nižšími zeměp. š. v důsledku meridionální cirkulace.
Typizace povětrnostních situací Evropy uvádí pro stř. Evropu 3 typy podle polohy subtropické azorské anticyklony:
a) převážně zonální cirkulace (z), při níž je subtropická anticyklona v normální poloze;
b) smíšená cirkulace (g) se subtropickou výší posunutou sev. nebo sz. až k 50° s. š.;
c) převážně meridionální cirkulace (m), kdy uzavírající anticyklona leží přibližně mezi 50 až 70° s. š. (blokující anticyklona).
Viz též cirkulace zonální.
česky: typ cirkulační angl: circulation type slov: cirkulačný typ  1993-a3
тип „крупномасштабной
charakter cirkulace atmosféry nad velkou částí zemského povrchu o velikosti řádově 105 až 106 km2, podmíněný rozložením řídících cyklon a anticyklon a polohou frontální zóny. Podle převládajícího směru proudění zpravidla rozlišujeme zonální a meridionální typ makrosynoptické situace, které se podle rázu počasí na sledovaném území dále dělí na cyklonální a anticyklonální typy. Něm. meteorolog F. Baur v roce 1936 definoval typ makrosynoptické situace pomocí rozhodujících rysů celkového stavu atmosféry v zájmovém dostatečně velkém prostoru, které se podstatně nemění po více dní a jsou rozhodující pro počasí v jednotlivých dílčích oblastech. V zahraniční literatuře a nevhodně i v naší, se pro typ makrosynoptické situace někdy používá něm. označení „Grosswetterlage“. Viz též typizace povětrnostních situací, cirkulace meridionální, cirkulace zonální.
česky: typ makrosynoptické situace angl: Grosswetterlage slov: typ makrosynoptickej situácie  1993-a1
типизация пограничного слоя атмосферы
klimatologická abstrakce zákl. charakteristik mezní vrstvy atmosféry, zpravidla podle vertikálních profilů teploty, větru a vlhkosti vzduchu za předpokladu horiz. homogenity polí v mezoměřítku. Významným prvkem při této typizaci je výskyt, výška, vert. rozsah, popř. další charakteristiky teplotních zadržujících vrstev, především inverzí teploty. Za kritéria stabilitních podmínek v mezní vrstvě se zpravidla volí veličiny přímo odvozené z vertikálního teplotního gradientu (mezní vrstva velmi stabilní, mírně stabilní, instabilní, konv. apod.) nebo komplexnější charakteristiky typu Richardsonova čísla.
česky: typizace mezní vrstvy atmosféry angl: boundary layer typification slov: typizácia hraničnej vrstvy atmosféry  1993-a1
типизация синоптических ситуаций
systém synoptických typů, vytvořený na základě denních synoptických map pro předpovědní, klimatologické a jiné účely. Součástí typizace povětrnostních situací je kalendář uvádějící synop. typy, které se vyskytují v jednotlivých dnech. Ve stř. Evropě je nejrozšířenější typizace povětrnostních situací Evropy, označovaná též jako typizace P. Hessa a H. Brezowského. V ČR se nejvíce používají typizace povětrnostních situací HMÚ a typizace povětrnostních situací Končka a Reina.
česky: typizace povětrnostních situací angl: typification of synoptic situations slov: typizácia poveternostných situácií  1993-a3
типизация синоптических ситуаций Европы (Гесса и Брезовского)
syn. typizace povětrnostních situací Hessa a Brezowského – typizace povětrnostních situací, která vychází z práce F. Baura „Kalendář typů makrosynoptických situací Evropy, sestavený pro léta 1881–1938“. Podle polohy azorské anticyklony rozeznává tři cirkulační typy: převážně zonální, smíšený a převážně meridionální. Podle tohoto schématu rozlišuje pro Evropu 18 typů synop. situací, z nichž dvě jsou zonální, tří smíšené a třináct je meridionálních, které se dále dělí podle toho, zda ve stř. Evropě má počasí anticyklonální nebo cyklonální charakter. Kalendář této typizace je zpracován od roku 1881 a průběžně se doplňuje. Typizace P. Hessa a H. Brezowského je ve stř. Evropě nejužívanější typizací povětrnostních situací, vyhovuje však především pro území Německa. Zjištění, že se tato klasifikace vždy nedá úspěšně využít na území tehdejšího Československa, vedlo k vypracování typizace povětrnostních situací HMÚ. Viz též katalog povětrnostních situací.
česky: typizace povětrnostních situací Evropy angl: Hess-Brezowski typification of synoptic situations in Europe slov: typizácia poveternostných situácií Európy (Hessa a Brezowského)  1993-a3
типы воздушных масс
česky: typy vzduchových hmot angl: air masses types slov: typy vzduchových hmôt  1993-a1
типы рефракции радиоволн
syn. typy refrakce radiovln – podle změn indexu lomu elektromagnetického vlnění ve vzduchu s výškou se rozlišuje atmosférická refrakce neboli lom radiovln na kladnou (při vert. gradient indexu lomu vzduchu ∂n / ∂z < 0 m–1, což odpovídá zakřivení paprsku k povrchu země), zápornou (při ∂n / ∂z > 0 m–1, což odpovídá zakřivení paprsku od povrchu země) a nulovou (při ∂n / ∂z = 0 m–1, což odpovídá přímkovému šíření paprsku). V běžných podmínkách převažuje kladná refrakce, která je dále členěna ve vztahu ke standardní a kritické refrakci. Standardní radioatmosféra předpokládá ∂n / ∂z = –4.10–8 m–1, což odpovídá podmínkám standardní (někdy též normální) refrakce, za které pro efektivní poloměr Země platí Re = 4/3 Rz. Kritická refrakce nastává při ∂n / ∂z = –15,7 .10–8 m–1, kdy je křivost paprsku totožná s křivostí zemského povrchu. Superrefrakce nastává při ∂n / ∂z < –15,7 . 10–8 m–1 a paprsek má velké zakřivení směrem k zemi, takže může nastat i jeho několikanásobný odraz a vytvoření přízemního vlnovodu. Viz též meteorologie radiolokační, refrakce atmosférická.
česky: typy refrakce elektromagnetických vln angl: types of refraction of electromagnetic waves slov: typy refrakcie elektromagnetických vĺn  1993-a3
тихий ветер
1. vítr o prům. rychlosti 0,3 až 1,5 m.s–1 nebo 1 až 5 km.h–1. Odpovídá prvnímu stupni Beaufortovy stupnice větru;
2. obecné označení pro zpravidla slabý vítr místní cirkulace charakteristický výraznou denní změnou směru, jakým je např. bríza.
česky: vánek angl: breeze (2.), light air (1.) slov: vánok  1993-a3
топографическая диффлюэнция
česky: difluence topografická angl: topographic diffluence slov: topografická difluencia něm: topographische Diffluenz f  1993-a1
топографическая сходимость
česky: konfluence topografická angl: topographic confluence slov: topografická konfluencia něm: topographische Konfluenz f  1993-a1
топография фронта
kartografické znázornění prostorové struktury atmosférické fronty nebo frontálního systému. Spočívá v tom, že na geogr. mapě jsou zakresleny polohy frontálních čar na zemském povrchu a ve standardních izobarických hladinách, popř. ve výškových hladinách v celém vert. rozsahu fronty, které jsou zjištěny z přízemní synoptické mapy a z map barické topografie z téhož synoptického termínu. Lze použít i výstupy z numerických předpovědních modelů.
česky: topografie fronty angl: frontal topography, topography of front slov: topografia frontu  1993-a3
топоклимат
klima reliéfové typ klimatu, které se utváří pod vlivem georeliéfu, jeho aktivního povrchu a spolupůsobení antropogenních vlivů. Morfografie zemského povrchu dává klimatu specifické vlastnosti, jejichž vert. a horiz. rozsah závisí na přilehlých tvarech reliéfu. Prostorové vymezení topoklimatu je proto neurčité, stejně jako jeho postavení v soustavě členění klimatu. Topoklima v pojetí některých autorů je syn. místního klimatu. Termín navrhl C. W. Thornthwaite (1953). Viz též kategorizace klimatu, zóna svahová teplá.
česky: topoklima angl: topoclimate slov: topoklíma  1993-a3
топоклиматология
česky: klimatologie terénní slov: terénna klimatológia něm: Geländeklimatologie f  1993-a1
топоклиматология
syn. klimatologie terénní – část klimatologie zabývající se topoklimatem. Jejím cílem je posoudit, do jaké míry a jakým způsobem se v procesu geneze klimatu uplatňuje především reliéf povrchu a dále vyčleňování klimatických jednotek neboli klimatopů, zvláště na základě terénních klimatických (topoklimatologických) měření. Viz též měření meteorologické terénní ambulantní.
česky: topoklimatologie angl: topoclimatology slov: topoklimatológia  1993-a1
торнадо
speciální druh tromby, vyskytující se pod konvektivními bouřemi, resp. pod oblakem druhu Cb. Aby jev mohl být označen jako tornádo, musí být generován cirkulací bouře. Jeho cirkulace se tedy spouští shora dolů, od základny oblaku k zemskému povrchu, a musí se během své existence alespoň jednou dotknout zemského povrchu, přičemž zároveň musí mít potenciál způsobit na zemském povrchu hmotné škody. Pokud se jev připomínající tornádo nedotkne zemského povrchu, nemůže být formálně jako tornádo označen.
Rotaci tornáda nezpůsobuje Coriolisova síla, nýbrž je důsledkem dynamiky konv. bouře, proto kromě častějších cyklonálně rotujících tornád existují i tornáda rotující anticyklonálně, tedy na severní polokouli po směru otáčení hodinových ručiček. Tornáda se klasifikují z hlediska intenzity tzv. Fujitovou stupnicí (stupeň F0 pro nejslabší, stupeň F5 pro nejsilnější tornáda), odvozenou od charakteru způsobených škod. Nejslabších tornád je nejvíce, nejsilnějších nejméně. Vyskytují se globálně (s výjimkou polárních oblastí), avšak v některých oblastech (např. východ až středozápad USA) je jejich výskyt častější a zároveň se zde vyskytuje i více silnějších tornád. Nejsilnější tornáda (F4 a F5) jsou téměř výlučně vázána na bouře typu supercela, slabší se vyskytují i na nesupercelárních konv. bouřích. Ztráty na životech nemusí souviset pouze se sílou tornád, ale i s výstražným systémem a způsobem ochrany obyvatelstva (např. tornáda s největším počtem obětí se vyskytují v Bangladéši).
Výskyt tornád na území ČR je komplexněji dokumentován přibližně od konce devadesátých let 20. století, v průměru se zde vyskytne několik (zpravidla slabších) tornád ročně. Viz též extrémy tlaku vzduchu, extrémy rychlosti větru.
česky: tornádo angl: tornado slov: tornádo  1993-a3
торр
stará jednotka tlaku, nazvaná podle italského přírodovědce E. Torricelliho (1608–1647). Je rovna hydrostatickému tlaku jednoho mm rtuťového sloupce (mm Hg) za definovaných normálních podmínek. Od 1. 1. 1980 není u nás torr jednotkou povolenou normami a základní jednotkou tlaku je dle soustavy jednotek SI pascal (Pa). Mezi oběma jednotkami platí převodní vztah: 1 torr = 133,322 Pa. Viz též měření tlaku vzduchu.
česky: torr angl: torr slov: torr  1993-a3
тотализатор
v meteorologii srážkoměr určený k měření úhrnu srážek za delší dobu, zpravidla za půl roku. Často se instaluje na odlehlých nebo těžko dostupných místech. Srážky se zachycují do nádoby dostatečného obsahu, do které se na začátku měření nalije určité množství nemrznoucího roztoku. Přidaná vhodná látka, např. olej, zabraňuje výparu. Úhrn srážek se určí z přírůstku celkového objemu roztoku v nádobě za dobu měření. Průkopníkem měření kapalných i tuhých srážek pomocí tzv. srážkoměrného sběrače, neboli totalizátoru, byl franc. glaciolog P. Mougin (1912). Viz též měření srážek.
česky: totalizátor angl: accumulative rain gauge, totalizer rain gauge slov: totalizátor  1993-a1
точечный разряд
syn. výboj bodový – el. výboj, který vzniká na hrotu nalézajícím se v silném el. poli. Ke vzniku hrotového výboje je nutné, aby v bezprostředním okolí hrotu došlo vlivem zesílení el. pole k ionizaci nárazem. Na hrotech, zejména pod cumulonimby, může dosáhnout takové intenzity, že je v temnu viditelný jako sršení doprovázené často slyšitelným praskotem. Tento jev byl mnohokrát popsán v literatuře jako oheň svatého Eliáše. U nás bývá pozorován na vysokých věžích a na horských observatořích, např. na Milešovce nebo Sněžce. V případě, že se jedná o hrot vodivě spojený se zemským povrchem, je svodem odváděn do země elektrický náboj opačného znaménka než je znaménko náboje zemského povrchu na daném místě. Výboje tohoto druhu významně přispívají ke globální regeneraci záporného náboje zemského povrchu. Viz též výboj korónový.
česky: výboj hrotový angl: point discharge slov: hrotový výboj  1993-a3
точка Араго
jeden ze tří neutrálních bodů nalézající se ve výšce asi 20° nad antisolárním bodem.
česky: bod Aragův angl: Arago's point slov: Aragov bod něm: Aragopunkt m fr: point neutre d'Arago m  1993-a1
точка Бабинэ
jeden ze tří neutrálních bodů nalézající se ve výšce 15 až 20° nad Sluncem. Objevil jej franc. fyzik J. Babinet v r. 1840.
česky: bod Babinetův angl: Babinet point slov: Babinetov bod něm: Babinetpunkt m fr: point neutre de Babinet m  1993-a1
точка Брюстера
jeden ze tří neutrálních bodů, nalézající se ve výšce 15 až 20° pod Sluncem. Objevil jej skotský fyzik D. Brewster v r. 1840.
česky: bod Brewsterův angl: Brewster point slov: Brewsterov bod něm: Brewsterpunkt m fr: point neutre de Brewster m  1993-a1
точка замерзания
syn. teplota mrznutí – v meteorologii označení pro bod tuhnutí nebo bod tání čisté vody při daném atmosférickém tlaku vzduchu. Je-li tento tlak roven normálnímu tlaku, je odpovídající teplota mrznutí rovna 0 °C a označuje se pak v české meteorologické literatuře jako bod mrazu. Tato hodnota teploty byla jako nulový bod zvolena při definování Celsiovy teplotní stupnice. Teplota mrznutí kapek v oblacích může být hluboko pod 0 °C vzhledem k existenci přechlazené vody (viz též ledová jádra).
česky: bod mrznutí angl: freezing point slov: bod mrznutia něm: Eispunkt m, Gefrierpunkt m fr: point de congélation m  1993-a3
точка инея
teplota, při níž je tlak nasycené páry nad povrchem pevné fáze dané látky roven vnějšímu tlaku, v atmosférických podmínkách tlaku vzduchu. V meteorologii se jedná o hodnotu teploty, při níž hodnota tlaku nasycené vodní páry vzhledem k ledu odpovídá tlaku vzduchu. Za podmínek obvyklých v troposféře není bod sublimace ledu dosažen. Ve starší české meteorologické literatuře se bod sublimace někdy nesprávně vyskytuje ve smyslu teplota bodu ojínění. Viz též bod varu.
česky: bod sublimace angl: sublimation point slov: bod sublimácie něm: Reifpunkt m fr: température de sublimation f  1993-a3
точка инея
syn. bod ojínění – teplota, při níž se vlhký vzduch o teplotě pod 0 °C a dané hodnotě směšovacího poměru vodní páry stane nasyceným vzhledem k ledu následkem izobarického ochlazování. Při poklesu teploty pod hodnotu teploty bodu ojínění dochází k depozici vodní páry obsažené ve vzduchu a vzniká jíní. Při relativní vlhkosti vzduchu menší než 100 % vzhledem k ledu je teplota bodu ojínění vždy nižší než teplota vzduchu. Anglický termín zavedený v definicích WMO je „frost point“; v češtině se dříve pro tuto veličinu nesprávně používal termín „bod sublimace“. Viz též teplota rosného bodu, bod sublimace, bod mrznutí.
česky: teplota bodu ojínění angl: frost point slov: teplota bodu osrienenia (namŕzania)  2014
точка кипения
syn. teplota varu – teplota, při níž je tlak nasycené páry nad povrchem kapalné fáze dané látky roven vnějšímu tlaku, v atmosférických podmínkách tlaku vzduchu. Bod varu čisté vody je při normálním tlaku roven 100 °C (373,15 K). Tato teplota byla zvolena jako jeden ze dvou základních bodů při definování Celsiovy teplotní stupnice. S klesajícím tlakem vzduchu se bod varu vody snižuje. Této závislosti se využívá při měření nadm. výšek hypsometry. Viz též bod sublimace.
česky: bod varu angl: boiling point slov: bod varu něm: Siedepunkt m fr: point d'ébullition m  1993-a3
точка кипения
syn. bod varu.
česky: teplota varu angl: boiling point slov: teplota varu  1993-a1
точка окклюзии
bod na přízemní synoptické mapě, který tvoří vrchol teplého sektoru cyklony a z něhož se směrem do vyššího tlaku vzduchu rozbíhají v okludované cykloně zbývající části teplé a studené fronty. Během procesu okluze se okluzní bod přemísťuje k okraji cyklony. Někdy se poblíž okluzního bodu vytváří nový střed cyklony. Viz též fronta okluzní.
česky: bod okluzní angl: point of occlusion slov: oklúzny bod něm: Okklusionspunkt m fr: point d'inflexion m  1993-a3
точка росы
česky: bod rosný angl: dew point slov: rosný bod něm: Taupunkt m fr: point de rosée m  1993-a3
точка седловины
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický angl: col, hyperbolic point, neutral point, saddle point slov: hyperbolický bod něm: hyperbolischer Punkt m, Sattelpunkt m fr: point-col m, point hyperbolique m, point neutre m, point-selle m  1993-a3
точка таяния
syn. teplota tání – teplota, při níž dochází k fázovému přechodu dané látky ze skupenství pevného do skupenství kapalného při rovinném fázovém rozhraní. Ohříváme-li pevnou látku, její teplota se zvyšuje až k bodu tání. Další ohřev již vyvolá tání a dodané teplo je spotřebováváno na latentní teplo tání, přičemž teplota tající látky zůstává zachována. Po úplném roztátí pevné fáze pak teplota vzniklé kapaliny při dalším ohřívání roste. Teplota tání závisí na tlaku. U většiny látek teplota tání s rostoucím tlakem roste, u ledu a několika dalších látek však s růstem tlaku klesá (viz regelace ledu). Čistý led při normálním tlaku má bod tání 0 °C (273,15 K). Při inverzní změně skupenství odpovídá bodu tání bod tuhnutí (bod mrznutí).
česky: bod tání angl: melting point slov: bod topenia něm: Schmelzpunkt m fr: point de fusion m  1993-a3
точки преломления
česky: body zlomové slov: zlomové body fr: niveau significatif m  1993-a1
точки преломления
česky: zlomy slov: zlomy  1993-a1
травянистая почва
půda, na níž je udržován trávník na stejné výšce pro účely srovnatelnosti meteorologických měření. V ČR je předepsaným druhem aktivního povrchu na meteorologických stanicích.
česky: půda porostlá trávníkem angl: grassy soil slov: pôda s porastom trávnika něm: Grasboden m  1993-a3
траектории циклонов
koridory se zvýšenou frekvencí pohybu cyklon, určené na základě studia trajektorií cyklon za delší období. Trajektorie konkrétní cyklony se přitom od typické dráhy může značně lišit. Pro tropické cyklony na sev. polokouli jsou charakteristické přibližně parabolické dráhy nejprve k severozápadu, posléze k severovýchodu, s bodem ohybu nejčastěji mezi 20° a 30° s. š. V mimotropických oblastech dráhy cyklon směřují většinou od západu na východ ve směru řídícího proudění. Dráhy cyklon v Evropě popsal W. J. Bebber (1891) dodnes se používá jeho označení dráha Vb [pět b] pro pohyb janovské cyklony přes Jaderské moře a Maďarsko k severovýchodu, viz situace Vb.
česky: dráhy cyklon angl: cyclone tracks slov: dráhy cyklón něm: Zugstrassen der Tiefdruckgebiete f/pl, Zyklonenbahnen f fr: cheminement des cyclones m, trajectoire des cyclones f  1993-a3
траектория
spojnice bodů, jimiž prošla uvažovaná pohybující se částice. Při dostatečné hustotě těchto bodů se trajektorie blíží skutečné dráze částice. V meteorologii jde především o trajektorie vzduchových částicpoli atmosférického proudění. Lze rozlišit obecné trojrozměrné trajektorie od dvourozměrných trajektorií konstruovaných v určitých plochách (hladinách), např. v hladinách konstantní nadmořské výšky, konstantního tlaku vzduchu, konstantní entropie apod. V minulosti se v praxi často používaly trajektorie geostrofické, konstruované v poli geostrofického větru. Jako první, kdo zkonstruoval trajektorie vzduchových částic v atmosféře, se v literatuře obvykle uvádějí Angličané N. Shaw a R. G. K. Lempfert (1906).
česky: trajektorie angl: trajectory slov: trajektória  1993-a3
траектория молнии
viditelná, zpravidla klikatá dráha blesku. Při rozvětveném blesku se považuje za trajektorii blesku dráha hlavního kanálu blesku, z něhož odbočují větve.
česky: trajektorie blesku angl: trajectory of lightning slov: trajektória blesku  1993-a2
траектория циклона
spojnice míst, jimiž prošel střed konkrétní cyklony. Sledování cyklon se provádí pomocí detekce lokálních minim tlaku vzduchu redukovaného na hladinu moře, geopotenciální výšky, příp. maxim relativní vorticity. Viz též dráhy cyklon.
česky: trajektorie cyklony angl: trajectory of a cyclone, trajectory of a depression slov: trajektória cyklóny  1993-a3
трамонтана
studený sev. nebo sv. vítr v záp. části Středomoří, zvláště na pobřeží Ligurského moře na sev. Korsice, na Baleárských ostrovech a v údolí řeky Ebro ve Španělsku. Podobně jako mistral souvisí s postupem anticyklony od západu do Středomoří. Tramontana přináší pěkné počasí s ojedinělými přeháňkami a v zimě sněžení. V Itálii a ve Španělsku se názvu tramontana používá též hovorově pro libovolný vítr vanoucí z hor.
česky: tramontana angl: tramontana slov: tramontana  1993-a2
трансмиссионный коэффициент
česky: koeficient transmisní slov: transmisný koeficient  1993-a3
трансмиссометр
syn. měřič propustnosti, transmisometr – zařízení používané k určování meteorologické dohlednosti, kterým se nejčastěji měří zeslabení sondovacího paprsku po průchodu stanoveným sloupcem ovzduší. Ke generování paprsku slouží v opt. systému nejčastěji laserová dioda, přičemž úzký paprsek je směrován do přijímače, kde je zpravidla elektronicky srovnávána intenzita vyslaného a po průchodu atmosférou zeslabeného paprsku. Délka sondovaného vzorku ovzduší bývá zpravidla desítky metrů. Jinou skupinu tvoří měřiče dohlednosti, které měří dopředný rozptyl záření, tzv. forward scatterometry. Viz též měření dohlednosti, vztah Allardův.
česky: měřič průzračnosti angl: transmissometer slov: merač priezračnosti něm: Transmissometer n  1993-a3
трансозонд
balon z elastického materiálu, naplněný plynem lehčím než vzduch a vyvážený břemenem tak, aby v určité hladině užitečná stoupací síla balonu byla rovná nule. Používá se k určování horiz., popř. vert. rychlostí větru.
česky: balon vyvážený angl: constant-level balloon slov: vyvážený balón něm: Driftballon m fr: ballon à niveau constant m  1993-a2
трансозонд
syn. transosonda – radiosonda sloužící k horizontální sondáži ovzduší nad rozsáhlými oblastmi zemského povrchu, hlavně nad oceány. Měří tlak, teplotu a vlhkost vzduchu, směr a rychlost větru. Speciální transosondy měří navíc i koncentraci ozonu a bilanci záření. Podle účelu se transoceánské sondy dělí na sondy nesené otevřeným balonem a na sondy nesené uzavřeným balonem. Prvé se používají nejčastěji pro lety v hladinách od 300 do 200 hPa. Doba jejich letu zpravidla nepřesahuje 15 dní. Transoceánské sondy s uzavřeným balonem pracují až stovky dní, během nichž vykonají někdy i několik desítek obletů Země. Používají se hlavně při zkoumání všeobecné cirkulace atmosféry. Letové hladiny těchto sond se pohybují od 700 do 10 hPa a vzdálenost mezi sondami v horiz. směru bývá kolem 1 000 km. Informace z transoceánské sondy se přijímají pozemními stanicemi do vzdálenosti 8 000 km od sondy. Pro přenos signálů se v současné době používají družice. Viz též sondáž ovzduší horizontální.
česky: sonda transoceánská angl: transosonde slov: transoceánska sonda něm: Transozeansonde f  1993-a3
трансокеанский зонд
balon z elastického materiálu, naplněný plynem lehčím než vzduch a vyvážený břemenem tak, aby v určité hladině užitečná stoupací síla balonu byla rovná nule. Používá se k určování horiz., popř. vert. rychlostí větru.
česky: balon vyvážený angl: constant-level balloon slov: vyvážený balón něm: Driftballon m fr: ballon à niveau constant m  1993-a2
трансокеанский зонд
syn. transosonda – radiosonda sloužící k horizontální sondáži ovzduší nad rozsáhlými oblastmi zemského povrchu, hlavně nad oceány. Měří tlak, teplotu a vlhkost vzduchu, směr a rychlost větru. Speciální transosondy měří navíc i koncentraci ozonu a bilanci záření. Podle účelu se transoceánské sondy dělí na sondy nesené otevřeným balonem a na sondy nesené uzavřeným balonem. Prvé se používají nejčastěji pro lety v hladinách od 300 do 200 hPa. Doba jejich letu zpravidla nepřesahuje 15 dní. Transoceánské sondy s uzavřeným balonem pracují až stovky dní, během nichž vykonají někdy i několik desítek obletů Země. Používají se hlavně při zkoumání všeobecné cirkulace atmosféry. Letové hladiny těchto sond se pohybují od 700 do 10 hPa a vzdálenost mezi sondami v horiz. směru bývá kolem 1 000 km. Informace z transoceánské sondy se přijímají pozemními stanicemi do vzdálenosti 8 000 km od sondy. Pro přenos signálů se v současné době používají družice. Viz též sondáž ovzduší horizontální.
česky: sonda transoceánská angl: transosonde slov: transoceánska sonda něm: Transozeansonde f  1993-a3
транспирация
syn. výpar fyziologický – výpar vody prostřednictvím živých rostlin (případně i živočichů), který souvisí s jejich fyziologickými procesy, především s látkovou výměnou neboli metabolizmem. Z tohoto důvodu je transpirace v bioklimatologii označována též jako produktivní výpar, na rozdíl od evaporace, k níž řadíme i intercepci srážek zachycených na povrchu rostlinných těl. Intenzita transpirace tak závisí nejen na fyz. podmínkách prostředí jako je tomu u evaporace, nýbrž i na fyziologickém stavu rostlin, viz potenciální výpar a skutečný výpar. Viz též radioatmometr.
česky: transpirace angl: transpiration slov: transpirácia  1993-a3
трансформационное изменение температуры воздуха
lokální časová změna teploty v libovolné hladině vzduchové hmoty (z = konst. nebo p = konst.) s vyloučením vlivu horiz. advekce. Transformační změny teploty se studují v souřadnicové soustavě, pohybující se s danou vzduchovou hmotou a jsou působeny:
a) neadiabatickými ději, k nimž patří především turbulentní výměna tepla mezi podkladem a vzduchovou hmotou, výměna tepla působená radiací a uvolňování latentního tepla při fázových přechodech vody v atmosféře;
b) vert. pohyby řádu cm.s–1, které se uplatňují především ve volné atmosféře;
c) lokálními časovými změnami tlaku vzduchu. Jejich vliv je významnější jen při mimořádně velkých tlakových tendencích. Transformační změny teploty vzduchu se dají vypočítat z rovnice pro lokální časovou změnu teploty, kterou lze odvodit z první hlavní termodynamické věty. Transformační změny teploty vzduchu lze měřit např. pomocí transoceánských sond.
česky: změna teploty vzduchu transformační angl: transformation change of air temperature slov: transformačná zmena teploty vzduchu  1993-a3
трансформация воздушной массы
postupná změna vlastností a charakteristik vzduchové hmoty při jejím přemístění do geografických oblastí, ve kterých není v tepelné a radiační rovnováze s podkladem. Rozeznává se transformace vzduchové hmoty absolutní a relativní. Podle dějů, které transformace vzduchové hmoty způsobují, se někdy rozlišuje transformace vzduchové hmoty dynamická, orografická a radiační. V užším slova smyslu rozumíme pod pojmem transformace vzduchové hmoty jen lokální časové změny teploty bez zahrnutí horizontální advekce teploty.
česky: transformace vzduchové hmoty angl: air mass transformation slov: transformácia vzduchovej hmoty  1993-a3
трансформация примеси
souhrn chem. změn podmíněných vzájemnými reakcemi znečišťujících příměsí nebo reakcemi mezi příměsemi a složkami ovzduší. Při transformaci příměsí se mohou uplatňovat i fotochemické reakce pod vlivem slunečního záření. Viz též transport znečišťujících příměsí.
česky: transformace příměsi angl: air pollution transformation slov: transformácia prímesi  1993-a1
трение в атмосфере
brzdění pohybu vzduchu, které je spojeno s přenosem hybnosti ve směrech příčných vzhledem ke směru proudění. Uvedený přenos je působen difuzí molekul nebo náhodnými turbulentními fluktuacemi rychlosti proudění. V prvním případě mluvíme o vazkém tření (molek. vazkosti), ve druhém o turbulentním tření označovaném v přeneseném smyslu slova též jako turbulentní vazkost. Tření v atmosféře se projevuje vznikem tečných sil tření, které, vztaženy k jednotce plochy, označujeme jako tečná napětí. Turbulentní tečná napětí se též nazývají Reynoldsova napětí, zatímco vazká tečná napětí jsou v reálné atmosféře většinou zanedbatelná. Z kvantit. hlediska jsou v atmosféře síly turbulentního tření zpravidla o několik řádů větší než síly vazké. V praxi se někdy rozlišuje vnitřní tření uvnitř vzduchu a vnější tření proudícího vzduchu o zemský povrch, což však z přísně exaktního hlediska není zcela správné. Viz též síla tření, vrstva tření, turbulence.
česky: tření v atmosféře angl: friction in atmosphere slov: trenie v atmosfére  1993-a1
третичная радуга
syn. duha terciární – duha vzniklá lomem a trojnásobným vnitřním odrazem slunečních paprsků na dešťových kapkách. Nachází se na opačné straně oblohy než duha hlavní a duha vedlejší v úhlové vzdálenosti asi 43° od Slunce. Je to vzácný opt. úkaz.
česky: duha kolem Slunce angl: tertiary rainbow slov: dúha okolo Slnka něm: tertiärer Regenbogen m fr: arc tertiaire m  1993-a1
третичная радуга
česky: duha terciární angl: tertiary rainbow slov: terciárna dúha něm: tertiärer Regenbogen m fr: arc tertiaire m  1993-a1
третичная циркуляция
podle H. C. Willeta označení pro systémy místní cirkulace, cirkulaci v Cb aj. Viz též cirkulace primární, cirkulace sekundární, cirkulace buňková.
česky: cirkulace terciární angl: tertiary circulation slov: terciárna cirkulácia něm: tertiäre Zirkulation f fr: circulation tertiaire f  1993-a3
тровaл
syn. trowell – označení používané v kanadské met. službě pro jazyk teplého vzduchu ve vyšších vrstvách ovzduší nad okluzní frontou.
česky: trowal angl: trowal, trowell slov: trowal  1993-a2
тромб
souhrnný název pro všechny atmosférické víry s přibližně vertikální osou rotace, průměrem řádově od desítek centimetrů do stovek metrů (max. cca do 2 km), bez ohledu na mechanizmus jejich vzniku a bez ohledu na to, zda se dotýkají zemského povrchu či nikoliv. Tromba se může utvořit nad přehřátým zemským povrchem, pak je označována jako prachový nebo písečný vír či rarášek, nebo pod základnou konv. oblaku; mezi takové tromby patří kondenzační chobot nedotýkající se zemského povrchu, vodní smršť a tornádo. Ke zviditelnění tromby může dojít buď různým materiálem unášeným ze zemského povrchu (v prachovém nebo písečném víru), nebo kondenzací vodní páry (v kondenzačním chobotu neboli nálevce tromby, klasifikované jako tuba), v případě tornáda zpravidla oběma způsoby. Mezi tromby se nezahrnují víry s převládající horizontální osou rotace (např. rotory).
česky: tromba angl: whirlwind slov: tromba  1993-a3
тропическая депрессия
1. první stadium tropické cyklony, vyznačující se uzavřenou cirkulací, přičemž desetiminutový (v USA minutový) průměr rychlosti přízemního větru nepřesahuje 17 m.s–1;
2. nepřesné označení libovolné cyklony tropického původu.
česky: deprese tropická angl: tropical depression slov: tropická depresia něm: tropische Zyklone f, tropisches Tief n, tropisches Tiefdruckgebiet n fr: dépression tropicale f  1993-a3
тропическая метеорология
část meteorologie zabývající se zvláštnostmi vývoje atm. procesů v tropické oblasti, která je přibližně vymezená na severu obratníkem Raka a na jihu obratníkem Kozoroha. Poznatky tropické meteorologie vycházejí jednak ze systematických měření pozemních meteorologických stanic, zejména ale z družicových a radarových měření, a také z výsledků expedičních měření, jako např. YOTC, TACE a TROPICSS. Hlavními objekty výzkumu tropické meteorologie jsou tropické cirkulační systémy a jejich oscilace (pasátová a monzunová cirkulace, Walkerova cirkulace a jižní oscilace, vlny ve východním proudění, tropické cyklony, intertropická zóna konvergence) a vzájemná vazba mezi tropickou a vnětropickou cirkulací i mezi cirkulacemi obou polokoulí.
česky: meteorologie tropická angl: tropical meteorology slov: tropická meteorológia něm: Tropenmeteorologie f  1993-a3
тропическая ночь
noc, v níž minimální teplota vzduchu neklesla pod 20 °C. Viz též den s tropickou nocí, den tropický.
česky: noc tropická angl: tropical night slov: tropická noc něm: Tropennacht f  1993-a2
тропические восточные ветры
nepoužívané označení pro pasáty.
česky: větry východní tropické angl: tropical easterlies slov: východné tropické vetry  1993-a3
тропические дожди
vydatné srážky v tropických oblastech; vázané na intertropickou zónu konvergence, jejíž pohyb způsobuje roční chod tropických dešťů, který je hlavním kritériem rozlišení typů tropického klimatu. Pouze v klimatu tropického dešťového pralesa se tropické deště vyskytují celoročně, někdy se dvěma maximy ve formě rovnodennostních dešťů. V ostatních oblastech jsou koncentrovány do delšího nebo kratšího období dešťů, což platí především pro oblasti s tropickým monzunovým klimatem. Tropické deště jsou provázeny silnými bouřkami a na pevnině mají výrazný denní chod s maximem v odpoledních hodinách. Viz též pól dešťů, extrémy srážek.
česky: deště tropické angl: tropical rain slov: tropické dažde něm: tropischer Regen m fr: pluies tropicales f  1993-a3
тропический влажный климат
v Köppenově klasifikaci klimatu jedno z pěti hlavních klimatických pásem, označené písmenem A. Obecně tropické klima oblastí s velkou humiditou klimatu, kde se celoročně nebo sezonně vyskytují tropické deště. Průměrná teplota vzduchu v nejchladnějším měsíci neklesá pod 18 °C, přičemž roční chod teploty vzduchu je často zanedbatelný. Prům. roč. úhrn srážek dosahuje i několik tisíc milimetrů, přičemž podle srážkového režimu rozeznáváme čtyři klimatické typy: celoročně vlhké klima tropického dešťového pralesa (Af) a tři typy střídavě vlhké, tj. tropické monzunové klima (Am) a klima savany s obdobím sucha v zimě (Aw), ojediněle v létě (As) dané polokoule. Výrazný je denní chod meteorologických prvků, což platí především pro srážky. Tropické dešťové klima může být též označeno jako megatermické klima, naopak termín ekvatoriální klima je v této souvislosti nepřesný.
česky: klima dešťové tropické angl: Tropical Moist Climate slov: daždivá tropická klíma  2014
тропический воздух
vzduchová hmota, vymezená geografickou klasifikací vzduchových hmot, s ohniskem vzniku vzduchové hmoty po celý rok v tropech a v subtropických anticyklonách, v létě pak i nad již. částmi pevnin mírných šířek. Jeho výskyt je typický celoročně pro tropické klima, v teplé části roku pro subtropické klima, v chladné části roku dané polokoule pro subekvatoriální klima. Tropický vzduch se vyznačuje obecně velkým zakalením atmosféry a zmenšenou dohledností. Pokud pronikne do stř. Evropy, je po celý rok teplý. V zimě se zde může vyskytnout jeho pevninský typ, který sem pronikne ze sv. Afriky nebo Arabského poloostrova. Podstatně častější je pak v létě, kdy sem proudí i z východní Evropy a z Balkánského poloostrova. Má obvykle velmi nízkou relativní vlhkost. Mořský tropický vzduch původem ze Středozemí či z oblasti Azorských ostrovů proniká do stř. Evropy zpravidla jen krátce po přední straně brázdy nízkého tlaku vzduchu a v ní ležící zvlněné fronty. Vyznačuje se naopak vysokou relativní a především měrnou vlhkostí vzduchu a může přinášet vydatné srážky.
česky: vzduch tropický angl: tropical air slov: tropický vzduch  1993-a3
тропический день
den, v němž max. teplota vzduchu byla 30 °C nebo vyšší. Viz též noc tropická.
česky: den tropický angl: tropical day slov: tropický deň něm: Tropentag m, heißer Tag m fr: jour de forte chaleur m, jour très chaud m  1993-a1
тропический климат
1. souborné označení pro horké klima tropických šířek, tedy klima suchých tropů (horké suché klima) i vlhkých tropů (tropické dešťové klima, resp. ekvatoriální klima a subekvatoriální klima);
2. např. v Alisovově klasifikaci klimatu označení pro klima té části tropů, kde po celý rok převládá tropický vzduch.
česky: klima tropické angl: tropical climate slov: tropická klíma něm: tropisches Klima n  1993-b3
тропический муссон
monzun v tropických oblastech s monzunovým klimatem, kde je proudění vzduchu ovlivňováno nejen monzunovou cirkulací mezi oceánem a pevninou, nýbrž i sezonním pohybem intertropické zóny konvergence, a tím i změnou směru pasátů, s nimiž v některých oblastech tropické monzuny splývají. I z těchto důvodů přináší letní tropický monzun obecně větší monzunové srážky než mimotropický monzun. Tropické monzuny jsou nejsilněji vyvinuty v oblasti Indického oceánu.
česky: monzun tropický angl: tropical monsoon slov: tropický monzún něm: tropischer Monsun m  1993-a3
тропический фронт
nevhodné označení pro intertropickou zónu konvergence, která ve skutečnosti nemá charakter atmosférické fronty.
česky: fronta rovníková angl: equatorial front slov: rovníkový front fr: zone de convergence intertropicale f něm: Äquatorialfront f  1993-a3
тропический фронт
česky: fronta tropická angl: tropical front slov: tropický front něm: Tropikfront f, Äquatorialfront f fr: front intertropical m  1993-a3
тропический циклон
cyklona, která vzniká nad tropickými oblastmi oceánů, nejčastěji v pásmech mezi 5° až 20° sev. a již. zeměp. šířky. Za určitých podmínek se vyvíjí z tropické poruchy, přičemž dochází k organizaci konvektivních bouří, poklesu tlaku vzduchu ve středu cyklony a zesilování cyklonální cirkulace. Oproti mimotropické cykloně dochází v tropické cykloně při zemi k většímu zahloubení, zároveň však bývá méně rozsáhlá (zpravidla o průměru několik set kilometrů). Velký horiz. tlakový gradient ve spodní troposféře způsobuje vysokou rychlost větru. Dalšími nebezpečnými jevy jsou s rychlostí větru související bouřlivé vzdutí moře, intenzivní srážky a případný výskyt tornád.
Podle desetiminutových (v USA minutových) průměrů rychlosti přízemního větru rozeznáváme tři stadia vývoje tropické cyklony. Prvním stadiem je tropická deprese, druhým tropická bouře a třetím je stadium plně vyvinuté tropické cyklony, které má různá regionální označení: hurikán, cyklon, tajfun, willy-willy, případně baguio. Pro toto stadium je charakteristický vznik oka tropické cyklony. Po dalším zesílení může intenzita tropické cyklony přechodně poklesnout v důsledku cyklu obměny stěny oka.
Tropická cyklona je teplým útvarem, který získává většinu své energie, potřebné pro udržení výstupných pohybů vzduchu a horiz. proudění, prostřednictvím kondenzace vodní páry. Ta se do spodní troposféry dostává výparem z teplé mořské hladiny. Při kondenzaci dochází k uvolňování velkého množství latentního tepla, které je dále transportováno do chladnější horní troposféry. K zániku tropické cyklony, případně k její transformaci na mimotropickou cyklonu, dochází nad pevninou nebo nad chladnějším oceánem v důsledku zeslabení přísunu energie.
Monitoring tropických cyklon koordinuje Světová meteorologická organizace prostřednictvím regionálních specializovaných meteorologických center. Zde jsou tropické deprese číslovány podle pořadí výskytu v dané sezoně; při přechodu do stadia tropické bouře pak dostávají jména z abecedně řazených seznamů, které se střídají po několika letech. Viz též dráhy cyklon, pás srážkový, cordonazo, meteorologie tropická, půlkruh nebezpečný, stupnice Saffirova–Simpsonova.
česky: cyklona tropická angl: tropical cyclone slov: tropická cyklóna něm: tropisches Tief n, tropische Zyklone f fr: cyclone tropical m, dépression tropicale f  1993-a3
тропический шторм
1. druhé stadium vývoje tropické cyklony, ve kterém desetiminutový (v USA minutový) průměr rychlosti přízemního větru dosahuje hodnot mezi 17 a 33 m.s–1. Tropická bouře se vyznačuje dobře organizovanými srážkovými pásy, přičemž konvekce se zpravidla koncentruje do blízkosti jejího středu;
2. nepřesné označení libovolné tropické atmosférické poruchy.
česky: bouře tropická angl: tropical storm slov: tropická búrka něm: tropischer Wirbelsturm m fr: tempête tropicale f  1993-a3
тропическое возмущение
rozsáhlá skupina konvektivních bouří v tropických, popř. subtropických oblastech, která se v poli proudění neprojevuje uzavřenou cyklonální cirkulací. Vzniká často v týlu vln ve východním proudění a za určitých podmínek se z ní může vyvinout tropická cyklona. Tropická porucha nemusí být vyjádřena na přízemní synoptické mapě. Na snímcích z meteorologických družic je charakterizována izolovanými systémy uspořádané konvekce. Tropická porucha mívá obvykle průměr 200 až 600 km a zachovává si své vlastnosti více než 24 hodin.
česky: porucha tropická angl: tropical disturbance slov: tropická porucha něm: tropische Störung f  1993-a3
тропическое струйное течение
česky: proudění tryskové tropické angl: tropical jet stream slov: tropické dýzové prúdenie něm: tropischer Strahlstrom m  1993-a1
тропопауза
1. přechodná vrstva oddělující níže ležící troposféru od výše ležící stratosféry. Jen zřídka je to hladina přímého přechodu troposféry ve stratosféru. V literatuře se pod tropopauzou obvykle rozumí spodní hladina této vrstvy, která může mít tloušťku několika set m až po tři km, popř. i více. Někdy se také chybně ztotožňuje s hladinou, v níž byla dosažena nejnižší teplota v horní troposféře. Definice tropopauzy je přijata Světovou meteorologickou organizací jako konvenční tropopauza. Výška tropopauzy závisí na zeměp. šířce, roč. době a na vlastnostech vzduchové hmoty. V závislosti na zeměp. šířce nabývá tropopauza tyto prům. hodnoty výšky a teploty: v oblasti okolo pólu 7 až 9 km a –50 °C, v mírných zeměp. šířkách 10 až 12 km a –56 až –60 °C, nad rovníkem 16 až 18 km a –80 °C a nižší. Prům. výška a teplota tropopauzy nad územím ČR je 10,9 km a –58,8 °C. Výška tropopauzy závisí i na rozložení tlaku vzduchu v troposféře. Nad cyklonami se tropopauza snižuje, nad anticyklonami zvyšuje. Někdy se nad sebou vyskytuje více vrstev splňujících kritéria tropopauzy. Pak se rozlišuje první a druhá tropopauza anebo se hovoří o listovitosti tropopauzy. Pojem tropopauza zavedl N. Shaw (1912).
2. hladina, v níž potenciální vorticita nabývá určité hodnoty, na severní polokouli se obvykle volí 1,5 nebo 2 tzv. jednotky potenciální vorticity (Potential vorticity unit, PVU, 1 PVU = 10-6 m2 s-1 K kg-1). Přesná hodnota není stanovena. V tomto případě se hovoří o tzv. dynamické tropopauze a používá se hlavně v dynamické meteorologii. Viz též protržení tropopauzy, vlna tropopauzy.
česky: tropopauza angl: tropopause slov: tropopauza  1993-a3
тропосфера
spodní část atmosféry Země. Charakteristickým rysem troposféry je všeobecné ubývání teploty vzduchu s výškou v průměru o 0,65 °C na každých 100 m výšky. V troposféře jsou soustředěny přibližně 3/4 hmotnosti atmosféry. Vyskytuje se v ní téměř veškerá voda obsažená v atmosféře. Proto je troposféra oblastí vzniku mlh, nejdůležitějších druhů oblaků, bouřkové činnosti, vzniku a vypadávání atm. srážek. Je oblastí neustálého vert. promíchávání vzduchu. Rychlost proudění vzduchu v troposféře obvykle s výškou roste a maxima dosahuje v blízkosti tropopauzy, která je horní hranicí troposféry. Troposféra sahá nad rovníkem do výšky 16 až 18 km, nad póly 7 až 9 km. Ve stř. zeměp. šířkách je prům. výška troposféry 11 km, mění se v závislosti na roč. době (v zimě dosahuje níže než v létě) a na celkové povětrnostní situaci (v cyklonách je níže než v anticyklonách). V troposféře rozlišujeme ještě přízemní vrstvu, která je součástí mezní vrstvy, popř. ji dělíme na troposféru spodní, sahající u nás přibližně do 2 km, střední, ležící mezi výškami 2 až 7 km, a horní mezi 7 km a spodní hranicí tropopauzy. Horní hranici troposféry zjistili v r. 1902 nezávisle na sobě franc. meteorolog P. L. Teisserenc de Bort a Němec R. Assmann. Pojem troposféra zavedl Teisserenc de Bort v r. 1908, když rozdělil atmosféru podle změny teploty s výškou na troposféru a nad ní ležící stratosféru.
česky: troposféra angl: troposphere slov: troposféra  1993-b3
тропосферный фронт
česky: fronta troposférická angl: tropospheric front slov: troposférický front něm: troposphärische Front f fr: front troposphérique m  1993-a1
трубка Бурдона
kovová uzavřená, zakřivená, a ohebná trubice eliptického příčného průřezu, která se podle svého typu deformuje v závislosti na změnách tlaku nebo teploty vzduchu. Podle velikosti deformace se provádí měření příslušného prvku. Teploměrná Bourdonova trubice je naplněna kapalinou s velkým teplotním součinitelem roztažnosti, která způsobuje svými objemovými změnami, v závislosti na teplotních změnách, deformace trubice. Bourdonova trubice pracuje nejcitlivěji, je-li stočena do oblouku s vrcholovým úhlem přibližně 270°. Byla používána jako čidlo termografů. Tlakoměrná Bourdonova trubice pro met. účely je téměř vzduchoprázdná. Sloužila jako čidlo aneroidů.
česky: trubice Bourdonova angl: Bourdon tube slov: Bourdonova trubica  1993-a1
трубка Торричелли
původní název rtuťového tlakoměru, související s tzv. Torricelliho pokusem (1643).
česky: trubice Torricelliho angl: Torricelli tube slov: Torricelliho trubica  1993-a1
туман
atmosférický aerosol sestávající z velmi malých vodních kapiček, popř. drobných ledových krystalků rozptýlených ve vzduchu, který zmenšuje vodorovnou dohlednost při zemi alespoň v jednom směru pod 1 km. Je jedním z hydrometeorů. Relativní vlhkost vzduchu v mlze bývá velmi vysoká (dosahuje až 100 %). Vzduch působí sychravým dojmem. V klimatologii se rozlišují čtyři stupně intenzity mlhy podle dohlednosti, a to mlha slabá (dohlednost 500 až 1 000 m), mírná (200 až 500 m), silná (50 až 200 m) a velmi silná (dohlednost menší než 50 m). Mlhy všech druhů vznikají tehdy, jestliže teplota vzduchu poklesne pod teplotu rosného bodu, nebo se mu při dostatečném počtu účinných kondenzačních jader přiblíží. K tomu dochází buď ochlazením vzduchu, např. při mlze radiační, advekční a svahové, nebo dodatečným zvýšením vlhkosti vzduchu, např. u mlhy frontální (z vypařování). Mlha může vznikat při kladných i záporných teplotách vzduchu. Mlha se člení z různých hledisek. Podle vzniku rozlišujeme mlhy advekční, radiační a advekčně-radiační, podle složení např. mlhy přechlazené nebo zmrzlé, podle vert. rozsahu se mlhy dělí na mlhy přízemní a vysoké, dále se mlhy rozlišují podle místa vzniku atd. Při met. pozorováních je pro rozlišení mlhy od oblaku druhu stratus rozhodující poloha stanoviště pozorovatele. Viz též klasifikace mlh Willettova, přeháňky mlhové, chuchvalce mlhy, rozpouštění mlhy, pás mlhy, garua, kouřmo.
česky: mlha angl: fog slov: hmla něm: Nebel m  1993-a3
туман дающий изморозь
mlha tvořená přechlazenými vodními kapičkami při teplotách vzduchu často hluboko pod bodem mrazu. Protože absolutní vlhkost vzduchu je vyšší než při zmrzlé mlze, působí sychravým dojmem. Jelikož se skládá z přechlazených vodních kapiček, nepozorujeme při ní tzv. jiskření světla. Typickým projevem mrznoucí mlhy je tvoření námrazkových jevů, někdy velmi intenzivních. V letecké meteorologii je místo mrznoucí používáno adjektivum namrzající. Viz též mlha přechlazená.
česky: mlha mrznoucí angl: fog depositing rime, freezing fog slov: mrznúca hmla něm: Frostnebel m  1993-a3
туман испарения
mlha, která vzniká vypařováním vody z povrchu teplejší vodní plochy do chladnějšího vzduchu. Vyskytuje se v oblastech arkt. moří, u okrajů ledovců v kterékoliv roč. době a nad vnitřními moři (Černé, Baltské moře) v zimě. Nad pevninou se tyto mlhy vytvářejí zvláště na podzim nad řekami a jezery, je-li voda teplejší než přilehlé vrstvy vzduchu. Mohou však vznikat též následkem vypařování rel. teplých dešťových kapek, padají-li vrstvou studeného vzduchu.
česky: mlha z vypařování angl: evaporation fog slov: hmla z vyparovania něm: Dampfnebel m  1993-a3
туман на реках
česky: mlha říční angl: river fog slov: riečna hmla něm: Flussnebel m  1993-a3
туман склонов
syn. mlha orografická – mlha, která se vytváří na návětrných svazích kopců a hor v důsledku adiabatického ochlazování vzduchu vystupujícího po svazích. Podmínkou jejího vytváření je stabilní teplotní zvrstvení nasyceného vzduchu. Pozorovateli z nižších poloh se jeví jako vrstevnatá oblačnost dosahující až na povrch svahu.
česky: mlha svahová angl: upslope fog slov: svahová hmla něm: Hangnebel m  1993-a1
туман смешения
mlha, která vzniká v důsledku promíchávání dvou vzduchových hmot blízkých nasycení s různou teplotou a vlhkostí. Tyto mlhy mají krátké trvání a malý vert. rozsah.
česky: mlha z promíchávání angl: mixing fog slov: hmla z premiešavania něm: Mischungsnebel m  1993-a1
туман тропического воздуха
advekční mlha tvořící se v mořském tropickém vzduchu při jeho rychlejším postupu do vyšších zeměp. šířek v teplých sektorech cyklon na polárních frontách čili při pronikání teplejšího vzduchu nad chladnější povrch. Průvodním jevem této mlhy bývá mrholení, vrstevnatá oblačnost a především silný vítr. Vzniká mimo atmosférické fronty a je tedy druhem mlhy uvnitř vzduchové hmoty. Udržení mlhy při silném větru je podmíněno velkou stabilitou tropického vzduchu.
česky: mlha v tropickém vzduchu angl: tropical air fog slov: hmla v tropickom vzduchu něm: Nebel in tropischer Luft m  1993-a1
туманная радуга
syn. duha bílá.
česky: duha mlhová angl: fog bow slov: dúha na pozadí hmly něm: Nebelbogen m fr: arc blanc m  1993-a1
туманообразные облакa
(neb) [nebulózus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má tvar mlhovitého závoje nebo vrstvy bez zjevné struktury. Užívá se u druhů cirrostratus a stratus.
česky: nebulosus angl: nebulosus slov: nebulosus něm: nebulosus  1993-a2
турбопауза
tenká přechodová vrstva atmosféry Země, oddělující níže ležící turbosféru od difúzosféry. Je prakticky totožná s homopauzou. Výška turbopauzy uváděná v literatuře se liší u různých autorů a pro různé další podmínky v rozmezí od 90 do 120 km.
česky: turbopauza angl: turbopause slov: turbopauza  1993-a3
турбосфера
spodní část atmosféry Země, v níž je vzduch promícháván turbulencí, která zabraňuje vytvoření difúzní rovnováhy, takže se s výškou nemění složení ovzduší, pokud jde o hlavní složky vzdušné plynné směsi. Turbosféra se rozprostírá od zemského povrchu do výšky asi 100 km a je od výše ležící difúzosféry oddělena turbopauzou. Turbosféra se prakticky shoduje s homosférou, podobně jako difúzosféra s heterosférou.
česky: turbosféra angl: turbosphere slov: turbosféra  1993-a3
турбулентная вязкость
syn. tření turbulentní, tření virtuální, viskozita turbulentní – v meteorologii vnitřní tření v proudícím vzduchu vznikající následkem statisticky náhodných a turbulencí podmíněných přemísťování makroskopických vzduchových částic napříč převládajícího směru proudu. Projevuje se silami působícími tečně k vrstvám proudícího vzduchu. Vztáhneme-li tyto tečné síly k jednotkové ploše, mluvíme o turbulentních tečných neboli Reynoldsových napětích. Z fyz. hlediska je turbulentní tření spjato s turbulentním přenosem hybnosti proudícího vzduchu, např. v mezní vrstvě atmosféry směrem dolů, což kompenzuje zanikání hybnosti vnějším třením proudícího vzduchu o zemský povrch. Viz též tření v atmosféře, síla tření.
česky: vazkost turbulentní angl: eddy viscosity, turbulent viscosity slov: turbulentná viskozita  1993-a1
турбулентная диффузия
atm. děj, při kterém se částice původně shromážděné v daném objemu vzduchu rozptylují (zmenšuje se jejich koncentrace) působením turbulentních (vírových) pohybů různých měřítek. Intenzita turbulentní difuze je proměnlivá a závisí na vzniku a vývoji turbulentních pohybů. Ty jsou podmíněny buď mech. příčinami, např. při turbulentním obtékání vzduchu kolem překážek a nad drsným povrchem, nebo termicky při vzniku tepelně podmíněných vírových pohybů nad přehřátým nebo tepelně nehomogenním povrchem. Viz též rovnice difuze, rozptyl příměsí v ovzduší, turbulence, koeficient turbulentní difuze.
česky: difuze turbulentní angl: turbulent diffusion slov: turbulentná difúzia něm: turbulente Diffusion f fr: diffusion turbulente f  1993-a1
турбулентная инверсия
vertikálně obvykle nepříliš mohutná teplotní inverze překrývající směšovací vrstvu. Výchozí situací pro vznik této inverze je stabilní teplotní zvrstvení ovzduší. Jestliže ve vrstvě vzduchu přiléhající k zemskému povrchu nastane silné turbulentní mísení, vytvoří se v této vrstvě vertikální teplotní gradient blízký adiabatickému. Přitom nad směšovací vrstvou zůstává přibližně zachován původní vertikální profil teploty vzduchu. Tím v oblasti horní hranice vrstvy směšování vznikne vrstva s inverzí teploty. Patří mezi výškové inverze. Viz též turbulence.
česky: inverze teploty vzduchu turbulentní angl: turbulence inversion, turbulent inversion slov: turbulentná inverzia teploty vzduchu něm: Turbulenzinversion f  1993-a1
турбулентная конденсация
označení pro kondenzaci vodní páry, ke které dochází ve vzduchu blízkém stavu nasycení následkem neuspořádaných vert. turbulentních pohybů. Turbulentní kondenzací mohou vznikat turbulentní oblaky. Při pokročilém matematickém modelování procesů oblačné mikrofyziky je i tento proces součástí parametrizace nukleace vody.
česky: kondenzace turbulentní angl: turbulent condensation slov: turbulentná kondenzácia něm: turbulente Kondensation f  1993-a3
турбулентная проводимость
formálně zavedený pojem podle analogie s molekulární vodivostí. Zatímco molekulární vodivost v plynech je podmíněna neuspořádaným pohybem molekul, v případě turbulentní vodivosti se jedná o přenos tepelné energie turbulentním promícháváním v atmosféře. Kvantitativní mírou turbulentní vodivosti může např. být koeficient turbulentní difuze nebo koeficient turbulentní výměny.
česky: vodivost turbulentní angl: eddy conductivity, turbulent conductivity slov: turbulentná vodivosť  1993-a1
турбулентное перемешивание
promíchávání vzduchu v turbulentním proudění. Nejvýrazněji se uplatňuje v mezní vrstvě atmosféry, kde je rozhodujícím činitelem při vert. transportu vodní páry, tepla a hybnosti. Turbulentní promíchávání v atmosféře se zvětšuje s rostoucí rychlostí větru a s klesající stabilitou atmosféry, v blízkosti zemského povrchu bývá silně ovlivňováno jeho drsností. Ve volné atmosféře se významné turbulentní promíchávání může vyskytovat zejména ve vrstvách s velkými střihy větru a s výrazně instabilním teplotním zvrstvením.
česky: promíchávání turbulentní v atmosféře angl: turbulent mixing slov: turbulentné premiešavame v atmosfére něm: turbulente Mischung f  1993-a1
турбулентное течение
v meteorologii proudění vzduchu, v němž se vyskytují nepravidelné turbulentní víry a fluktuace rychlosti. Při turbulentním proudění pronikají z jedné vrstvy do druhé nejen jednotlivé molekuly, ale i makroskopické vzduchové částice. Proudění bez turbulentních vířivých pohybů nazýváme prouděním laminárním. V reálné atmosféře je proudění zpravidla turbulentní. Viz též turbulence.
česky: proudění turbulentní angl: turbulent flow slov: turbulentné prúdenie něm: Turbulenzströmung f, turbulente Strömung f  1993-a1
турбулентное трение
česky: tření turbulentní angl: eddy friction, turbulent friction slov: turbulentné trenie  1993-a1
турбулентность
v meteorologii proudění vzduchu, v němž se vyskytují nepravidelné turbulentní víry a fluktuace rychlosti. Při turbulentním proudění pronikají z jedné vrstvy do druhé nejen jednotlivé molekuly, ale i makroskopické vzduchové částice. Proudění bez turbulentních vířivých pohybů nazýváme prouděním laminárním. V reálné atmosféře je proudění zpravidla turbulentní. Viz též turbulence.
česky: proudění turbulentní angl: turbulent flow slov: turbulentné prúdenie něm: Turbulenzströmung f, turbulente Strömung f  1993-a1
турбулентность
obecně fyz. jev, jehož podstata spočívá v existenci nepravidelných vírových pohybů v proudící tekutině, které se v dané době projevují turbulentními fluktuacemi rychlosti proudění. Proudění tekutin nabývá turbulentního charakteru, převýší-li poměr v něm působících setrvačných a vazkých sil, představující Reynoldsovo číslo, určitou kritickou hodnotu. Z met. hlediska jde o turbulenci v proudícím vzduchu v zemské atmosféře, kde rozměry turbulentních vírů dosahují velikosti od několika mm do stovek m. Označíme-li vx, v y, vz po řadě x–ovou,y–ovou a z–ovou složku rychlosti proudění, potom v případě turbulentního proudění platí
vx=vx¯+ vx, vy= vy¯+vy , vz=vz ¯+vz,
kde vx¯, v y¯, vz¯ jsou časově zprůměrované složky okamžité rychlosti proudění, zatímcovx, v y, vz jsou složky turbulentních fluktuací, jejichž stř. hodnoty se rovnají nule, tj. vx¯=v y¯=vz¯=0. V met. praxi se obvykle používá průměrování přes časový interval kolem deseti min, který bývá dostatečně dlouhý k tomu, aby se odfiltrovaly turbulentní fluktuace a zároveň ještě zpravidla nedochází ke shlazení meteorologicky významných časových změn rychlosti proudění. Turbulence v atmosféře je těsně spjata s nárazovitostí větru, působí promíchávání vzduchu a turbulentní přenos hybnosti, tepla, vodní páry a různých znečišťujících příměsí. Pojem turbulence navrhl zavést do meteorologie polský přírodovědec M. P. Rudzki v roce 1893, ujal se však až v roce 1912 zásluhou něm. geofyzika a meteorologa A. Wegenera. V obecném fyzikálním smyslu je však pojem turbulence spojován hlavně s Osbornem Reynoldsem (1842–1912). Viz též intenzita turbulence, výměna turbulentní, promíchávání turbulentní, difuze turbulentní, spektrum turbulentních vírů, proudění turbulentní, tok turbulentní, akcelerometr.
česky: turbulence angl: turbulence slov: turbulencia  1993-a3
турбулентность в вихревом следе
turbulence vyvolaná letadlem během letu, popř. při jeho pohybu po pohybových plochách letiště. Účinek této turbulence na jiná letadla závisí na vzájemné vzdálenosti letadel a na poměru jejich hmotností i rychlostí pohybu. Za letu hraje významnou roli také teplotní zvrstvení atmosféry a vertikální profil větru. K podobným jevům, jako je turbulence v úplavu za letadlem, dochází při vyšších rychlostech proudění vzduchu za horskými překážkami, zvláště za izolovanými vrcholy.
česky: turbulence v úplavu za letadlem angl: wake turbulence  1993-a3
турбулентность в свободной атмосфере
souborné označení pro turbulenci, která se vyskytuje nad mezní vrstvou atmosféry. Zahrnuje jak termickou, tak dynamickou a konvektivní turbulenci ve volné atmosféře. Je to především turbulence v oblasti hranic inverzních vrstev, na frontálních plochách, v oblasti tryskového proudění a tropopauzy, nebo v konvektivních oblacích, které mohou sahat až do spodní stratosféry, a v jejich okolí. Do turbulence ve volné atmosféře zahrnujeme také turbulenci v bezoblačném prostoru (tzv. CAT – Clear Air Turbulence).
česky: turbulence ve volné atmosféře angl: high-level turbulence slov: turbulencia vo voľnej atmosfére  1993-a3
турбулентность при ясном небе
(CAT–Clear Air Turbulence) – dynamická turbulence ve stř. a horní troposféře, která není převážně doprovázena výskytem charakteristické oblačnosti. Turbulence v bezoblačném prostoru se zpravidla vyskytuje ve vrstvách s tloušťkou několik set m, šířka pásma s turbulencí v bezoblačném prostoru bývá desítky km a délka několik desítek až stovek km. Její trvání se na určitém místě většinou omezuje na dobu 0,5 – 1 hodinu. Při střihu větru od 0,6 do 1,0 m.s–1 na 100 m výšky se vyskytuje obvykle turbulence v bezoblačném prostoru slabé intenzity, při střihu 1,1 až 1,6 m.s–1 na 100 m zpravidla jde o mírnou turbulenci a při větších změnách rychlosti větru s výškou bývají splněny podmínky pro vznik silné turbulence v bezoblačném prostoru. Podle výsledků pozorování se výskyt turbulence v bezoblačném prostoru v 75 % případů váže na tryskové proudění. Její maximum bývá na cyklonální straně tryskového proudění 500 až 1 000 m pod místem největšího sklonu tropopauzy.
česky: turbulence v bezoblačném prostoru angl: clear-air turbulence slov: turbulencia v bezoblačnom priestore  1993-a3
турбулентный вихрь
česky: vír turbulentní angl: eddy, turbulent vortex slov: turbulentný vír  1993-a1
турбулентный обмен
vzájemná výměna makroskopických vzduchových částic probíhající mezi různými vrstvami nebo jinými objemy v proudícím vzduchu a působená turbulentním promícháváním. Turbulentní výměna vytváří v atmosféře turbulentní přenos hybnosti, tepla, vodní páry a různých znečišťujících příměsí. Viz též turbulence, koeficient turbulentní výměny.
česky: výměna turbulentní angl: eddy exchange, turbulent exchange slov: turbulentná výmena  1993-a1
турбулентный перенос
syn. transport turbulentní – v atmosféře přenos jednotlivých veličin (tepla, vodní páry, hybnosti, znečišťujících příměsí apod.) působený turbulentním promícháváním vzduchu. Viz též turbulence, výměna turbulentní.
česky: přenos turbulentní angl: turbulent transfer, turbulent transport slov: turbulentný prenos něm: turbulenter Austausch m, turbulenter Transport m  1993-a1
турбулентный пограничный слой
česky: vrstva mezní turbulentní angl: turbulent boundary layer slov: turbulentná hraničná vrstva  1993-a1
турбулентный поток
množství dané veličiny (v meteorologii nejčastěji tepla, vodní páry, hybnosti, různých znečišťujících příměsí apod.), transportované za jednotku času přes jednotkovou plochu v důsledku turbulentního promíchávání vzduchu.
česky: tok turbulentní angl: turbulent flux slov: turbulentný tok  1993-a1
турбулентный уровень конденсации
kondenzační hladina dosažená vzduchovou částicí při vert. turbulentním promíchávání ve vzduchové hmotě. Viz též turbulence.
česky: hladina kondenzační turbulentní angl: mixing condensation level slov: turbulentná kondenzačná hladina něm: turbulentes Kondensationsniveau n  1993-a2
тыл циклона
sektor cyklony v její zadní části ve smyslu jejího pohybu nebo z hlediska převládajícího pohybu cyklon v dané oblasti. V případě mimotropické cyklony tak zpravidla leží západně od jejího středu, kam proniká studený vzduch z vyšších zeměp. šířek. Proto je zde typická proměnlivá oblačnostpřeháňkami, nárazovitým přízemním větrem a mimo oblast srážek velkou dohledností. Při situaci Vb je týl cyklony oblastí s velkým horizontálním tlakovým gradientem a konvergencí proudění, což vede k intenzivním, převážně trvalým srážkám, na návětří hor dále zesilovaným díky orografickému zesílení srážek.
česky: týl cyklony angl: rear of cyclone slov: tylo cyklóny  1993-a3
тяжелый ион
česky: iont těžký angl: heavy ion, large ion slov: ťažký ión něm: schweres Ion n  1993-a1
podpořila:
spolupracují: