jedna ze zákl. fyz. veličin, která vyjadřuje působení síly kolmo na jednotkovou plochu. Síla zemské tíže způsobuje v nepohybujících se tekutinách statický tlak, který v případě atmosféry Země označujeme jako tlak vzduchu neboli atmosférický tlak. Protože je vzduch tvořen směsí plynů, můžeme rozlišovat parciální tlaky jednotlivých plynů, především tlak vodní páry. Pohyb tekutin navíc vyvolává dynamický tlak; v atmosféře tímto způsobem vzniká tlak větru. Součet statického a dynamického tlaku můžeme označit jako tlak celkový.
Jednotkou tlaku v soustavě SI je pascal (Pa), v meteorologii se převážně používá jeho stonásobek neboli hektopascal (hPa). Zast. jednotkou tlaku je atmosféra.
Výklad hesel podle písmene д
давление
česky: tlak; angl: pressure; slov: tlak; něm: Druck m; fr: pression f 2023
давление ветра
tlak vyvolaný aerodyn. působením proudícího plynu na překážku, přičemž se obvykle uvažuje jen horiz. složka proudění a horiz. složka vznikající síly. Tlak větru je funkcí rychlosti proudění, tvaru překážky a hustoty proudícího vzduchu. Pro praktické účely se tlak větru někdy udává jako dynamický tlak. Viz též síla větru, energie větru.
česky: tlak větru; angl: wind pressure; slov: tlak vetra; něm: Winddruck m 1993-a3
давление водяного пара
syn. tlak vodní páry.
česky: napětí vodní páry; slov: napätie vodnej pary; něm: Wasserdampfdruck m 1993-a1
давление водяного пара
syn. napětí vodní páry – parciální tlak vodní páry ve vzduchu. Patří k zákl. charakteristikám vlhkosti vzduchu. Jednotkou v meteorologii je hektopascal (hPa), dříve se užívaly jednotky milibar nebo torr. Viz též vodní pára, izovapora, vzorec Hannův, vztah Thomsonův, tlak nasycené vodní páry.
česky: tlak vodní páry; angl: water vapour pressure, water vapour tension; slov: tlak vodnej pary; něm: Wasserdampfdruck m, Wasserdampfspannung f 1993-a2
давление воздуха
syn. tlak atmosférický, tlak barometrický – meteorologický prvek vyjadřující v daném místě atmosféry nebo na zemském povrchu statický tlak, vznikající působením síly zemské tíže na vzduchový sloupec sahající od daného místa až k horní hranici atmosféry. Tlak vzduchu se v meteorologii vyjadřuje ve stonásobcích pascalu (Pa) neboli hektopascalech (hPa), případně milibarech (mbar, dříve mb), přičemž hodnoty v hektopascalech a milibarech jsou identické. Staršími jednotkami tlaku vzduchu byly milimetr rtuťového sloupce, později označovaný torr, dále barye, bar nebo centibar (cbar, dříve též cb).
Tlakové pole se vyznačuje charakteristickým vertikálním profilem tlaku vzduchu. Pomocí barometrické formule se proto provádí redukce tlaku vzduchu na dohodnutou hladinu, přičemž se tlak vzduchu na stanici převádí nejčastěji na tlak vzduchu redukovaný na hladinu moře. Horizontální tlakové gradienty jsou určujícím faktorem cirkulace atmosféry, proto se tlak vzduchu znázorňuje na synoptických mapách, a to na přízemních mapách pomocí izobar i na výškových mapách nepřímo pomocí izohyps dané izobarické hladiny. Viz též měření tlaku vzduchu, tendence tlaková, extrémy tlaku vzduchu.
Tlakové pole se vyznačuje charakteristickým vertikálním profilem tlaku vzduchu. Pomocí barometrické formule se proto provádí redukce tlaku vzduchu na dohodnutou hladinu, přičemž se tlak vzduchu na stanici převádí nejčastěji na tlak vzduchu redukovaný na hladinu moře. Horizontální tlakové gradienty jsou určujícím faktorem cirkulace atmosféry, proto se tlak vzduchu znázorňuje na synoptických mapách, a to na přízemních mapách pomocí izobar i na výškových mapách nepřímo pomocí izohyps dané izobarické hladiny. Viz též měření tlaku vzduchu, tendence tlaková, extrémy tlaku vzduchu.
česky: tlak vzduchu; angl: air pressure, atmospheric pressure; slov: tlak vzduchu; něm: Luftdruck m 1993-a3
давление на уровне моря
(SLP) – tlak vzduchu v hladině odpovídající stř. výšce hladiny moře
1. vypočtený podle reálné atmosféry:
z naměřeného tlaku vzduchu p v nadmořské výšce tlakoměru H, virtuální teploty TV a tíhového zrychlení g v zeměpisné šířce stanice a v nadm. výšce tlakoměru H;
2. vypočtený podle mezinárodní standardní atmosféry ICAO:
z naměřeného tlaku vzduchu p v nadm. výšce tlakoměru H a pro n = 0,190284.
1. vypočtený podle reálné atmosféry:
z naměřeného tlaku vzduchu p v nadmořské výšce tlakoměru H, virtuální teploty TV a tíhového zrychlení g v zeměpisné šířce stanice a v nadm. výšce tlakoměru H;
2. vypočtený podle mezinárodní standardní atmosféry ICAO:
z naměřeného tlaku vzduchu p v nadm. výšce tlakoměru H a pro n = 0,190284.
česky: tlak vzduchu redukovaný na hladinu moře; angl: pressure reduced to mean sea level; slov: tlak vzduchu redukovaný na hladinu mora; něm: auf mittlere Meereshöhe reduzierter Luftdruck 1993-a3
давление на уровне станции
tlak vzduchu změřený v nadmořské výšce tlakoměru. Slouží mj. k určení tlakové tendence. U dříve používaných rtuťových tlakoměrů bylo k jeho určení nutné odečtený údaj redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. včetně přepočtu na normální tíhové zrychlení. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
česky: tlak vzduchu na stanici; angl: station pressure; slov: tlak vzduchu na stanici; něm: Stationsluftdruck m 1993-a3
дальность видимости
1. podle definice Světové meteorologická organizace největší vzdálenost, na kterou lze vidět a rozeznat černý předmět vhodných rozměrů umístěný u země, pokud je pozorován za denního světla proti obloze horizontu, nebo který je možné vidět a rozeznat v noci, pokud je umělé osvětlení na úrovni normálního denního světla;
2. pro letecké účely je za dohlednost považována větší z:
(a) největší vzdálenosti, na kterou je možné spolehlivě vidět a rozeznat na světlém pozadí černý předmět vhodných rozměrů umístěný u země, a
(b) největší vzdálenosti, na kterou je možně spolehlivě rozeznat na neosvětleném pozadí světla o svítivosti přibližně 1 000 cd.
Tyto dvě vzdálenosti jsou odlišné v atm. podmínkách charakterizovaných stejným koeficientem zeslabení. Vzdálenost (a) objektivizuje meteorologický optický dosah a vzdálenost (b) kolísá v závislosti na intenzitě osvětlení pozadí.
2. pro letecké účely je za dohlednost považována větší z:
(a) největší vzdálenosti, na kterou je možné spolehlivě vidět a rozeznat na světlém pozadí černý předmět vhodných rozměrů umístěný u země, a
(b) největší vzdálenosti, na kterou je možně spolehlivě rozeznat na neosvětleném pozadí světla o svítivosti přibližně 1 000 cd.
Tyto dvě vzdálenosti jsou odlišné v atm. podmínkách charakterizovaných stejným koeficientem zeslabení. Vzdálenost (a) objektivizuje meteorologický optický dosah a vzdálenost (b) kolísá v závislosti na intenzitě osvětlení pozadí.
česky: dohlednost; angl: visibility; slov: dohľadnosť; něm: Sichtweite f; fr: visibilité f 1993-a3
датчик осадков
součást váhového srážkoměru určená pro zjištění kapalných i tuhých srážek na principu změny vodivosti mezi hřebínky na detekční ploše.
česky: detektor srážek; angl: precipitation sensor; slov: detektor zrážok 2019
движение воздуха
obecné označení libovolné změny polohy vzduchové částice. Pohyb této částice za určitý časový úsek popisuje její trajektorie. Pohyb vzduchu můžeme popsat celou řadou jeho vlastností, jako je jeho rychlost, směr, prostorový rozsah, cirkulace, vorticita a třírozměrná divergence proudění. Převážně horizontální pohyb označujeme jako proudění vzduchu neboli vítr, dále vymezujeme vertikální pohyby vzduchu. Pro souhrn pohybů vzduchu se používá termín atmosférická cirkulace,
česky: pohyb vzduchu; angl: air motion; slov: pohyb vzduchu; něm: Luftbewegung f; fr: mouvement de l'air m 2023
движение грозы
jedna z charakteristik zjišťovaných při pozorování bouřek. Znamená směr, kterým se pohybuje pozorovaná bouřka, resp. bouřkový oblak neboli cumulonimbus. Pozorovatel při začátku bouřky, tj. při prvním zablesknutí a zahřmění, určí směr, v němž je bouřka pozorována a podobně i na konci bouřky při posledním zahřmění. Tah bouřky se udává ve stupních, zpravidla s přesností na desítky stupňů, např. zápis 230-050 znamená, že bouřka postupovala přibližně směrem od jihozápadu k severovýchodu. U bouřky, která bez pohybu zanikne na místě vzniku, se udává jen směr místa vzniku bouřky.
česky: tah bouřky; angl: thunderstorm movement; slov: ťah búrky; něm: Bewegungsrichtung des Gewitters f, Zugbahn des Gewitters f 1993-a3
движение облаков
určení směru a rychlosti pohybu oblaků při pozemním vizuálním pozorování nebo pomocí nefoskopu; na met. stanicích ČR se neprovádí. Podle tahu oblaků je možné odhadnout směr a rychlost větru ve výšce základny oblaků. Tuto informaci lze přesněji získat měřením větru radiotechnickými prostředky.
česky: tah oblaků; angl: clouds movement; slov: ťah oblakov; něm: Wolkenzug m 1993-a3
двойные облака
(du) [duplikátus] – jedna z odrůd oblaku podle mezinárodní morfologické klasifikace oblaků. Je charakterizována jako menší nebo větší oblačné skupiny nebo vrstvy naskládané hustě nad sebou v malých vzdálenostech, někdy částečně spojené. Vyskytuje se u druhů cirrus, cirrostratus, altocumulus a stratocumulus.
Termín navrhl franc. meteorolog A. Maze na mezinárodním met. kongresu v Paříži v r. 1889 jako označení odrůdy oblaku druhu cirrus. Je přejat z lat. duplicatus „zdvojený, dvojitý“ (příčestí trpné slovesa duplicare „rozdvojovat, zvětšovat“).
česky: duplicatus; angl: duplicatus; slov: duplicatus; něm: duplicatus; fr: duplicatus m 1993-a2
двухкомпонентная флюгарка
viz směrovka větrná.
česky: směrovka větrná dvoukomponentní; angl: bidirectional wind vane, bivane; slov: dvojzložková veterná smerovka; něm: Zweikomponenten Windfahne f 1993-a3
действительно возможная продолжительность солнечного сияния
časový interval od východu do západu Slunce, vztahující se k místu měření se skutečným obzorem. Efektivně možný sluneční svit se rovná astronomicky možnému trvání slunečního svitu zmenšenému o dobu, po kterou je slunoměr zastíněn překážkami nad ideálním, tj. volným obzorem. V efektivně možném slunečním svitu se tedy do značné míry projevuje umístění stanice v terénu; je rozdílný na stanicích rovinných, svahových, údolních, vrcholových atd.
česky: trvání slunečního svitu efektivně možné; angl: geographic (topographic) sunshine duration; slov: efektívne možné trvanie slnečného svitu; něm: maximal mögliche Sonnenscheindauer f 1993-a3
действительное испарение
množství vody, které se za daných meteorologických podmínek vypaří do atmosféry ze zemského povrchu o skutečné vlhkosti (skutečná evaporace), popř. i z těl rostlin disponujících dostupnou vodou (skutečná transpirace) nebo z obojího (aktuální evapotranspirace). Případný nedostatek vody k vypařování způsobuje, že skutečný výpar je většinou menší než potenciální výpar. To platí především pro povrch půdy v létě v odpoledních hodinách, naopak v zimě a nad velkými vodními plochami celoročně mají oba druhy výparu podobné hodnoty. Skutečný výpar je obtížně měřitelný, a většinou se jen odvozuje pro jednotlivá povodí na základě hydrologické bilance.
česky: výpar skutečný; angl: actual evaporation, effective evaporation; slov: skutočný výpar; něm: aktuelle Verdunstung f, tatsächliche Verdunstung 1993-a3
декада
1. období deseti po sobě následujících dnů začínajících 1., 11. a 21. dne v měsíci (poslední dekáda končí posledním dnem v měsíci bez ohledu na jeho délku). Používá se při podrobnějším rozboru klimatického režimu jednoho nebo více meteorologických prvků, když kalendářní měsíc je pro daný účel považován za příliš dlouhý.
2. desetiletí (též decennium). Viz též pentáda.
2. desetiletí (též decennium). Viz též pentáda.
Termín pochází z lat. decas (gen. decadis) „desítka, desetiletí“ (z řec. δεκάς [dekas, gen. dekados] „skupina desíti, desítka“).
česky: dekáda; angl: dekad; slov: dekáda; něm: Dekade f; fr: décade f 1993-a3
дельта фронтальной зоны
oblast frontální zóny, v níž dochází k difluenci (rozbíhání) izohyps absolutní topografie, a tím i k dynamickému poklesu tlaku vzduchu, zejména v nižších hladinách atmosféry. Viz též pole deformační (výškové), vchod frontální zóny.
česky: delta frontální zóny; angl: delta region, exit region; slov: delta frontálnej zóny; něm: Delta der Frontalzone n; fr: région de sortie f 1993-a1
демаркационная линия
v meteorologii čára na souborné kinematické mapě, která odděluje oblasti s výskytem středů anticyklon, popř. hřebenů vysokého tlaku vzduchu, kde většinou převládá anticyklonální zakřivení izobar či izohyps, od oblastí s výskytem středů cyklon, popř. brázd nízkého tlaku vzduchu s převládajícím cyklonálním zakřivením izobar či izohyps. Viz též mapa kinematická souborná.
česky: čára demarkační; angl: line of separation; slov: demarkačná čiara; něm: Grenzlinie f; fr: ligne de séparation f 1993-a2
дендрит
v meteorologii jeden ze základních tvarů ledových krystalků, který se tvoří v oblaku zejména v silně přesyceném vzduchu vzhledem k ledu. Ve finální podobě má tvar bohatě rozvětvené šesterečné hvězdice, jejímž základem je často ledová destička. Přednostní a tedy i rychlejší růst difuzí vodní páry v rozích šesterečné destičky je vyvolán větším gradientem hustoty vodní páry v této oblasti povrchu. Dendritický růst je dále zesílen obtékáním krystalu při jeho pádu v atmosféře. Růst primárních šesti větví dendritu a jejich případné další větvení je příkladem růstové instability označované také jako instabilita při větvení, přičemž sekundární větvení může být již chaoticky nestejnoměrné. Jednotlivé dendrity bývají zejména v populární literatuře nesprávně označovány jako sněhové vločky.
česky: dendrit; angl: dendrite, dendritic crystal; slov: dendrit; něm: Dendrit m; fr: dendrite f 2021
дендроклиматология
odvětví klimatologie zabývající se vztahy mezi vývojem dřevin a klimatem. Studium přírůstkových kruhů (letokruhů) v kmenech stromů přispívá k poznání změn a kolísaní klimatu v minulosti a k zjišťování klimatických cyklů.
Termín se skládá z řec. δένδρον [dendron] „strom“ a slova klimatologie.
česky: dendroklimatologie; angl: dendroclimatology, tree-ring climatology; slov: dendroklimatológia; něm: Dendroklimatologie f; fr: dendroclimatologie f 1993-a2
день без осадков
charakteristický den, v němž byly srážky nulové, nebo denní úhrn srážek nedosáhl určité prahové hodnoty, tedy opak dne se srážkami.
česky: den bezsrážkový; angl: dry day; slov: bezzrážkový deň; něm: niederschlagsfreier Tag m; fr: jour sans précipitations m 1993-a3
день без оттепели
mezinárodně standardizovaný charakteristický den, v němž maximální teplota vzduchu nedosáhla hodnoty 0,0 °C, takže panoval celodenní mráz. Podmnožinou ledových dní jsou v české terminologii arktické dny. Viz též mrazový den.
česky: den ledový; angl: ice day; slov: ľadový deň; něm: Eistag m; fr: jour sans dégel m 1993-a3
день с дождем
den se srážkami, v němž byly zaznamenány srážky v podobě trvalého deště nebo deště v přeháňkách. V Česku k zařazení mezi dny s deštěm stačí i neměřitelné srážky, v některých zemích je podmínkou dosažení určitého minimálního denního úhrnu srážek.
česky: den s deštěm; angl: rain day, wet day; slov: deň s dažďom; něm: Regentag m; fr: jour de pluie m, jour pluvieux m 1993-a3
день с морозом
mezinárodně standardizovaný charakteristický den, v němž minimální teplota vzduchu klesla pod 0,0 °C, takže se alespoň část dne vyskytl mráz. Podmnožinou mrazových dní jsou ledové, případně arktické dny.
česky: den mrazový; angl: frost day; slov: mrazový deň; něm: Frosttag m; fr: jour de gelée m, jour de gel m 1993-a3
день с осадками
syn. den srážkový – mezinárodně rozšířený charakteristický den, v němž byly zaznamenány srážky nebo denní úhrn srážek dosáhl určité nízké prahové hodnoty. Podle předpisů WMO se tento úhrn vztahuje k období od 06:00 UTC daného dne do 06:00 UTC následujícího dne. Minimální denní úhrn srážek pro vymezení srážkových dní není mezinárodně stanoven, nejčastěji se vyskytují prahové hodnoty 0,1 mm, 0,2 mm nebo 1 mm. V datech ČHMÚ se jako den se srážkami označuje období mezi klimatologickými termíny 7 h daného dne a 7 h následujícího dne, pokud byly v tomto období zaznamenány alespoň neměřitelné srážky. Podle charakteru srážek dále rozlišujeme den s deštěm, den se sněžením a den s krupobitím. Viz též den bezsrážkový.
česky: den se srážkami; angl: precipitation day, wet day; slov: deň so zrážkami; něm: Niederschlagstag m; fr: jour de précipitations m 1993-a3
день с осадками
syn. den se srážkami.
česky: den srážkový; angl: precipitation day, wet day; slov: zrážkový deň; něm: Niederschlagstag m; fr: jour de précipitation m 1993-a1
день со снегом
den se srážkami, v němž bylo pozorováno sněžení, případně padaly sněhově krupky, sněhová zrna, zmrzlý déšť nebo krupky, ledové jehličky nebo sníh s deštěm. V některých zemích (např. v Německu) je definice zúžena na dny, kdy se vyskytly výlučně tuhé srážky, přičemž denní úhrn srážek dosáhl určitého minimálního prahu (např. 0,1 mm).
česky: den se sněžením; angl: snow day; slov: deň so snežením; něm: Schneetag m; fr: jour de neige m 1993-a3
день со снегопадом
den se srážkami, v němž bylo pozorováno sněžení, případně padaly sněhově krupky, sněhová zrna, zmrzlý déšť nebo krupky, ledové jehličky nebo sníh s deštěm. V některých zemích (např. v Německu) je definice zúžena na dny, kdy se vyskytly výlučně tuhé srážky, přičemž denní úhrn srážek dosáhl určitého minimálního prahu (např. 0,1 mm).
česky: den se sněžením; angl: snow day; slov: deň so snežením; něm: Schneetag m; fr: jour de neige m 1993-a3
день со снежным покровом
charakteristický den, v němž byla v určitém termínu nejméně polovina povrchu půdy v blízkém okolí meteorologické stanice pokryta sněhovou pokrývkou, přičemž v některých zemích je stanovena prahová hodnota její výšky. V Česku se za den se sněhovou pokrývkou považuje den, v němž v klimatologickém termínu 7 h ležela na stanici souvislá sněhová pokrývka o výšce alespoň 1 cm. Za den se sněhovou pokrývkou se tedy nepovažuje den, v němž se sněhová pokrývka vyskytla, avšak nikoli v klimatologickém termínu 7 h, případně se vyskytl pouze sněhový poprašek.
česky: den se sněhovou pokrývkou; angl: day with snow cover; slov: deň so snehovou pokrývkou; něm: Schneedeckentag m; fr: jour con capa de nieve m 1993-a3
депеграмма
syn. křivka rosného bodu.
Termín pochází z angl. zkratky pro teplotu rosného bodu D(ew)P(oint) a řec. γράμμα [gramma] „písmeno, zápis“.
česky: depegram; angl: depegram; slov: depegram; něm: Depegramm n; fr: dépégramme f 1993-a1
депозиция, десублима́ция
1. v chemii atmosféry označení pro proces ukládání znečišťující příměsi na zemském povrchu, resp. hmotnost této příměsi, která je uložena na jednotku plochy za jednotku času; v obou těchto významech rozlišujeme depozici suchou a mokrou,
2. v meteorologii označení fázového přechodu vody, při němž roste led přímo z vodní páry (bez přítomnosti kapalné vody). Viz též sublimace.
2. v meteorologii označení fázového přechodu vody, při němž roste led přímo z vodní páry (bez přítomnosti kapalné vody). Viz též sublimace.
Termín pochází z lat. depositio „odložení, uložení“, které je odvozeno od slovesa deponere „odložit, uschovat“ (z de „od, z“ a ponere „položit“).
česky: depozice; angl: deposition; slov: depozícia; něm: Deposition f, Deposition f; fr: déposition f, condensation solide f 2014
деполяризация электромагнитных волн
zmenšení polarizace elektromagnetických vln, způsobené zejména jejich mnohonásobným odrazem, rozptylem a ohybem na obecně nesférických částicích atmosférického aerosolu. Polarizace dopadající vlny se mění, např. kruhová se mění na eliptickou nebo se mění rovina polarizace dopadající vlny. Chaoticky rozmístěné elipsoidální částice vody, ledu a sněhu rozptylují dopadající energii více než sférické částice stejného objemu. Tak vzniká doplňková složka energie zpětného rozptylu, jejíž rovina polarizace je kolmá k rovině polarizace dopadající vlny. Jev popisujeme koeficientem depolarizace, který vyjadřuje vztah mezi příčně polarizovanou složkou rozptýlené energie a složkou energie polarizované v rovině dopadající vlny.
česky: depolarizace elektromagnetických vln; angl: depolarization of electromagnetic waves; slov: depolarizácia elektromagnetických vĺn; něm: Depolarisation von elektromagnetischen Wellen f; fr: dépolarisation des ondes électromagnétiques f 1993-a2
депреcсия
syn. níže tlaková
1. základní tlakový útvar, který se projevuje na synoptické mapě alespoň jednou uzavřenou izobarou nebo izohypsou, přičemž tlak vzduchu uvnitř je nižší než v okolí. Střed cyklony se označuje na synop. mapách v ČR písmenem „N“ (níže), na mapách z angl. jazykové oblasti písmenem „L“ (low), na mapách z něm. jazykové oblasti písmenem „T“ (Tief), na mapách z rus. jazykové oblasti písmenem „H“ (nizkoje davlenije) a na mapách ze španělské jazykové oblasti písmenem „B“ (baja).
Pro cyklony je charakteristická cyklonální vorticita a cyklonální cirkulace. S přízemní konvergencí proudění v cyklonách jsou spojeny výstupné pohyby vzduchu, které určují charakter cyklonálního počasí. Ke vzniku cyklon vedou rozmanité procesy v atmosféře označované jako cyklogeneze. V tomto smyslu rozeznáváme především mimotropické a tropické cyklony, dále cyklony subtropické a polární. Viz též stadia vývoje cyklony, model cyklony, osa cyklony.
2. tlakový útvar se sníženými hodnotami průměrného tlaku vzduchu oproti okolí, patrný na klimatologické mapě za celý rok nebo za určitou sezónu. Cyklony v tomto smyslu patří mezi klimatická akční centra atmosféry, protože v dané oblasti určují všeobecnou cirkulaci atmosféry. Příkladem takových cyklon jsou cyklona aleutská, islandská, jihoatlantická a jihopacifická.
1. základní tlakový útvar, který se projevuje na synoptické mapě alespoň jednou uzavřenou izobarou nebo izohypsou, přičemž tlak vzduchu uvnitř je nižší než v okolí. Střed cyklony se označuje na synop. mapách v ČR písmenem „N“ (níže), na mapách z angl. jazykové oblasti písmenem „L“ (low), na mapách z něm. jazykové oblasti písmenem „T“ (Tief), na mapách z rus. jazykové oblasti písmenem „H“ (nizkoje davlenije) a na mapách ze španělské jazykové oblasti písmenem „B“ (baja).
Pro cyklony je charakteristická cyklonální vorticita a cyklonální cirkulace. S přízemní konvergencí proudění v cyklonách jsou spojeny výstupné pohyby vzduchu, které určují charakter cyklonálního počasí. Ke vzniku cyklon vedou rozmanité procesy v atmosféře označované jako cyklogeneze. V tomto smyslu rozeznáváme především mimotropické a tropické cyklony, dále cyklony subtropické a polární. Viz též stadia vývoje cyklony, model cyklony, osa cyklony.
2. tlakový útvar se sníženými hodnotami průměrného tlaku vzduchu oproti okolí, patrný na klimatologické mapě za celý rok nebo za určitou sezónu. Cyklony v tomto smyslu patří mezi klimatická akční centra atmosféry, protože v dané oblasti určují všeobecnou cirkulaci atmosféry. Příkladem takových cyklon jsou cyklona aleutská, islandská, jihoatlantická a jihopacifická.
Termín pochází z angl. cyclone. Zavedl jej brit. námořní kapitán H. Piddington v r. 1848 jakožto pojem zahrnující všechny rotující větrné bouře. Odvodil jej z řec. κύκλος [kyklos] „kruh, kruhový pohyb“ (srov. cyklus). Termín do češtiny pronikl zřejmě přes němčinu, a to kromě ženského i v mužském rodě (mužský tvar cyklon má dnes užší význam).
česky: cyklona; angl: cyclone, depression, low; slov: cyklóna; něm: Tief n, Zyklone f; fr: cyclone m, dépression f, système cyclonique m 1993-a3
депресия с обратным движением
cyklona, jejíž směr pohybu má zonální složku opačnou vůči převládající složce zonální cirkulace. Retrográdní cyklona v mírných zeměp. šířkách je proto charakterizována trajektorií cyklony se zápornou zonální složkou, tedy od východu k západu, na rozdíl od typických drah cyklon. Retrográdní cyklony se vyskytují ve stř. Evropě poměrně zřídka a jsou často doprovázeny vydatnějšími dlouhotrvajícími srážkami, jako např. na přelomu května a června 2013.
česky: cyklona retrográdní; angl: retrograde low; slov: retrográdna cyklóna; něm: retrograde Zyklone f; fr: dépression rétrograde f 1993-a3
депрессия
obecně snížení, např. hodnoty meteorologického prvku. Bez přívlastku se termín používá jako syn. tlakové deprese.
Termín pochází z lat. depressio „stlačení, potlačení“, které je odvozeno od slovesa deprimere „stlačovat“ (z de „od, z“ a premere „tlačit, tisknout“).
česky: deprese; angl: depression; slov: depresia; něm: Depression f; fr: dépression f 1993-a3
депрессия V-образная
rozložení tlaku vzduchu, znázorněné na synoptických mapách cyklonálním zakřivením izobar ve tvaru písmene „V“. Na rozdíl od brázdy tvaru „U“ se zpravidla jedná o pomalu postupující brázdu nízkého tlaku vzduchu, s níž bývá spojena výrazná atmosférická fronta se sklonem k vlnění. Viz též fronta zvlněná.
česky: brázda tvaru V; angl: V-shaped depression; slov: brázda v tvare V; něm: V-Depression f; fr: thalweg en V m 1993-a3
депрессия горизонта
syn. snížení obzoru.
česky: deprese horizontu; slov: depresia horizontu; fr: dépression à l'horizon 1993-a1
депрессия горизонта
syn. snížení horizontu – viz zvýšení obzoru.
česky: snížení obzoru; angl: dip of horizon, sinking of horizon; slov: zníženie obzoru; něm: Horizontdepression f 1993-a1
депрессия точки росы
rozdíl teploty vzduchu a teploty rosného bodu. Patří mezi charakteristiky vlhkosti vzduchu užívané zejména na výškových mapách. Deficit teploty rosného bodu je tím větší, čím je při dané teplotě vzduchu menší relativní vlhkost vzduchu. Viz též sytostní doplněk.
česky: deficit teploty rosného bodu; angl: dew point deficit, dew point depression, dew point spread; slov: deficit teploty rosného bodu; něm: Taupunktdifferenz f; fr: dépression du point de rosée f, déficit du point de rosée m 1993-a3, ed. 2024
дерехо
[derečo] – rozsáhlá a rychle se pohybující větrná bouře spojená s linií silných konvektivních bouří. Derecho může produkovat škody do jisté míry srovnatelné s tornádem, které jsou však převážně orientované stejným směrem (ve směru postupu jevu). Aby se dala větrná bouře klasifikovat jako derecho, musí na většině dráhy bouře být pás škod nebo nárazů větru nad 25 m.s–1 alespoň 400 km dlouhý, s výskytem několika nárazů větru alespoň 33 m.s–1 nebo škodami odpovídajícími tornádu o síle alespoň F1. Rozložení škod v postižené oblasti by nemělo být náhodné z hlediska dob vzniku škod, ale mělo by jasně ukazovat na postup větrné bouře jakožto celku. Viz též bow echo, squall line.
Termín zavedl amer. fyzik G. D. Hinrichs v r. 1888, znovu pak v r. 1987 meteorologové R. H. Johns a W. D. Hirt. Je přejat ze špan. derecho „rovný, přímý“, které pochází z lat. directus téhož významu. Původ odkazuje k přímočarému působení silného větru (v protikladu k tornádu).
česky: derecho; angl: derecho; slov: derecho; něm: Derecho n; fr: derecho m 2014
дескриптор
definuje nebo popisuje data, která jsou uvedena ve zprávách v kódu BUFR nebo CREX. Deskriptor může mít podobu deskriptoru datových prvků, replikačního deskriptoru, operátorového deskriptoru nebo sekvenčního deskriptoru.
Termín byl přejat z lat. descriptor „kdo popisuje, vysvětluje“.
česky: deskriptor; angl: descriptor; slov: deskriptor; něm: Deskriptor m, Deskriptor m; fr: descripteur m 2014
десублимация
nesprávné označení fázového přechodu plynného skupenství vody - vodní páry na skupenství pevné - led, viz též depozice, sublimace.
Termín se skládá z lat. předpony de- „z, od“ a slova sublimace.
česky: desublimace; angl: desublimation; slov: desublimácia; něm: Resublimation f; fr: déposition f, condensation solide f, sublimation inverse f 1993-a3
детектор погоды
(PWD) – zařízení používané ke zjišťování stavu počasí, průběhu počasí a meteorologické dohlednosti na automatických meteorologických stanicích. Detektor počasí určuje druh srážek kombinací údajů o intenzitě srážek a teplotě vzduchu a informace, získané na základě dopředného rozptylu světla. Výsledky těchto tří nezávislých měření jsou zpracovány podle příslušných algoritmů tak, aby poskytovaly údaje o stavu počasí podle požadavků Světové meteorologické organizace. Detektor počasí je schopen identifikovat déšť, mrznoucí déšť, mrholení, mrznoucí mrholení, smíšené srážky, sníh, zmrzlý déšť, mlhu, kouřmo a zákal. Zpracováním údajů o stavu počasí během stanoveného období lze získat i údaje o průběhu počasí. Viz též měření dohlednosti.
česky: detektor počasí; angl: present weather detector; slov: detektor počasia; něm: Wettererfassung f, Wettererfassung f; fr: capteur de temps présent m, capteur de conditions météorologiques actuelles m 2014
дефицит влажности
charakteristika vlhkosti vzduchu, která vyjadřuje, jaké množství vodní páry je třeba dodat do vzduchu, aby se stal nasyceným při konstantní teplotě. Většinou se definuje jako rozdíl tlaku nasycené vodní páry a skutečného tlaku vodní páry při dané teplotě, tzn. doplněk tlaku páry. Setkáme se však i s vyjádřením sytostního doplňku směšovacího poměru či měrné vlhkosti, který je stanoven při zachování teploty a tlaku vzduchu. Někdy se nesprávně zaměňuje za deficit teploty rosného bodu.
česky: doplněk sytostní; angl: saturation deficit; slov: sýtostný doplnok; něm: Sattigungsdefizit n; fr: rapport de mélange saturant m 1993-a3
дефицит влажности почвы
rozdíl mezi množstvím vody obsažené v půdě a maximálním množstvím vody, které tato půda může zadržovat po odtoku vody vlivem gravitace. Viz též vlhkost půdy.
česky: deficit vlhkosti půdy; angl: soil moisture deficit; slov: deficit vlhkosti pôdy 2014
дефицит точки росы
rozdíl teploty vzduchu a teploty rosného bodu. Patří mezi charakteristiky vlhkosti vzduchu užívané zejména na výškových mapách. Deficit teploty rosného bodu je tím větší, čím je při dané teplotě vzduchu menší relativní vlhkost vzduchu. Viz též sytostní doplněk.
česky: deficit teploty rosného bodu; angl: dew point deficit, dew point depression, dew point spread; slov: deficit teploty rosného bodu; něm: Taupunktdifferenz f; fr: dépression du point de rosée f, déficit du point de rosée m 1993-a3, ed. 2024
деформационное поле
v meteorologii část pole větru, kde mají proudnice hyperbolický tvar se dvěma navzájem kolmými asymptotami nazývanými osa roztažení a osa stlačení. Podél těchto os dochází ke konfluenci, resp. difluenci proudění. Deformační pole má rozhodující vliv na frontogenezi a frontolýzu prostřednictvím procesů, které závisejí na rozdělení izoterem vůči osám roztažení a stlačení. Typickým příkladem deformačního pole je oblast se šachovnicovým rozložením cyklon a anticyklon. V praxi rozeznáváme deformační pole:
a) symetrické, tvořené dvěma dvojicemi stejně velkých cyklon a anticyklon;
b) nesymetrické, odpovídající reálným podmínkám, kdy cyklony a anticyklony vytvářející pole mají zpravidla různé rozměry a intenzitu.
a) symetrické, tvořené dvěma dvojicemi stejně velkých cyklon a anticyklon;
b) nesymetrické, odpovídající reálným podmínkám, kdy cyklony a anticyklony vytvářející pole mají zpravidla různé rozměry a intenzitu.
česky: pole deformační; angl: deformation field; slov: deformačné pole; něm: Deformationsfeld n 1993-a3
деформационный барометр
viz tlakoměr.
česky: tlakoměr deformační; angl: elastic barometer; slov: deformačný tlakomer; něm: Deformationsbarometer n 1993-a1
деформационный термометр
teploměr využívající deformaci čidla při změně teploty. Čidlem bývá buď bimetal v bimetalických teploměrech, nebo Bourdonova trubice. Výchylky volných konců čidel se převádějí na stupnici teploty. Používaly se převážně jako termografy, v aerologii jako teplotní čidla radiosond.
česky: teploměr deformační; angl: deformation thermometer; slov: deformačný teplomer; něm: Deformationsthermometer n 1993-a3
децибел отражения (dBZ)
(decibel radarové odrazivosti) – jednotka radarové odrazivosti, používaná při radiolokaci především meteorologických cílů.
česky: dBZ; slov: dBZ; něm: Dezibel n, Dezibel n; fr: dBZ m 2014
деятельнй слой
svrchní část litosféry, většinou s půdním a rostlinným krytem, v níž se projevuje alespoň roční chod teploty; obdobně na moři svrchní vrstvy vody. Tepelný stav aktivní vrstvy je podmíněn radiačními procesy na zemském povrchu, dalšími procesy výměny tepla s atmosférou a podmínkami pro vedení tepla v aktivní vrstvě. Dolní hranicí aktivní vrstvy je hladina stálé roč. teploty, horní hranicí je aktivní povrch.
česky: vrstva aktivní; angl: active layer; slov: aktívna vrstva; něm: aktive Schicht f 1993-a2
джибли
místní název pro pouštní vítr převážně jv. a již. směru v Tunisku a Libyi.
Termín je variantou arabského slova kibli „jižní vítr“.
česky: gibli; angl: gebli, ghibli; slov: gibli; něm: Gibli m; fr: ghibli m, guebli m 1993-a3
диагноз погоды
syn. analýza počasí.
česky: diagnóza počasí; angl: weather diagnosis; slov: diagnóza počasia; něm: Wetterdiagnose f; fr: analyse météorologique f, techniques diagnostiques de prévision météorologique pl 1993-a1
диагностические уровнения
viz rovnice prognostické.
česky: rovnice diagnostické; angl: diagnostic equations; slov: diagnostické rovnice; něm: diagnostische Gleichung f 2014
диаграмма Амбля
málo používaný druh aerologického diagramu s kosoúhlými souřadnicovými osami T, –ln p do izobarické hladiny 500 hPa a osami T, –p nad hladinou 500 hPa (T je teplota vzduchu, p tlak vzduchu). Autorem diagramu je O. Amble.
česky: diagram Ambleův; angl: Amble diagram; slov: Ambleov diagram; něm: Amble-Diagramm n; fr: diagramme d'Amble m, diagramme à axes obliques m 1993-a2
диаграмма Вереншельда
málo používaný druh aerologického diagramu, v němž jsou na horizontální ose vyneseny hodnoty entropie a na vertikální ose tlak vzduchu ve tvaru p0,286. Osy tvoří pravoúhlý souřadnicový systém. Izotermy jsou křivky skloněné pod úhlem přibližně 45°. Autorem tohoto diagramu, který patří mezi energetické diagramy, je švédský meteorolog W. Werenskiold, který ho navrhl v letech 1937–1938. Viz též diagram Stüveho.
česky: diagram Werenskioldův; angl: Werenskiold diagram; slov: Werenskioldov diagram; něm: Werenskiold-Diagramm n; fr: diagramme pression-entropie m, diagramme de Werenskiold m 1993-a3
диаграмма Герлофсона
zast. označení pro zkosený diagram.
česky: diagram Herlofsonův; angl: Herlofson diagram; slov: Herlofsonov diagram; něm: Herlofson-Diagramm n; fr: diagramme de Herlofson m, diagramme Skew T - log p m, diagramme Skew-T/log-P m 1993-a3
диаграмма диффузии
syn. diagram rozptýleného světla prostorový – diagram používaný při studiu různých problémů atmosférické optiky, který zobrazuje rozptylovou indikatrici. Střed diagramu leží v geometrickém středu částice rozptylující záření (nebo ve středu souboru takových částic). V každém směru se z něho vynáší na polopřímku množství záření rozptylovaného do jednotkového prostorového úhlu, jehož osou je zmíněná polopřímka. Protože se v atmosféře zpravidla setkáváme s rozptylem válcově symetrickým vzhledem ke směru rozptylovaných paprsků, zakresluje se obvykle pouze řez rozptylovým diagramem, který obsahuje rozptylovaný paprsek. Předpokladem této válcové symetrie je nulová polarizace světla před uvažovaným rozptylem, čemuž vcelku dobře vyhovují paprsky přímého slunečního záření. Viz též rozptyl elektromagnetického vlnění v atmosféře.
česky: diagram rozptylový; angl: scattering indicatrix; slov: rozptylový diagram; něm: Streulichtdiagramm n; fr: diagramme de diffusion m 1993-a1
диаграмма комфорта
syn. diagram pohodlí, diagram pohody – diagram se souřadnicemi teplota – vlhkost, který se používá především při hodnocení umělého mikroklimatu, vytvořeného klimatizací.
česky: diagram komfortu; angl: comfort chart; slov: diagram komfortu; něm: Behaglichkeitsdiagramm n; fr: diagramme de confort m 1993-a2
диаграмма рассеяния светa
syn. diagram rozptylový.
česky: diagram rozptýleného světla; angl: light scattering diagram, scattering indicatrix; slov: diagram rozptýleného svetla; něm: Streulichtdiagramm n; fr: diagramme de diffusion de la lumière m, diagramme de diffusion lumineuse m 1993-a1
диаграмма рассеянного света
syn. diagram rozptylový.
česky: diagram rozptýleného světla; angl: light scattering diagram, scattering indicatrix; slov: diagram rozptýleného svetla; něm: Streulichtdiagramm n; fr: diagramme de diffusion de la lumière m, diagramme de diffusion lumineuse m 1993-a1
диаграмма Рефсдаля
syn. aerogram – málo používaný druh aerologického diagramu, který má na horizontální ose vyneseny hodnoty lnT, na vertikální ose hodnoty –T ln p, kde T je teplota vzduchu a p tlak vzduchu. Na tomto diagramu svírají izotermy a izobary ostrý úhel. Suché a nasycené adiabaty jsou zakřiveny a s izotermami svírají úhel menší než 45°. Refsdalův diagram je dále doplněn izoliniemi relativní vlhkosti vzduchu a stupnicemi potřebnými k vyhodnocování aerologických měření. Refsdalův diagram je energetickým diagramem; navrhl ho v r. 1935 A. Refsdal. Viz též emagram.
česky: diagram Refsdalův; angl: Refsdal diagram; slov: Refsdalov diagram; něm: Refsdal-Diagramm n; fr: diagramme de Refsdal m 1993-a3
диаграмма Россби
málo používaný druh aerologického diagramu, na jehož pravoúhlé souřadnicové osy jsou vyneseny stupnice směšovacího poměru vodní páry a logaritmu potenciální teploty suchého vzduchu. Izobary a izotermy tvoří kosoúhlou soustavu čar. Izolinie izobarické ekvivalentní potenciální teploty se při malých hodnotách směšovacího poměru silně zakřivují. Rossbyho diagram se používal hlavně při určování vzduchových hmot. Jeho autorem je amer. meteorolog švédského původu C. G. Rossby (1898–1957). Rossbyho diagram se někdy nevhodně označuje jako „Rossbygram“.
česky: diagram Rossbyho; angl: Rossby diagram; slov: Rossbyho diagram; něm: Rossby-Diagramm n; fr: téphigramme m 1993-a3
диаграмма Штюве
druh aerologického diagramu, v němž je na horizontální ose lineárně vynášena teplota vzduchu T (obvykle v rozsahu +40 až –80 °C) a na vertikální ose tlak vzduchu p v exponenciální závislosti pκ, kde κ = 0,286 je podíl měrné plynové konstanty suchého vzduchu a měrného tepla suchého vzduchu při stálém tlaku. Suché adiabaty svírají s izotermami úhel přibližně 45°, pseudoadiabaty jsou mírně obloukovitě zakřiveny. Izolinie měrné vlhkosti neboli izogramy nasyceného vzduchu (g.kg–1) jsou představovány vzpřímenými křivkami mírně se odklánějícími doleva od vertikálně mířících izoterem. Stüveho diagram může dále obsahovat stupnici pro vynášení relativní vlhkosti vzduchu, stupnici výšky a jiné pomocné stupnice.
Přestože Stüveho diagram není energetickým diagramem, je často používán vzhledem k pravoúhlému souřadnicovému systému teploty a tlaku vzduchu s většinou přímkových nebo málo zakřivených izolinií. Jeho autorem je něm. meteorolog G. Stüve (1888–1935). V odb. slangu je Stüveho diagram nazýván též „Stüvegram“.
Přestože Stüveho diagram není energetickým diagramem, je často používán vzhledem k pravoúhlému souřadnicovému systému teploty a tlaku vzduchu s většinou přímkových nebo málo zakřivených izolinií. Jeho autorem je něm. meteorolog G. Stüve (1888–1935). V odb. slangu je Stüveho diagram nazýván též „Stüvegram“.
česky: diagram Stüveho; angl: Stüve diagram; slov: Stüveho diagram; něm: Stüve-Diagramm n; fr: diagramme de Stüve m 1993-a3
диапазоны СВЧ-излучения K, X, C, S, L
oblasti mikrovlnných frekvencí používané pro radarová měření jsou konvenčně značeny uvedenými písmeny. Tabulka ukazuje střední vlnové délky a střední frekvence pro jednotlivá pásma.
Pásmo | Vlnová délka [cm] | Frekvence [GHz] |
K | 1 | 30 |
X | 3 | 10 |
C | 5 | 6 |
S | 10 | 3 |
L | 20 | 1,5 |
česky: pásma frekvenční mikrovlnná K, X, C, S, L; angl: microwave frequency bands K, X, C, S, L; slov: frekvenčné mikrovlnné pásma K, X, C, S, L 2014
дивергентная теория циклогенеза
teorie, podle níž cyklony vznikají a prohlubují se v důsledku rozbíhavosti čili difluence proudnic ve stř. troposféře, a anticyklony v důsledku sbíhavosti čili konfluence proudnic. V praxi byly pro tyto účely používány mapy absolutní topografie 700 hPa a 500 hPa. Divergenční teorii cyklogeneze vypracoval něm. meteorolog R. Scherhag v r. 1933, z hlediska současných poznatků je již překonána.
česky: teorie cyklogeneze divergenční; angl: divergence theory of cyclogenesis; slov: divergenčná teória cyklogenézy; něm: Divergenztheorie der Zyklogenese f, Sherhag-Theorie der Zyklogenese f 1993-a1
дивергентная теория циклонообразования
teorie, podle níž cyklony vznikají a prohlubují se v důsledku rozbíhavosti čili difluence proudnic ve stř. troposféře, a anticyklony v důsledku sbíhavosti čili konfluence proudnic. V praxi byly pro tyto účely používány mapy absolutní topografie 700 hPa a 500 hPa. Divergenční teorii cyklogeneze vypracoval něm. meteorolog R. Scherhag v r. 1933, z hlediska současných poznatků je již překonána.
česky: teorie cyklogeneze divergenční; angl: divergence theory of cyclogenesis; slov: divergenčná teória cyklogenézy; něm: Divergenztheorie der Zyklogenese f, Sherhag-Theorie der Zyklogenese f 1993-a1
дивергентный поток
1. obecně proudění s nenulovou trojrozměrnou divergencí, které je podle rovnice kontinuity spojeno se změnou hustoty tekutiny. Opakem je proudění nedivergentní.
2. v meteorologii zpravidla proudění s kladnou dvojrozměrnou (horizontální, izobarickou apod.) divergencí. Opakem je konvergentní proudění se zápornou divergencí neboli konvergencí. Pro odlišení obou významů se v tomto případě někdy používá označení proudění divergující. Nelze ho zaměňovat s difluentním prouděním; je sice většinou spojeno s difluencí, avšak může být spojeno i s konfluencí, kdy se horizontální proudnice v dané oblasti sbíhají, avšak v důsledku zrychlování proudění podél nich je celkový tok hmotnosti vzduchu přes hranice oblasti kladný, takže vytékání převládá nad vtékáním. V takovém případě mluvíme o divergujícím konfluentním proudění.
2. v meteorologii zpravidla proudění s kladnou dvojrozměrnou (horizontální, izobarickou apod.) divergencí. Opakem je konvergentní proudění se zápornou divergencí neboli konvergencí. Pro odlišení obou významů se v tomto případě někdy používá označení proudění divergující. Nelze ho zaměňovat s difluentním prouděním; je sice většinou spojeno s difluencí, avšak může být spojeno i s konfluencí, kdy se horizontální proudnice v dané oblasti sbíhají, avšak v důsledku zrychlování proudění podél nich je celkový tok hmotnosti vzduchu přes hranice oblasti kladný, takže vytékání převládá nad vtékáním. V takovém případě mluvíme o divergujícím konfluentním proudění.
česky: proudění divergentní; angl: divergent flow; slov: divergentné prúdenie; něm: divergente Strömung f 1993-a3
дивергенция ветра
1. bodová míra rozbíhavosti toků hmoty. Divergence v tomto smyslu může nabývat kromě kladných hodnot i hodnot záporných, vyjadřujících sbíhavost. Ve standardní souřadnicové soustavě je divergence dána vztahem
kde vx, vy, vz jsou složky vektoru rychlosti proudění příslušející souřadným osám x, y, z. Při popisu pole větru lze ovšem obvykle zanedbat stlačitelnost vzduchu; podle rovnice kontinuity je v tomto případě trojrozměrná divergence nulová. V meteorologii proto termínem divergence zpravidla označujeme dvojrozměrnou divergenci definovanou v z-systému vztahem
tedy horizontální divergenci, případně obdobnou dvojrozměrnou divergenci v různých souřadnicových soustavách se zobecněnou vertikální souřadnicí (izobarickou divergenci apod.). Pro označení divergence rychlosti proudění v se v literatuře nejčastěji užívá symbol ∇.v nebo div v, analogicky ∇H .v nebo divH .v, jde-li o horiz. divergenci apod. Divergence proudění má značný význam pro mechanismus tlakových změn v atmosféře, ovlivňuje děje na atmosférických frontách apod. Nenulová horizontální (v p-systému izobarická) divergence proudění je spojena s vertikálními pohyby vzduchu ve vzduchové hmotě a podílí se tak na vytváření podmínek pro vznik, vývoj a rozpad oblačnosti. Opakem divergence v tomto smyslu je nondivergence.
2. stav, kdy divergence v prvním významu dosahuje kladných hodnot, takže mluvíme o divergentním proudění. Takto chápaná divergence ve spodní troposféře je spojena se sestupnými pohyby vzduchu, divergence v horní troposféře naopak s pohyby výstupnými. Opakem divergence v tomto smyslu je konvergence.
Viz též rovnice divergence, hladina nondivergence, difluence.
kde vx, vy, vz jsou složky vektoru rychlosti proudění příslušející souřadným osám x, y, z. Při popisu pole větru lze ovšem obvykle zanedbat stlačitelnost vzduchu; podle rovnice kontinuity je v tomto případě trojrozměrná divergence nulová. V meteorologii proto termínem divergence zpravidla označujeme dvojrozměrnou divergenci definovanou v z-systému vztahem
tedy horizontální divergenci, případně obdobnou dvojrozměrnou divergenci v různých souřadnicových soustavách se zobecněnou vertikální souřadnicí (izobarickou divergenci apod.). Pro označení divergence rychlosti proudění v se v literatuře nejčastěji užívá symbol ∇.v nebo div v, analogicky ∇H .v nebo divH .v, jde-li o horiz. divergenci apod. Divergence proudění má značný význam pro mechanismus tlakových změn v atmosféře, ovlivňuje děje na atmosférických frontách apod. Nenulová horizontální (v p-systému izobarická) divergence proudění je spojena s vertikálními pohyby vzduchu ve vzduchové hmotě a podílí se tak na vytváření podmínek pro vznik, vývoj a rozpad oblačnosti. Opakem divergence v tomto smyslu je nondivergence.
2. stav, kdy divergence v prvním významu dosahuje kladných hodnot, takže mluvíme o divergentním proudění. Takto chápaná divergence ve spodní troposféře je spojena se sestupnými pohyby vzduchu, divergence v horní troposféře naopak s pohyby výstupnými. Opakem divergence v tomto smyslu je konvergence.
Viz též rovnice divergence, hladina nondivergence, difluence.
Termín divergence pochází z novolat. divergentia „rozbíhání, odklon“, odvozeného od divergere „rozbíhat se“ (z předpony dis- „roz-“ a vergere „klesat; sklánět se, chýlit se“).
česky: divergence proudění; angl: divergence of wind; slov: divergencia prúdenia; něm: Strömungsdivergenz f; fr: divergence du vent f, divergence des vents f 1993-a3
динамика атмосферы
část meteorologie, zabývající se příčinami pohybů vzduchu v zemské atmosféře. Poznatky dynamiky atmosféry a jejich mat. formulace vytvořily základ dynamické meteorologie, jejíž praktickou aplikací jsou zejména dyn. metody předpovědi počasí. V širším smyslu se do dynamiky atmosféry zahrnuje i kinematika a statika atmosféry.
česky: dynamika atmosféry; angl: atmospheric dynamics, dynamics of the atmosphere; slov: dynamika atmosféry; něm: atmosphärische Dynamik f, Dynamik der Atmosphäre f; fr: dynamique de l'atmosphère f, mouvements de l'atmosphère pl 1993-a1
динамика облаков
část fyziky oblaků a srážek, která aplikuje principy dynamiky kapalin na vývoj oblaků a srážek. Studuje vlastnosti pole proudění v oblaku i v jeho okolí, které jsou důsledkem nehydrostatických změn tlaku vzduchu, a jejichž důsledkem je časově a prostorově proměnné rozložení teploty, vlhkosti a mikrofyzikálních charakteristik oblaku. Viz též mikrofyzika oblaků a srážek.
česky: dynamika oblaků; angl: cloud dynamics; slov: dynamika oblakov; něm: Wolkendynamik f, Wolkendynamik f; fr: dynamique des nuages f 2014
динамика фронта
souborné označení pro časové změny vlastností atmosférické fronty v důsledku změn vlastností vzduchových hmot, které fronta odděluje, vlastností aktivního povrchu, a tlakového pole v oblasti fronty. Projevuje se změnou výraznosti fronty, změnou sklonu fronty (frontální plochy), deformací frontální čáry a tomu odpovídajícím průběhem počasí. Viz též frontogeneze, frontolýza, zostření fronty.
česky: dynamika fronty; angl: dynamic of front; slov: dynamika frontu; něm: Dynamik der Front f 1993-a2
динамическая высота
syn. výška geodynamická – výška libovolné geopotenciální hladiny, obvykle nad úrovní moře, vyjádřená v dynamických metrech.
česky: výška dynamická; angl: dynamic height; slov: dynamická výška; něm: dynamische Höhe f 1993-a1
динамическая климатология
klimatologický směr, který na rozdíl od klasické klimatologie nevychází při zpracování klimatologických materiálů z pevných časových úseků, jako je den, pentáda apod., ale z různě dlouhých období, po která v daném místě nebo oblasti působily určité cirkulační a radiační podmínky (např. vyskytoval se určitý synoptický typ, vzduchová hmota, převládalo proudění kolmé na horský hřeben atd.). Z dynamické klimatologie dosáhla doposud největšího uplatnění synoptická klimatologie, která se zabývá kauzálními vazbami mezi cirkulačními typy počasí a klimatem. V posledním období zkoumá dynamická klimatologie ve větším rozsahu klima ve vztahu k složkám radiační a tepelné bilance. Zakladatelem dynamické klimatologie je švédský meteorolog T. Bergeron.
česky: klimatologie dynamická; angl: dynamic climatology, dynamic climatology; slov: dynamická klimatológia; něm: dynamische Klimatologie f 1993-a1
динамическая ложбина
syn. brázda orografická, brázda závětrná – brázda nízkého tlaku vzduchu, která vzniká za horským hřebenem, přes který proudí vzduch s převažující složkou kolmou k hřebenu. Vznik brázdy lze vysvětlit termodynamicky adiabatickým oteplováním nebo dynamicky zesílením cyklonální cirkulace v důsledku horiz. konvergence spojené se zvětšováním vert. tloušťky vzduchového sloupce při sesedání vzduchu na závětrné straně hřebene. V Evropě vzniká např. v závětří Alp při sz. až sev. proudění, v závětří Skandinávského pohoří při proudění od západu na východ a v závětří Skalnatých hor v USA při stejném charakteru proudění. Viz též cyklogeneze orografická.
česky: brázda nízkého tlaku vzduchu dynamická; angl: dynamic trough, lee trough; slov: dynamická brázda nízkeho tlaku vzduchu; něm: dynamischer Trog m; fr: creux dynamique m, thalweg dynamique m 1993-a3
динамическая метеорология
obor meteorologie zabývající se studiem atmosférických dějů na základě formulování a mat. řešení vztahů a rovnic popisujících statiku, dynamiku a termodynamiku atmosféry. Aplikací dynamické meteorologie jsou dynamické předpovědní metody, které se v současné době používají k objektivním, především numerickým předpovědím přízemních a výškových tlakových polí, výškových teplotních a vlhkostních polí a k předpovědi atmosférických srážek. Viz též kinematika atmosféry
česky: meteorologie dynamická; angl: dynamic meteorology; slov: dynamická meteorológia; něm: dynamische Meteorologie f 1993-a3
динамическая трансформация воздушной массы
změna teplotních a vlhkostních charakteristik vzduchové hmoty především v důsledku subsidence vzduchu (zpravidla v anticyklonách). Projevuje se hlavně ve volné atmosféře, řidčeji zasahuje až k zemskému povrchu. Za dynamickou transformaci můžeme považovat i změny teploty a vlhkosti při výstupných pohybech vzduchu (typicky v cyklonách).
česky: transformace vzduchové hmoty dynamická; angl: dynamic air mass transformation; slov: dynamická transformácia vzduchovej hmoty; něm: dynamische Luftmassentransformation f 1993-a3
динамическая турбулентность
česky: turbulence dynamická; angl: dynamic turbulence; slov: dynamická turbulencia; něm: dynamische Turbulenz f 1993-a1
динамический антициклогенез
anticyklogeneze vyvolaná procesy souvisejícími s růstem advekce anticyklonální vorticity nebo poklesem advekce cyklonální vorticity s výškou. Za těchto podmínek dochází ke generování sestupných pohybů vzduchu a k následnému adiabatickému oteplování vzduchové hmoty. Tímto způsobem např. vznikají subtropické anticyklony. Viz též rovnice omega, subsidence vzduchu.
česky: anticyklogeneze dynamická; angl: dynamic anticyclogenesis; slov: dynamická anticyklogenéza; něm: dynamische Antizyklogenese f; fr: anticyclogénèse dynamique f 1993-a3
динамический антициклон
1. subtropická anticyklona;
2. někteří autoři tímto pojmem označují všechny teplé anticyklony i v mírných, popř. vysokých zeměp. šířkách. Viz též anticyklogeneze dynamická.
2. někteří autoři tímto pojmem označují všechny teplé anticyklony i v mírných, popř. vysokých zeměp. šířkách. Viz též anticyklogeneze dynamická.
česky: anticyklona dynamická; angl: dynamic anticyclone; slov: dynamická anticyklóna; něm: dynamische Antizyklone f; fr: anticyclone dynamique m 1993-a3
динамический метр
syn. metr geodynamický – vert. vzdálenost, na níž se geopotenciál změní o 10 J. Dynamický metr je číselně asi o 2 % větší než geometrický metr a jeho přesná hodnota závisí na místním tíhovém zrychlení. Původně zavedl v meteorologii V. Bjerknes jednotku desetkrát menší, tj. dynamický decimetr. V praxi je výhodnější jednotkou metr geopotenciální, který je roven 0,98 dynamického metru.
česky: metr dynamický; angl: dynamic metre; slov: dynamický meter; něm: dynamisches Meter n 1993-a3
динамическое давление
tlak působící v proudící tekutině na plochu orientovanou kolmo ke směru proudění po odečtení statického tlaku. Z hlediska rozměrové analýzy je dynamický tlak ekvivalentní množství kinetické energie v jednotce objemu proudící tekutiny, tzn. je přímo úměrný čtverci rychlosti proudění a hustotě tekutiny. U ploch, které nejsou orientovány kolmo ke směru proudění, je silové působení dynamického tlaku dáno průmětem do směru vnější normály k dané ploše. Viz též tlak větru, energie větru.
česky: tlak dynamický; angl: dynamic pressure; slov: dynamický tlak; něm: dynamischer Druck m, Staudruck m 1993-a3
динамическое нагревание
vžité označení pro adiabatické oteplování určité hladiny nebo vrstvy atmosféry vlivem vertikálních pohybů vzduchu, zpravidla sestupných v anticyklonách a v závětří horských hřebenů. Mechanismus dynamického oteplování lze vysvětlit adiabatickým oteplováním sestupujícího vzduchu při stabilním teplotním zvrstvení atmosféry. Viz též rovnice tendence relativní topografie, děj adiabatický, subsidence vzduchu.
česky: oteplování dynamické; angl: dynamic warming; slov: dynamické otepľovanie; něm: dynamische Erwärmung f 1993-a3
динамическое охлаждение
vžité označení pro adiabatické ochlazování určité hladiny nebo vrstvy atmosféry vlivem vertikálních pohybů vzduchu zpravidla výstupných v cyklonách a na návětrných svazích horských hřebenů. Mechanismus dynamického ochlazování lze vysvětlit adiabatickým popř. pseudoadiabatickým ochlazováním vystupujícího vzduchu při stabilním teplotním zvrstvení atmosféry. Viz též rovnice tendence relativní topografie, děj adiabatický, děj pseudoadiabatický.
česky: ochlazování dynamické; angl: dynamic cooling; slov: dynamické ochladzovanie; něm: dynamische Abkühlung f 1993-a3
диоксид углерода
(CO2) – skleníkový plyn tvořící přirozenou součást atmosféry Země, jehož množství je proměnné v čase i prostoru vzhledem k jeho zapojení do tzv. uhlíkového cyklu. V rámci evoluce atmosféry Země ho postupně ubývalo především v důsledku jeho postupné fosilizace v zemské kůře, podstatnou roli hraje i jeho vázání v biosféře. Během kvartéru proto jeho množství kolísá v souvislosti s kvartérním klimatickým cyklem, maxima se vyskytují v interglaciálech. Během několika posledních století vzrostlo jeho objemové zastoupení z 278 ppm na více než 400 ppm v důsledku antropogenní činnosti.
Kromě dlouhodobých změn množství oxidu uhličitého kolísá v globálním i lokálním měřítku. Z hlediska prostorové variability lze pozorovat jeho větší koncentrace nad pevninou než nad oceánem. V důsledku nerovnoměrného rozdělení kontinentů osciluje i celkové množství CO2 v atmosféře Země, minimum ročního chodu je spojeno s létem severní polokoule. V lokálním měřítku se uplatňuje denní chod jeho koncentrací s maximem na konci noci, zesílený v lesních porostech. Viz též složení atmosféry Země chemické.
Kromě dlouhodobých změn množství oxidu uhličitého kolísá v globálním i lokálním měřítku. Z hlediska prostorové variability lze pozorovat jeho větší koncentrace nad pevninou než nad oceánem. V důsledku nerovnoměrného rozdělení kontinentů osciluje i celkové množství CO2 v atmosféře Země, minimum ročního chodu je spojeno s létem severní polokoule. V lokálním měřítku se uplatňuje denní chod jeho koncentrací s maximem na konci noci, zesílený v lesních porostech. Viz též složení atmosféry Země chemické.
česky: oxid uhličitý; angl: carbon dioxide; slov: oxid uhličitý; něm: Kohlenstoffdioxid n; fr: dioxyde de carbone 2020
дисдрометр
přístroj pro stanovení charakteristik padajících dešťových kapek, popř. i jiných srážkových částic, především krup, krupek a sněhových vloček. Podle fyzikálního principu, na němž je založeno měření charakteristik padajících kapek, lze identifikovat několik skupin měřících zařízení. Nejstarší metody využívají registraci kapek dopadajících na pevnou podložku. Předchůdcem distrometru bylo hodnocení stop kapek zachycených na obarvený filtrační papír. Významným pokrokem byl známý distrometr Josse a Waldvogela z roku 1967, který automaticky registroval a převáděl na elektrický signál deformační sílu úderu kapek dopadajících na podložku. Tento typ zařízení se často užívá jako referenční ve srovnávacích studiích. Využití piezoelektrických vlastností podložky je další modifikací tohoto principu.
Distrometry často souhrnně označované jako optické měří nejčastěji zeslabení záření při průchodu srážkových částic ozářenou oblastí. Používá se záření různých frekvencí a uspořádání světelných zdrojů. Hodnocení útlumu umožňuje určit nejen velikost, nýbrž i pádovou rychlost částice. Z časového záznamu základních charakteristik srážkových částic lze stanovit rozdělení jejich velikosti i další globální charakteristiky, jako jsou intenzita srážek, kapalný vodní obsah, koeficient radarové odrazivosti, útlum elektromagnetických vln srážkovými částicemi, kinetická energie částic aj. Zvláštním typem optického distrometru je videodistrometr, který pomocí vysokofrekvenčního snímkování srážkových částic navíc zjišťuje i jejich tvar.
Distrometry často souhrnně označované jako optické měří nejčastěji zeslabení záření při průchodu srážkových částic ozářenou oblastí. Používá se záření různých frekvencí a uspořádání světelných zdrojů. Hodnocení útlumu umožňuje určit nejen velikost, nýbrž i pádovou rychlost částice. Z časového záznamu základních charakteristik srážkových částic lze stanovit rozdělení jejich velikosti i další globální charakteristiky, jako jsou intenzita srážek, kapalný vodní obsah, koeficient radarové odrazivosti, útlum elektromagnetických vln srážkovými částicemi, kinetická energie částic aj. Zvláštním typem optického distrometru je videodistrometr, který pomocí vysokofrekvenčního snímkování srážkových částic navíc zjišťuje i jejich tvar.
Termín pochází z angl. disdrometer, což je akronym slov distribution „rozdělení“, drop „kapka“ a meter „měřič“, tedy „měřič rozdělení kapek“. Do češtiny se termín dostal přes němčinu, což vysvětluje změnu souhlásky (něm. Tropfen „kapka“). Varianta distrometer se někdy vyskytuje i v anglických textech, což lze vysvětlit důrazem na slovo distribution, a to obecně různých typů částic bez omezení pouze na kapky.
česky: distrometr; angl: disdrometer, capteur de gouttelettes; něm: Distrometer m; fr: disdromètre 2021
диссипационный след
bezoblačný pruh, který lze pozorovat po průletu letadla tenkou vrstvou oblačnosti středního a horního patra. Rozpadový pruh se může vytvořit při ohřátí oblačného vzduchu, který obsahuje vodní kapky nebo ledové krystalky, horkými výfukovými plyny letadla. Při zvýšení teploty relativní vlhkost klesne, oblačné elementy se vypaří a v oblaku vzniká bezoblačná mezera. Alternativní vysvětlení pro vznik rozpadového pruhu při průletu letadla oblakem s přechlazenými kapkami spočívá v rychlém mrznutí přechlazených kapek nebo vzniku ledových krystalků v důsledku turbulence a poklesu tlaku vyvolaných průletem letadla. Vznikající ledové krystalky rostou v přesyceném prostředí a vypadávají do nižších hladin, kde se vypařují. Při pádu před vypařením mohou vytvářet virgu. Rozpadový pruh se může transformovat v tzv. oblačnou díru. Viz též pruh kondenzační, teorie vzniku srážek Bergeronova–Findeisenova.
česky: pruh rozpadový; angl: dissipation trail, distrail; slov: rozpadový pruh; něm: Dissipationsstreifen m 1993-a3
дистанционное зондирование
syn. měření meteorologické dálkové, detekce meteorologických jevů dálková – metoda meteorologického měření, kdy měřicí čidlo či přístroj není v bezprostřední blízkosti sledovaného jevu. V meteorologii se využívají zejména družicová měření, radarová měření, pozemní detekce blesků a měření pomocí nejrůznějších profilerů. Viz též měření aerologické, průzkum Země dálkový.
česky: měření meteorologické distanční; angl: remote sensing; slov: dištančné meteorologické meranie; něm: Remote sensing 1993-b3
дистанционное зондирование Земли
starší, ne zcela vhodné označení pro distanční pozorovací metody, resp. distanční měření, používané zejména v souvislosti s družicovými pozorováními (nejen meteorologickými).
česky: detekce Země dálková; angl: remote sensing; slov: diaľková detekcia Zeme; něm: Fernerkundung f; fr: télédétection f 1993-a3
дистанционное зондирование Земли
(DPZ) – obecné označení pro získávání dat za účelem komplexního obrazu určitého území, jeho různě cílené analýzy nebo detekce různých jevů pomocí přístrojů umístěných buď na oběžné dráze Země (na družicích či pilotovaných stanicích), nebo na dopravních prostředcích v atmosféře (na letadlech či dronech). Mezi používané přístroje patří především různé radiometry, optické kamery a radary. V rámci meteorologie můžeme pod dálkový průzkum Země řadit některá distanční meteorologická měření.
česky: průzkum Země dálkový; angl: remote sensing of the Earth; slov: diaľkový prieskum Zeme; něm: Fernerkundung f 1993-a3
дистанционное зондирование метеорологических явлений
česky: detekce meteorologických jevů dálková; angl: remote sensing; slov: diaľková detekcia meteorologických javov; něm: Fernerkundung von Wettererscheinungen f; fr: télédétection atmosphérique f 1993-a3
дистанционное метеорологическое измерение
česky: měření meteorologické dálkové; angl: distant meteorological measurement; slov: diaľkové meteorologické meranie; něm: meteorologische Fernerkundung f, Remote sensing n 1993-a3
дистанционный термограф
termograf, jehož čidlo je uměle ventilováno.
česky: termograf aspirační; angl: aspirated thermograph, ventilated thermograph; slov: aspiračný termograf; něm: Aspirationsthermograph m 1993-a1
дистанционный термометр
syn. teploměr distanční – teploměr upravený pro dálkové měření teploty.
česky: teploměr dálkový; angl: distant thermometer; slov: diaľkový teplomer; něm: Fernthermometer n, Thermometer für Fernmessung n 1993-a2
дифференциальный актинометр
aktinometr měřící jas oblohy v nejbližším okolí Slunce jako rozdíl celkového záření procházejícího vstupním otvorem tubusu radiometru a záření vysílaného samotným slunečním diskem. V ČR se diferenciální aktinometry nepoužívají.
česky: aktinometr diferenciální; angl: differential actinometer; slov: diferenciálny aktinometer; něm: Differentialaktinometer n; fr: radiomètre différentiel m 1993-a3
диффлюэнция
vlastnost pole větru charakterizovaná rozbíhavostí proudnic. Někdy se nesprávně zaměňuje s divergencí proudění. Viz též čára difluence, pole deformační, konfluence.
Termín pochází z lat. diffluentia „rozlévání se, rozptylování se“, které je odvozeno od slovesa diffluere „rozlévat, rozptylovat“ (z dis- „roz-“ a fluere „téci“).
česky: difluence; angl: diffluence; slov: difluencia; něm: Diffluenz f; fr: diffluence f 1993-a3
диффузионное равновесие
ve fyzice atmosféry vert. rozložení plynů v atmosféře neovlivňované turbulentním promícháváním. Podle Daltonova zákona se v tomto případě jednotlivé plyny ve směsi chovají tak, jako kdyby existovaly samostatně, takže dílčí tlak lehčích plynů klesá s výškou pomaleji než dílčí tlak plynů těžších. V reálné atmosféře se difuzní rovnováha uplatňuje pouze v heterosféře tzn. ve vrstvách výše než zhruba 90 km nad zemským povrchem. V níže ležící homosféře se vlivem turbulentního promíchávání relativní zastoupení základních plynných složek vzduchu s výškou prakticky nemění. Viz též difuzosféra.
česky: rovnováha difuzní; angl: diffusive equilibrium; slov: difúzna rovnováha; něm: Diffusionsgleichgewicht n 1993-a2
диффузия водяного пара
difuze směřující z oblasti vyšší koncentrace vodní páry do oblasti koncentrace nižší. V mikrofyzice oblaků a srážek uvažujeme především molkulární difuzi vodní páry, která se významně uplatňuje při vzniku a počátečním růstu zárodků vodních kapiček a zárodků ledových krystalků. Z makroskopického hlediska difuzní růst kapek a krystalků představuje kondenzaci, resp. depozici. Tyto fázové přechody jsou důsledkem difuze molekul přesycené vodní páry k povrchu částic a jejich zabudování do molekulární struktury vody, resp. ledu.
Turbulentní difuze vodní páry se uplatňuje např. na okrajích oblaků při mísení nasyceného vzduchu s nenasyceným vzduchem z okolí oblaku, při mísení vzduchových hmot různého původu, při vertikálním transportu vodní páry od zemského povrchu do volné atmosféry apod.
Turbulentní difuze vodní páry se uplatňuje např. na okrajích oblaků při mísení nasyceného vzduchu s nenasyceným vzduchem z okolí oblaku, při mísení vzduchových hmot různého původu, při vertikálním transportu vodní páry od zemského povrchu do volné atmosféry apod.
česky: difuze vodní páry; angl: water vapour diffusion; něm: Wasserdampf Diffusion 2022
диффузный свет
syn. světlo rozptýlené – v meteorologii světlo rozptýlené molekulami vzduchu a aerosolovými částicemi přítomnými v atmosféře.
česky: světlo difuzní; angl: diffuse light; slov: difúzne svetlo; něm: diffuses Licht n, gestreutes Licht n 1993-a1
диффузометр
pyranometr měřící v krátkovlnném oboru pouze rozptýlené sluneční záření; je opatřen stínidlem ve tvaru prstence, posuvného ve směru rovnoběžném se zemskou osou nebo pohyblivým stínícím kotoučem, který zabraňuje dopadu přímého slunečního záření na čidlo. Jako difuzometr může být použit v podstatě každý pyranometr s vodorovným čidlem obráceným vzhůru po doplnění příslušným stínidlem.
Termín se skládá z lat. diffusio „rozprostření, rozptýlení“ a z řec. μέτρον [metron] „míra, měřidlo“.
česky: difuzometr; angl: diffusiometer; slov: difúzometer; něm: Diffusiometer n; fr: diffusiomètre m, diffusomètre m 1993-a3
диффузосфера
oblast nad turbopauzou do výšek přibližně nad 100 km, v níž je vert. rozložení atm. plynů určováno molekulární difuzí v poli zemské tíže a nikoliv turbulentním promícháváním. Prakticky se shoduje s heterosférou. Viz též turbosféra.
Termín se skládá z lat. diffusio „rozprostření, rozptýlení“ a z řec. σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: difuzosféra; angl: diffusosphere; slov: difúzosféra; něm: Heterosphäre f; fr: diffusosphère f 1993-a1
длина Монина и Обухова
charakteristická veličina L rozměru délky používaná v teorii podobnosti. Je definována
kde u* značí frikční rychlost, cp měrné teplo vzduchu při stálém tlaku, ρ hustotu vzduchu, Θ potenciální teplotu, κ je von Kármánova konstanta, g velikost tíhového zrychlení a H vert. turbulentní tok tepla. Exaktní vysvětlení významu Obuchovovy délky plyne z rozměrové analýzy. Názorným způsobem, avšak poněkud zjednodušeně, ji lze interpretovat např. při stabilním zvrstvení ovzduší jako výšku nad zemským povrchem, kde produkce turbulentní kinetické energie, tj. kinetické energie příslušející turbulentním fluktuacím rychlosti proudění, následkem mech. tření proudícího vzduchu o zemský povrch, je přesně v rovnováze se zanikáním této energie působením stability zvrstvení. Viz též profil větru vertikální logaritmicko-lineární.
kde u* značí frikční rychlost, cp měrné teplo vzduchu při stálém tlaku, ρ hustotu vzduchu, Θ potenciální teplotu, κ je von Kármánova konstanta, g velikost tíhového zrychlení a H vert. turbulentní tok tepla. Exaktní vysvětlení významu Obuchovovy délky plyne z rozměrové analýzy. Názorným způsobem, avšak poněkud zjednodušeně, ji lze interpretovat např. při stabilním zvrstvení ovzduší jako výšku nad zemským povrchem, kde produkce turbulentní kinetické energie, tj. kinetické energie příslušející turbulentním fluktuacím rychlosti proudění, následkem mech. tření proudícího vzduchu o zemský povrch, je přesně v rovnováze se zanikáním této energie působením stability zvrstvení. Viz též profil větru vertikální logaritmicko-lineární.
česky: délka Obuchovova; angl: Obukhov length; slov: Obuchovova dĺžka; něm: Obukhov-Länge f; fr: longueur d'Obukhov f 1993-b3
длина Монина- Обухова
viz délka Obuchovova.
česky: délka Moninova–Obuchovova; slov: Moninova a Obuchovova dĺžka; něm: Monin-Obuchov-Länge f, Monin-Obukhov-Länge f; fr: longueur de Monin-Obukhov f 2014
длина смешения
veličina v klasické teorii atm. turbulence, definovaná L. Prandtlem jako vzdálenost, na níž se individuální částice turbulentní proudící tekutiny (v meteorologii vzduchové částice) během pohybu napříč proudu beze zbytku smísí s okolním prostředím při zachování své konstantní hybnosti. Z hlediska formální analogie mezi charakteristikami vazkého laminárního proudění a turbulentního proudění se v jistém smyslu jedná o protějšek pojmu volná dráha molekuly. Obdobnou teorii směšovací délky vypracoval G. I. Taylor, jenž však místo konzervace hybnosti individuální částice tekutiny (vzduchu) uvažoval konzervaci vorticity. Směšovací délka se používá k vyjádření koeficientu turbulentní difuze. V teoriích turbulence se používá kromě směšovací délky podobná veličina nazývaná charakteristický rozměr turbulentních vírů nebo měřítko vírů, která se obvykle interpretuje jako střední rozměr turbulentních vírů.
česky: délka směšovací; angl: mixing length; slov: zmiešavacia dĺžka; něm: Mischungsweg m; fr: longueur de mélange f 1993-a1
длинная волна
1. v letecké meteorologii nevhodné označení pro vlnové proudění v závětří horských hřebenů, které vzniká při proudění vzduchu kolmo na překážku, je-li dostatečně rychlé, vert. mohutné a při stabilním teplotním zvrstvení ovzduší;
2. v synoptické meteorologii nevhodné označení pro vlny Rossbyho.
2. v synoptické meteorologii nevhodné označení pro vlny Rossbyho.
česky: vlna dlouhá; angl: long wave; slov: dlhá vlna; něm: lange Welle f 1993-a1
длинноволновая радиация
v meteorologii elmag. záření o vlnových délkách 3–100 µm. Viz též záření krátkovlnné, okno atmosférické.
česky: záření dlouhovlnné; angl: long-wave radiation; slov: dlhovlnné žiarenie; něm: langwellige Strahlung f 1993-a3
дневная освещенность
osvětlení zemského povrchu a předmětů na Zemi i v atmosféře přímým a rozptýleným slunečním světlem. Měří se v luxech [lx].
česky: osvětlení denní; angl: daily illumination, intensity of daylight; slov: denné osvetlenie; něm: Tageshelligkeit f 1993-a1
дождевая капля
kapka vody o ekvivalentním průměru větším než 500 µm vypadávající z oblaků na zemský povrch. Označení někdy zahrnuje i kapky mrholení a spodní hranice velikosti kapek se potom snižuje na přibližně 200 µm. Malé dešťové kapky jsou sférické, s rostoucí velikosti kapek se jejich tvar deformuje vlivem aerodynamických sil. Padající velké kapky jsou na čelní straně silně zploštělé. Nejčastější velikost dešťových kapek je 1 až 2 mm. Kapky, jejichž ekvivalentní průměr dosahuje 6 až 7 mm, se stávají hydrodynamicky nestabilní a při pádu nebo při vzájemných kolizích se tříští na menší kapičky (laboratorní experimenty prokázaly stabilní kapky do velikosti ekvivalentního průměru až 9 mm). Dešťové kapky vznikají buď táním velkých ledových krystalů, popř. jejich shluků vzniklých agregací, nebo koalescencí menších kapek. Viz též teorie vzniku srážek Bergeronova–Findeisenova, teorie vzniku srážek koalescencí, rozdělení velikosti dešťových kapek, rozdělení Marshallovo–Palmerovo, rychlost pádová.
česky: kapka dešťová; angl: rain drop; slov: dažďová kvapka; něm: Regentropfen m 1993-a3
дождевая полоса
útvar srážkových oblaků protáhlý v jednom směru, takže je možné určit jeho orientaci. Srážkové pásy mohou být tvořeny konvektivními i vrstevnatými oblaky, mohou dosahovat různých měřítek, přičemž mívají složitější vnitřní strukturu. V mimotropické cykloně jsou srážkové pásy vázány na atmosférické fronty a případné čáry instability, které se mohou vyskytovat i samostatně. V tropické cykloně se od středu odvíjejí spirální srážkové pásy. Pohyb srážkového pásu ve směru jeho protažení, popř. setrvání pásu nad určitým povodím může vést k zesílení případné povodně.
česky: pás srážkový; angl: rainband; slov: zrážkový pás 2014
дождевая тень
zmenšení úhrnu srážek i četnosti jejich výskytu v závětří překážky libovolného měřítka. Ve větším měřítku se jedná o projev závětrného efektu horské překážky, kdy jsou srážky menší nejen ve srovnání s návětřím, ale často i vůči oblastem dále ve směru proudění. Srážkový stín v klimatologickém smyslu se tvoří v případě výrazně převládajícího větru. Příkladem z území ČR je oblast Podkrušnohoří, kde se srážkový stín uplatňuje při proudění ze severozápadního kvadrantu, takže způsobuje relativní ariditu klimatu tohoto regionu. Z hlediska mikrometeorologie lze za srážkový stín považovat i mech. zastínění určitého prostoru překážkou vůči srážkám hnaným větrem. Srážkový stín může souviset s fénovým efektem.
česky: stín srážkový; angl: rain shadow; slov: zrážkový tieň; něm: Regenschatten m 1993-a3
дождевые облака
dnes již nepoužívané označení pro oblak, z něhož vypadávají atm. srážky.
Termín navrhl brit. továrník a amatérský meteorolog L. Howard v r. 1803 pro jeden ze čtyř druhů oblaků své klasifikace. Je přejat z lat. nimbus „oblak (zvl. dešťový), příval“. V současné mezinárodní morfologické klasifikaci oblaků zůstal tento termín zachován jen ve složeninách cumulonimbus a nimbostratus.
česky: nimbus; angl: nimbus; slov: nimbus; něm: Nimbus m 1993-a2
дождемер
viz ombrograf. Viz též mikropluviograf.
Termín zavedl brit. inženýr R. Beckley, který přístroj sestrojil zhruba ve 3. čtvrtině 19. století. Termín se skládá z lat. pluvia „déšť“ a z řec. komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: pluviograf; angl: pluviograph, recording raingauge; slov: pluviograf; něm: Pluviograph m, Niederschlagsschreiber m 1993-a3
дождливый период
časový úsek po sobě jdoucích dnů se srážkami na dané met. stanici. Jako minimální denní úhrn srážek se přitom nejčastěji uvažuje 0,1 mm, ve starších pracích 0,0 mm (neměřitelné srážky). Srážková období, někdy označovaná i jako období vlhká, se střídají se suchými obdobími. Někteří autoři pracují se zvolenou minimální délkou srážkových období, jiní mezi ně počítají i samostatné dny se srážkami. Kromě takto definovaných, tzv. absolutních nebo též uzavřených srážkových období, se někdy vymezují i parciální neboli přerušená srážková období, přičemž kritériem bývá průměrný denní úhrn srážek za toto období. Údaje o četnosti, prům. a nejdelším trvání srážkových období a jejich srážkové vydatnosti jsou důležitými charakteristikami časového rozdělení srážek. Velká četnost, případně délka srážkových období jsou charakteristické pro humidní klima a pro období dešťů.
česky: období srážkové; angl: rainy period, wet spell; slov: zrážkové obdobie; něm: Niederschlagsperiode f, Regenperiode f 1993-a3
дождливый период
období s vydatnými srážkami v nižších zeměp. šířkách. Podle starších představ měly pluviály časově zhruba odpovídat glaciálům ve vyšších zeměp. šířkách, avšak např. poslední pluviál zřejmě nastal na konci glaciálu a přetrval až do období holocénního klimatického optima. Do většiny oblastí, kde dnes panuje horké suché klima, se rozšířilo klima savan, vytvořily se stálé vodní toky a rozsáhlá jezera, takže zde byla i vyšší hustota zalidnění než v současné době.
Termín pochází z lat. pluvialis „dešťový, deštivý“ (od pluvia „déšť“).
česky: pluviál; angl: pluvial period; slov: pluviál; něm: Pluvialzeit f 1993-a3
дождь
kapalné padající srážky tvořené dešťovými kapkami o průměru větším než 500 µm, které dopadají na zemský povrch. Podle intenzity deště rozeznáváme déšť trvalý a přívalový. Viz též mrholení.
Termín pochází z praslovanského *dъždžь, jehož původ není jednoznačný.
česky: déšť; angl: rain; slov: dážď; něm: Regen m; fr: pluie f 1993-a3
долгосрочный прогноз
předpověď počasí na období od 30 dnů do dvou let, především na měsíc, sezonu, rok. Zpočátku se pro dlouhodobou předpověď počasí používaly statist. metody studující změny meteorologických prvků v různých místech v závislosti na čase. Později byly rozvinuty statisticko-synoptické metody dlouhodobé předpovědi počasí, vycházející ze zákonitostí atmosférické cirkulace nad určitým územím, z nichž se nejvíce osvědčila metoda analogu. Od 90. let 20. stol. se začaly používat objektivní metody založené na ansámblové předpovědi počasí, používající numerické modely předpovědi počasí, většinou spojené s modely popisujícími proudění a teplotu hladiny oceánu. Viz též předpověď počasí krátkodobá, předpověď počasí střednědobá.
česky: předpověď počasí dlouhodobá; angl: long-range weather forecast; slov: dlhodobá predpoveď počasia; něm: langfristige Vorhersage f, Langfristprognose f 1993-a3
долинный бриз
viz vítr horský a údolní.
česky: vítr údolní; angl: valley breeze; slov: údolný vietor; něm: Talwind m 1993-a2
долинный ветер
viz vítr horský a údolní.
česky: vítr údolní; angl: valley breeze; slov: údolný vietor; něm: Talwind m 1993-a2
долинный туман
mlha, která se tvoří v terénních sníženinách, zejména v údolích následkem stékání chladnějšího vzduchu po svazích, silnějšího ochlazování a v důsledku zvětšené vlhkosti vzduchu. Při pozorování z vyšších poloh se údolní mlha jeví jako oblačné moře.
česky: mlha údolní; angl: valley fog; slov: údolná hmla; něm: Talnebel m 1993-a1
долинный эффект
jeden z případů Venturiho efektu. Vzniká kombinací tryskového efektu a efektu návětrného, když z orografických důvodů dochází ke zhuštění proudnic jak v horiz., tak ve vert. směru. Výrazně přispívá k orografickému zesílení srážek v zasažené oblasti. Podmínkou je stoupající terén sevřený sbíhajícími se horskými pásmy, což vytváří „nálevku“ pro případné natékající proudění. V ČR mají takové uspořádání např. Rychlebské hory s Hrubým Jeseníkem, Oderské vrchy s Moravskoslezskými Beskydami, Lužické hory s Jizerskými horami a Šumava s Novohradskými horami. Uvedené případy se uplatňují při přibližně severním proudění, především při situaci Vb, popř. při výskytu retrográdní cyklony východně od ČR.
česky: efekt nálevkový; angl: funnel effect; slov: lievikový efekt; něm: Trichtereffekt m; fr: vent de couloir m 1993-a3
дополнительная климатологическая станция
meteorologická stanice, na níž se provádí klimatologické pozorování v částečně omezeném rozsahu a nemusí být prováděno nepřetržitě. Rovněž tech. vybavení nemusí být kompletní, ale měření max. a min. teplot a množství srážek je povinné. Doplňkové klimatologické stanice slouží k doplnění sítě základních klimatologických stanic.
česky: stanice klimatologická doplňková; angl: ordinary climatological station; slov: doplnková klimatologická stanica; něm: klimatologische Ergänzungsstation f 1993-a3
дополнительная особенность облака
doplňující kategorie mezinárodní morfologické klasifikace oblaků, která si všímá zvláštních detailů ve tvaru oblaků, jejich výčnělků, útržků apod. Týž oblak se může vyznačovat několika zvláštnostmi. V současné době rozeznáváme celkem 11 zvláštností oblaků. Ke zvláštnostem označeným jako incus, mamma, virga, praecipitatio, arcus a tuba byly v roce 2017 přidány zvláštnosti označené jako asperitas, cauda, cavum, fluctus a murus.
česky: zvláštnost oblaku; angl: supplementary feature of a cloud; slov: zvláštnosť oblaku; něm: Wolkensonderform f; fr: particularité supplémentaire de nuage 1993-a3
дополнительная радуга
úzké barevné oblouky, které se vyskytují uvnitř hlavní nebo vně vedlejší duhy; častěji se objevují u vedlejší duhy. Jde o interferenční jev související s uplatněním optického principu minimální odchylky. Někteří autoři používají pro duhové podružné oblouky méně vhodného označení „duhy sekundární“. Duhové podružné oblouky jsou jedním z fotometeorů.
česky: oblouky duhové podružné; angl: supernumerary bows, supernumerary rainbows; slov: podružné dúhové oblúky; něm: Nebenregenbogen m 1993-a3
дополнительная судовая станция
meteorologická stanice na pohybující se lodi, která je vybavena jen nejnutnějšími spolehlivými met. přístroji a předává kódované zprávy o přízemních met. pozorováních.
česky: stanice meteorologická lodní doplňková; angl: supplementary ship station; slov: lodná doplnková meteorologická stanica; něm: Ergänzungs-Schiffsstation f 1993-a3
дополнительное метеорологическое наблюдение
meteorologické pozorování prováděné mimo pevně stanovené pozorovací termíny, např. měření vodní hodnoty sněhové pokrývky v jiný než stanovený den, kterým je pondělí (např. v případě předpovídaného rychlého tání sněhu s možností vzestupu hladin vodních toků).
česky: pozorování meteorologické doplňkové; angl: supplementary meteorological observation; slov: doplnkové meteorologické pozorovanie; něm: meteorologische Ergänzungsbeobachtung f 1993-a3
дополнительное облако
menší oblak, který doprovází jiný (hlavní) oblak. Je většinou od hlavního oblaku oddělen, někdy však s ním částečně souvisí. Mezinárodní morfologická klasifikace oblaků rozlišuje průvodní oblaky pileus, velum, pannus a flumen. Daný pozorovaný oblak může mít i několik průvodních oblaků.
česky: oblak průvodní; angl: accessory cloud; slov: sprievodný oblak; něm: Begleitwolke f; fr: nuage annexe m 1993-a3
дополнительный синоптический срок
viz termín synoptický.
česky: termín synoptický vedlejší; angl: intermediate standard time; slov: vedľajší synoptický termín; něm: synoptischer Zwischentermin m 1993-a1
дрозомер
syn. rosoměr.
Termín se skládá z řec. δρόσος [drosos] „rosa“ a μέτρον [metron] „míra, měřidlo“.
česky: drosometr; angl: drosometer; slov: rosometer; něm: Taumesser m, Drosometer m; fr: drosomètre m 1993-a1
дуга антеля
protislunce, viz kruh parhelický.
Termín pochází z řec. ἀνθήλιος [anthélios] „proti Slunci“ (z ἀντί [anti] „proti“ a ἥλιος [hélios] „Slunce“).
česky: antihélium; angl: anthelion; slov: antihélium; něm: Gegensonne f; fr: anthélie f 1993-a1
дуга Парри
jeden z méně častých halových jevů v podobě světelného oblouku nalézajícího se nad malým halem. S výškou Slunce nad obzorem mění svoji polohu i tvar.
česky: oblouk Parryho; angl: arc of Parry, Parry arc; slov: Parryho oblúk; něm: Parry-Bogen m 2014
дуга Тангентса?
syn. oblouky tečné.
česky: oblouky tangenciální; angl: tangent arcs; slov: tangenciálne oblúky; něm: Berührungsbogen m/pl 1993-a1
дуги Ловица
řidčeji se vyskytující halový jev v podobě oblouků směřujících od parhelií šikmo tečně (obecně nahoru i dolů) k malému halu. Obvykle se však vyskytují spíše ve směru dolů. Jsou nazvány podle petrohradského přírodovědce J. T. Lowitze, jenž je poprvé popsal r. 1794.
česky: oblouky Lowitzovy; angl: arcs of Lowitz; slov: Lowitzove oblúky; něm: Lowitz-Bogen m 1993-a3
духота
subj. nepříjemný pocit, vyvolaný kombinovaným účinkem teploty vzduchu, vlhkosti vzduchu a malé rychlosti větru na lidský organismus. Je do jisté míry opakem zchlazování, protože čím je menší zchlazování, tím je větší dusno. Dusno se charakterizuje buď pomocí izobarické ekvivalentní teploty (např. F. Linke považoval za začátek dusna 56 °C), nebo jen pomocí tlaku vodní páry. Za hranici dusna se obecně přijala hodnota tlaku vodní páry 18,8 hPa (dříve 14,08 torr). Podle K. Scharlana (1942) nastávají podmínky pro pocit dusna např. tehdy, když při relativní vlhkosti vzduchu r = 100 % je teplota vzduchu t = 16,5 °C, dále při r = 70 % a t = 22,2 °C, při r = 50 % a t = 27,9 °C, popř. při r = 30 % a t = 36,9 °C. Dusno vzniká nejčastěji v létě v dopoledních hodinách, zpravidla před konvektivní bouří (bouřkou z tepla). Viz též den dusný, teplota pocitová.
Termín je odvozen od slovesa dusit, které se vyvinulo z praslovanského *dušiti, z něhož pocházejí např. slova duch, dech a vzduch. Doslova jsou to tedy „podmínky, kdy člověk těžce dýchá“.
česky: dusno; angl: muggy, sultriness; slov: dusno; něm: Schwüle f; fr: temps lourd m 1993-a3
душный день
charakteristický den, v němž nastaly met. podmínky pro pocit dusna. V Česku se za dusný den zpravidla považuje den, v němž tlak vodní páry ve 14 h dosáhl alespoň hodnoty 18,8 hPa. Viz též izohygroterma.
česky: den dusný; angl: sultry day; slov: dusný deň; něm: schwüler Tag m; fr: jour à temps lourd m, jour de chaleur étouffante m, jour de chaleur accablante m 1993-a2
дым
produkty hoření látek všech skupenství rozptýlené ve vzduchu. Částice kouře mají různou velikost i fyz. a chem. vlastnosti. Pevné složky kouře jsou jedním z litometeorů. Viz též vlečka kouřová.
Termín pochází z praslovanského slova *kuriti, které se do jiných jazyků přeneslo ve významu „topit“.
česky: kouř; angl: smoke; slov: dym; něm: Rauch m 1993-a3
дымка
hydrometeor snižující vodorovnou dohlednost nejvýše na 1 km. Kouřmo je atmosférický aerosol z mikroskopických vodních kapiček nebo vlhkých hygroskopických částeček vznášejících se ve vrstvě vzduchu při zemi. V pozorovatelské praxi se kouřmo zaznamenává jen při dohlednosti od 1 do 10 km, obecně však horní hranice dohlednosti pro kouřmo není stanovena. Na rozdíl od mlhy, v níž vodorovná dohlednost je menší než 1 km, při kouřmu není vzduch vodními parami nasycen, i když relativní vlhkost vzduchu je i při něm vysoká. Kouřmo nelze zaměňovat se zákalem, patřícím mezi litometeory.
Termín je odvozen od slova kouř, s nímž však z hlediska met. významu nesouvisí.
česky: kouřmo; angl: mist; slov: dymno; něm: Dunst m 1993-a3
дымка
lidový název pro zakalení vzduchu způsobené kondenzací vodní páry, která bezprostředně následuje po výparu vody z relativně teplejší vodní hladiny do chladnějšího vzdušného prostředí. Nad teplými povrchy moří se takto mluví o mořském oparu. Někdy se v analogickém smyslu hovoří i o ranním oparu nad krajinou, oparu nad lesy („lesy se paří“) apod. Viz též mlha z vypařování.
česky: opar; slov: opar; něm: leichter Dunst m 1993-a2
дымление
viz ochrana před mrazíky.
česky: zakuřování; angl: fumigation; slov: zadymovanie; něm: Fumigation f 1993-a1
дымовая шапка
viditelná vrstva znečištěného vzduchu nad velkými městy a průmyslovými oblastmi, často s ostrou horní hranicí. Tvar i výška kouřové čepice závisejí především na charakteru počasí a denní době. Viz též zákal průmyslový.
česky: čepice kouřová; angl: smoke blanket; slov: dymová čiapka; něm: Rauchwolke f; fr: nuage de pollution m 1993-a1
дымовой факел
prostorový útvar v ovzduší obsahující kouř a další znečišťující látky souvisle emitované z jednotlivého zdroje znečišťování ovzduší nebo skupiny zdrojů. Délka i tvar kouřové vlečky jsou podmíněny met. podmínkami pro šíření a rozptyl příměsí v ovzduší. Viz též tvar kouřové vlečky, emise, vznos kouřové vlečky, stupnice Ringelmannova.
česky: vlečka kouřová; angl: smoke plume; slov: dymová vlečka; něm: Rauchfahne f 1993-a3
дырявые
(la) [lakúnózus] – jedna z odrůd oblaků podle mezinárodní morfologické klasifikace oblaků. Je charakterizována jako menší nebo větší oblačné skupiny nebo vrstvy, které mají v souvislé, obvykle v dosti tenké vrstvě, více méně pravidelně rozložené zaokrouhlené otvory, jejichž okraje jsou někdy vláknité (třásnité). Jednotlivé části oblaku a bezoblačné mezery jsou uspořádány tak, že působí dojmem sítě nebo včelího plástu. Vyskytuje se hlavně u druhů cirrocumulus a altocumulus; může se také vyskytnout, ačkoliv jen zřídka, u druhu stratocumulus.
Termín navrhl J. Vincent v r. 1903 ve formě lacunar (doslova „strop s prohlubněmi, kazetový strop“), do mezinárodní klasifikace byl zařazen v r. 1930 ve tvaru lacunaris „místy prohloubený“, současná podoba termínu je z r. 1951. Je přejat z lat. lacunosus „s prohlubněmi, vydutý“ (od lacuna „prohlubeň, díra, mezera“; srov. laguna).
česky: lacunosus; angl: lacunosus; slov: lacunosus; něm: lacunosus 1993-a2