Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene a

X
Abbotov pyrheliometer so strieborným diskom
pyrheliometr v minulosti používaný hlavně v USA. Využívá teplo, které pohltí Sluncem ozářený masivní stříbrný disk s černým nátěrem, umístěný v tubusu, jehož osa se při měření orientuje do směru dopadajících paprsků. Množství dopadajícího přímého slunečního záření se určí ze vzrůstu teploty disku změřené rtuťovým teploměrem pomocí konstanty určené individuálně pro každý přístroj. Uvedený pyrheliometr zkonstruoval amer. astronom C. G. Abbot v r. 1900.
česky: pyrheliometr se stříbrným diskem; angl: Abbot silver disc pyrheliometer; něm: Silberscheiben-Pyrheliometer nach Abbot n; rus: серебрянодисковый актинометр Аббота  1993-b3
ablácia
proces povrchového i vnitřního ubývání sněhové pokrývky nebo ledovce prostřednictvím tání nebo sublimace. Viz též klasifikace klimatu geomorfologická, čára firnová, akumulace sněhu.
Termín pochází z lat. ablatio „odstranění“, které je odvozeno od slovesa auferre „odnášet, odstraňovat“ (z ab- „od-“ a ferre „nést“).
česky: ablace; angl: ablation; něm: Ablation f; fr: ablation f; rus: абляция  1993-a3
absolútna amplitúda
rozdíl mezi absolutním maximem a absolutním minimem meteorologického prvku, zjištěný na met. stanici nebo v určité oblasti za dlouholeté období, zpravidla od počátku měření. Např. na území Česka za období 1901–2017 je absolutní amplituda teploty vzduchu 82,6 °C (abs. maximum 40,4 °C v Dobřichovicích 20. 8. 2012, abs. minimum –42,2 °C v Litvínovicích u Českých Budějovic 11. 2. 1929). Kromě absolutní amplitudy vztahované k celému uvažovanému období se používají také absolutní amplitudy měsíční a denní.
česky: amplituda absolutní; angl: absolute amplitude, absolute range; něm: absolute Schwingungsbreite f, absolute Schwankungsbereich m; fr: amplitude absolue f, écart (absolu) m; rus: абсолютная амплитуда  1993-a2
absolútna barická topografia
barická topografie určité, zpravidla standardní tlakové hladiny nad ideální hladinou moře, analyzovaná pomocí absolutních izohyps. Barickou absolutní topografii lze interpretovat jako rozložení tlaku vzduchu. V oblastech nižšího tlaku vzduchu jsou izobarické plochy prohnuty směrem k zemskému povrchu, a proto jsou jejich geopotenciály nižší a naopak. Barická absolutní topografie se často označuje zkratkou AT s uvedením konkrétní hladiny, např. AT500 značí barickou topografii barické hladiny 500 hPa. Abs. izohypsy hladin nad vrstvou tření lze přibližně považovat za proudnice a můžeme jimi s dobrým přiblížením popisovat proudění v dané tlakové hladině. Viz též mapa absolutní topografie.
česky: topografie barická absolutní (AT); angl: absolute baric topography, absolute hypsography; něm: absolute Topographie f; rus: абсолютная барическая топография  1993-a1
absolútna denná amplitúda
rozdíl mezi denním absolutním maximem a denním absolutním minimem meteorologického prvku, zjištěný v témž kalendářním dnu na met. stanici za dlouholeté období, zpravidla od počátku měření. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší absolutní denní amplituda teploty vzduchu pro 1. březen, a to 43,7 °C, vypočítaná z denního minima –27,6 °C v roce 1785 a denního maxima 16,1 °C v roce 1922.
česky: amplituda absolutní denní; angl: daily absolute amplitude, daily absolute range; něm: absolute Tagesamplitude f, tägliche Schwankung f; fr: amplitude journalière absolue f, amplitude diurne absolue f; rus: суточная абсолютная амплитуда  1993-a3
absolútna instabilita ovzdušia
vertikální instabilita atmosféry pro nasycený i nenasycený, popř. suchý vzduch, kdy vertikální teplotní gradient v dané vrstvě atmosféry je větší než suchoadiabatický teplotní gradient. Pojem absolutní instabilita atmosféry má v klasické Normandově klasifikaci instability (stability) atmosféry poněkud odlišný smysl.
česky: instabilita atmosféry absolutní; angl: absolute instability of atmosphere; něm: absolute Instabilität der Atmosphäre f; rus: абсолютная неустойчивость атмосферы  1993-a3
absolútna izohypsa
v meteorologii izohypsa spojující místa se stejnou výškou standardní izobarické hladiny (plochy) nad hladinou moře, vyjádřenou v geopotenciálních metrech. Pomocí absolutních izohyps znázorňujeme absolutní barickou topografii, v níž absolutní izohypsy vyšších hodnot vymezují oblasti vyššího tlaku vzduchu a naopak. Na mapách absolutní topografie se zakreslují obyčejně po 40, popř. 80 geopotenciálních metrech.
česky: izohypsa absolutní; angl: absolute isohypse; něm: absolute Isohypse f; rus: абсолютная изогипса  1993-a3
absolútna mesačná amplitúda
rozdíl mezi měsíčním absolutním maximem a měsíčním absolutním minimem meteorologického prvku zjištěný v témž kalendářním měsíci na met. stanici za dlouholeté období, zpravidla od počátku měření. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší absolutní měsíční amplituda teploty vzduchu v březnu, a to 50,1 °C, vypočítaná z denního minima –27,6 °C (1. 3. 1785) a denního maxima 22,5 °C (29. 3. 1968).
česky: amplituda absolutní měsíční; angl: monthly absolute amplitude, monthly absolute range; něm: absolute monatliche Schwingungsbreite f, absolute monatliche Schwankungsbereich m; fr: amplitude mensuelle absolue f; rus: месячная абсолютная амплитуда  1993-a3
absolútna optická hmota atmosféry
geometrická délka dráhy paprsku (například slunečního) při průchodu atmosférou Země. Termín odráží skutečnost, že integrací hustoty vzduchu podél trajektorie paprsku dostaneme hmotnost vzduchu obsaženou v trubici o jednotkovém průřezu, jejíž osou je trajektorie daného paprsku v celé zemské atmosféře. Viz též hmota atmosféry optická relativní, tloušťka atmosféry optická.
česky: hmota atmosféry optická absolutní; angl: absolute optical air mass; něm: absolute optische Luftmasse f; rus: абсолютная оптическая масса атмосферы  2014
absolútna stabilita atmosféry
česky: stabilita atmosféry absolutní; angl: absolute stability of atmosphere; něm: absolute Stabilität der Atmosphäre f; rus: абсолютная устойчивость атмосферы  1993-a3
absolútna súradnicová sústava
v meteorologii souřadnicová soustava buď pevná vzhledem ke světovému prostoru, nebo pohybující se vůči němu rovnoměrným přímočarým pohybem. Met. měření se obvykle vztahují k určitému místu, které rotuje vůči světovému prostoru spolu ze Zemí, a proto absolutní souřadnicová soustava není pro met. účely příliš vhodná. Viz též soustava souřadnicová relativní.
česky: soustava souřadnicová absolutní; angl: absolute system of coordinates; něm: absolutes Koordinatensystem n; rus: абсолютная система координат  1993-a2
absolútna teplota
slang. označení pro teplotu vyjádřenou pomocí Kelvinovy teplotní stupnice.
česky: teplota absolutní; angl: absolute temperature; něm: absolute Temperatur f  2018
absolútna teplotná stupnica
česky: stupnice teplotní absolutní; angl: absolute temperature scale, Kelvin temperature scale; něm: absolute Temperaturskala f, Kelvin-Temperaturskala f; rus: абсолютная температурная шкала  1993-a1
absolútna transformácia vzduchovej hmoty
změna základního typu vzduchové hmoty v jiný typ. Nastává především v důsledku delšího setrvávání vzduchové hmoty v nové geografické oblasti, do které tato vzduchová hmota pronikla. Např. transformace tropického vzduchu na vzduch mírných šířek ke konci léta na Balkáně, nebo transformace arktického vzduchu po jeho vpádu do střední Evropy na vzduch mírných šířek.
česky: transformace vzduchové hmoty absolutní; angl: absolute air mass transformation; něm: absolute Luftmassentransformation f; rus: абсолютная трансформация воздушной массы  1993-a3
absolútna vlhkosť vzduchu
česky: vlhkost vzduchu absolutní; angl: absolute humidity; něm: absolute Feuchte f; rus: абсолютная влажность  1993-a3
absolútna vorticita
viz vorticita.
česky: vorticita absolutní; angl: absolute vorticity; něm: absolute vorticity f; rus: абсолютная завихренность, абсолютный вихрь cкopocти  1993-a1
absolútne čierne teleso
fiktivní těleso, které všechno dopadající elmag. záření absorbuje, nic neodráží ani nepropouští. Při pozorování se proto jeví jako dokonale černé. Jako všechna fyz. tělesa, tak i absolutně černé těleso při teplotě různé od 0 K vyzařuje elmag. záření, jehož intenzita se řídí Planckovým zákonem. Absolutně černé těleso je vždy izotropním neboli kosinovým zářičem. Zemský povrch má v oboru dlouhovlnného záření vlastnosti, které dobře odpovídají vlastnostem tzv. šedého tělesa, jehož spektrální vyzařovací funkce Eλ může být vyjádřena ve tvaru:
Eλ=Eλϵ,
kde Eλ definujeme Planckovým zákonem a ε je tzv. relativní vyzařovací schopnost (emisivita), závisející na vlnové délce.
česky: těleso absolutně černé; angl: black body; něm: schwarzer Körper m; rus: абсолютно черное тело  1993-a3
absolútne denné maximum
nejvyšší hodnota z denních maxim meteorologického prvku zaznamenaná na met. stanici nebo v určité oblasti v daném kalendářním dnu za dlouholeté období, zpravidla však od počátku měření. Např. na stanici Praha-Klementinum je za období 1775–2010 abs. maximum teploty vzduchu pro 1. leden 12,5 °C (z roku 2007). Viz též amplituda absolutní denní.
česky: maximum absolutní denní; angl: absolute daily (diurnal) maximum of meteorological element; něm: absolutes Tagesmaximum n; rus: абсолютный суточный максимум метеорологического элемента  1993-b3
absolútne denné minimum
nejnižší hodnota z denních minim meteorologického prvku, zaznamenaná na met. stanici nebo v určité oblasti v daném kalendářním dnu za dlouholeté období, zpravidla však od počátku měření. Např. na stanici Praha-Klementinum je za období 1775–2010 abs. minimum teploty vzduchu pro 1. leden –21,4 °C (z roku 1784). Viz též amplituda absolutní denní.
česky: minimum absolutní denní; angl: absolute daily minimum of meteorological element; něm: absolutes Tagesminimum n; rus: абсолютный суточный минимум метеорологического элемента  1993-b3
absolútne maximum
nejvyšší hodnota meteorologického prvku zaznamenaná na met. stanici nebo v určité oblasti za dlouholeté období, zpravidla však od počátku měření. Abs. maximem se vždy rozumí nejvyšší hodnota vztažená k celému roku, jinak hovoříme o absolutním maximu měsíčním, denním apod. Např. na stanici Praha-Klementinum je za období 1775–2010 abs. maximum teploty vzduchu 37,8 °C (z 27. 7. 1983). Viz též amplituda absolutní, extrém.
česky: maximum absolutní; angl: absolute maximum of meteorological element; něm: absolutes Maximum n; rus: абсолютный максимум метеорологического элемента  1993-a2
absolútne mesačné maximum
nejvyšší hodnota z měsíčních maxim meteorologického prvku zaznamenaná na met. stanici nebo v určité oblasti v daném kalendářním měsíci za dlouholeté období, zpravidla však od počátku měření. Např. na stanici Praha-Klementinum je za období 1775–2010 lednové abs. maximum teploty vzduchu 16,7 °C (z 10. 1. 1991). Viz též amplituda absolutní měsíční.
česky: maximum absolutní měsíční; angl: absolute monthly maximum of meteorological element; něm: absolutes Monatsmaximum n; rus: абсолютный месячный максимум метеорологического элемента  1993-b3
absolútne mesačné minimum
nejnižší hodnota z měsíčních minim meteorologického prvku, zaznamenaná na met. stanici nebo v určité oblasti v daném kalendářním měsíci za dlouholeté období, zpravidla však od počátku měření. Např. na stanici Praha-Klementinum je za období 1775–2010 lednové abs. minimum teploty vzduchu –27,5 °C (z 31. 1. 1830). Viz též amplituda absolutní měsíční.
česky: minimum absolutní měsíční; angl: absolute monthly minimum of meteorological element; něm: absolutes Monatsminimum n; rus: абсолютный месячный минимум метеорологического элемента  1993-b3
absolútne minimum
nejnižší hodnota meteorologického prvku zaznamenaná na met. stanici nebo v určité oblasti za dlouholeté období, zpravidla však od počátku měření. Abs. minimem se vždy rozumí nejnižší hodnota vztažená k celému roku, jinak hovoříme o absolutním minimu měsíčním, denním apod. Např. na stanici Praha-Klementinum je za období 1775–2010 absolutní minimum teploty vzduchu –27,6 °C (z 1. 3. 1785). Viz též amplituda absolutní, extrém.
česky: minimum absolutní; angl: absolute minimum of meteorological element; něm: absolutes Minimums n; rus: абсолютный минимум метеорологического элемента  1993-a3
absolútny vlhkomer
česky: vlhkoměr absolutní; angl: absolute hygrometer; něm: Absoluthygrometer n; rus: абсолютный гигрометр  1993-a1
absorpcia žiarenia
obecně pohlcování určitého, nejčastěji elektromagnetického záření v daném prostředí. V meteorologii jde o pohlcování krátkovlnného nebo dlouhovlnného záření atmosférou, svrchní vrstvou pedosféry nebo litosféry, vegetačním krytem a vodními plochami. V atmosféře se v průměru absorbuje přibližně 15 % slunečního záření, které do ní vstoupilo, a přibližně 90 % dlouhovlnného záření procházejícího ovzduším od zemského povrchu směrem nahoru. Na absorpci záření v atmosféře se podílejí její plynné složky, oblaky a částice aerosolového aerosolu; u plynů jde o selektivní absorpci záření. Pevný povrch absorbuje dopadající záření v tenké svrchní vrstvičce, čímž se liší od vody, kde k absorpci dochází ve vrstvě silné až několik metrů. Absorpce záření významně ovlivňuje radiační i tepelnou bilanci planety Země. Absorpce slunečního záření vhodných vlnových délek zelenými rostlinami je v přírodě podmínkou pro fotosyntézu. Viz též koeficient absorpce.
česky: absorpce záření; angl: absorption of radiation; něm: Absorption der Strahlung f; fr: absorption du rayonnement f; rus: поглощение радиации  1993-a3
absorpčná funkcia
syn. faktor absorpční – poměr velikosti radiačního toku absorbovaného v určité vrstvě atmosféry ku velikosti radiačního toku do této vrstvy vstupujícího, vyjádřený jako funkce množství dané absorbující látky (nejčastěji vodní páry) obsažené v této vrstvě. Odečteme-li absorpční funkci od jedné, dostáváme tzv. funkci propustnosti.
česky: funkce absorpční; angl: absorption function; něm: Absorptionsfunktion f; fr: facteur d'absorption m; rus: функция поглощения  1993-a3
absorpčný faktor
česky: faktor absorpční; angl: absorption factor; něm: Absorptionsfaktor m; fr: facteur d'absorption m; rus: фактор поглощения  1993-a1
absorpčný koeficient
syn. koeficient absorpční, koeficient pohlcování – charakteristika schopnosti daného prostředí absorbovat záření. Objemový koeficient absorpce je číselně roven množství zářivé energie absorbované na dráze jednotkové délky z paprsku o jednotkové intenzitě. Vydělíme-li objemový koeficient absorpce hustotou absorbujícího prostředí, dostaneme hmotnostní koeficient absorpce. V meteorologii se setkáváme s absorpčním koeficientem atmosféry v souvislosti se slunečním nebo dlouhovlnným zářením. Protože hodnota koeficientu absorpce závisí na vlnové délce absorbovaného záření, uvažuje se obvykle „monochromatický“ koeficient absorpce vztažený k dostatečně úzkému intervalu vlnových délek ze spektra slunečního nebo dlouhovlnného záření. Viz též extinkce, absorpce záření, zákon Lambertův–Bouguerův, zákon zeslabení Beerův.
česky: koeficient absorpce; angl: absorption coefficient; něm: Absorptionskoeffizient m; rus: коэффициент поглощения  1993-a2
absorpčný pás
syn. pásmo absorpční – část absorpčního spektra určitého radiačně aktivního plynu vyznačující se silnou absorpcí záření. Je tvořen komplexem vzájemně si blízkých a případně se i částečně překrývajících absorpčních čar v absorpčním spektru daného plynu. Např. vodní pára se vyznačuje absorpčními pásmy v oblastech vlnových délek kolem 1,4 µm, 1,9 µm, 2,7 µm a 6,3 µm; v oblasti vlnových délek větších než 15 µm je u vodní páry nakupeno takové množství absorpčních pásů, že zde dochází ke spojité absorpci dlouhovlnného záření a vzniká zde tzv. absorpční kontinuum. Oxid uhličitý má svůj nejvýznamnější absorpční pás v blízkosti vlnové délky 15 μm. Absorpce ultrafialového záření je způsobena především významnými absorpčními pásy ozonu, který má současně další výrazný absorpční pás v oblasti vlnových délek kolem 9,6 μm. Viz též absorpce záření selektivní.
česky: pás absorpční; angl: absorption band; něm: Absorptionsband n; rus: пояс поглощения  1993-b3
absorpčný vlhkomer
vlhkoměr, jímž se vlhkost vzduchu zjišťuje na základě absorpce vodní páry hygroskopickou látkou. Hygroskopická látka buď pohltí všechnu vodní páru obsaženou v uzavřeném vzorku vzduchu, nebo se vlhkostí vzduchu v okolí čidla vlhkoměru vyrovnává tlak vodních par nad povrchem použité hygroskopické látky, která tvoří zákl. část čidla. V prvním případě se zjišťuje přírůstek hmotnosti hygroskopické látky (absolutní metoda, absolutní vlhkoměr), nebo změna objemu, popř. změna tlaku uzavřeného vzorku vzduchu. Ve druhém případě se mění el. vodivost čidla v závislosti na změně vlhkosti vzduchu; tyto vlhkoměry patří mezi elektrické vlhkoměry. Někdy se nazývají chem. vlhkoměry.
česky: vlhkoměr absorpční; angl: absorption hygrometer; něm: Absorptionshygrometer n; rus: абсорбционный гигрометр, химичеcкий гигрометр  1993-a3
adaptácia
proces přizpůsobení se aktuálnímu nebo očekávanému klimatu a jeho projevům. Adaptací se člověk snaží zmírnit škody způsobené měnícím se klimatem nebo využít možnosti, které změny poskytují. V přírodních systémech mohou lidské zásahy přirozenou adaptaci usnadnit nebo zkomplikovat. Viz též změna klimatu, IPCC.
Termín pochází z lat. adaptatio „přizpůsobení“, které je odvozeno od slovesa adaptare „přizpůsobovat“ (z ad „k“ a aptare „připravovat“).
česky: adaptace; angl: adaptation; něm: Adaptation f; fr: adaptation; rus: адаптация  2014
adiabata
křivka na termodynamickém diagramu, která vyjadřuje vztah mezi dvěma stavovými proměnnými (zpravidla mezi teplotou a tlakem) při adiabatickém ději. Rozlišujeme suché, vlhké, nenasycené a nasycené adiabaty, popř. pseudoadiabaty.
Termín vznikl v němčině zkrácením původně angl. pojmu adiabatic curve „adiabatická křivka“, který zavedl brit. fyzik W. J. M. Rankine v r. 1859. Pochází z řec. ἀδιαβατός [adiabatos] „neprůchodný, nepřekročitelný“, složeného ze záporky ἀ- [a-] „ne-“, διά [dia] „skrz“ a βατός [batos] „schůdný“ (z βαίνειν [bainein] „kráčet“). Souvisí s tepelnou uzavřeností adiabatického děje.
česky: adiabata; angl: adiabat, adiabatic curve; něm: Adiabate f; fr: adiabatique f, isoligne adiabatique f; rus: адиабата  1993-a3
adiabatická atmosféra
polytropní atmosféra, ve které je vertikální teplotní gradient všude roven suchoadiabatickému gradientu vd = 0,0098 K.m–1. Jestliže v adiabatické atmosféře položíme teplotu zemského povrchu rovnou 273 K, potom ve výšce zhruba 27,9 km klesne teplota na 0 K a tuto výškovou hladinu považujeme za horní hranici adiabatické atmosféry.
česky: atmosféra adiabatická; angl: adiabatic atmosphere; něm: adiabatische Atmosphäre f; fr: atmosphère sèche adiabatique f; rus: адиабатическая атмосфера  1993-a3
adiabatická ekvivalentná potenciálna teplota
česky: teplota potenciální ekvivalentní adiabatická; angl: pseudoequivalent potential temperature; něm: pseudopotentielle Temperatur f; rus: потенциальная псевдоэквивалентная температура  1993-b1
adiabatická ekvivalentná teplota
česky: teplota ekvivalentní adiabatická; angl: adiabatic equivalent temperature, pseudoequivalent temperature; něm: adiabatische Äquivalenttemperatur; rus: адиабатическая эквивалентная температура  1993-a1
adiabatická expanzia
adiabatické zvětšování objemu plynu, při němž dochází k poklesu vnitřní energie plynu a tedy k jeho ochlazování. V termodynamice atmosféry používáme tento model k objasnění ochlazování při adiabatickém výstupu vzduchové částice. Opakem adiabatické expanze je adiabatická komprese, při níž dochází k ohřevu vzduchové částice při jejím adiabatickém sestupu.
česky: expanze adiabatická; angl: adiabatic expansion; něm: adiabatische Expansion f, adiabatische Ausdehnung f; fr: détente adiabatique f; rus: адиабатическое расширение  2014
adiabatická rovnováha
stav atmosféry, která je v hydrostatické rovnováze, při indiferentním teplotním zvrstvení. Vertikální teplotní gradientsuchém nebo nenasyceném vzduchu je tedy roven suchoadiabatickému gradientu, v nasyceném vzduchu  nasyceně adiabatickému gradientu. Ve vrstvě vzduchu v adiabatické rovnováze se ekvivalentní potenciální teplota s výškou nemění. Stavu adiabatické rovnováhy se blíží vrstvy vzduchu se silným vertikálním promícháváním. V Česku se s tímto označením pro indiferentní teplotní zvrstvení setkáváme jen velmi zřídka. V anglicky psané odborné literatuře se tento stav označuje také jako konvekční rovnováha.
česky: rovnováha adiabatická; angl: adiabatic equilibrium; něm: adiabatisches Gleichgewicht n; rus: адиабатическое равновесие  1993-a3
adiabatická vlhká potenciálna teplota
česky: teplota potenciální vlhká adiabatická; angl: pseudo wet-bulb potential temperature; něm: pseudofeuchtpotentielle Temperatur f; rus: псевдопотенциальная температура смоченного термометрa  1993-b1
adiabatická vlhká teplota
česky: teplota vlhká adiabatická; angl: pseudo wet-bulb temperature, adiabatic wet-bulb temperature; něm: Pseudofeuchttemperatur f  1993-a1
adiabatické ohriatie
česky: oteplování adiabatické; angl: adiabatic heating, adiabatic warming; něm: adiabatische Erwärmung f; rus: адиабатическое нагревание  1993-a1
adiabatické ochladzovanie
česky: ochlazování adiabatické; angl: adiabatic cooling; něm: adiabatische Abkühlung f; rus: адиабатическое охлаждение  1993-a1
adiabatický dej
termodyn. vratný děj v dané soustavě (v meteorologii obvykle ve vzduchu), probíhající bez výměny tepla mezi touto soustavou a okolím. Pro adiabatický děj v ideálním plynu platí Poissonovy rovnice, které lze vyjádřit takto:
T=konst.pθ, p.ακ=konst.,
kde θ = R / cp, κ = cp / cv, T značí teplotu v K, p tlak, α měrný objem, R měrnou plynovou konstantu, cp měrné teplo při stálém tlaku, cv měrné teplo při stálém objemu. Z toho vyplývá, že při adiabatickém poklesu tlaku (expanzi plynu) dochází k poklesu teploty, tj. k adiabatickému ochlazování, při adiabatickém zvýšení tlaku (kompresi plynu) ke zvýšení teploty, tj. k adiabatickému oteplování. Přibližně adiabatické jsou např. procesy ve vzduchové částici nenasycené vodní párou během jejího vert. přemísťování v atmosféře. Pojem adiabatický děj poprvé použil jeden ze zakladatelů termodynamiky, skotský inženýr W. J. M. Rankine (1820–1872). Viz též děj pseudoadiabatický.
česky: děj adiabatický; angl: adiabatic process; něm: adiabatischer Prozess m; fr: processus adiabatique m, transformation adiabatique f; rus: адиабатический процесс  1993-a1
adiabatický diagram
česky: diagram adiabatický; angl: adiabatic chart, adiabatic diagram; něm: Adiabatendiagramm n; fr: diagramme thermodynamique m; rus: адиабатная диаграмма, адиабатный график  1993-a1
adiabatický teplotný gradient
teplotní gradient odpovídající záporně vzaté změně teploty vzduchové částice při jejím adiabatickém přemístění o jednotkovou vzdálenost ve vert. směru. Jeho velikost je dána záporně vzatou totální derivací –dT/dz, kde dT je změna teploty a dz změna výšky. V meteorologii je obvyklé udávat adiabatický teplotní gradient v K nebo °C na 100 m. Kladné hodnoty vyjadřují ochlazování vzduchové částice vlivem adiabatické expanze při výstupných pohybech vzduchu. Podle relativní vlhkosti vzduchové částice rozlišujeme teplotní gradient suchoadiabatický, vlhkoadiabatický a nasyceně adiabatický, který se při praktické aplikaci aproximuje hodnotou pseudoadiabatického teplotního gradientu.
česky: gradient teplotní adiabatický; angl: adiabatic lapse rate; něm: adiabatischer Temperaturgradient m; fr: gradient thermique adiabatique m; rus: адиабатический градиент температуры  1993-a3
adjungovaný model
(ADM) – lineární model, který je inverzní k zadanému modelu v tom smyslu, že pokud původní model je linearizován a je vyjádřen maticí A, potom adjungovaný model je popsán transponovanou maticí AT a výstupy původního modelu jsou vstupy ADM a naopak. ADM lze efektivně využít pro výpočet gradientu penalizační funkce ve 4D VAR metodě asimilace. Viz též asimilace meteorologických dat, metoda asimilace dat variační.
česky: model adjungovaný; angl: adjoint model  2014
advekcia
přenos dané charakteristiky vzduchu prouděním v atmosféře. Advekcí horizontální, izobarickou, izentropickou atd. rozumíme advekci v dané horiz., izobarické, izentropické atd. hladině. Advekci určité skalární veličiny φ (teploty vzduchu, tlaku vzduchu, vlhkosti vzduchu apod.) matematicky definujeme jako záporně vzatý skalární součin rychlosti proudění a gradientu této veličiny, tj.
-vxφx -vyφy -vzφz
kde vx , vy , vz značí složky rychlosti proudění v třídimenzionální kartézské souřadnicové soustavě, tvořené osami x, y, z. V synoptické meteorologii advekcí zpravidla označujeme přenos vzduchové hmoty určitých vlastností a v tomto smyslu mluvíme např. o advekci studeného, teplého, vlhkého, znečištěného atd. vzduchu. Pojem studený, teplý, vlhký, znečištěný atd. vzduch je zde míněn relativně, tj. vzhledem ke vzduchu, který je advehovanou vzduchovou hmotou nahrazován.
Termín je v meteorologickém významu poprvé doložen v němčině v r. 1896. Pochází z lat. advectio „přivezení, přemístění“, které je odvozeno od slovesa advehere „přivážet“ (z ad „k“ a vehere „vézt“).
česky: advekce; angl: advection; něm: Advektion f; fr: advection f; rus: адвекция  1993-a3
advekčná búrka
bouřka v oblasti studené advekce za studenou frontou. Vznik advekční bouřky je podmíněn existencí absolutní instability atmosféry alespoň do výšky kondenzační hladiny a podmíněnou instabilitou atmosféry do výšky alespoň 4 až 6 km. V současné met. literatuře se toto označení vyskytuje již jen ojediněle.
česky: bouřka advekční; angl: advective thunderstorm; něm: advektives Gewitter n; fr: orage d'advection m; rus: адвективная гроза  1993-a3
advekčná hmla
mlha, která se tvoří ochlazováním rel. teplého a vlhkého vzduchu při jeho advekci (přesunu) nad chladnější povrch. Za advekční mlhu se považuje někdy i mlha vznikající zvýšeným výparem při přesunu studeného vzduchu nad teplý a vlhký povrch. Viz též mlha radiační, klasifikace mlh Willettova.
česky: mlha advekční; angl: advection fog; něm: Advektionsnebel m; rus: адвективный туман  1993-a1
advekčná instabilita ovzdušia
instabilita vyvolaná nerovnoměrnou advekcí v důsledku výrazných změn rychlosti větru s výškou (studená advekce zesilující s výškou nebo teplá advekce slábnoucí s výškou). V tomto případě se nad určité místo dostává v nižších hladinách rel. teplejší a ve vyšších hladinách rel. chladnější vzduch.
česky: instabilita atmosféry advekční; angl: advective instability of atmosphere; něm: advektive Instabilität der Atmosphäre f; rus: адвективная неустойчивость атмосферы  1993-a3
advekčná inverzia teploty vzduchu
teplotní inverze vznikající buď působením vertikálně nerovnoměrné teplé advekce, když ve vyšších hladinách proudí do dané oblasti rel. teplejší vzduch než v hladinách nižších, nebo prouděním rel. teplého vzduchu nad studený zemský povrch. Prvním způsobem vznikají advekční inverze výškové, druhým advekční inverze přízemní.
česky: inverze teploty vzduchu advekční; angl: advective inversion; něm: Advektionsinversion f; rus: адвективная инверсия  1993-a2
advekčná teória cyklogenézy
česky: teorie cyklogeneze advekční; něm: Advektionstheorie der Zyklogenese f  1993-a1
advekčná tlaková tendencia
složka tlakové tendence způsobená přesunem tlakových útvarů, tedy nikoliv jejich vývojem a dalšími vlivy.
česky: tendence tlaková advekční; angl: advective pressure tendency; něm: advektive Luftdrucktendenz f; rus: адвективная барическая тенденция, адвективная тенденция давления  1993-a1
advekčne dynamická teória cyklogenézy
jedna z teorií používaná k vysvětlení cyklogeneze. Jejími autory jsou ruští meteorologové Ch. P. Pogosjan a N. A. Taborovskij, kteří ji formulovali ve 40. letech 20. století. Teorie je založena na předpokladu, že lokální změny tlaku vzduchu jsou působeny jednak advekčními změnami teploty, jednak dyn. faktory, spojenými především s ageostrofickou advekcí, které ale zpětně ovlivňují úhel advekce. Empiricky bylo stanoveno pravidlo, že cyklona vzniká nebo se prohlubuje pod deltou frontální zóny ve výšce pouze tehdy, když ve stř. části této zóny převyšuje horiz. kontrast teploty 16 geopotenciálních dekametrů na 1 000 km na mapě relativní topografie  1000500hPa . Vznik cyklony se vysvětluje podle tohoto schématu: baroklinita ve výškové frontální zóně vede k porušení stacionárnosti pohybu, tím k poklesu tlaku vzduchu a vytvoření cyklonální cirkulace. Tato teorie ztratila svůj význam po vytvoření teorie lokálních změn tlaku vzduchu. Její empir. závěry o zvláštnostech stavby termobarického pole atmosféry v různých stadiích vývoje cyklony však zůstávají v platnosti.
česky: teorie cyklogeneze advekčně dynamická; angl: advective-dynamic theory of cyclogenesis; něm: dynamische Advektionstheorie der Zyklogenese f; rus: адвективно-динамическая теория циклонообразования  1993-a3
advekčné ochladzovanie
pokles teploty vzduchu v určité oblasti při zemi nebo ve výšce, vyvolaný studenou advekcí. V souladu s definicí advekce teploty je velikost advekčního ochlazování závislá na úhlu advekce a na velikosti rychlosti proudění a teplotního gradientu v advehované vzduchové hmotě. Ve střední Evropě může velikost advekčního ochlazování dosáhnout za 24 h v krajních případech i 20 °C. Advekční ochlazování nastává obvykle po přechodu studené fronty. Viz též vpád studeného vzduchu.
česky: ochlazování advekční; angl: advective cooling; něm: advektive Abkühlung f; rus: адвективное охлаждение  1993-a3
advekčne otepľovanie
vzestup teploty vzduchu v určité oblasti při zemi nebo ve výšce, vyvolaný teplou advekcí. V souladu s definicí advekce teploty je velikost advekčního oteplování závislá na úhlu advekce a na velikosti rychlosti proudění a teplotního gradientu v advehované vzduchové hmotě. Ve střední Evropě dosahuje advekční oteplování za 24 h několika °C, v krajních případech 15 až 20 °C. Advekční oteplování většinou nastupuje po přechodu teplé fronty. Viz též vpád teplého vzduchu.
česky: oteplování advekční; angl: advection warming, advective warming; něm: advektive Erwärmung f; rus: адвективное потепление  1993-a3
advekčne-radiačná hmla
mlha, při jejímž vzniku a trvání současně působí příčiny mlhy advekční a mlhy radiační. Viz též klasifikace mlh Willettova.
česky: mlha advekčně-radiační; angl: advective radiation fog; něm: Advektions-Strahlungsnebel m; rus: адвективно-радиационный туман  1993-a1
aerodynamický anemometer
česky: anemometr aerodynamický; angl: pressure anemometer; něm: Druckanemometer n; rus: анемометр Дайнца, аэродинамический анемометр  1993-a1
aerodynamický priemer
charakteristika velikosti aerosolových částic, v meteorologii především částic atmosférického aerosolu, definovaná jako průměr kulové částice o hustotě 1000 kg.m–3, která má stejnou pádovou rychlost jako daná aerosolová částice. Orientačně lze tedy za aerodynamický průměr považovat průměr vodní kapky, která má stejnou pádovou rychlost jako daná aerosolová částice.
česky: průměr aerodynamický; angl: aerodynamic diameter; něm: aerodynamischer Mittelwert m  2015
aerogram
Termín zavedl A. Refsdal, který tento diagram navrhl v r. 1935. Skládá se z řec. ἀήρ [aér] „vzduch“ a γράμμα [gramma] „písmeno, zápis“; tj. doslova „záznam o vzduchu“.
česky: aerogram; angl: aerogram; něm: Aerogramm n; fr: aérogramme m; rus: аэрологческая диаграмма  1993-a1
aeroióny
Termín se skládá z řec. ἀήρ [aér] „vzduch“ a ἰόν [ion, gen. iontos] „jdoucí“ (tvar slovesa ἰέναι [ienai] „jít“), čímž odkazuje na pohyb iontů v el. poli.
česky: aeroionty; angl: atmospheric ions; něm: atmosphärische Ionen n/pl ; fr: ions atmosphériques pl; rus: атмосферные ионы  1993-a1
aeroklimatológia
Termín se skládá z řec. ἀήρ [aér] „vzduch“ a slova klimatologie.
česky: aeroklimatologie; angl: aeroclimatology; něm: Aeroklimatologie f; fr: aéroclimatologie f; rus: аэроклиматология  1993-a1
aerológia
obor meteorologie, který se zabývá pozorováním a výzkumem mezní vrstvy atmosféry a volné atmosféry. Těžištěm aerologie jsou aerologická pozorování, především aerologická měření ve formě sondáží atmosféry, zajišťovaných z aerologických stanic. Zákl. a nejčastěji měřenými meteorologickými prvky jsou teplota vzduchu, tlak vzduchu, vlhkost vzduchu a vítr. Kromě toho se aerologie věnuje i výzkumu ozonu, atmosférické elektřiny a radioaktivity i některých složek dlouhovlnného záření. Pod aerologii řadíme klimatologii volné atmosféry a někdy též aeronomii.
Termín zavedl brit. přírodovědec a lexikograf B. Martin v r. 1735 jako označení vědy o atmosféře; v dnešním významu ho použil něm. meteorolog W. Köppen v r. 1906. Skládá se z řec. ἀήρ [aér] „vzduch“ a komponentu -λoγία [-logia] „nauka, věda“, který je příbuzný se slovem λόγoς [logos] „výklad, slovo“.
česky: aerologie; angl: aerology; něm: Aerologie f; fr: aérologie f; rus: аэрология  1993-a3
aerologická mapa
česky: mapa aerologická; angl: aerological chart; něm: aerologische Karte f; rus: аэрологическая карта  1993-a1
aerologická stanica
meteorologická stanice provádějící aerologická měření. Podle umístění je možno aerologické stanice členit na pozemní, námořní a letadlové. Podle prostředků využívaných pro měření je možno aerologické stanice dále dělit na radiosondážní stanice, pilotážní stanice, stanice pro raketovou sondáž ovzduší, letadlový průzkum počasíakustickou sondáž atmosféry, radarová meteorologická měření apod. Někdy se mezi aerologické stanice zahrnují i stanice měřící (pouze) v mezní vrstvě atmosféry Viz též sondáž atmosféryobservatoř aerologická.
česky: stanice aerologická; angl: aerological station, upper-air station, upper-air synoptic station; něm: aerologische Station f; rus: аэрологическая станция  1993-a3
aerologické meranie
aerologické pozorování pomocí přístrojů, zajišťované z aerologické stanice. Základní metodou aerologických měření je radiosondážní měření, dále k nim patří pilotovací měření, měření výšky základny oblaků, měření větru radiotechnickými prostředky a celá řada dalších distančních meteorologických měření. Mezi aerologická měření řadíme i měření upoutanými sondami a někdy i stožárová meteorologická měření.
Aerol. měření jsou v současné době většinou automatizovaná, v minulosti jejich záznam a zpracování prováděl aerol. pozorovatel. Získaná data jsou přenášena meteorologickými zprávami např. v kódu BUFR, popř. prostřednictvím zpráv TEMP či PILOT. Údaje vstupují do procesu asimilace meteorologických dat do modelů numerické předpovědi počasí, dále slouží ke konstrukci výškových map, aerologických diagramů a vertikálních řezů atmosférou. Viz též aerologieměření meteorologických prvků v mezní vrstvě a ve volné atmosféřesondáž atmosféry.
česky: měření aerologické; angl: aerological measurement; něm: aerologische Messung f; rus: аэрологическое измерение  1993-a3
aerologické observatórium
met. pracoviště, jehož hlavní pracovní náplní je kromě aerologických měření a pozorování pro vědecké a provozní účely i řešení samostatných výzk. úkolů z aerologie. Viz též stanice aerologická.
česky: observatoř aerologická; angl: aerological observatory; něm: aerologisches Observatorium n; rus: аэрологическая обсерватория  1993-a1
aerologické pozorovanie
meteorologické pozorování k získání údajů o mezní vrstvě atmosféry a volné atmosféře, a to především pomocí aerologických měření. Z hlediska používaných metod se aerol. pozorování dělí na přímá a nepřímá. Přímá aerol. pozorování, v odborné literatuře někdy označovaná i jako kontaktní, jsou především radiosondážní měření; dále k nim patří např. letadlový průzkum počasí. Nepřímá aerol. pozorování, která se provádějí ze zemského povrchu nebo z meteorologických družic, jsou z velké části založena na distančních meteorologických měřeních. Dále se dělí na aktivní a pasivní. Aktivní nepřímá pozorování spočívají ve vysílání a zpětné detekci různých signálů, které mohou být akustické (sodar), světelné (lidar) nebo rádiové (radar, windprofiler). Při pasivních nepřímých pozorováních dochází k měření elmag. záření přicházejícího z atmosféry nebo k vizuální detekci různých atm. jevů, především oblaků, dále polární zářenočních svítících oblaků apod. Viz též aerologiesondáž atmosféry, měření meteorologických prvků v mezní vrstvě a volné atmosféře.
česky: pozorování aerologické; angl: aerological observation; něm: aerologische Beobachtung f; rus: аэрологическое наблюдение  1993-a3
aerologické výstupy lietadlami
česky: výstupy aerologické letadly; angl: aerological aircraft sounding; něm: aerologischer Flugzeugaufstieg m; rus: аэрологические подъемы самолетами  1993-a1
aerologický diagram
termodynamický diagram používaný při vyhodnocování aerologických měření a při analýze fyz. stavu atmosféry, zvláště v předpovědní službě a při met. zabezpečení letectva. Na aerol. diagramu bývají zakresleny izobary, izotermy, suché adiabaty, pseudoadiabaty a izolinie některých charakteristik vlhkosti vzduchu. Aerol. diagram má obsahovat co nejvíce přímkových izolinií, aby zobrazování na něm bylo co nejjednodušší. Velikost úhlu mezi izotermami a suchými adiabatami by měla být co největší, aby diagram umožňoval snadné porovnání sklonu zakreslených křivek (především křivky teplotního zvrstvení) se sklonem adiabat. Za přednost aerol. diagramu se považuje, je-li energetickým diagramem. K nejčastěji používaným aerol. diagramům patří Stüveho diagram, emagram, zkosený diagram a tefigram. Méně často se používají např. pastagram, thetagram, Ambleúv diagram, Refsdalův diagram, Rossbyho diagram nebo Werenskioldův diagram.
česky: diagram aerologický; angl: aerological diagram; něm: aerologisches Diagramm n; fr: diagramme aérologique m; rus: аэрологическая диаграмма  1993-a3
aerologický výstup
1. méně vhodné označení pro aerologické měření;
2. slang. označení pro graf. znázornění vert. profilu meteorologických prvků na daném místě.
česky: výstup aerologický; angl: aerological ascent; něm: aerologischer Aufstieg m; rus: аэрологический подъем  1993-a1
aeronómia
nauka o stavbě a vlastnostech atmosféry Země nad troposférou. Zkoumá její fyz. charakteristiky (strukturní parametry) a fyz. a fyz.-chem. procesy, které určují její stav a časové změny, podmíněné převážně ději na slunečním povrchu a jím vysílaným zářením. K pozemním metodám aeronomických pozorování patří vizuální a fotografické pozorování svítících nočních oblaků, meteorů a polárních září, spektrografické metody výzkumu záření nočního svitu oblohy a polárních září a sondování ionosféry radiovlnami. Vznik aeronomie v podstatě souvisí až s počátkem systematického průzkumu vysoké atmosféry přímými metodami, tj. raketovými sondážemi (od r. 1945) a výzkumnými družicemi (od r. 1957). Viz též aerologie.
Termín navrhl brit. přírodovědec S. Chapman v r. 1946. Zamýšlel jím nahradit výraz meteorologie, návrh se však neujal. V r. 1953 proto Chapman zavedl používání termínu v dnešním významu. Skládá se z řec. ἀήρ [aér] „vzduch“ a z komponentu -νομία [-nomia] „vědní obor“, který je odvozen od νόμος [nomos] „zákon“.
česky: aeronomie; angl: aeronomy; něm: Aeronomie f; fr: aéronomie f; rus: аэрономия  1993-a2
aeroplanktón
Termín byl zaveden v r. 1912 v němčině; vznikl přidáním předpony aero- (z řec. ἀήρ [aér] „vzduch“) k pojmu plankton (z řec. πλαγκτός [planktos] „bloudící, zmatený“).
česky: aeroplankton; něm: Aeroplankton f, Luftplankton f; fr: plancton aérien m, aéroplancton m; rus: атмосферный планктон, воздушный планктон  1993-a2
aerostat
v meteorologii syn. pro balon upoutaný.
Termín se skládá z řec. ἀήρ [aér] „vzduch“ a στατός [statos] „stojící, pevný“. Met. význam je zúžený; obecně se jako aerostat označuje kterýkoli prostředek letecké dopravy lehčí než vzduch, přičemž komponent -stat nevyjadřuje jeho upevnění, nýbrž využití aerostatické vztlakové síly.
česky: aerostat; angl: aerostat; něm: Luftballon m; fr: aérostat m; rus: аэростат  1993-a3
aerostatický tlak
česky: tlak aerostatický; angl: aerostatic pressure; něm: aerostatischer Druck m; fr: pression aérostatique f; rus: аэростатическое давление  2023
afélium
syn. odsluní – bod na oběžné dráze Země kolem Slunce s maximální vzdáleností od jeho středu. Při současné excentricitě oběžné dráhy Země kolem Slunce je tato vzdálenost cca 152 mil. km, což má za následek zeslabení slunečního záření dopadajícího na Zemi o přibližně 3,5 % oproti jeho intenzitě při střední vzdálenosti obou těles (149,6 mil. km). V současné fázi precese zemské osy prochází Země afeliem 4. července, což způsobuje prodloužení, avšak relativní zmírnění léta na severní polokouli oproti situaci v opačné fázi precesního cyklu. Viz též perihelium.
Termín zavedl Jan Kepler (1571–1630), a to analogicky k pojmu apogeum, užívanému v geocentrické teorii. Lat. termín aphelium vznikl z řec. předpony ἀπο- [apo-] s významem „z, od“ a podstatného jména ἥλιος [hélios] „Slunce“.
česky: afelium; angl: afelion; rus: афелий  2019
ageostrofická advekcia
česky: advekce ageostrofická; angl: ageostrophic advection; něm: ageostrophische Advektion f; fr: advection agéostrophique f; rus: агеострофическая адвекция  1993-a3
ageostrofická vorticita
vert. složka vorticity rychlosti ageostrofického větru. Pole ageostrofické rel. vorticity je úzce spjato s vývojovými tendencemi v tlakovém poli.
česky: vorticita ageostrofická; angl: ageostrophic vorticity; něm: ageostrophische vorticity f  2014
ageostrofické prúdenie
česky: proudění ageostrofické; něm: ageostrophische Strömung f  1993-a1
ageostrofický vietor
syn. proudění ageostrofické – rozdíl vektorů rychlosti skutečného a geostrofického větru. Ve volné atmosféře se geostrofický vítr v základním přiblížení nejčastěji interpretuje jako výslednice čtyř složek, tj. složky izalobarické (izalohyptické), kinetické, konv. a cyklostrofické. Tyto složky bývají někdy označovány jako vítr izalobarický, kinetický, konvekční a cyklostrofický. V podrobnějším přiblížení lze odvodit i další příspěvky k ageostrofickému větru vznikající např. u proudění, které má současně vertikální i meridionální složky pohybu. Teoreticky lze dokázat, že každé proudění s meridionální složkou pohybu musí obsahovat ageostrofickou složku. Velikost rychlosti ageostrofického větru bývá ve volné atmosféře u proudění velkých měřítek zpravidla alespoň o řád menší než velikost rychlosti větru geostrofického, přesto má ageostrofický vítr zásadní význam pro transformace kinetické energie v atmosféře a vývoj pole atmosférického tlaku.
česky: vítr ageostrofický; angl: ageostrophic wind; něm: ageostrophischer Wind m; rus: агеострофический ветер  1993-a3
agregácia
obecně vzájemné spojování pevných aerosolových částic, ve fyzice oblaků a srážek spojování ledových krystalků při jejich vzájemných nárazech a vznik sněhových vloček. Ve starší odb. literatuře se agregace často zahrnuje pod pojem koagulace.
Termín pochází z lat. aggregatio „přičítání, hromadění“ (od slovesa aggregare „připojit, hromadit“, v němž je obsažena předpona ad- s významem „k, při“ a podstatné jméno grex „stádo, houf“).
česky: agregace; angl: aggregation; něm: Aggregation f; fr: agrégation f; rus: агрегация  1993-a3
agroklimatológia
syn. klimatologie zemědělská – odvětví aplikované klimatologie v zemědělství, a to jak v rostlinné, tak živočišné výrobě. K hlavním úkolům agroklimatologie patří:
a) hodnocení klimatu z hlediska zemědělství;
b) provádění agroklimatologické rajonizace neboli vymezování klimatických oblastí pro racionální pěstování zeměd. plodin, chov dobytka, popř. využití mechanizace;
c) studium mikroklimatu uzavřených prostor, např. stájí, skleníků, objektů určených k uskladnění zeměd. produktů apod.;
d) poskytování podkladů pro výstavbu zeměd. objektů, provádění zeměd. meliorací, provoz závlahového hospodářství atd.
Viz též agrometeorologie.
Termín se skládá z řec. ἀγρός [agros] „pole“ a slova klimatologie.
česky: agroklimatologie; angl: agroclimatology; něm: Agrarklimatologie f; fr: agroclimatologie f; rus: агроклиматология  1993-a2
agroklimatologická rajonizácia
speciální klimatologická rajonizace sestavená pro potřeby zemědělné praxe, především pro efektivní rostlinnou výrobu. Základním problémem při agroklimatologické rajonizaci je výběr agroklimatologických ukazatelů, jež by komplexně vyjádřily prostorovou diferenciaci agroklimatologických podmínek vývoje a tvorby úrody zemědělských kultur. Pro agroklimatologickou rajonizaci tehdejšího území ČSFR (1975) byly zvoleny tyto ukazatele:
a) suma teplot za období s průměrnou denní teplotou vzduchu ≥ 10 °C, která vyjadřuje teplotní zajištění zemědělských kultur;
b) klimatický ukazatel zavlažení za období od června do srpna jakožto kritérium vláhových podmínek;
c) průměrné roční minimum teploty vzduchu, charakterizující podmínky přezimování.
Agroklimatologická rajonizace patří k předním úkolům zemědělské klimatologie. Viz též zajištění klimatické, index suchosti, index vlhkosti.
česky: rajonizace agroklimatologická; angl: agroclimatological regionalization; něm: agrarmeteorologische Regionalisierung f; rus: агроклиматологическое районирование  1993-a0
agrometeorológia
syn. meteorologie zemědělská – obor aplikované meteorologie, který studuje vlivy počasí a klimatu na zemědělství. Poznatků z agrometeorologie se využívá v rostlinné a živočišné výrobě, zejména ve sféře řízení a rozhodování, např. při určování agrotechnických termínů, závlahových dávek nebo ochraně plodin před nepříznivými met. jevy. Cennými met. informacemi pro zemědělce jsou speciální výstupy agrometeorologické předpovědi. Součástí agrometeorologie v širším slova smyslu je agroklimatologie.
Termín se skládá z řec. ἀγρός [agros] „pole“ a slova meteorologie.
česky: agrometeorologie; angl: agrometeorology; něm: Agrarmetorologie f; fr: agrométéorologie f; rus: агрометеорология  1993-a2
agrometeorologická predpoveď
česky: předpověď zemědělsko-meteorologická; angl: agrometeorological forecast; něm: agrarmeteorologische Vorhersage f; rus: агрометеорологический прогноз  1993-a3
agrometeorologická predpoveď
syn. předpověď zemědělsko-meteorologická – krátkodobá, střednědobá nebo dlouhodobá předpověď počasí speciálně pro potřeby zeměd. výroby. Vychází většinou ze všeobecné předpovědi počasí, ze znalosti dosavadního průběhu počasí v daném roce a opírá se o poznání vývojových stadií živých organismů, změn fyz. vlastností půdy a dlouhodobých klimatologických charakteristik. Ke krátkodobým předpovědím patří např. výstrahy před krupobitím, vichřicemi, předpovědi mrazíků a mrazů ve vegetační době; mezi dlouhodobé předpovědi počítáme předpovědi zásob vody v půdě, výskytu suchých a vlhkých období, podmínek přezimování kultur a charakteristik teploty vzduchu, zejména sum teploty. Speciální agrometeorologické předpovědi se zaměřují např. na sledování konkrétních rostlinných chorob a škůdců, na rychlost vývoje plodin nebo na odhad kvality úrody.
česky: předpověď agrometeorologická; angl: agrometeorological forecast; něm: agrarmeteorologische Vorhersage f; rus: агрометеорологический прогноз  1993-a2
agrometeorologická stanica
dříve používaný termín pro agrometeorologickou stanici.
česky: stanice zemědělsko-meteorologická; angl: agricultural meteorological station, agrometeorological station; něm: agrarmeteorologische Station f; rus: агрометеорологическая станция  1993-a3
agrometeorologická stanica
meteorologická stanice, která slouží potřebám zeměď. vědy a praxe. Dělí se na stanice základní, doplňkové, pomocné a speciální. Podle doporučení Světové meteorologické organizace tyto stanice:
a) v oblasti met. veličin měří teplotu a vlhkost vzduchu v různých výškách až do 10 m v závislosti na výšce a charakteru porostu, půdní teploty v hloubkách 5, 10, 20, 50 a 100 cm, popř. i v dalších pro speciální účely, vlhkost půdy, charakteristiky turbulence v porostech nebo v jejich blízkosti, hydrometeory, evapotranspiraci, sluneční svit a složky radiační bilance a provádí pozorování meteorologických jevů, které ohrožují rostliny;
b) v oblasti biologických faktorů provádějí fenologická pozorování, kvalit. a kvantit. pozorování rostlin a zvířectva, poškození rostlin a zvířat přírodními jevy i antropogenní činností.
česky: stanice agrometeorologická; angl: agrometeorological station; něm: Agrarmeteorologische Station f; rus: агрометеорологическая станция  1993-a3
agrometeorologické observatórium
syn. observatoř zemědělsko-meteorologická – pracoviště, kde se kromě běžných meteorologických pozorování provádějí speciální měření a zemědělsko-meteorologický výzkum. Slouží i potřebám zeměď. vědy a praxe. Viz též stanice zemědělsko-meteorologická, meteorologie zemědělská.
česky: observatoř agrometeorologická; angl: agricultural meteorological observatory; něm: agrarmeteorologisches Observatorium n; rus: агрометеорологическая обсерватория  1993-a1
agronomické sucho
česky: sucho agronomické; angl: agricultural drought; něm: landwirtscchaftliche Dürre f; rus: агрономическая засуха  1993-a3
agronomické sucho
česky: sucho zemědělské; angl: agricultural drought; něm: landwirtscchaftliche Dürre f; rus: агрономическая засуха  2022
agronomické sucho
syn. sucho agronomické, sucho zemědělské – nedostatek vody v půdě projevující se nízkou půdní vlhkostí, způsobený meteorologickým suchem. Z dalších vlivů mají značný význam vlastnosti půdy, způsob jejího obhospodařování a celá řada dalších faktorů. Posuzování agronomického sucha je úkolem agrometeorologie, přičemž je třeba uvažovat i poznatky hydropedologie, fyziologie rostlin apod. Viz též přísušek, sucho fyziologické, bilance půdní vody.
česky: sucho půdní; angl: agricultural drought; něm: landwirtscchaftliche Dürre f; rus: агрономическая засуха  2022
airglow
Termín zavedl z podnětu O. Struveho v r. 1950 amer. astronom C. T. Elvey. Skládá se z angl. slov air „vzduch“ a glow „záře“.
česky: airglow; angl: airglow; něm: Himmelsleuchten n  2016
Aitkenov počítač jadier
přístroj ke zjišťování koncentrace kondenzačních jader ve vzduchu. Je tvořen komůrkou, v níž se sledovaný vzorek nenasyceného vzduchu prudce ochladí vynucenou adiabatickou expanzí. Ochlazením dojde ke kondenzaci vodní páry na kondenzačních jádrech a vzniku zárodečných kapiček, které vypadávají na skleněnou destičku. Pomocí mikroskopu se určí počet kapiček usazených na plošné jednotky destičky a následně objemová koncentrace kondenzačních jader. Přístroj zkonstruoval skotský meteorolog J. Aitken (1839–1919) v roce 1880 a jeho původním účelem bylo měření koncentrace částic atmosférického prachu.
česky: počítač jader Aitkenův; angl: Aitken counter of nuclei; něm: Kernzähler nach Aitken m; rus: счетчик ядер Айткена  1993-a2
Aitkenove častice
česky: částice Aitkenovy; angl: Aitken particles; něm: Aitkenteilchen n; fr: noyaux d'Aitken pl, particules d'Aitken pl; rus: частицы Айткена  1993-a2
Aitkenove jadrá
syn. částice Aitkenovy – aerosolové částice o poloměru menším než 0,1 µm (10–7 m). Jde o nejpočetněji zastoupené částice v atmosférickém aerosolu, jejichž koncentrace může být odhadnuta Aitkenovým počítačem jader, kde se Aitkenovy částice při velkém přesycení vodní párou projevují jako kondenzační jádra. Nemají však podstatný význam pro kondenzaci při nízkých přesyceních vodní párou v reálné atmosféře. Koncentrace Aitkenových jader ve velkých městech bývá > 150 000 / cm3. Jsou významná pro atmosférickou elektřinu jako velké atmosférické ionty. Byla pojmenována po skotském meteorologovi a fyzikovi Johnu Aitkenovi (1839–1919). Svojí velikostí odpovídají nanočásticím.
česky: jádra Aitkenova; angl: Aitken nuclei; něm: Aitken-Kerne m/pl; rus: ядра Айткена  1993-a3
akcelerometer
nazývaný také jako gravitační sensor (G-senzor) je přístroj, který umožňuje indikaci hodnot turbulence během letu letadla. Registrace hodnot turbulence je pak prováděna pomocí akcelerografů. Oba tyto přístroje jsou založeny na principu setrvačnosti hmoty pro měření rozdílu mezi kinematickým zrychlením (vhledem k určitému inerciálnímu souřadnému systému) a gravitačním zrychlením. Klasické mechanické senzory indikovaly, popř. registrovaly rel. změnu polohy tělíska upevněného na pružině vůči letadlu. V současnosti jsou nahrazovány tzv. MEMS (mikro-elektromechanickými) akcelerometry/akcelerografy, které jsou vyráběny technologií bulk MM (slepení senzoru a elektronického obvodu). Snímání pohybu senzoru je prováděno piezoodporově, piezoelektricky a nebo kapacitně. Stupnice přístrojů je kalibrována v jednotkách tíhového zrychlení.
Termín se skládá z lat. accelerare „zrychlit“ (z předpony ad- s významem „k, při“ a z adjektiva celer „rychlý“) a z řec. μέτρον [metron] „míra, měřidlo“.
česky: akcelerometr; angl: accelerometer; něm: Beschleunigungsmesser m; fr: accéléromètre m; rus: акселерометр  1993-a3
akčné centrum atmosféry
1. zast. označení pro rozsáhlý, výrazný a většinou stacionární tlakový útvar na synoptické mapě, který ovlivňuje cirkulaci atmosféry nad velkou oblastí (zejména centrální cyklona nebo kvazistacionární anticyklona);
2. útvar nízkého nebo vysokého tlaku vzduchu na klimatologické mapě, který je statisticky výsledkem častějšího výskytu příslušných tlakových útvarů v určité oblasti Země, a to celoročně (permanentní centra), nebo sezónně (sezonní centra). Klimatickými akčními centry atmosféry jsou pásy nízkého tlaku vzduchu, pásy vysokého tlaku vzduchu, cyklony a anticyklony vyjádřené v poli průměrného tlaku vzduchu. Klimatická akční centra atmosféry určují všeobecnou cirkulaci atmosféry včetně systému monzunové cirkulace. Kromě sezónního posunu a proměn klimatických akčních center dochází také ke zpravidla neperiodickým kolísáním jejich intenzity, která způsobují cirkulační oscilace.
Termín zavedl v prvním významu franc. meteorolog P. L. Teisserence de Bort v r. 1881, všeobecně se rozšířil prostřednictvím prací švédského meteorologa H. H. Hildebrandssona.
česky: centrum atmosféry akční; angl: center of action; něm: Aktionszentrum n; fr: centre d'action m; rus: центр действия атмосферы  1993-a3
aklimatizácia
postupné přizpůsobování živých organizmů změněným podmínkám (např. aklimatizace výšková).
Termín se skládá z lat. předpony ad- s významem „k, při“ a z řec. κλίμα [klíma, gen. klímatos] „pás Země“.
česky: aklimatizace; angl: acclimatization; něm: Akklimatisation f; fr: s'acclimater, acclimation; rus: акклиматизация  1993-a3
aktinograf
v současnosti již nepoužívaný registrační aktinometr zaznamenávající časový průběh přímého slunečního záření.
Termín se skládá z řec. ἀκτίς [aktis, gen. aktinos] „(sluneční) paprsek, záře“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: aktinograf; angl: actinograph; něm: Aktinograph m; fr: actinographe m; rus: актинограф  1993-a3
aktinogram
záznam aktinografu.
Termín vznikl odvozením od termínu aktinograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. ἀκτίς [aktis, gen. aktinos] „(sluneční) paprsek, záře“ a γράμμα [gramma] „písmeno, zápis“.
česky: aktinogram; angl: actinogram; něm: Aktinogramm n; fr: actinogramme m; rus: актинограмма  1993-a1
aktinometer
přístroj k měření přímého slunečního záření, jehož princip neumožňuje abs. měření ve fyz. jednotkách, jak je tomu u pyrheliometrů. Čidla aktinometru využívají k získání informace o měřené veličině zvýšení teploty černé plochy nebo dutiny po ozáření Sluncem. Teplotní rozdíl se měří teploměrem, bimetalem nebo termočlánky.
Původní aktinometr vynalezl a pojmenoval angl. astronom J. Herschel v r. 1825. Termín se skládá z řec. ἀκτίς [aktis, gen. aktinos] „(sluneční) paprsek, záře“ a μέτρον [metron] „míra, měřidlo“.
česky: aktinometr; angl: actinometer; něm: Aktinometer n; fr: actinomètre m; rus: актинометр  1993-a1
aktinometria
obor meteorologie zabývající se studiem a měřením záření. Kromě vlastního měření jednotlivých druhů záření, např. záření Slunce, záření atmosféry, záření zemského povrchu a radiační bilance aktinometrie studuje zákonitosti absorpce a rozptylu záření v atmosféře. Viz též šíření elektromagnetického vlnění v atmosféře.
Termín se skládá z řec. ἀκτίς [aktis, gen. aktinos] „(sluneční) paprsek, záře“ a -μετρία [-metria] „měření“.
česky: aktinometrie; angl: actinometry; něm: Aktinometrie f; fr: actinométrie f; rus: актинометрия  1993-a2
aktinometrické meranie
met. měření energie záření přijaté čidlem měřicího přístroje za jednotku času v určitém místě atmosféry nebo na zemském povrchu. Vyjadřuje se zpravidla ve W.m–2. Dříve se užívala jednotka cal.cm–2.min–1. Převodní vztah mezi oběma jednotkami je: 1 cal.cm–2.min–1 = 697,3.10–3 W.m–2. Změřené hodnoty se v přirozených podmínkách označují jako kladné, nebo i záporné podle toho, zda sledovaný povrch celkově více energie záření přijímá, nebo ztrácí. V atmosféře se intenzity toků záření obvykle pohybují v intervalu (–200 ; 1500) W.m–2.
V používaných radiačních přístrojích čili radiometrech se měřené záření zpravidla přeměňuje na tepelnou energii (kalorimetrická metoda měření), nebo na energii elektrickou (fotoelektricky nebo termoelektricky). Přímé sluneční záření se měří pyrheliometry a aktinometry, globální sluneční záření pyranometry, rozptýlené sluneční záření vhodně upravenými pyranometry, albedo albedometry, efektivní vyzařování zemského povrchu nebo atmosféry pyrgeometry a bilance záření bilancometry.Chyby měření zpravidla nepřevyšují 1 % měřené veličiny. Mezi měření záření bývá zařazováno i měření trvání slunečního svitu pomocí slunoměrů. Viz též aktinometrie.
česky: měření záření; angl: actinometry; něm: aktinometrische Messung f; rus: актинометрическое измерение  1993-a3
aktívna primárna rádiolokácia
metoda radiolokace, využívající k získání informace o radiolokačním cíli zpětného radarového odrazu části energie základního sondovacího impulzu od tohoto cíle. Někdy se v novější tech. praxi využívá i sondovacích impulzů vytvářených v jiném zdroji než ve vlastním radaru. Viz též radiolokace aktivní sekundární, radiolokace pasivní.
česky: radiolokace aktivní primární  2014
aktívna prímes
vžité označení plynné atmosférické příměsi, která je do atmosféry emitována přírodními nebo antropogenními procesy a má přitom vůči okolnímu vzduchu převýšení z hlediska svého energetického (tepelného) obsahu, takže na ni působí kladný vztlak. Viz též příměs pasivnípříměs znečišťující, výška komína efektivní.
česky: příměs aktivní; angl: active pollutant; něm: aktive Beimengung f; rus: активная примесь  1993-a3
aktívna sekundárna rádiolokácia
metoda radiolokace, využívající k získání informace o radiolokačním cíli jeho aktivní spolupráce s radarem. Nejčastěji je sekundární radiolokace prováděna tak, že po přijetí impulzu vyslaného radarem vydá aktivní cíl signál odpovědi vlastním vysílačem. Tím se jednak zvýší dosah sledování takového cíle, jednak zpřesní určení jeho polohy v prostoru. Sekundární radiolokace je využívána především v letectví, v meteorologii pouze u některých typů radiolokačních a transoceánských sond. Viz též radiolokace aktivní primární, radiolokace pasivní.
česky: radiolokace aktivní sekundární; angl: active radio detection; něm: aktive Funkortung f, Radarortung f; rus: активная радиолокация  1993-b3
aktívna teplota
v agrometeorologii teplota vzduchu vyšší než tzv. biologické minimum neboli biologická nula, což je teplota, při níž určitý druh rostliny již přestává vegetovat. U většiny polních kultur, trav, listnatých stromů a keřů v oblasti s mírným klimatem se biologické minimum pohybuje kolem 5 °C; biologické minimum lze však vztahovat také k jednotlivým růstovým fázím, popř. fenologickým fázím rostlin. Sumy aktivních teplot, což jsou součty všech průměrných denních teplot vzduchu nad biologickým minimem, udávají, do jaké míry jsou kryty potřeby rostlin z hlediska teploty, a proto slouží jako kritérium při rajonizaci pěstování rostlin podle klimatických podmínek. Výchozí hodnoty, od kterých se sumy aktivních teplot počítají, bývají v praxi voleny různě, za prahovou hodnotu (zhruba biologické minimum) bývají voleny průměrné denní teploty vzduchu 0, 5, 10, 15 °C apod. Uvedené teploty bývají označovány též jako teploty charakteristické. Viz též suma teplot, rajonizace agroklimatologická, teplota efektivní.
česky: teplota aktivní; angl: active temperature; rus: активная температура  1993-a2
aktívna vrstva
svrchní část litosféry, většinou s půdním a rostlinným krytem, v níž se projevuje alespoň roční chod teploty; obdobně na moři svrchní vrstvy vody. Tepelný stav aktivní vrstvy je podmíněn radiačními procesy na zemském povrchu, dalšími procesy výměny tepla s atmosférou a podmínkami pro vedení tepla v aktivní vrstvě. Dolní hranicí aktivní vrstvy je hladina stálé roč. teploty, horní hranicí je aktivní povrch.
česky: vrstva aktivní; angl: active layer; něm: aktive Schicht f; rus: деятельнй слой  1993-a2
aktívny družicový rádiometer
radiometr na meteorologické družici, který pro pořizování informací využívá zpětně odraženého umělého záření generovaného přístrojem družice. Do této kategorie lze zahrnout např. družicové lidary, altimetry, skaterometry, družicové oblačné či srážkové radary a multi- nebo hyperspektrální sondážní družicové radiometry (soundery).
česky: radiometr družicový aktivní; angl: satellite active radiometer; něm: satellitengetragenes aktives Radiometer n  2014
aktívny front
blíže neurčené označení pro atmosférické fronty, které s sebou přinášejí výrazné projevy počasí (intenzivní srážky, bouřky, silný vítr). Jejím opakem je fronta nevýrazná.
česky: fronta aktivní; angl: active front; něm: aktive Front f; fr: front chaud/froid actif m; rus: активный фронт  1993-a3
aktívny povrch
přechodná plocha mezi litosférou nebo hydrosférou a atmosférou (povrch půdy, vody, porostu, popř. umělý povrch, jako povrch vozovky, střech domů apod.), na níž dochází k odrazu záření i jeho transformaci v jiné druhy energie (především v teplo). Aktivní povrch patří k hlavním klimatickým faktorům. V utváření klimatu se uplatňuje především ve spojitosti s radiační bilancí soustavy Země–atmosféra a se všeobecnou cirkulací atmosféry. Aktivní povrch ovlivňuje atm. děje v mezní vrstvě atmosféry svými fyz. a fyz.-chem. vlastnostmi, k nimž patří zejména členitost reliéfu zemského povrchu, albedo, tepelná vodivost, vlhkost, složení a struktura půdy, veget. kryt atd. Pojem aktivní povrch zavedl rus. klimatolog A. I. Vojejkov (1824–1916). Viz též orografie.
česky: povrch aktivní; angl: active surface; něm: aktive Oberfläche f, tätige Oberfläche f; rus: активная поверхность  1993-a2
aktuál
slang. označení pro počasí skutečné.
Termín pochází z lat. actualis „(ú)činný, skutečný“.
česky: aktuál; angl: current weather; něm: tatsächliches Wetter n ; fr: météo en temps réel f; rus: текущая погода, реальная погода  1993-a1
aktuálna evapotranspirácia
syn. evapotranspirace efektivní, evapotranspirace skutečná – celkový skutečný výpar z půdy a transpirace rostlin v přírodních podmínkách, tedy v podmínkách skutečného zavlažení. V oblastech rel. malých atm. srážek jsou hodnoty aktuální evapotranspirace podstatně nižší než hodnoty potenciální evapotranspirace.
česky: evapotranspirace aktuální; angl: actual evapotranspiration; něm: aktuelle Evapotranspiration f; fr: évapotranspiration réelle f; rus: фактическое испарение  1993-a2
aktuálna izoterma
zřídka používané označení pro izotermu, sestrojenou z teplotních údajů neredukovaných na hladinu moře, v protikladu k pojmu redukovaná izoterma.
česky: izoterma aktuální; angl: actual isotherm; něm: wahre Isotherme f; rus: изотерма по фактическим данным  1993-a1
aktuálne počasie
česky: počasí aktuální; angl: current weather; něm: aktuelles Wetter n, gegenwärtiges Wetter n  1993-a1
aktuálny čas pozorovania
podle definice WMO:
1. čas, ve kterém je při meteorologickém pozorování na přízemních meteorologických stanicích odečten tlak vzduchu;
2. při aerologickém měření čas vypuštění radiosondážního, popř. pilotovacího balonu nebo rakety;
3. v ostatních případech čas, ve kterém je měření všech relevantních meteorologickch prvků ukončeno.
česky: čas pozorování aktuální; angl: actual time of observation; něm: aktueller Beobachtungstermin m; fr: heure normale d'observation f, heure locale d'observation f; rus: фактическое время наблюдения  1993-a3
akumulácia snehu
1. proces hromadění sněhu vypadáváním tuhých srážek a vzniku sněhové pokrývky, popř. působením větru na zvířený sníh; v tomto smyslu je akumulace sněhu protikladem ablace;
2. Výsledek uvedeného procesu. V planetárním měřítku jsou nejrozsáhlejšími akumulacemi sněhu polární sněhové čepičky.
Při akumulaci sněhu v terénu hraje důležitou roli především převládající směr větru a expozice, jež ovlivňují vznik akumulací ve formě sněhových návějí, jazyků a závějí.
česky: akumulace sněhu; angl: accumulation of snow; něm: Akkumulation von Schnee f; fr: accumulation de neige f; rus: аккумуляция снега  1993-a3
akumulačný mód
mód ve spektru částic atmosférického aerosolu, jenž bývá identifikován ve velikostní oblasti poloměrů aerosolových částic řádově 10–7 m (desetiny mikrometru). Částice těchto velikostí vznikly z původních, cca o řád menších částic nukleačního módu procesem jejich koagulace a akumulují se v oblasti právě popisovaného módu, neboť se zde ještě příliš neprojevuje sedimentace částic.
česky: mód akumulační; angl: accumulation mode; něm: Akkumulationsmodus m, adjungiertes Modell n  2014
akustická sondáž atmosféry
sondáž atmosféry využívající ke zjišťování nehomogenit v polích meteorologických prvků rozptylu akustických vln vysílaných sodarem ze zemského povrchu. Část energie, která se vrátí k přijímači, je využita k získání informace o existenci nehomogenity a vzdálenosti místa s touto nehomogenitou od vysílače. Akustická sondáž atmosféry umožňuje např. sledovat inverze teploty vzduchu při turbulentním proudění vzduchu. Viz též RASS.
česky: sondáž atmosféry akustická; angl: acoustic sounding; něm: akustische Sondierung f; rus: акустическое зондирование атмосферы  1993-b3
akustická virtuálna teplota
teplota Tvak, při níž by se v suchém vzduchu šířil zvuk stejnou rychlostí jako ve vlhkém vzduchuteplotou Ta tlakem vodní páry e. Počítáme ji pomocí přibližného vzorce
Tvak=T( 1+0,3ep),
v němž p je tlak vzduchu a Tvak i T udáváme v K.
česky: teplota virtuální akustická; angl: acoustic virtual temperature; něm: akustische virtuelle Temperatur f; rus: акустическая виртуальная температура  1993-a1
akustické vlny
česky: vlny akustické; něm: akustische Wellen f/pl  2015
akustický anemometer
česky: anemometr akustický; angl: ultrasonic anemometer; něm: Ultraschallanemometer m  2016
akustický lokátor
syn. sodar.
česky: lokátor akustický; angl: acoustic radar, acoustic sounder; něm: akustisches Radar n; rus: локатор акустический (содар)  1993-a3
akustický teplomer
teploměr využívající teplotní závislost rychlosti šíření zvuku ve vzduchu nebo teploměr využívající teplotní závislost frekvence vynucených kmitů kovové struny. Používá se v meteorologii jen pro speciální účely, např. k měření turbulentních fluktuací teploty vzduchu.
česky: teploměr akustický; angl: acoustic thermometer, sonic thermometer; něm: akustisches Thermometer n; rus: акустический термометр  1993-a2
akustický tieň
atmosférické akustice diskontinuita v poli šíření zvuku v atmosféře, kdy do části prostoru na zemském povrchu a v atmosféře v důsledku svého lomu nepronikají zvukové vlny, i když jejich zdroj může být relativně blízko. Vzniká pouze v souvislosti s výškovými zdroji zvuku za situace, kdy teplota vzduchu klesá s výškou. Meteorologickým příkladem může být situace, kdy od relativně blízko viditelného blesku není na určitých místech slyšitelný hrom.
česky: stín akustický; angl: acoustic shadow; rus: акустическая тень  2020
albedo
poměr množství odraženého záření k množství záření dopadlého na určitý povrch. Albedo vyjadřujeme buď jako číslo bez fyz. rozměru, jehož hodnota leží v intervalu (0, 1), nebo častěji v procentech. Obvykle se používá k charakteristice poměrů v krátkovlnné oblasti spektra, tj. pro poměr odraženého a globálního slunečního záření. Z přirozených druhů povrchu souše má největší albedo sněhová pokrývka (čistý čerstvý sníh odráží 70 i více procent dopadajícího slunečního záření, povrch půdy nebo vegetační kryt zhruba od 5 do 35 %). Albedo vodních ploch silně závisí na výšce Slunce nad obzorem (s klesající výškou Slunce roste) a pohybuje se zhruba v rozmezí 2 až 70 %.
Termín zavedl do fotometrie švýc. přírodovědec J. H. Lambert v r. 1760. Slovo pochází z latiny, kde označuje bělost (od albus „bílý“, srov. albín). Odkazuje na skutečnost, že světlejší povrchy mají větší odrazivost.
česky: albedo; angl: albedo; něm: Albedo f; fr: albédo m; rus: альбедо  1993-a3
albedo Zeme
poměr záření odraženého Zemí jako planetou k záření Slunce vstupujícímu do atmosféry Země. V současné době se na základě družicových meteorologických měření udává hodnota albeda Země přibližně 30 %.
česky: albedo Země; angl: albedo of the Earth, planetary albedo; něm: Albedo der Erde f, Erdalbedo f, planetare Albedo f; fr: albédo terrestre m; rus: альбедо Земли, планетарное альбедо  1993-a2
albedometer
přístroj pro měření albeda. Principiálně je tvořen pyranometrem upraveným tak, aby jeho vodorovně orientované čidlo mohlo být obráceno postupně směrem vzhůru a dolů. Z hodnot naměřených při obou polohách čidla se vypočte hledaný poměr. Albedometr se užívá např. k určení albeda oblaků nebo rozličných druhů zemského povrchu, jako trávy, sněhu apod.
Termín se skládá z lat. albedo „bělost“ a z řec. μέτρον [metron] „míra, měřidlo“.
česky: albedometr; angl: albedometer; něm: Albedometer n; fr: albédomètre m; rus: альбедометр  1993-a1
album oblakov
česky: album oblaků; něm: Wolkenatlas m  1993-a1
aleutská cyklóna
syn. cyklona severopacifická – permanentní akční centrum atmosféry nad sev. částí Tichého oceánu mezi Aljaškou a Kamčatkou, s nejčastější polohou středu v oblasti aleutského souostroví. V zimě je aleutská cyklona důležitým článkem deformačního pole v sev.části Tichého oceánu. Její existence je podmíněna všeobecnou cirkulací atmosféry. Je oživována postupujícími cyklonami, které se tvoří na polární frontě jižně od aleutské cyklony, jakož i cyklonami na arktické frontě, ležící severněji.
česky: cyklona aleutská; angl: Aleutian low; něm: Aleutentief n, Aleuten-Zyklone f; fr: dépression des Aléoutiennes f; rus: алеутская депрессия, алеутский минимум, алеутский циклон  1993-a3
Alexandrov pás
syn. pás tmavý.
česky: pás Alexandrův; angl: Alexander's band; něm: Alexanders dunkles Band n  1993-a3
algebraický model
pojem používaný některými autory v teoriích turbulence a v modelování mezní vrstvy atmosféry. V rámci řešení problému uzávěru se k přímému vyjádření Reynoldsových napětí nepoužívá žádná rovnice, ale vhodně zkonstruovaný algebraický výraz. Obsah pojmu se v tomto smyslu v zásadě kryje s nularovnicovými modely. V literatuře se též vyskytuje pojem algebraický RSM model, kdy se vhodně zkonstruované algebraické výrazy používají v rámci řešení problému uzávěru na příslušné úrovni k uzavření soustavy Kellerových–Fridmanových rovnic.
česky: model algebraický; angl: algebraic model, plume model; něm: algebraisches Modell n  2014
Alisovova klasifikácia klímy
genetická klasifikace klimatu, navržená B. P. Alisovem v 50. letech 20. století (v češtině Alisov, 1954). Vychází z geografické klasifikace vzduchových hmot. Rozlišuje sedm klimatických pásem oddělených zimní a letní polohou klimatologických front. Ve čtyřech hlavních pásmech celoročně převažuje jedna vzduchová hmota, pro tři vložená vedlejší pásma je charakteristické jejich sezonní střídání. Je vymezeno klima ekvatoriální, subekvatorální neboli rovníkových monzunů, tropické, mírných šířek, subarktické (bez ekvivalentu na jižní polokouli) a arktické, resp. antarktické. Klimatická pásma se dále mohou dělit do klimatických typů na kontinentální, oceánské, západních pobřeží a východních pobřeží.
česky: klasifikace klimatu Alisovova; angl: Alisov`s classification of climate; něm: Klimaklassifikation nach Alisov f; rus: классификация климатa по Алисову  1993-b3
Allardov vzťah
vztah vyjadřující závislost mezi prahovou hodnotou osvětlení oka, svítivostí zdroje světla, dohledností, propustností ovzduší a vzdáleností zdroje světla od fotometru. Používá se ve tvaru:
ET=ID2p D/Z,
kde ET je prahová hodnota osvětlení v lx, I svítivost zdroje světla v cd, D dohlednost v m, P značí propustnost atmosféry v % a Z vzdálenost zdroje světla od fotometru udávaná v m. Hodnota ET je pro noční hodiny rovna 10–6,1 lx, za svítání a soumraku 10–5 lx, během dne 10–4 (při bezoblačném dni 10–3) lx. V letecké meteorologii se Allardův vztah používá pro přepočet hodnot propustnosti atmosféry na dráhovou dohlednost. Vzorec slouží při porovnání dohlednosti měřené přístrojem a meteorologické dohlednosti vizuálně odhadované pozorovatelem. Viz též měření dráhové dohlednosti, vztah Koschmiederův.
česky: vztah Allardův; angl: Allard formula; něm: Allardsche Formel f; rus: формула Алларда  1993-a3
Allardov zákon
česky: zákon Allardův; něm: Allardsche Formel f  1993-a1
alobarický vietor
česky: vítr alobarický; angl: allobaric wind; rus: аллобарический ветер  1993-a1
alohyptický vietor
česky: vítr alohyptický; angl: allohyptic wind; rus: аллогиптический ветер  1993-a1
altimeter
družicové meteorologii označení pro aktivní radiometr, zaměřený na získávání velmi přesných údajů o výšce hladiny moří a oceánů. Data z altimetrů (společně s dalšími daty) jsou rovněž asimilována do modelů numerické předpovědi počasí. Viz též družice Jason.
Termín pochází z lat. slova altimeter, doloženého již v 11. století jako označení přístroje na měření výšky. Skládá se z lat. altus „vysoký“ a z řec. μέτρον [metron] „míra, měřidlo“.
česky: altimetr; angl: altimeter; něm: Altimeter n, Höhenmesser m, Altimeter n, Höhenmesser m; fr: altimètre m; rus: алтиметр  2014
altocumulus
(Ac) [altokumulus] – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. Ac je charakterizován jako menší nebo větší skupiny nebo vrstvy oblaků barvy bílé či šedé, popř. bílé a šedé, které mají vlastní stíny. Skládají se z malých oblačných částí v podobě vln, oblázků, valounů apod., které mohou být navzájem oddělené nebo mohou spolu souviset. Mnohdy mají částečně vláknitý nebo rozplývavý vzhled. Zdánlivá velikost jednotlivých pravidelně uspořádaných částí bývá 1 až 5° prostorového úhlu. Ac je vodní nebo smíšený oblak středního patra. Vzniká např. následkem vlnového proudění, při přetékání vzduchu přes horské překážky nebo transformací jiných druhů oblaků. Průsvitnost Ac je velmi proměnlivá. Ac lze dále klasifikovat podle tvaru jako stratiformis, lenticularis, floccus, castellanus nebo volutus a podle odrůdy jako translucidus, perlucidus, opacus, duplicatus, undulatus, radiatus a lacunosus. Zvláštnostmi Ac mohou být virga a mamma. Viz též beránky.
Termín navrhl franc. meteorolog E. Renou v r. 1870. Byl vytvořen spojením lat. slov altus „vysoký, ve výši“ a cumulus „kupa, hromada“. Do češtiny se v minulosti překládal jako vysoká kupa.
česky: altocumulus; angl: Altocumulus; něm: Altocumulus m; fr: altocumulus m; rus: высококучевые облака  1993-a3
altostratus
(As) – jeden z 10 druhů oblaků podle mezinárodní morfologické klasifikace oblaků. As je charakterizován jako šedavá a modravá oblačná plocha nebo vrstva, s vláknitou nebo žebrovitou strukturou nebo i bez patrné struktury, která pokrývá úplně nebo částečně oblohu. Oblak bývá často tak tenký, že obrysy Slunce lze pozorovat jako za matným sklem. U As se nevyskytují halové jevy. As je smíšený, méně často vodní oblak středního patra, někdy však zasahuje i do patra vysokého. Vyskytuje se např. jako součást oblačných systémů teplé fronty a studené fronty prvního druhu, kde vzniká působením výkluzných pohybů teplého vzduchu. Srážky z As u nás v teplé polovině roku obvykle nevypadávají. As se dále nedělí podle tvaru, lze jej však dále klasifikovat podle odrůdy jako translucidus, opacus, duplicatus, undulatus a radiatus. Zvláštnostmi As mohou být virga a mamma.
Termín navrhl franc. meteorolog E. Renou v r. 1877. Byl vytvořen spojením lat. slov altus „vysoký, ve výši“ a stratus „vrstva“. Do češtiny se v minulosti překládal jako vysoká sloha.
česky: altostratus; angl: Altostratus; něm: Altostratus m; fr: altostratus m; rus: высокослоистые облака  1993-a3
Amagatov a Leducov zákon
zákon, podle něhož objem směsi ideálních plynů je při daném tlaku a dané teplotě roven součtu dílčích objemů jednotlivých složek směsi. Zákon Amagatův–Leducův se využívá v termodynamice atmosféry. Viz též zákon Daltonův.
česky: zákon Amagatův–Leducův; angl: Amagat-Leduc law; něm: Amagat-Leducsches Gesetz n; rus: закон Амагата-Ледука  1993-b1
Ambleov diagram
málo používaný druh aerologického diagramu s kosoúhlými souřadnicovými osami T, –ln p do izobarické hladiny 500 hPa a osami T, –p nad hladinou 500 hPa (T je teplota vzduchu, p tlak vzduchu). Autorem diagramu je O. Amble.
česky: diagram Ambleův; angl: Amble diagram; něm: Amble-Diagramm n; fr: diagramme d'Amble m, diagramme à axes obliques m; rus: диаграмма Амбля  1993-a2
ambulantné terénne meteorologické meranie
zpravidla krátkodobé met. měření, jehož cílem je zjišťovat topoklimatické a mikroklimatické poměry určitého území a míst, hodnotit vliv terénu na meteorologické prvky, objasňovat met. příčiny některých např. biologických jevů v přírodě apod. Tato měření směřují k průzkumu inverzních poloh, teplotních poměrů vzhledem k orientaci a sklonu svahů, větrných poměrů, znečištění ovzduší atd. Provádí se v návaznosti na pozorování ve stálé staniční síti, a zvláště za vhodných povětrnostních situací. Viz též mikroklima, topoklima, inverze teploty vzduchu, inverze vlhkosti vzduchu, bonitace klimatologická, klima svahové.
česky: měření meteorologické terénní ambulantní; angl: ambulatory meteorological measurement; rus: метеорологические полевые измерения  1993-a1
AMDAR
(Aircraft Meteorological Data Relay – Přenos meteorologických dat z letadel)
1. Program Světové meteorologické organizace, který koordinuje letadlová meteorologická měření a následnou kontrolu, zpracování a distribuci těchto dat.
2. Alfanumerický kód pro reprezentaci dat z letadlových meteorologických stanic.
česky: AMDAR; angl: AMDAR; rus: AMDAR  2019
amplitúda meteorologického prvku
rozdíl nejvyšší a nejnižší hodnoty meteorologického prvku, změřené za určitý časový úsek, zpravidla v průběhu dne (viz amplituda denní), měsíce (viz amplituda měsíční) nebo roku (viz amplituda roční). Zprůměrováním těchto hodnot za delší období dostaneme průměr denní, měsíční a roční amplitudy. Pokud místo určitého roku, měsíce nebo dne uvažujeme celé sledované období, resp. kalendářní měsíc nebo kalendářní den, dostaneme absolutní amplitudu, resp. měsíční nebo denní absolutní amplitudu.
česky: amplituda meteorologického prvku; angl: amplitude of the meteorological element, range of the meteorological element; něm: Amplitude der meteorologischen Größe f; fr: amplitude d'un élément météorologique f, amplitude de l'élément météorologique f; rus: амплитуда метеорологического элемента  1993-a3
amplitúda nárazu vetra
neurčité označení hodnoty, která nějakým způsobem charakterizuje maximální rychlost větru během nárazu větru. Při vyhodnocování anemogramů šlo o rozdíl maximální a minimální registrované rychlosti větru při jednom nárazu. V současnosti nejsou minima rychlosti větru zjišťována, proto by tímto termínem bylo možné označit spíše převýšení maximální rychlosti větru oproti desetiminutové rychlosti větru. V zahraniční literatuře je amplituda nárazu větru někdy ztotožňována s nejvyšší naměřenou hodnotou maximální rychlosti větru.
Viz též vítr nárazovitý.
česky: amplituda nárazu větru; angl: gust amplitude; fr: amplitude d'une rafale (de vent) f; rus: амплитуда порыва ветра  1993-a3
amplitúda prúdu blesku
parametr proudu blesku, vyjadřující vrcholovou hodnotu rázové vlny elektrického proudu I při úderu blesku. Nejčastěji bývá v rozmezí od 2 do 250 kA se stř. hodnotou 20 až 35 kA. Je rozhodujícím parametrem při stanovení velikosti napětí U na odporu uzemnění R zasaženého objektu, které se určí ze vztahu
U=RImax
kde Imax je amplituda proudu blesku. U vícenásobných blesků dosahuje amplituda proudu blesku nejvyšší hodnoty většinou u prvního dílčího výboje blesku, u následujících dílčích výbojů bývá podstatně menší.
česky: amplituda proudu blesku; angl: lightning current amplitude; něm: Blitzstromamplitude f; fr: amplitude du courant (de coup) de foudre f; rus: амплитуда тока молнии  1993-a3
anabatický vietor
syn. vítr výstupný – vítr se vzestupnou složkou. Při zemském povrchu se jedná především o výstup teplého vzduchu do vyšších poloh, tedy denní fázi horského a údolního větru a svahového větru. V uvedeném smyslu sem patří i vynucené výstupy vzduchu v cyklonách, na návětří hor apod. Anabatický charakter mají také výkluzné pohyby vzduchu na anafrontách. Opačného smyslu je katabatický vítr.
česky: vítr anabatický; angl: anabatic wind; něm: Aufgleiten n; rus: анабатический ветер, восходящий ветер  1993-a3
anafront
atmosférická fronta s výstupným pohybem teplého vzduchu nad frontální plochou. Úhel sklonu plochy anafronty je větší než úhel sklonu stacionární fronty, tangens úhlu sklonu anafronty je řádově roven 0,01. Příkladem anafronty jsou teplé fronty a studené fronty prvního druhu. Viz též katafronta.
Termín zavedl švédský meteorolog T. Bergeron mezi roky 1934 a 1936. Vytvořil ho přidáním řec. předpony ἀνα- [ana-] s významem „na, po, vzhůru“ k dříve zavedenému pojmu fronta.
česky: anafronta; angl: anabatic front, anafront; něm: Anafront f, Aufgleitfront f; fr: front anabatique m, anafront m; rus: анабатический фронт, анафронт  1993-a3
analobara
izalobara spojující místa se stejnou kladnou hodnotou tlakové tendence za daný časový interval, např. za 3, 6 nebo 24 hod. Viz též katalobara.
Termín (ve tvaru anisallobar) zavedl švédský meteorolog N. G. Ekholm v r. 1913. Skládá se z řec. komponentu ἀνα- [ana-] s významem „na, po, vzhůru“ a slova izalobara, z něhož byl kvůli snazší výslovnosti vypuštěn první komponent.
česky: analobara; angl: anallobar; něm: Anallobare f; fr: anallobare f; rus: аналлобара  1993-a3
analýza počasia
syn. rozbor počasí, diagnóza počasí – detailní studium stavu atmosféry, které slouží jako pomocný nástroj k sestavení velmi krátkodobé předpovědi počasí a částečně i předpovědi počasí krátkodobé. Tímto termínem bývá označován i proces, při kterém je určitým způsobem znázorněn skutečný stav atmosféry na synoptických mapách. Viz též analýza synoptických map.
česky: analýza počasí; angl: weather analysis; něm: Wetteranalyse f; fr: analyse météo f, analyse du temps présent f; rus: синоптический анализ  1993-a3
analýza synoptických máp
operace, které se provádějí na synoptických mapách. Na přízemních mapách představuje obvykle konstrukci izobar a izalobar, zakreslení atmosférických front, ohraničení oblastí srážek, popřípadě dalších význačných jevů, jako jsou bouřky, mlhy, húlavy atd. Na výškových mapách spočívá analýza synoptických map v konstrukci izohyps absolutní či relativní topografie a izoterem příslušné izobarické hladiny, popřípadě izotach. Na mapách tzv. doplňujících charakteristik (mapy doby slunečního svitu, množství srážek, nočních minimálních teplot, denních maximálních teplot apod.) se konstruují izolinie příslušných prvků. Účelem analýzy synoptických map je co nejpřesnější zjištění a zobrazení fyz. stavu atmosféry a podmínek počasí pro diagnostické a prognostické účely. Viz též analýza frontální, analýza počasí, analýza synoptická, analýza tlakového pole, kreslení povětrnostních map.
česky: analýza synoptických map; angl: synoptic chart analysis; něm: Wetterkartenanalyse f; fr: analyse des cartes de surface / des cartes isobariques/météorologiques f; rus: анализ синоптической карты  1993-a2
analýza tlakového poľa
synop. rozbor, kterým se studuje prostorové rozložení tlaku vzduchu pomocí izobar nebo izohyps. Viz též analýza synoptických map.
česky: analýza tlakového pole; angl: baric analysis; něm: Analyse des Druckfeldes f; fr: analyse du champ de pression f; rus: барический анализ  1993-a1
analýza vzduchových hmôt
česky: analýza vzduchových hmot; angl: air mass analysis; něm: Luftmassenanalyse f; fr: analyse des masses d'air f; rus: анализ воздушных масс  1993-a1
analyzovaná mapa
met. mapa přízemní nebo výšková, na níž jsou zakresleny izolinie meteorologických prvků, zejména izobary nebo izohypsy, izotermy, izotachy aj., určeny polohy atm. front, zakresleno rozložení atm. srážek a jejich druhů, výskyt mlh, bouřek atd. Analýza se vyjadřuje smluvenými značkami, symboly a barvami.
česky: mapa analyzovaná; angl: analysed chart; něm: analysierte Karte f; rus: проанализированная карта  1993-a1
Ananásový expres
neformální označení pro výraznou atmosférickou řeku, která se může vytvořit v chladné části roku nad tropickým Pacifikem, odkud přináší velké množství vodní páry na záp. pobřeží Spojených států či Britské Kolumbie. V kombinaci s návětrným efektem Kordiller zde může způsobit silné srážky trvající řadu dní. Viz též chinook.
česky: expres ananasový; angl: Pineapple Express  2019
anelastická aproximácia
zjednodušení reálné situace při modelování atm. procesů, které umožňuje stratifikovat pole hustoty vzduchu, tj. uvažovat hustotu vzduchu jako vertikálně proměnnou, avšak v ostatních ohledech se předpokládá nestlačitelnost vzduchu. Tato aproximace např. filtruje vertikální šíření zvukových vln a gravitačních vln. Viz též rovnice anelastické.
česky: aproximace anelastická; angl: anelastic approximation; něm: anelastische Approximation f, anelastische Approximation f; fr: approximation anélastique f  2014
anelastické rovnice
soustavy prognostických rovnic, popř. diagnostických rovnic, v nichž je aplikována anelastická aproximace, tj. předpokládá se vert. stratifikace pole hustoty vzduchu, ale v ostatních ohledech se vzduch považuje za nestlačitelný. V rovnicích tohoto typu dochází k filtraci vertikálně se šířících gravitačních vln a zvukových vln. Může být uplatněna nehydrostatická aproximace a modelovány tak některé nehydrostatické efekty. V tematické oblasti numerických modelů předpovědi počasí se tyto rovnice uplatňují zřídka, častěji se však používají v souvislosti s modelováním turbulence, struktury proudění nad nerovným povrchem, v modelech mezní vrstvy a přízemní vrstvy.
česky: rovnice anelastické; angl: anelastic equations; něm: anelastische Gleichungen f/pl  2014
anemobiagraf
anemograf pracující na aerodyn. principu, vybavený registračním a plovákovým manometrickým systémem. Jeho stupnice rychlostí je zlinearizována pomocí pružin. V Česku se nepoužívá.
Termín se skládá z řec. ἄνεμος [anemos] „vítr“, βία [bia] „síla“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: anemobiagraf; angl: anemobiagraph; něm: Anemobiagraph m; fr: anémobiagraphe m; rus: анемобиаграф, аэродинамический анемограф  1993-a3
anemograf
registrační anemometr, zaznamenávající obvykle prům. a okamžitou rychlost větru a směr větru. Jeho čidlem mohou být miskový kříž, lopatkové kolo, vrtule, aerodyn. trubice nebo brzděný systém pro rychlost větru a tlumená větrná směrovka pro směr větru. Viz též měření větru.
Termín se skládá z řec. ἄνεμος [anemos] „vítr“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: anemograf; angl: anemograph, recording anemometer; něm: Anemograph m, Windschreiber m; fr: anémographe m, anémomètre enregistreur m; rus: анемограф  1993-a1
anemogram
záznam anemografu.
Termín vznikl odvozením od termínu anemograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. ἄνεμος [anemos] „vítr“ a γράμμα [gramma] „písmeno, zápis“; tj. doslova „záznam o větru“.
česky: anemogram; angl: anemogram; něm: Anemogramm n, Windregistrierung f; fr: anémogramme m; rus: анемограмма  1993-a3
anemoindikátor
zařízení pro měření směru a rychlosti větru, které bylo v minulosti v Česku používáno na klimatologických stanicích. Anemoindikátor se skládá z měřící hlavice, tvořené miskovým anemometrem a větrnou směrovkou, a z indikačního přístroje s osmipólovým přepínačem a tlačítkem. Při určování směru větru se postupně přepínají polohy přepínače, dokud indikátor nezačne ukazovat rychlost větru. Pokud ukazuje indikátor rychlost větru pouze v jedné poloze, je tato totožná s označeným směrem větru. Ukazuje-li indikátor rychlost větru ve dvou sousedních polohách (ať současně či střídavě), leží hodnota směru mezi těmito polohami. Rychlost lze přečíst rovněž přímo po stisknutí tlačítka, čeho se využívá při malých rychlostech větru. Tato technika, jak vyplývá z uvedeného, nezaručovala vysokou přesnost určení směru větru. Od počátku 21. století byly anemoindikátory nahrazovány měřením směru a rychlosti větru moderními anemometry miskovými, nebo anemometry ultrasonickými.
Termín se skládá z řec. ἄνεμος [anemos] „vítr“ a z lat. indicator „ukazatel“ (od slovesa indicare „ukazovat“).
česky: anemoindikátor; angl: anemoindicator  2016
anemoklinograf
registrační meteorologický přístroj k měření sklonu vektoru větru vzhledem k horiz. rovině. V Česku se nepoužívá.
Termín se skládá z řec. slov ἄνεμος [anemos] „vítr“ a κλίνειν [klinein] „naklánět“ a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: anemoklinograf; angl: anemoclinograph, recording anemoclinometer; něm: Anemoklinograph m; fr: anémoclinomètre (enregistreur) m; rus: анемоклинограф  1993-a3
anemoklinometer
meteorologický přístroj určený k měření sklonu vektoru větru vzhledem k horiz. rovině. V Česku se nepoužívá.
Termín se skládá z řec. ἄνεμος [anemos] „vítr“, κλίνειν [klinein] „naklánět“ a μέτρον [metron] „míra, meřidlo“. 
česky: anemoklinometr; angl: anemoclinometer; něm: Anemoklinometer n; fr: anémoclinomètre m; rus: анемоклинометр  1993-a3
anemometer
přístroj k měření rychlosti větru nebo rychlosti a směru větru. Anemometry měřící rychlost větru pracují na několika hlavních principech:
a) mechanickém: větrem se roztáčí otočné miskové nebo vrtulové čidlo anemometru, jehož počet otáček za jednotku času je ve známé závislosti na rychlosti větru (viz anemometr miskový, anemometr lopatkový), nebo se větrem vychyluje čidlo přístroje (deska, koule, miskové kolo) z klidové polohy a úhel vychýlení je ve známé závislosti na rychlosti větru (viz anemometr s výkyvnou deskou);
b) ultrazvukovém (akustickém): mezi vysílačem a přijímačem anemometru se šíří ultrazvukové vlny, přičemž doba, za kterou se signál dostane od vysílače k přijímači je závislá na rychlosti větru podél dráhy šíření ultrazvuku (viz anemometr ultrasonický);
c) dynamickém: pomocí speciálně konstruované trubice (tzv. Pitotova trubice), která je čidlem přístroje, se snímá rozdíl dynamického a statického tlaku, který závisí na rychlosti větru (viz anemometr tlakový, anemometr Dinesův);
d) zchlazovacím: čidlem anemometru je materiál (typicky tenký drát) vyhřátý na teplotu vyšší, než je teplota měřeného prostředí, jehož ochlazování vlivem proudění vzduchu je v zákonité závislosti na rychlosti větru (viz anemometr zchlazovací);
Pro experimentální účely se využívají anemometry, které pracují na dalších principech a jen ojediněle se vyrábějí sériově, např.:
e) anemometr vírový využívá zákonité závislosti frekvence kmitání vírů v Kármánově vírové cestě za překážkou umístěnou v měřeném proudu vzduchu ve snímači přístroje, na rychlosti tohoto proudu;
f) anemometr tlakový s fluidním zesilovačem má ve snímači vytvořen pomocí trysky pomocný proud vzduchu kolmý na směr měřeného proudění. Deformace tohoto pomocného proudu vlivem větru je citlivě snímána zpravidla dvojicí tlakových čidel umístěných v trubici snímače naproti trysce;
g) anemometr s tepelným značkováním má snímač vybavený impulsním zdrojem tepla, který ohřeje vzduch protékající trubicí snímače, v níž se rychlost měří. Na závětrné straně zdroje tepla vyhodnocují časový posun tepelné značky dva bez setrvačné teploměry umístěné ve směru proudnic v konstantní vzájemné vzdálenosti. Měřená rychlost je nepřímo úměrná zjištěnému časovému posuvu.
V Česku se na meteorologických stanicích a při terénních měřeních v současnosti používají anemometry pracující na mechanickém a ultrazvukovém principu. Viz též měření větru.
Termín se skládá z řec. άνεμος [anemos] „vítr“ a μέτρον [metron] „míra, meřidlo“.
česky: anemometr; angl: anemometer; něm: Anemometer n, Windmesser m; fr: anémomètre m; rus: анемометр  1993-a3
anemometer s doskou
anemometr, jehož čidlem je lehká deska, orientovaná kolmo na směr proudění a jejíž výchylka od svislice je úměrná rychlosti větru. Má nelineární stupnici. V současné meteorologické praxi není tento princip používán. Viz též anemometr Wildův.
česky: anemometr s výkyvnou deskou; angl: pressure-plate anemometer, swinging plate anemometer; něm: Druckplattenanemometer n; fr: anémomètre à plaque m; rus: анемометр с пластинкой, флюгер Вильда  1993-a3
anemometria
zast. označení pro obor zabývající se měřením charakteristik větru a jeho metodikou. Viz též měření větru.
Termín se skládá z řec. άνεμος [anemos] „vítr“ a -μετρία [-metria] „měření“.
česky: anemometrie; angl: anemometry; něm: Anemometrie f; fr: anémométrie f; rus: анемометрия  1993-a1
anemometrická výška
1. výška nad zemí, v níž je instalován anemometr; podle doporučení Světové meteorologické organizace činí na synoptických stanicích 10 m;
2. termín někdy užívaný pro označení ideální výšky umístění anemometru;
3. hladina bezprostředně nad horní hranicí přízemní vrstvy atmosféry, kam se klade výchozí bod Taylorovy spirály. Viz též měření větru, vítr přízemní.
česky: výška anemometrická; angl: anemometer level; něm: Anemometerhöhe f; rus: высота установки анемометрa  1993-a1
anemometrický stožiar
stožár sloužící k instalaci větroměrných přístrojů v požadované výšce nad zemí. Na profesionálních meteorologických stanicích v ČR se nejčastěji používá 10metrový ocelový sklopný stožár. Pro měření na letištích je požadovaná výška stožáru 10 ± 1 m (v souladu s předpisem L3 – Meteorologie, doplněk 3, ust. 4.1.1.1). Vzhledem k tzv. překážkovým rovinám je možné 10m stožár pro anemometr umístit nejblíže 90 m od osy dráhy (ICAO DOC 9837, Manual on Automatic Meteorological Observing Systems, kapitola 3.6). Pokud je anemometr umístěn ve vzdálenosti 90–220 m od osy dráhy, je požadován tzv. příhradový stožár s křehkou konstrukcí, který při eventuálním nárazu nezpůsobí letadlu vážné poškození. Viz též měření větru, měření meteorologické stožárové.
česky: stožár anemometrický; angl: anemometer mast, anemometer pylon; něm: Anemometermast m; rus: анемометрическая мачта  1993-a3
anemorumbometer
anemometr, který registruje směr i rychlost větru. Viz rumb.
Termín se skládá z řec. άνεμος [anemos] „vítr“, rus. румб [rumb] (označení pro kompasový dílek) a z řec. μέτρον [metron] „míra, meřidlo“.
česky: anemorumbometr; angl: anemorumbometer; něm: Anemorumbometer m; fr: anémomètre à hélice m; rus: анеморумбометр  1993-a3
anemoskop
zast. označení pro větrnou korouhev.
Termín zavedl it. astronom a matematik E. Danti (1536-1586) v lat. podobě anemoscopium jako označení přístroje, který vynalezl. Skládá se z řec. ἄνεμος [anemos] „vítr“ a σκοπεῖν [skopein] „pozorovat, zkoumat“.
česky: anemoskop; angl: anemoscope; něm: Windanzeigegerät n, Anemoskop n; fr: anémoscope m; rus: анемоскоп  1993-a3
aneroid
Přístroj zvaný aneroid vynalezl v r. 1843 franc. fyzik L. Vidie. Termín vznikl zkrácením původního názvu barométre anéroide, což doslova znamená „tlakoměr bez vzduchu“ (z řec. záporky ἀ- [a-] „bez“ a ἀήρ [aér] „vzduch“).
česky: aneroid; angl: aneroid barometer; něm: Aneroidbarometer n; fr: baromètre anéroïde m, baromètre holostérique / ancien m; rus: барометр-анероид  1993-a3
aneroidový barograf
barograf, jehož čidlem je sada aneroidových krabiček, tzv. Vidieho dózy.
česky: barograf aneroidový; angl: aneroid barograph; něm: Aneroidbarograph m; fr: baromètre anéroïde m; rus: барограф-анероид  1993-a3
aneroidový tlakomer
syn. aneroid – deformační kovový tlakoměr, jehož čidlem je jedna nebo více Vidieho aneroidových krabiček. Podle metody snímání změn tlaku vzduchu je dělíme na aneroidy mechanické a aneroidy elektrické. U mechanického aneroidu je sada aneroidových krabiček připevněna jedním koncem ke kostře aneroidu. Z druhého konce, který je volný, se snímají výchylky závislé na změnách tlaku vzduchu mechanickým převodním systémem. Elektrické aneroidy převádějí deformaci aneroidových krabiček na změnu elektrické veličiny (odpor, kapacitu, napětí, frekvenci aj). Údaje aneroidu ovlivňuje teplota vzduchu a vzhledem k hysterezi aneroidu i rychlost tlakové změny.
česky: tlakoměr aneroidový; angl: aneroid barometer; něm: Aneroidbarometer n  1993-a3
anizotropná turbulencia
syn. turbulence nonizotropní – každá turbulence, která nesplňuje podmínky izotropní turbulence. Výrazná anizotropie turbulence v atmosféře existuje zejména ve vrstvě vzduchu silné zhruba 20 m a bezprostředně přiléhající k zemskému povrchu nad rovinným terénem.
česky: turbulence anizotropní; angl: anisotropic turbulence; něm: anisotrope Turbulenz f; rus: анизотропная турбулентность  1993-a1
anjelské echo
česky: echo andělské; něm: Engel-Echo n; fr: ange radar m , ange écho radar m   1993-a1
anjelský odraz
syn. echo andělské – radarový odraz zaznamenaný při bezoblačném počasí a bez zjevných souvislostí s umělými objekty. Podle velikosti zobrazení rozlišujeme andělský odraz bodový nebo andělský odraz s velkými horiz. rozměry. Nejčastějšími příčinami andělských odrazů jsou odrazy od oblastí s velkým gradientem indexu lomu elektromagnetického vlnění ve vzduchu při začínající termické konvekci, při inverzích teploty vzduchu, vlhkosti vzduchu, popř. i od letícího hejna hmyzu nebo ptáků.
česky: odraz andělský; angl: angel echo; něm: Engelecho n; rus: ангел-эхо  1993-a3
anomália potenciálnej vorticity
meteorologická anomálie převážně synoptického měřítka, jejíž vert. rozsah se zvětšuje s rostoucím horiz. rozměrem a zmenšuje s rostoucí vertikální stabilitou atmosféry. Rozlišujeme kladné a záporné anomálie potenciální vorticity, pro které jsou charakteristické kladné, resp. záporné odchylky hodnot od klimatologického normálu. Kladná anomálie potenciální vorticity v horní troposféře je spojena s cyklonální vorticitou a zpravidla se studenou advekcí z vyšších zeměpisných šířek, popř. s pronikáním vzduchu ze stratosféry. Záporná anomálie potenciální vorticity je spojena s anticyklonální vorticitou a zpravidla s teplou advekcí z nižších zeměpisných šířek. Anomálie potenciální vorticity se může vyskytovat i ve spodní troposféře, kde nejčastěji vzniká působením výškové anomálie na prostředí se zvýšenou baroklinitou nebo následkem neadiabatických dějů souvisejících např. s tvorbou srážek. Viz též PV thinking.
česky: anomálie potenciální vorticity; angl: potential vorticity anomaly; něm: Anomalie der potentiellen Vorticity f, Anomalie der potentiellen Vorticity f; fr: anomalie de vorticité potentielle  2014
anomálna počuteľnosť
česky: slyšitelnost anomální; angl: anomalous audibility; něm: anomale Hörbarkeit f  2014
anomálne šírenie elektromagnetických vĺn v atmosfére
šíření elmag. energie v atmosféře na neobvykle velké vzdálenosti, které je podmíněno anomálním prostorovým rozložením indexu lomu.
česky: šíření elektromagnetického vlnění v atmosféře anomální; angl: anomalous propagation; něm: anomale Ausbreitung von elektromagnetischen Wellen in der Atmosphäre f; rus: аномальное распространение  1993-a1
anomálne šírenie zvuku
česky: šíření zvuku anomální; angl: anomalous propagation of sound; něm: anomale Schallausbreitung f; rus: аномальное распространение звука  1993-a1
ansámblová predpoveď počasia
skupinová sada různých předpovědí počasí platných pro daný předpovědní čas. Rozdíly mezi předpověďmi poskytují informace o pravděpodobnostním rozdělení předpovídaných prvků. Předpovědi mohou vycházet z různých počátečních nebo okrajových podmínek (v případě modelů na omezené oblasti), mohou se lišit dobou startu předpovědi, nastavením parametrů numerického modelu předpovědi počasí, nebo mohou pocházet z několika různých modelů předpovědi počasí. Ansámblová předpověď se používá kvůli postižení dvou základních nejistot numerické předpovědi počasí:
1) použití nedokonalých počátečních podmínek, které popisují výchozí stav atmosféry. Počáteční podmínky pro předpověď se pozměňují malými, ale dynamicky aktivními perturbacemi spočtenými pro danou situaci, např. metodou singulárních vektorů (ECMWF), nebo jinou. Tyto perturbace jsou pak více či méně umocněny chaotickou povahou systému.
2) použití nepřesných formulací v numerickém modelu předpovědi počasí, které jsou způsobeny aproximací nebo zjednodušením popisu fyzikálních procesů v modelu.
česky: předpověď počasí ansámblová; angl: ensemble forecast; něm: Ensemblewettervorhersage f  2014
antarktická anticyklóna
anticyklona nad Antarktidou značně symetricky rozložená kolem již. pólu, se středem převážně ve vých. části pevniny. Antarktická anticyklona je akčním centrem atmosféry. Jako studená anticyklona zabírá zpravidla jen spodní troposféru.
česky: anticyklona antarktická; angl: antarctic anticyclone; něm: antarktische Antizyklone f; fr: anticyclone antarctique m; rus: антарктический антициклон  1993-a3
antarktická klíma
Alisovově klasifikaci klimatu nejjižnější klimatické pásmo, kde celoročně převládá antarktický vzduch. V Köppenově klasifikaci klimatu spadá prakticky celá Antarktida pod klima trvalého mrazu, vyznačující se přítomností mohutného pevninského ledovce a mimořádnou drsností klimatu. Radiační bilance zemského povrchu dosahuje výrazně záporných hodnot, mj. v důsledku velkého albeda. Nízká antarktická anticyklona způsobuje mohutné přízemní inverze teploty vzduchu a přispívá k nízkým srážkovým úhrnům. Vítr přitom dosahuje vysokých rychlostí a často způsobuje blizard, a to nejen na pobřeží, kde se silně projevuje ledovcový vítr. Extrémní jsou pak hodnoty teploty vzduchu, a to i v létě, kdy prům. měs. teplota vzduchu ve vnitrozemí zůstává kolem –30 °C, v zimě pak klesá i pod –60 °C. Viz též extrémy teploty vzduchu, pól chladu, pól větrů.
česky: klima antarktické; angl: antarctic climate; něm: antarktisches Klima n; rus: антарктический климат  1993-b3
antarktický front
hlavní fronta oddělující na již. polokouli antarktický vzduch od vzduchu mírných šířek. Tvoří sev. hranici antarkt. vzduchu a probíhá v několika větvích atmosférické fronty nad mořem obklopujícím Antarktidu. Na antarkt. frontě se tvoří postupující cyklony, způsobující regeneraci cyklon na polární frontě. V procesu cyklonální činnosti může antarkt. fronta proniknout daleko do mírných šířek. Antarkt. frontu je nutné odlišit od vnitroantarktické fronty, která jako podružná fronta odděluje pevninský a mořský vzduch v rámci antarkt. vzduchové hmoty.
česky: fronta antarktická; angl: antarctic front; něm: Antarktikfront f; fr: front antarctique m; rus: антарктический фронт  1993-a3
antarktický vzduch
vzduchová hmota vymezená geografickou klasifikací vzduchových hmot, s ohniskem vzniku vzduchové hmoty v oblasti Antarktidy. Jeho celoroční výskyt je typický pro antarktické klima. Na severu je ohraničen antarktickou frontou. Po celý rok je velmi studený, hlavně ve svých nižších vrstvách, což platí především pro jeho pevninskou formu, která se vytváří v antarktické anticykloně nad zaledněnými plochami Antarktidy a nad přilehlými zamrzlými moři.
česky: vzduch antarktický; angl: antarctic air; něm: Antarktikluft f; rus: антарктический воздух  1993-a3
antibarické prúdenie
česky: proudění antibarické; něm: antibarische Strömung f  1993-a1
antibarický vietor
syn. proudění antibarické – horiz. proudění bez tření v atmosféře, při němž síla horiz. tlakového gradientu má stejný směr jako Coriolisova síla a jejich výslednice je v rovnováze s odstředivou silou. Antibarický vítr se nevyskytuje jako součást velkoprostorových pohybů v rámci všeobecné cirkulace atmosféry čili primární cirkulace. Antibarický vítr se však může blížit proudění ve tvaru malých vírů s přibližně vert. osou, pozorovaných někdy u zemského povrchu při uvolňování výstupních konvektivních proudů. Tyto víry se lid. nazývají rarášek nebo čertík.
česky: vítr antibarický; angl: antibaric wind; něm: antibarischer Wind m; rus: антибарический ветер  1993-a1
anticyklogenéza
vznik, popř. zesílení již existující anticyklonální cirkulace v atmosféře. Za příznivých podmínek může vést k formování anticyklony nebo k jejímu mohutnění. Rozlišujeme anticyklogenezi dynamickou a termickou. Opakem anticyklogeneze je anticyklolýza.
Termín se skládá ze slova anticyklona a řec. γένεσις [genesis] „zrození, vznik“.
česky: anticyklogeneze; angl: anticyclogenesis; něm: Antizyklogenese f; fr: anticyclogénèse f, anticyclogenèse f; rus: антициклогенез  1993-a3
anticyklolýza
zeslabení již existující anticyklonální cirkulace v atmosféře, které může vést k slábnutí a rozpadu anticyklony. Opakem anticyklolýzy je anticyklogeneze.
Termín se skládá ze slova anticyklona a řec. λύσις [lysis] „uvolňování, rozpouštění“.
česky: anticyklolýza; angl: anticyclolysis; něm: Antizyklolyse f; fr: anticyclolyse f; rus: антициклолиз  1993-a3
anticyklóna
syn. výše tlaková
1. základní tlakový útvar, který se projevuje na synoptické mapě alespoň jednou uzavřenou izobarou nebo izohypsou, přičemž tlak vzduchu uvnitř je vyšší než v okolí. Střed anticyklony se označuje na synop. mapách v ČR písmenem „V“ (výše), na mapách z angl. a něm. jazykové oblasti písmenem „H“ (high, Hoch), na mapách z rus. jazykové oblasti písmenem „B“ (vysokoje davlenije) a na mapách ze špan. jazykové oblasti písmenem „A“ (alta).
Pro anticyklony jsou charakteristické anticyklonální vorticita a anticyklonální cirkulace, často také subsidence vzduchu, která je určujícím faktorem anticyklonálnního počasí. Ke vzniku anticyklon vedou složité procesy v atmosféře, označované jako anticyklogeneze. K výkladu vzniku a vert. stavby anticyklon významně přispěl též český meteorolog S. Hanzlík, který rozlišil studené a teplé anticyklony. Viz též stadia vývoje anticyklony, osa anticyklony.
2. tlakový útvar se zvýšenými hodnotami průměrného tlaku vzduchu oproti okolí, patrný na klimatologické mapě za celý rok nebo za určitou sezónu. Anticyklony v tomto smyslu patří mezi klimatická akční centra atmosféry, protože v dané oblasti určují všeobecnou cirkulaci atmosféry. Mezi takové anticyklony patří anticyklona arktická, antarktická, azorská, bermudská, havajská, jihopacifická, kanadská, mauricijská, sibiřská a svatohelenská.
Termín zavedl brit. přírodovědec F. Galton v r. 1863 jako protiklad k dříve zavedenému pojmu cyclonecyklona“, a to přidáním předpony anti- (z řec. ἀντί [anti] „proti“).
česky: anticyklona; angl: anticyclone, high; něm: Antizyklone f, Hoch n, Hochdruckgebiet n; fr: anticyclone m, zone de haute pression; rus: антициклон, максимум  1993-a3
anticyklonálna cirkulácia
atmosférická cirkulace v místech, kde se vzduch pohybuje s vert. osou rotace, jejíž průmět do osy rotace Země je opačně orientovaný k orientaci osy rotace Země. V těchto místech tedy vzduchové částice mění směr svého pohybu na sev. polokouli po směru hodinových ručiček, na již. polokouli v opačném směru. Anticyklonální cirkulace je tedy na sev. polokouli záporná a na již. polokouli kladná; na rovníku není definována. Anticyklonální cirkulace je opakem Viz též zakřivení izobar nebo izohyps anticyklonální, vorticita anticyklonální, cirkulace cyklonální.
česky: cirkulace anticyklonální; angl: anticyclonic circulation; něm: antizyklonale Zirkulation f; fr: circulation anticyclonique f; rus: антициклоническая циркуляция  1993-a3
anticyklonálna situácia
1. označení pro určité synoptické typy používané v katalogu povětrnostních situací. Při anticyklonální situaci převládá nad sledovaným územím anticyklonální počasí. U většiny typů anticyklonálních situací se používá indexu „a“. Např. NWa znamená sz. anticyklonální situaci;
2. někdy se pro stručnost nesprávně používá k souhrnnému označení projevů anticyklonálního počasí. Viz též situace cyklonální.
česky: situace anticyklonální; angl: anticyclonic situation; něm: antizyklonale Situation f, antizyklonale Wetterlage f; rus: антициклоническая (синоптическая) ситуация  1993-a1
anticyklonálna vorticita
na sev. polokouli záporná, na již. polokouli kladná vert. složka vorticity. Anticyklonální rel. vorticita se vyskytuje v oblastech vysokého tlaku vzduchu, tj. především v anticyklonách a hřebenech vysokého tlaku vzduchu.
česky: vorticita anticyklonální; angl: anticyclonic vorticity; něm: antizyklonale vorticity f; rus: антициклоническая завихренность, антициклонический вихрь скорости  1993-a3
anticyklonálne počasie
1. počasí v oblasti anticyklony. Závisí na stadiu vývoje anticyklony, na druhu vzduchové hmoty, která anticyklonu tvoří, a na roč. období. Je rozdílné v různých sektorech anticyklony. V chladném pololetí můžeme ve stř. Evropě pozorovat dva typy anticyklonálního počasí. První typ počasí se vyznačuje malou oblačností a nízkou teplotou vzduchu. Je obvyklý především ve stř. části anticyklony. Je charakteristický pro ostře vyjádřené procesy anticyklogeneze při subsidenci vzduchu v anticyklonách nad pevninou, které jsou tvořeny kontinentální vzduchovou hmotou s malou měrnou vlhkostí vzduchu. Při sněhové pokrývce klesá u nás noční teplota hluboko pod bod mrazu (–20 °C a níže). Druhý typ počasí je charakterizován velkou oblačností druhu stratus a stratocumulus a vyskytuje se v pomalu se vyvíjejících, popř. rozpadajících se anticyklonách, kdy sestupné pohyby vzduchu jsou velmi malé nebo jsou vystřídány výstupnými pohyby. Za této situace mohou dokonce vypadávat srážky ve tvaru mrholení. Často se vyskytují inverze teploty vzduchu obvykle začínající v blízkosti zemského povrchu a sahající do výšky 1 až 2 km. Při dostatečné vlhkosti jsou provázeny vývojem mlh, které zasahují rozsáhlé oblasti především v blízkosti středu anticyklony. Ve vyšších vrstvách anticyklony, v horských oblastech, bývá v tomto případě jasné a relativně velmi teplé počasí. V teplém pololetí nepozorujeme v anticyklonách počasí se spojitou vrstevnatou oblačností. Pro centrální oblasti anticyklony je typické málo oblačné, popř. bezoblačné počasí, v okrajových sektorech počasí s kupovitou oblačností, která bývá největší v předním sektoru tlakové výše. V jednotlivých případech, především v zadním sektoru letních anticyklon, lze pozorovat v horských oblastech stř. Evropy i bouřky. Nejvyšší teploty jsou v centrální části a v zadním sektoru výše.
2. označení pro počasí v oblasti anticyklony velmi zjednodušeně a nepřesně charakterizované malou oblačností beze srážek, nebo jasnem, slabým větrem, nebo bezvětřím a velkou denní amplitudou teploty vzduchu.
česky: počasí anticyklonální; angl: anticyclonic weather; něm: Hochdruckwetter n; rus: погода в антициклонах  1993-a3
anticyklonálne prúdenie
proudění, při kterém mají proudnice anticyklonální zakřivení.
česky: proudění anticyklonální; angl: anticyclonic flow; něm: antizyklonale Strömung f; rus: антициклоническое течение  1993-a1
anticyklonálne stáčanie vetra
stáčení větru v horiz. rovině dané anticyklonálním zakřivením proudnic. Na sev. polokouli má směr shodný s otáčením hod. ručiček, tj. míří vpravo, postavíme-li se čelem po směru větru, zatímco na již. polokouli je tomu opačně. Viz též zakřivení izobar nebo izohyps anticyklonální, anticyklona, stáčení větru cyklonální.
česky: stáčení větru anticyklonální; angl: anticyclonic rotation of wind; něm: antizyklonale Winddrehung f; rus: антициклоническое вращение ветра  1993-a2
anticyklonálne zakrivenie izobár alebo izohýps
zakřivení izobar, popř. izohyps, ve smyslu anticyklonální cirkulace, typické pro anticyklony a hřebeny vysokého tlaku vzduchu. Odstředivá síla související s pohybem po prostorově zakřivené trajektorii působí v tomto případě na sev. polokouli doleva od směru pohybu (na již. polokouli doprava), tj. proti směru Coriolisovy síly a souhlasně s horizontální složkou síly tlakového gradientu. Viz též zakřivení izobar nebo izohyps cyklonální, vítr gradientový.
česky: zakřivení izobar nebo izohyps anticyklonální; angl: anticyclonic curvature; něm: antizyklonale Krümmung f; rus: антициклоническая кривизна  1993-a3
anticyklonálny föhn
syn. fén volný.
česky: fén anticyklonální; angl: anticyclonic foehn; něm: antizyklonaler Föhn m; fr: foehn anticyclonique m; rus: антициклонический фён  1993-a3
anticyklonálny strih vetra
horizontální střih větru, který zvětšuje anticyklonální vorticitu, tzn. že podporuje např. mohutnění anticyklon nebo vyplňování cyklon. Na sev. polokouli se při anticyklonálním střihu větru rychlost větru zvětšuje zprava doleva, stojíme-li čelem po směru proudění.
česky: střih větru anticyklonální; angl: anticyclonic wind shear; něm: antizyklonale Windscherung f; rus: антициклонический сдвиг ветра  1993-a1
antihélium
protislunce, viz kruh parhelický.
Termín pochází z řec. ἀνθήλιος [anthélios] „proti Slunci“ (z ἀντί [anti] „proti“ a ἥλιος [hélios] „Slunce“).
česky: antihélium; angl: anthelion; něm: Gegensonne f; fr: anthélie f; rus: антелий, антигелий, дуга антеля , противосолнце  1993-a1
antimonzún
ve skutečnosti neexistující kompenzující proudění nad monzunem ve zjednodušeném modelu monzunové cirkulace (analogicky k antipasátupasátové cirkulaci).
Termín se skládá z řec. ἀντί [anti] „proti“ a slova monzun.
česky: antimonzun; angl: antimonsoon; něm: Antimonsun m; fr: contre-mousson m; rus: антимуссон  1993-a3
antipasát
v klasickém pojetí všeobecné cirkulace atmosféry součást proudění tropické cirkulace. Antipasát proudí ve stř. a horních vrstvách troposféry nad přízemními pasáty a jeho směr je na sev. polokouli jihozápadní, na již. polokouli severozápadní. Antipasát zasahuje od rovníku až do subtropických šířek, kde se v pásmu mezi 30° až 35° se stáčí do záp. směru. V oblasti rovníku má silnou výstupnou složku pohybu a dosahuje výšek kolem 10 km, v subtropech má sestupný pohyb a jeho vert. mohutnost klesá na 2 km. Začíná ve výšce kolem 4 km nad zemským povrchem a je vyvinut lépe v zimě než v létě a nad povrchem oceánu než nad pevninou. Současná aerologická měření však existenci antipasátu podle uvedené představy v plném rozsahu nepotvrzují. Viz též cirkulace pasátová, buňka Hadleyova.
Termín se skládá z řec. ἀντί [anti] „proti“ a slova pasát.
česky: antipasát; angl: antitrade; něm: Antipassat m; fr: contre-alizé m; rus: антипассат  1993-a1
antipleión
Termín se skládá z řec. ἀντί [anti] „proti“ a slova pleión.
česky: antipleión; angl: antipleion; něm: Antipleion f; fr: antipléion m; rus: антиплейон  1993-a3
antiselénium
protiměsíc, viz kruh paraselenický.
Termín se skládá z řec. ἀντί [anti] „proti“ a σελήνη [seléné] „Měsíc“.
česky: antiselenium; angl: antiselene; něm: Gegenmond m; fr: antisélène m; rus: антиселена  1993-a1
antisolárne oblúky
česky: oblouky antisolární; angl: antisolar arcs; něm: Wegeners Gegensonnenbogen m  2016
antisolárny bod
bod na nebeské sféře ležící opačným směrem na přímce směřující od stanoviště pozorovatele ke Slunci. Při poloze Slunce nad (pod) obzorem se antisolární bod nalézá pod (nad) obzorem. Viz též protisvit, oblouky protisluneční, duha.
česky: bod antisolární; angl: antisolar point; něm: Sonnengegenpunkt m; fr: point antisolaire m, point subanthélique m; rus: антисолярная точка  1993-a3
antitriptický vietor
rovnoměrné, přímočaré a horiz. proudění vzduchu za předpokladu, že síla tření je v rovnováze s horizontální složkou síly tlakového gradientu a ostatní horiz. síly působící na vzduchovou částici lze zanedbat. Antitriptický vítr vane kolmo na izobary. Skutečné horiz. proudění se mu může blížit, jestliže tečné i normálové zrychlení pohybu vzduchových částic je nepatrné a Coriolisova síla zanedbatelná vůči síle tření. Tento případ nastává v mezní vrstvě atmosféry v blízkosti rovníku a při některých místních cirkulacích vzduchu. Název antitripický vítr zavedl angl. meteorolog H. Jeffreys v r. 1922.
česky: vítr antitriptický; angl: antitriptic wind; něm: antitriptischer Wind m; rus: антитриптический ветер  1993-a1
antropogénna zmena klímy
složka změn klimatu, která je podmíněna činností člověka, především v důsledku zesílení skleníkového efektu antropogenními emisemi skleníkových plynů. Viz též oteplování globální.
česky: změna klimatu antropogenní; angl: anthropogenic climate change; něm: anthropogene Klimaänderung f  2018
antropogénne aerosoly
aerosolové částice, které vznikly v souvislosti s lidskou činností, např. leteckou a další dopravou, průmyslovou výrobou či zemědělstvím. Primární antropogenní aerosoly jsou tvořeny přímo emisemi pevných nebo kapalných znečišťujících příměsí, sekundární antropogenní aerosoly se vytvářejí v atmosféře nukleací, např. v důsledku antropogenních emisí oxidu siřičitého, oxidů dusíku nebo látek typu VOC.
česky: aerosoly antropogenní; angl: antropogenic aerosols; rus: антропогенные аэрозольные частицы  2019
antropogénny klimatický faktor
klimatický faktor vyvolaný lidskými zásahy do klimatického systému. Působením člověka došlo především v posledních staletích k modifikaci některých geografických klimatických faktorů, a to od planetárního měřítka (změny složení atmosféry Země z hlediska koncentrace některých skleníkových plynů a atmosférického aerosolu) po regionální a lokální (změny energetické bilance v důsledku změn vlastností aktivního povrchu, uvolňování antropogenního tepla). Viz též ovlivňování klimatu.
česky: faktor klimatický antropogenní; angl: anthropogenic climatic factor; něm: anthropogener Klimafaktor m; fr: facteur humain des changements climatiques pl (m), facteur anthropique du climat pl (m); rus: антропогенный климатический фактор  1993-b3
aplikovaná klimatológia
česky: klimatologie užitá; rus: прикладная климатология  1993-a1
aplikovaná klimatológia
syn. klimatologie užitá – analýza a syntéza klimatologických údajů pro jejich využití v praxi (v zemědělství, průmyslu, zdravotnictví, při výstavbě, v dopravě, energetice apod.). Viz též klimatologie lékařská, lesnická, letecká, průmyslová, technická, urbanistická, zemědělská.
česky: klimatologie aplikovaná; angl: applied climatology; něm: angewandte Klimatologie f; rus: прикладная климатология  1993-a1
aplikovaná meteorológia
zast. označení pro aplikovanou meteorologii.
česky: meteorologie užitá; angl: applied meteorology; něm: angewandte Meteorologie f; rus: прикладная метеорология  1993-a2
aplikovaná meteorológia
souhrnné označení dílčích disciplín meteorologie orientovaných na využití meteorologických poznatků v praktických činnostech dalších oborů. Důležité jsou aplikované obory především ve vztahu k živým organizmům (biometeorologie, lékařská meteorologie, fenologie), k hospodářství (agrometeorologie, lesnická, energetická a průmyslová meteorologie, aplikace ve stavebnictví apod.) a k dopravě (letecká, silniční a námořní meteorologie). Součástí aplikované meteorologie je aplikovaná klimatologie.
česky: meteorologie aplikovaná; angl: applied meteorology; něm: angewandte Meteorologie f; rus: прикладная метеорология  1993-a3
Appletonova vrstva
syn. vrstva F2.
česky: vrstva Appletonova; angl: Appleton layer; něm: Appleton-Schicht f; rus: система Эплтона  1993-a1
aprílové počasie
lid. název pro proměnlivé, nestálé počasí v týlu cyklony, vyskytující se ve stř. Evropě převážně na jaře. Větrné a chladné počasí s častým střídáním vyjasnění a přeháněk, i v nížinách mnohdy sněhových, podmiňuje silná instabilita mořského vzduchu mírných šířek nad teplejší pevninou, většinou za sz. proudění. Viz též proměnlivost počasí.
česky: počasí aprílové; něm: Aprilwetter n; rus: апрельская погода  1993-a2
aproximácia tenkej vrstvy
zjednodušení, při kterém se tloušťka zemské atmosféry považuje za zanedbatelnou ve srovnání s poloměrem Země. V soustavě prognostických rovnic je vzdálenost od středu Země nahrazena poloměrem Země. Aby soustava rovnic využívající aproximaci tenké vrstvy zachovávala moment hybnosti a energie, je nutné zanedbat některé metrické členy a vertikální členy Coriolisovy síly. Tato aproximace je jedním ze základních zjednodušení, používaných v meteorologii.
česky: aproximace tenké vrstvy; angl: thin layer approximation; něm: Dünnschicht-Annäherung f; fr: approximation de couche mince f, approximation de la couche limite fine f; rus: аппроксимация тонкого слоя, приближение тонкого слоя  2014
aquaplaning
[akvaplejnink], syn. akvaplanink – v letecké dopravě jev vyskytující se při pohybu letadla po vzletových a přistávacích dráhách, které jsou pokryté vrstvou vody nebo sněhovou břečkou. Následkem akvaplaninku klesá koeficient tření mezi pneumatikami a povrchem dráhy, což má za následek zvětšování hydrodyn. vztlaku a snížení směrové stability letadla. Akvaplanink se může vyskytnout i v běžném automobilovém provozu.
Termín se skládá  z lat. aqua „voda“ a z gerundia angl. slovesa plane „plachtit, klouzat“.
česky: aquaplaning; angl: aquaplaning; něm: Aquaplaning n; fr: aquaplanage m, hydroplanage m; rus: гидроглиссирование, аквапланирование  1993-b3
Arago-Davyho pyranometer
přístroj k přibližnému určení globálního slunečního záření. Tvoří jej dvojice speciálně upravených skleněných teploměrů, z nichž jeden má nádobku začerněnou, druhý lesklou nebo opatřenou bílým nátěrem. Oba teploměry jsou ve vakuovaných skleněných krytech bránících výměně energie vedením. Zjištěný rozdíl jejich teplot je úměrný měřenému záření. Někdy jsou v této úpravě použity maximální teploměry, takže pyranometr udává přibližně max. denní hodnotu globálního záření. V současné době se tento přístroj již v met. praxi nepoužívá.
česky: pyranometr Aragův–Davyův; angl: Arago-Davy pyranometer; něm: Arago-Davy-Pyranometer n; rus: пиранометр Араго-Дэви  1993-b3
Aragov bod
jeden ze tří neutrálních bodů nalézající se ve výšce asi 20° nad antisolárním bodem.
česky: bod Aragův; angl: Arago's point; něm: Aragopunkt m; fr: point neutre d'Arago m; rus: точка Араго  1993-a1
arcus
(arc) – jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Arc může mít vzhled horizontálního oblačného válce zcela odděleného od ostatní oblačnosti konvektivní bouře, na níž vzniká – pak se označuje jako roll cloud, nebo protáhlého pásu oblačnosti klínovitého tvaru víceméně spojeného se spodní základnou bouřkovéch oblaků - pak se označuje jako shelf cloud. Vyskytuje se u druhu Cb, výjimečně též u Cu con, kde zviditelňuje čelo výtoku studeného vzduchu. Jeho délka se pohybuje od několika set metrů do několika desítek kilometrů. Přechod arc přes místo pozorování je zpravidla provázen zesílením a zvýšenou nárazovitostí větru v přízemní vrstvě, případně nástupem intenzivních srážek. Viz též gust fronta.
Termín byl přejat z lat. arcus „luk, oblouk“ (srov. arkáda). V klasické i pozdější latině se slovo používalo též ve významu „duha“, ten se však v klasifikaci oblaků neobjevuje.
česky: arcus; angl: arcus; něm: arcus, Bogen m; fr: arcus m; rus: ворот  1993-a3
archaikum
syn. prahory – prostřední z eonů prekambria, zahrnující období před 4000 – 2500 mil. roků. Zemský povrch již byl natolik chladný, že umožnil existenci kontinentální zemské kůry. Pokračující evoluce atmosféry Země vedla k postupnému poklesu teploty vzduchu prostřednictvím fosilizace skleníkových plynů v zemské kůře. Během tohoto období došlo ke vzniku života ve formě anerobních prokaryotických bakterií, které žily v oceánu v dostatečné hloubce, aby byly chráněny před nebezpečnými složkami ultrafialového záření. Koncem archaika se v oceánech objevily sinice produkující kyslík.
Termín pochází z angl. Archean, které zavedl v r. 1872 amer. geolog  a zoolog J. D. Dana; je odvozen od řec. ἀρχαῖος [archaios] „starý, dávný“ (od αρχή [arché] „počátek“; srov. archeologie, archaismus).
česky: archaikum; angl: Archean; něm: Archaikum n  2018
Archimedov zákon
fyzikální zákon stanovující velikost vztlakové síly působící na těleso ponořené do tekutiny. Velikost této nadlehčující síly je rovna velikosti síly zemské tíže, která by působila na tekutinu o objemu daného tělesa. V meteorologických aplikacích si zmíněné těleso zpravidla realizujeme vzduchovou částicí, která má odlišnou teplotu vůči okolnímu vzduchu. Tlak uvnitř takové vzduchové částice se okamžitě přizpůsobuje okolnímu tlaku vzduchu, takže v souladu se stavovou rovnicí ideálního plynu má vůči svému okolí teplejší (studenější) částice současně menší (větší) hustotu. Tím vzniká vertikální pohyb dané vzduchové částice, podmíněný nenulovým vztlakem. Zákon je připisován řeckému matematikovi a fyzikovi Archimédovi ze Syrakus (asi 287 – 212 př. n.  l.).
česky: zákon Archimédův; angl: Archimedes' principle; něm: archimedisches Prinzip n; rus: закон Архимеда  2019
aridita klímy
syn. suchost klimatu – vlastnost klimatu způsobená neúměrně velkým potenciálním výparem oproti spadlým srážkám (opak humidity klimatu). Aridita klimatu může být podmíněna všeobecnou cirkulací atmosféry, vzdáleností od oceánů a jejich vlastnostmi, nebo být důsledkem závětrného efektu. Oblasti s aridním klimatem, popř. semiaridním klimatem se vymezují pomocí nejrůznějších indexů humidity. Největší ariditou se vyznačuje klima pouště. Aridita klimatu je jeho trvalou vlastností, čímž se liší od sucha.
česky: aridita klimatu; angl: aridity of climate; něm: Klimaaridität f; fr: aridité climatique f; rus: аридность климата, засушливость климата  1993-a3
aridná klíma
1. v Köppenově klasifikaci klimatu syn. pro suché klima;
2. obecně klima s velkou ariditou klimatu. Malé úhrny srážek a velký potenciální výpar neumožňují vytváření pravidelných vodních toků ani dostatečný růst vegetace. Viz též klasifikace klimatu Thornthwaiteova, klasifikace klimatu geomorfologická.
česky: klima aridní; angl: arid climate; něm: arides Klima n; rus: аридный климат  1993-b3
aridná oblasť
česky: oblast aridní; angl: arid zone; něm: arides Gebiet n, aride Zone f; rus: аридная зона, аридная область  1993-a2
aridný faktor
nevh. označení pro index aridity.
česky: faktor aridní; něm: Ariditätsindex m; fr: indice d'aridité m; rus: индекс аридности  1993-a3
arktická anticyklóna
anticyklona nad Arktidou, která má v zimě obyčejně dva samostatné středy, a to nad Grónskem a nad sev. Kanadou. V létě se často rozpadá na tři samostatné útvary, a to nad Grónskem, Barentsovým mořem a v oblasti sev. od Čukotského moře.
česky: anticyklona arktická; angl: arctic anticyclone; něm: arktische Antizyklone f; fr: anticyclone du Groenland m; rus: арктический антициклон  1993-a3
arktická klíma
Alisovově klasifikaci klimatu nejsevernější klimatické pásmo, kde celoročně převládá arktický vzduch. V Köppenově klasifikaci klimatu mu přibližně odpovídá sněhové klima severní polokoule. Obecně je mnohem mírnější než antarktické klima. Podle míry kontinentality klimatu rozeznáváme oceánický a kontinentální typ arktického klimatu, které se liší především drsností zimy. Prům. měs. teplota vzduchu v nejchladnějším měsíci je v Arktidě v rozsahu od cca –10 °C v pobřežních oblastech do méně než –30 °C ve vnitrozemí Grónska. Zde zůstávají teploty vzduchu záporné celoročně, k čemuž přispívá nadmořská výška a velké albedo Grónského ledovce. Viz též pól chladu.
česky: klima arktické; angl: arctic climate; něm: arktisches Klima n; rus: арктический климат  1993-b3
arktická oscilácia
(AO) – oscilace projevující se kolísáním tlaku vzduchu v Arktidě oproti subtropickému pásu vysokého tlaku vzduchu. Při záporné fázi je v polární troposféře tlak vzduchu nadnormální, což vede k zeslabení cirkumpolárního víru a umožňuje pronikání studeného vzduchu do nižších zeměp. šířek, kde se naopak vyskytují záporné anomálie tlaku vzduchu. Při kladné fázi AO je tlak vzduchu podnormální v Arktidě a nadnormální v subtropech; to vede ke zintenzivnění stálých západních větrů a posunu mimotropického tryskového proudění a na ně vázaných frontálních cyklon k severu. AO kolísá v různých časových intervalech od týdnů po desítky roků. Projevem AO v severním Atlantiku je severoatlantická oscilace, která určuje vztah mezi AO a kolísáním klimatu v Evropě.
česky: oscilace arktická; angl: Arctic Oscillation; něm: arktische Oszillation f  2014
arktický deň
v Česku používaný charakteristický den, v němž maximální teplota vzduchu dosáhla hodnoty nejvýše –10 °C. Viz též ledový den.
česky: den arktický  1993-a3
arktický front
1. hlavní fronta tvořící již. hranici arktického vzduchu a oddělující ho od vzduchu mírných šířek. Obvykle se rozpadá na několik větví atmosférické fronty, někdy je však souvislá téměř kolem celé sev. polokoule. Na arkt. frontě dochází k cyklogenezi, svým charakterem shodné s cyklogenezí na polárních frontách, avšak slabší. Nejvýznamnější větve arkt. fronty jsou atlantsko-evropská, která vzniká nad Severním ledovým oceánem, a americká, vznikající nad sev. oblastmi Severní Ameriky.
2. fronta, která za vhodných podmínek vznikne v poměrně tenké spodní vrstvě troposféry v oblasti teplotního gradientu na rozhraní ledu a volného moře.
česky: fronta arktická; angl: arctic front; něm: Arktikfront f; fr: front arctique m; rus: арктический фронт  1993-a3
arktický vzduch
vzduchová hmota vymezená geografickou klasifikací vzduchových hmot, s ohniskem vzniku vzduchové hmoty v oblasti Arktidy. Jeho výskyt je typický celoročně pro arktické klima, v chladné části roku pro subarktické klima. Na jihu je ohraničen arktickou frontou. Z Arktidy při vhodných met. podmínkách proudí do mírných šířek sev. polokoule, přičemž v zimě může proniknout i do stř. Evropy. Především ve spodních hladinách se jedná o studený, suchý, a tudíž průzračný vzduch. To platí především pro pevninský arktický vzduch, který se formuje nad zamrzlým oceánem a přilehlou zasněženou pevninou. Do stř. Evropy proniká z oblasti Nové Země a transformuje se zde na pevninský vzduch mírných šířek. Mořský arktický vzduch se formuje především v oblasti mezi Grónskem a Svalbardem a je charakteristický výskytem přeháněk. Jeho vpády do střední Evropy jsou nebezpečné zvláště na jaře, kdy zde způsobuje rozsáhlé škody na vegetaci. Viz též vpád studeného vzduchu, ledoví muži.
česky: vzduch arktický; angl: arctic air; něm: Arktikluft f; rus: арктический воздух  1993-a3
arktický zákal
zákal v arkt. oblastech, který omezuje horiz. i šikmou dohlednost až do výšek 10 km nad zemí. Při pohledu po slunci se zdá šedomodrý, proti slunci červenohnědý. Nemá zřetelnou horní ani dolní hranici. Podle barevných efektů se usuzuje, že velikost částic arktického zákalu je 2.10–6 m a menší.
česky: zákal arktický; angl: arctic haze; něm: Arctic haze m, arktische Trübung f; rus: арктическая мгла  1993-a1
ascendent
viz gradient.
Termín pochází z lat. ascendens (gen. ascendentis) „stoupající“ (od slovesa ascendere „stoupat, vstupovat“). Pojem vyjadřuje nárůst hodnoty příslušné veličiny ve směru vektoru.
česky: ascendent; angl: ascendent; něm: Aszendent m; fr: ascendance f; rus: асцендент  1993-a1
asimilácia meteorologických údajov
označení pro proces modifikující výstupy numerického modelu s využitím naměřených dat ze zadaného časového intervalu, který se nazývá asimilačním oknem. Cílem asimilace je příprava počátečních podmínek pro numerický model. Motivací pro aplikaci asimilace dat je předpoklad, že pokud model dobře simuluje předpověď v asimilačním okně, kde ji lze verifikovat, pak lze očekávat, že i vlastní předpověď bude přesnější než s využitím jiných počátečních podmínek. Speciálním případem asimilace dat je objektivní analýza. Výhodou asimilace dat ve srovnání s aplikací objektivní analýzy je to, že využívá více dat a využívá i časového vývoje modelových veličin.
Metody asimilace lze rozdělit na metody objektivní analýzy, nudging, 4D variační metoda (4D-VAR) a metody založené na aplikaci Kalmánova filtru (KF; ansámblový Kalmánův filtr, částicový Kalmánův filtr). Metody objektivní analýzy jsou snadno aplikovatelné, avšak postrádají informaci o vývoji, a proto nedostatečně ovlivňují dynamiku modelovaných procesů. Nudging je empirická metoda, která dodáním umělého členu na pravou stranu modelových rovnic „nutí“ model, aby simuloval naměřená data. Je to velmi snadno aplikovatelná metoda, která však nemá teoretický základ a vliv asimilace se zpravidla velmi rychle ztrácí během integrace. Metody 4D-VAR a KF jsou velmi sofistikované metody, které dávají teoreticky optimální počáteční podmínky. Jejich praktická aplikace však vyžaduje řadu zjednodušení, které způsobují, že výsledek není optimální. Současné implementace těchto metod mají také problémy s asimilací veličin, které jsou významně ovlivněny silně nelineárními procesy, např. srážky.
česky: asimilace meteorologických dat; angl: meteorological data assimilation; něm: meteorologische Datenassimilation f, meteorologische Datenassimilation f; fr: assimilation de données météorologiques f; rus: ассимиляция данных в метеорологии  2014
asperitas
jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Označuje výrazně vyjádřené vlnové úvary na spodní straně oblaku, která je chaotičtější a méně horizontálně organizovaná než u odrůdy undulatus. Pro asperitas jsou charakteristické lokalizované vlny v základně oblaku. Ta je buď hladká, nebo s menšími strukturami, které někdy klesají do ostrých výběžků, jako bychom pozorovali drsnou hladinu moře zespodu. Proměnlivá úroveň osvětlení a tlouštky oblaku mohou vyvolat dramatické vizuální efekty. Vyskytuje se většinou u oblaků druhu stratocumulus a altocumulus.
Do morfologické klasifikace oblaků byla zvláštnost asperitas doplněna v roce 2017. Termín byl přejat z lat. asperitas„drsnost, neuhlazenost“ (od asper „drsný, hrubý“).
česky: asperitas; angl: asperitas; něm: asperitas  2018
aspiračný teplomer
teploměr upravený pro měření teploty vzduchu mimo meteorologickou budku nebo radiační kryt. Je opatřený ochranou teploměrů proti rušivým vlivům přímého slunečního záření a je uměle ventilovaný. Viz též teploměr ventilovaný.
česky: teploměr aspirační; angl: aspirated thermometer, ventilated thermometer; něm: Aspirationsthermometer n; rus: аспирационный термометр  1993-a3
aspiračný termograf
termograf, jehož čidlo je uměle ventilováno.
česky: termograf aspirační; angl: aspirated thermograph, ventilated thermograph; něm: Aspirationsthermograph m; rus: аспирационный термограф, дистанционный термограф  1993-a1
astrometeorológia
snaha vysvětlit děje v atmosféře Země kosmickými vlivy, především vzájemným postavením planet a dalších vesmírných těles. Mylná představa o vlivu těchto tzv. aspektů na počasí vedla hlavně v renesanční době k marným pokusům o dlouhodobou předpověď počasí, současně však podnítila zájem o systematická meteorologická pozorování (např. J. Kepler). Viz též kalendář stoletý, slapy atmosférické.
Termín se skládá z řec. komponentu ἄστρον [astron] „hvězda“ a slova meteorologie.
česky: astrometeorologie; angl: astrometeorology; něm: Astrometeorologie f; fr: astrométéorologie f; rus: астрометеорология  1993-a3
astronomická refrakcia
zvětšení výšky polohy dané hvězdy nad astronomickým obzorem způsobené lomem světelných paprsků při průchodu celou zemskou atmosférou. Největší je v těsné blízkosti obzoru, kde dosahuje přes polovinu úhlového stupně. Přesné hodnoty závisejí na aktuálním vert. profilu hustoty vzduchu v atmosféře.
Termín pochází z lat. slova refractio „lomení, lom“, odvozeného od slovesa refringere „vylomit, zlomit“ (z re- a frangere, „lámat“, srov. fragment).
česky: refrakce astronomická; angl: astronomic refraction, astronomical refraction; něm: astronomische Refraktion f; rus: астрономическая рефракция  2016
astronomická teória paleoklímy
teorie vysvětlující změny klimatu v geol. minulosti. Vzhledem ke komplexnímu působení klimatických faktorů při genezi klimatu nejsou zpravidla jednotlivé teorie k vysvětlení dostačující. Podstatným faktorem v různých časových měřítkách jsou změny záření Slunce a evoluce atmosféry Země. Při interpretaci klimatu kvartéru hraje hlavní roli astronomická (orbitální) teorie paleoklimatu, která za primární příčinu kvartérního klimatického cyklu označuje Milankovičovy cykly. Během nich se periodicky mění množství a sezonní rozdělení slunečního záření na Zemi, přičemž obecně platí, že menší teplotní rozdíly mezi létem a zimou jsou příznivé pro nástup glaciálu. Takto způsobené výkyvy jsou nicméně příliš malé, jsou proto považovány spíše za spouštěcí mechanizmus, který je dále zesilován systémem klimatických zpětných vazeb. Z hlediska dlouhodobějších změn klimatu se jako podstatný činitel jeví zemská tektonika, především kontinentální drift a orogeneze. Např. posun kontinentů v poledníkovém směru způsobuje změny v bilanci záření, rozdělení nebo naopak spojení kontinentů podstatně mění všeobecnou cirkulaci hydrosféry jako podstatné složky klimatického systému. Vznikající pohoří modifikují všeobecnou cirkulaci atmosféry a stávají se klimatickou bariérou. Paleoklima dále podléhalo prudkým výkyvům vlivem epizodických klimatických faktorů (impakty vesmírných těles, silné sopečné erupce).
česky: teorie paleoklimatu; angl: theory of paleoclimate; něm: Paläoklimate-Theorie f  1993-a3
astronomický klimatický faktor
klimatický faktor podmíněný vlastnostmi Země jako planety v rámci sluneční soustavy. Skupina těchto faktorů patří mezi radiační klimatické faktory, neboť určují množství slunečního záření dopadajícího na horní hranici atmosféry a jeho rozdělení v čase a prostoru; jejich působení je zpravidla globální a nepřetržité. Mezi tyto faktory patří především vlastnosti záření Slunce (intenzita, vlnová délka), dále pak vlastnosti oběžné dráhy Země kolem Slunce (střední vzdálenost obou těles, rychlost oběhu, excentricita oběžné dráhy Země kolem Slunce), sférický tvar Země a její rotace, sklon zemské osy k rovině ekliptiky a vzájemná poloha perihelia a afelia vůči jarnímu a podzimnímu bodu. Mezi astronomické klimatické faktory patří i epizodicky působící impakty vesmírných těles. Viz též klima solární, cykly Milankovičovy.
česky: faktor klimatický astronomický; angl: astronomical climatic factor; něm: astronomischer Klimafaktor m; fr: facteur cosmique (m), facteur astronomique (m); rus: астрономический климатический фактор  1993-b3
astronomicky možné trvanie slnečného svitu
časový interval od východu do západu Slunce vzhledem k ideálnímu obzoru, na němž se nevyskytují žádné překážky, které by zkracovaly sluneční svit. Závisí jen na zeměp. š. místa pozorování a roč. době a představuje maximálně možný sluneční svit v daném místě.
česky: trvání slunečního svitu astronomicky možné; angl: astronomic sunshine duration; něm: astronomisch mögliche Sonnenscheindauer f; rus: астрономически возможная продолжительность солнечного сияния  1993-a1
astronomický obzor
obzor vymezený jako průsečnice nebeské sféry s horiz. rovinou proloženou daným místem na zemském povrchu, případně s ní rovnoběžnou rovinou vedenou středem Země. Všechny body této kružnice mají zenitový úhel 90°, takže jejich úhlová vzdálenost od zenitu i nadiru je stejná.
česky: obzor astronomický; angl: astronomic horizon, astronomical horizon; něm: astronomischer Horizont m  2016
astronomický súmrak
fáze soumraku, která večer následuje po námořním soumraku, resp. mu ráno předchází. Střed slunečního disku je mezi 12° a 18° pod obzorem. V této době je obloha ještě, resp. už zčásti osvětlována slabým rozptýleným slunečním světlem, čímž jsou rušena astronomická pozorování. Ve starší literatuře se lze někdy setkat s dnes již zast. pojetím astronomického soumraku jako synonyma k soumraku jako takovému.
česky: soumrak astronomický; angl: astronomical twilight; něm: astronomische Dämmerung f; rus: астрономические сумерки  1993-a3
atlantická multidekádna oscilácia
(AMO) – nízkofrekvenční oscilace podmínek v severním Atlantiku (od rovníku po 70. rovnoběžku) projevující se výkyvy teploty povrchu moře s periodou 60 až 80 let a průměrnou amplitudou mezi teplou a chladnou fází cca 0,5 °C. Tato oscilace se projevuje kolísáním klimatu především v Evropě a severní Americe. Teplým fázím AMO, z nichž zatím poslední začala v druhé polovině 90. let 20. století, se připisují mj. častější a intenzivnější sucha na středozápadě USA nebo větší četnost silných hurikánů v severním Atlantiku.
česky: oscilace multidekádní atlantická; angl: Atlantic Multidecadal Oscillation  2020
atlantik
viz holocén.
Termín zavedl nor. botanik A. G. Blytt v roce 1876 (Atlantikum). Vytvořil ho z řec. Ἀτλαντικός [Atlantikos] „atlantský“ (oceán, nazván podle pohoří  Ἄτλας [Atlas]). Důvodem byla převažující oceánita klimatu, jíž se atlantik – na rozdíl od předchozího boreálu – vyznačoval.
česky: atlantik; angl: Atlantic; něm: Atlantik m; fr: Atlantique m; rus: атлантик  1993-a3
Atlas horských mraků
monografie A. Bečváře a B. Šimáka (Praha 1953), která obsahuje soubor fotografií oblaků pozorovaných na horských meteorologických stanicích ve Vysokých Tatrách. Zahrnuje i četné snímky orografických oblaků. Názvy oblaků v této publikaci však neodpovídají mezinárodní morfologické klasifikaci oblaků. Autoři užívají speciální terminologii (např. Orographicus lenticularis, Altostratus nivosus apod.), která klasifikuje oblaky podle vzhledu i podle vývoje nad horským terénem. Kromě 154 fotografií oblaků obsahuje atlas i 7 fotografií fotometeorů a jednu fotografii polární záře. A. Bečvář (1901–1965) je považován za průkopníka v čs. met. fotografii.
česky: Atlas horských mraků; angl: Mountain cloud atlas  1993-a2
atlas podnebia
česky: atlas podnebí; angl: climatological atlas; něm: Klimaatlas m; fr: atlas climatique m; rus: климатический атлас  1993-a3
atmometer
u nás nepoužívané označení pro výparoměr.
Termín se skládá z řec. ἀτμός [atmos] „pára“ a μέτρον [metron] „míra, měřidlo“.
česky: atmometr; angl: atmidometer, atmometer, evaporimeter; něm: Atmometer n, Verdunstungsmesser m; fr: évaporomètre m, atmomètre m, atmidomètre m; rus: атмидометр, атмометр, испаритель  1993-a1
atmosféra
1. plynný obal určitého vesmírného tělesa, tvořený směsí plynů a obsahující v některých případech i pevné a/nebo kapalné atmosférické částice. Atmosféra je k vesmírnému tělesu vázána gravitační silou a spolu s ním také alespoň do určité míry rotuje. Obecnou vlastností atmosfér je přítomnost statického tlaku, jehož hodnota vlivem stlačitelnosti plynů přibližně exponenciálně klesá s rostoucí vzdáleností od povrchu vesmírného tělesa.  Předmětem studia meteorologie a jí příbuzných oborů je atmosféra Země. Viz též atmosféra planetární, chromosféra, koróna sluneční.
2. zast. jednotka tlaku o velikosti normálního tlaku vzduchu.
Termín zavedl holandský astronom a matematik W. Snellius na začátku 17. století v lat. podobě atmosphaera. Skládá se z řec. ἀτμός [atmos] „pára“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“). Na rozdíl od dnešního významu jím totiž W. Snellius označoval pouze tu vrstvu vzduchu obklopující zemské těleso, která obsahuje "vlhké výpary" neboli vodní páru.
česky: atmosféra; angl: atmosphere; něm: Atmosphäre f; fr: atmosphère f; rus: атмосфера  1993-a3
atmosféra Zeme
syn. ovzduší – plynný obal planety Země o hmotnosti přibližně milionkrát menší než je hmotnost zemského tělesa, s nímž je atmosféra svázána gravitační silou a v převážné míře s ním rotuje. Dosahuje od zemského povrchu až po horní hranici atmosféry ve výšce několika desítek tisíc km. Zemská atmosféra je tvořena především směsí plynů označovaných jako vzduch, dále pak v něm přítomnými kapalnými a pevnými atmosférickými částicemi. Jiným způsobem můžeme atmosféru Země rozdělit na suchou a čistou atmosféruvodu v atmosféře a atmosférické příměsi. Chemické složení atmosféry Země je z hlediska hlavních složek přibližně do výšky 100 km konstantní, ovšem s výjimkou některých látek, především vody, oxidu uhličitého a ozonu.
Charakteristickým rysem atmosféry Země je uspořádání polí meteorologických prvků, a to především ve vertikálním směru, ve kterém rozlišujeme celou řadu vertikálních členění atmosféry. Vzduch je stlačován silou zemské tíže; výsledný pokles tlaku vzduchu s výškou podle barometrické formule je určujícím faktorem pro statiku atmosféry. Především kvůli svému skleníkovému efektu atmosféra podstatně ovlivňuje radiační bilanci zemského povrchu. Horizontální rozdíly v tepelné bilanci atmosféry způsobují existenci horizontálních tlakových gradientů, které podmiňují dynamiku atmosféry.
Aproximací skutečných podmínek v atmosféře Země je standardní atmosféra. Pro různé účely byly dále zavedeny další zjednodušující teoretické modely podmínek v atmosféře, označované jako modelové atmosféry.
Atmosféra Země se mírně překrývá s dalšími složkami přírodní sféry Země. Voda v atmosféře je považována i za součást hydrosféry, průnik atmosféry s pedosférou představuje půdní vzduch. V atmosféře je přítomen atmosférický plankton, který je součástí biosféry. Průnik můžeme najít i s kryosférou, a to v podobě vzduchu uvězněného v ledovcích.
česky: atmosféra Země; angl: Earth's atmosphere; něm: Atmosphäre der Erde f; fr: atmosphère terrestre f, atmosphère de la Terre f; rus: атмосфера Земли  1993-a3
atmosférická akustika
odvětví meteorologie studující vliv atm. podmínek na šíření a slyšitelnost zvuků z různých zdrojů a zvuky atm. původu. Viz též šíření zvuku, pásmo slyšitelnosti, pásmo ticha, pozorování bouřek, vlna rázová, vlny zvukové.
česky: akustika atmosférická; angl: atmospheric acoustics; něm: atmosphärische Akustik f; fr: acoustique atmosphérique f; rus: атмосферная акустика  1993-a1
atmosférická cirkulácia
souhrn všech nebo vybraných pohybů vzduchu, které mohou, ale nemusí tvořit uzavřený cirkulační systém. Různé druhy atmosférické cirkulace mohou být vymezeny zejména
a) prostorovým rozsahem (všeobecná cirkulace atmosféry, atmosférická cirkulace v určité oblasti);
b) společnou vlastností pohybů vzduchu, např. zakřivením proudnic (cirkulace cyklonální, cirkulace anticyklonální), směrem (cirkulace zonální, cirkulace meridionální) nebo uspořádáním (cirkulace buňková);
c) mechanizmem vzniku těchto pohybů (cirkulace pasátová, cirkulace monzunová, různé druhy místní cirkulace apod.).
česky: cirkulace atmosférická; angl: atmospheric circulation; něm: atmosphärische Zirkulation f; fr: circulation atmosphérique f; rus: атмосферная циркуляция  2023
atmosférická elektrina
souhrn el. jevů, které se vyskytují v atmosféře. Zpravidla rozlišujeme:
a) elektřinu klidného ovzduší;
b) bouřkovou elektřinu, popř. oblačnou elektřinu.
Detailněji se atmosférická elektřina dělí např. na tematické okruhy:
a) ionty a elektrickou vodivost vzduchu;
b) el. pole v atmosféře;
c) el. proudy tekoucí atmosférou;
d) elektřinu v oblacích a bouřkovou elektřinu.
Do oboru atmosférické elektřiny obvyklene nezahrnujeme kosmické záření a jevy v atmosféře, kterými se v současné době zabývají samostatné vědní obory, především aeronomie. Na průběh el. jevů v atmosféře mají značný vliv ostatní met. děje, zejména ty, které souvisejí s obsahem aerosolových částic ve vzduchu a s fázovými změnami vody v oblacích při formování srážek. Viz též vodivost vzduchu elektrická.
česky: elektřina atmosférická; angl: atmospheric electricity; něm: atmosphärische Elektrizität f; fr: électricité atmosphérique f; rus: атмосферное электричество  1993-a3
atmosférická ionizácia
proces vzniku atmosférických iontů a volných elektronů, který ovlivňuje elektrickou vodivost vzduchu, a tím i další el. jevy v atmosféře. Koncentrace iontů je v atmosféře dána výslednicí dvou navzájem protichůdných procesů, a to ionizace neutrálních částic, zpravidla molekul, a rekombinace iontů. Hlavním iniciátorem atmosférické ionizace je ionizující záření, jmenovitě
a) do atmosféry shora pronikající kosmické záření, které má převážně charakter korpuskulárního záření; o dominantní roli tohoto záření prakticky v celém vertikálním profilu atmosféry svědčí růst koncentrace atmosférických iontů s výškou;
b) radioaktivní záření od radioaktivních příměsí obsažených v půdě, popř. odtud rozptýlených do vzduchu; uplatňuje se v nejspodnějších vrstvách atmosféry ve vertikálním rozsahu přibližně odpovídajícím mezní vrstvě atmosféry.
Kromě toho dochází v atmosféře i k tzv. ionizaci nárazem, která se zde však projevuje pouze v relativně malých objemech vzduchu v souvislosti s el. výboji blesků nebo hrotovými výboji. Princip spočívá v tom, že v lokálně dostatečně silných elektrických polích získávají volné elektrony takovou kinetickou energii svého pohybu, že při nárazech na neutrální molekuly působí jejich ionizaci. Viz též ionosféra.
česky: ionizace atmosférická; angl: ionization of atmosphere; něm: Ionisation der Atmosphäre f; rus: ионизация атмосферы  1993-a3
atmosférická optika
odvětví meteorologie, zabývající se studiem opt. vlastností atmosféry a opt. jevy vyvolanými molekulami vzduchu a většími částicemi rozptýlenými v ovzduší. Atmosférická optika zahrnuje především studium lomu, odrazu, ohybu, rozptylu a polarizace světla v ovzduší.
česky: optika atmosférická; angl: atmospheric optics; něm: atmosphärische Optik f; rus: атмосферная оптика  1993-a1
atmosférická porucha
1. obecně jakékoliv porušení rovnovážného stavu v atmosféře;
2. zastaralé označení pro oblast, která jeví známky cyklonálního vývoje.
česky: porucha atmosférická; angl: atmospheric disturbance; něm: atmosphärische Störung f; rus: атмосферное возмущение  1993-a3
atmosférická refrakcia
lom elektromagnetických vln v atmosféře – zakřivení drah šíření elektromagnetických, v meteorologii nejčastěji světelných nebo rádiových vln procházejících atmosférou, způsobené prostorovými změnami indexu lomu, které jsou podmíněny změnami hustoty vzduchu. Refrakce rádiových vln, používaných např. v meteorologických radiolokátorech, významně závisí i na vlhkosti vzduchu, což souvisí s tím, že rádiové vlny mají podstatně nižší frekvenci než světelné záření a při jejich dopadu se uplatňuje orientační polarizace souborů molekul H2O, ovlivňující index lomu vzduchu. Viz též šíření elektromagnetického vlnění v atmosféře.
česky: refrakce atmosférická; angl: atmospheric refraction; něm: atmosphärische Refraktion f; rus: атмосферная рефракция  1993-a1
atmosférická rieka
dlouhý a úzký pás zesíleného transportu vodní páry, který se přechodně vytvoří ve spodní troposféře. Jeho délka může dosahovat několik tisíc km při šířce nejvýše několik set km a vertikálním rozsahu několik kilometrů. Často je spojen s nízkohladinovým tryskovým prouděním před studenou frontou mimotropické cyklóny. Přenášená vodní pára pochází nejčastěji z tropických oblastí. Jako hranice pro vymezení atmosférické řeky se považuje hodnota vertikálně integrovaného toku vodní páry 250 kg m-1 s-1. Celkový tok vodní páry v nejvýraznějších atmosférických řekách je tak větší než průměrný průtok kterékoliv vodního toku na světě. Vhodným prostředkem pro sledování polohy atmosférických řek jsou meteorologické družice nesoucí přístroje schopné určit obsah vodní páry v atmosféře. V současnosti se atmosférickým řekám věnuje poměrně velká pozornost v souvislosti se změnou jejich výskytu a intenzity vlivem změny klimatu. Viz též expres Ananasový.
česky: řeka atmosférická; angl: atmospheric river; rus: атмосферная река  2019
atmosférické ionty
syn. aeroionty – elektricky nabité částice v atmosféře, působící elektrickou vodivost vzduchu. Ovlivňují elektrické pole v atmosféře, uplatňují se jako kondenzační jádra a vyznačují se fyziologickými účinky. Patří k nim molekuly, které při atmosférické ionizaci ztratily obvykle jeden elektron nebo naopak zachytily volný elektron, shluky molekul nesoucí přebytek kladného nebo záporného el. náboje (lehké ionty, podle některých autorů malé ionty) a jemné aerosolové částice zpravidla patřící k Aitkenovým jádrům, jež zachytily nabitou molekulu, popř. jejich shluk (střední, těžké a ultratěžké ionty, podle některých autorů též velké nebo Langevinovy ionty).
V blízkosti zemského povrchu dosahuje koncentrace lehkých iontů řádově 106 m–3, koncentrace těžkých a ultratěžkých iontů bývá zhruba o řád větší. S výškou těžkých a ultratěžkých iontů ubývá, zatímco koncentrace lehkých iontů roste. Koncentrace tzv. stř. iontů, které podle velikosti zařazujeme do oblasti mezi lehkými a těžkými ionty, místně i časově velmi kolísá. El. vodivost vzduchu je v rozhodující míře podmíněna existencí lehkých iontů, zatímco ionty těžké a ultratěžké se v důsledku malé pohyblivosti uplatňují jako nositelé el. proudu ve vzduchu jen velmi málo.
Důkaz existence iontů v atmosféře, a tím vysvětlení el. vodivosti vzduchu, podali něm. fyzici J. Elster a H. Geitel v r. 1899. Viz též klasifikace atmosférických iontů, ionizace atmosférická, počítač iontů.
Termín iont zavedl angl. vědec W. Whewell v r. 1834. Pochází z řec. ἰόν [ion, gen. iontos] „jdoucí“ (tvar slovesa ἰέναι [ienai] „jít“), čímž odkazuje na pohyb iontů v el. poli.
česky: ionty atmosférické; angl: atmospheric ions; něm: atmosphärische Ionen n/pl; rus: атмосферные ионы  1993-a1
atmosférické javy
skupina opt. jevů v atmosféře ve tvaru kruhů, oblouků, sloupů nebo jasných skvrn vznikajících lomem nebo odrazem světla na ledových krystalech rozptýlených v ovzduší. Patří k nim malé a velké halo, parhelia, halový sloup, tečné a cirkumzenitální oblouky, parhelický kruh, spodní slunce, pyramidální hala, supralaterální oblouk, infralaterální oblouky, Parryho oblouk aj. V literatuře, popř. na internetu lze nalézt zmínky i o velmi vzácných úkazech, pro něž v historii existuje pouze několik málo nebo dokonce jediné pozorování, často z oblasti Antarktidy. Většinou jde o velmi slabé úkazy na protisluneční straně oblohy či o světelné skvrny považované v souvislosti s různými pyramidálními haly za analogie parhelií nebo tečných oblouků malého hala. Jde např. o Wegenerovy oblouky, Hastingsovy oblouky, Kernův oblouk, Trickerův oblouk, Greenlerovy oblouky a Liljequistova parhelia. Halové jevy patří mezi fotometeory.
Termín halo pochází z řec. slova ἅλως [halós] „humno, mlat kruhového tvaru“ a odtud „světelný kruh kolem Slunce, Měsíce či hvězd“. V met. smyslu jej používal již Aristotelés (4. stol. př. n. l.), ovšem v širším významu jako bezbarvý kruhový světelný jev, vznikající kolem Slunce, Měsíce či hvězd. První soubornou teorii halových jevů podal franc. přírodovědec E. Mariotte v r. 1681.
česky: jevy halové; angl: halo phenomena; něm: Halo m; rus: явление гало  1993-a3
atmosférické okno
oblast elmag. záření, v níž má bezoblačná atmosféra velkou propustnost (nízkou absorpci některým z hlavních absorbentů – především vodní páry, oxidu uhličitého nebo ozonu). Pro radiační a tepelný režim Země a její atmosféry jsou významná zejména atmosférická okna v oblasti vlnových délek přibližně 8,5 až 12,5 µm. Meteorologickými družicemi jsou pro monitorování zemského povrchu a oblačnosti v tepelném záření využívána především atmos. okna v pásmech 3,5–4 µm, 8–9 µm a 10–12,5 µm. Viz též propustnost atmosféry, průzkum Země dálkový.
česky: okno atmosférické; angl: atmospheric window; něm: atmosphärisches Fenster n; rus: атмосферное окно  1993-a3
atmosférické slapy
periodické pohyby zemské atmosféry vyvolané gravitačním účinkem Měsíce a Slunce a odstředivých sil rotace Země kolem těžiště soustavy Země – Měsíc, resp. Země – Slunce, podobně jako slapy (příliv a odliv) hydrosféry. Takto vzniklé vlny mají poměrně malou amplitudu a vzhledem k malé hustotě atmosféry se projevují jen nevýznamným kolísáním tlaku vzduchu.
česky: slapy atmosférické; angl: atmospheric tides; něm: atmosphärische Gezeiten pl; rus: атмосферные приливы  1993-a3
atmosférické úkazy
starší označení pro atmosférické jevy.
česky: úkazy atmosférické; angl: atmospheric phenomena; něm: atmosphärische Phänomene n/pl; rus: атмосферные явления  1993-a2
atmosférické vlny
pojem vyskytující se dnes v odb. literatuře zejména v souvislosti s interakcemi a transformacemi energie mezi různými druhy vlnových a oscilačních procesů souvisejících s atmosférickou hydrodynamikou. V tomto smyslu se do atmosférických vln zahrnují zejména různé typy gravitačních vln, rázových vln, zvukové vlny, inerční vlny, Rossbyho vlny, planetární vlny apod.
česky: vlny atmosférické; angl: atmospheric waves; něm: atmophärische Wellen f/pl; rus: атмосферныe волны  2015
atmosférické zrážky
v české met. terminologii souhrnné označení pro hydrometeory buď tvořené padajícími srážkovými částicemi, nebo utvářející se na zemském povrchu či různých objektech. Z tohoto hlediska rozeznáváme srážky padající a usazené; v oboru chemie atmosféry tyto dvě skupiny označujeme jako srážky vertikální a horizontální. Existuje i několik dalších způsobů klasifikace srážek. Výčet různých druhů srážek v Mezinárodním atlasu oblaků a v návodech pro meteorologické pozorovatele ovšem není totožný, neboť angl. termín precipitation zahrnuje pouze padající srážky.
Srážky jsou důležitou příjmovou složkou hydrologické bilance. Měřením srážek zjišťujeme jejich úhrn, popř. intenzitu. Průměrný roční úhrn srážek je jedním z hlavních faktorů určujících humiditu klimatu, průměrné měsíční úhrny srážek slouží k popisu srážkového režimu dané oblasti. Pole srážek může být ovlivňováno orografií, která způsobuje orografické zesílení srážek i úbytek srážek ve srážkovém stínu, případně nad inverzí srážek. Viz též mikrofyzika oblaků a srážek, izohyeta, extrémy srážek.
Termín je odvozen od slovesa srazit, a to původně ve smyslu shora dolů (srov. praecipitatio).
česky: srážky; angl: precipitation; něm: Niederschlag m; rus: атмосферные осадки  1993-b3
atmosférický aerosol
1. suspenze pevných a/nebo kapalných atmosférických částic ve vzduchu. Ačkoli toto vymezení splňují i oblačné částice, v meteorologii je většinou pod pojem atmosférický aerosol nezahrnujeme. Částice atmosférického aerosolu mohou být původu přírodního (částice mořské soli, atmosférický prach, vulkanický popel, atmosférický plankton apod.) nebo antropogenního (kouř, popílek průmyslového původu a jiné zplodiny spalovacích procesů, chem. a mech. technologií apod.). Důležitými charakteristikami atmosférického aerosolu jsou chemické složení aerosolových částic, jejich hmotnostní či objemová koncentrace, spektrum velikosti částic apod. Velikost částic zahrnovaných pod pojem atmosférický aerosol v literatuře kolísá, v nejširším pojetí zahrnuje všechny částice o ekvivalentním poloměru pod 100 µm, tedy včetně nanočástic. Podle velikosti rozlišujeme v případě pevných částic frakce PM10, PM2,5, PM1 a PM0,1. Velikost a tvar částic podmiňují jejich pádovou rychlost, která spolu s povětrnostními podmínkami určuje míru depozice na zemský povrch. Pro aerosolové částice se obvykle předpokládá, že jejich pádová rychlost dosahuje max. několika cm.s–1, jejich setrvačnost je při pohybech ve vzduchu zanedbatelná a lze na ně aplikovat podmínky Brownova pohybu. Viz též částice suspendované.
2. v současné terminologii se pojem aerosoly používá v množném čísle též jako syn. pro samotné aerosolové částice. Podle původu částic se pak v literatuře někdy rozlišují pojmy aerosoly přirozené (mořské, kontinentální, pouštní apod.) a antropogenní (městské, průmyslové, dopravní apod.). Podle způsobu vzniku se rozlišují aerosoly primární a aerosoly sekundární (popř. aerosoly disperzní, resp. nukleační), z nichž hlavní pozornost zasluhují sekundární organické aerosolůy (SOA).
česky: aerosol atmosférický; angl: atmospheric aerosol; něm: atmosphärisches Aerosol n; fr: aérosol atmosphérique m, particules d'aérosols pl; rus: атмосферный аэрозоль  1993-a3
atmosférický front
atmosférické rozhraní v synoptickém měřítku mezi různými vzduchovými hmotami v troposféře. Šířka přechodové zóny v horiz. směru bývá několik desítek km, tloušťka ve vert. směru několik set metrů, popř. jednotky km. Fronta je vždy ukloněna směrem do studeného vzduchu, přičemž sklon fronty vzhledem k zemskému povrchu je nejčastěji do 1°. Pro zjednodušení můžeme tuto zónu aproximovat frontální plochou a znázorňovat jako frontální čáru. Viz též klasifikace atmosférických front, větev atmosférické fronty, počasí frontálníoblačnost frontální, frontogeneze, frontolýza, analýza frontální, profil fronty, topografie fronty, přechod fronty, izobary na atmosférické frontě, dynamika fronty, zostření fronty, deformace fronty orografická, vlna frontální, zóna frontální.
česky: fronta atmosférická; angl: atmospheric front; něm: atmosphärische Front f, Wetterfront f; fr: front atmosphérique m, front météorologique m; rus: атмосферный фронт  1993-a3
atmosférický hvizd
elektromagnetický signál, který se šíří plazmatem ionosféry či magnetosféry podél magnetické siločáry. Vzniká disperzí širokopásmového pulsu emitovaného bleskovým výbojem. V plazmatickém prostředí se šíří různé frekvence původního širokopásmového signálu různou rychlostí, a po převedení elektromagnetického signálu na akustický signál proto vzniká typický hvízdavý zvuk. Délka jeho trvání (zlomky vteřiny a ž jednotky vteřin) je dána vlastnostmi prostředí, ve kterém se šíří, a to především hustotou elektronů v plazmatu. Mechanismus vzniku hvizdů byl vysvětlen až v padesátých letech (O. Storey, 1953). Viz též sfériky.
česky: hvizd; angl: whistler; něm: Whistler m; rus: свистящие атмосферики  1993-a3
atmosférický planktón
aeroplankton – mikroorganismy a jejich části udržující se poměrně dlouho ve vzduchu a tvořící součást atmosférického aerosolu. Hlavními složkami atmosférického planktonu jsou pylová zrna, viry, bakterie, řasy, plísně, spory, výtrusy, mikroskopičtí živočichové apod. Koncentrace a složení atmosférického planktonu se mění s denní i roč. dobou, s charakterem krajiny a značně závisí na počasí.
česky: plankton atmosférický; angl: aeroplancton; něm: Luftplankton n, Aeroplankton n; rus: воздушный планктон  1993-a3
atmosférický prach
pevný aerosol anorganického i organického původu složený z částic (nikoliv ledových), které se vznášejí v atmosféře a sedimentují na zemský povrch. Za atmosférický prach se nepovažuje kouř. Základními složkami atmosférického prachu jsou půdní částice, částice mořských solí, různé částice antropogenního původu, bakterie, spory, výtrusy a různé produkty rozpadu látek, někdy také částice kosmického prachu. Typické rozměry částic jsou 10–4 m až 10–6 m a za horní hranici velikosti se v současné odborné literatuře nejčastěji považuje 5.10–4 m. Pro účely ochrany čistoty ovzduší se kromě složení atmosférického prachu určuje jeho koncentrace (množství nebo hmotnost částic v jednotce objemu vzduchu) a spektrum velikosti částic. Atmosférický prach zmenšuje průzračnost atmosféry a jako zákal omezuje dohlednost. Částice atmosférického prachu vhodných fyz. a chem. vlastností mohou sloužit jako kondenzační jádra. Viz též popílek, prach poletavý, spad prachu, depozice suchá, prachoměr, aerosol atmosférický.
česky: prach atmosférický; angl: atmospheric dust; něm: atmosphärischer Staub m; rus: атмосферная пыль  1993-a3
atmosférický tlak
syn. tlak vzduchu.
česky: tlak atmosférický; angl: atmospheric pressure; rus: атмосферное давление  1993-a1
atmosférický vír
rotační pohyb vzduchu, který může být zviditelněn unášenými částicemi atmosférického aerosolu. Atmosférické víry vznikají z rozmanitých příčin, které určují měřítko vírů i směr jejich rotace, jejíž osa bývá většinou orientována přibližně vertikálně. Největším takovým vírem, který tvoří součást všeobecné cirkulace atmosféry, je cirkumpolární vír. V synoptickém měřítku rozlišujeme cyklony a anticyklony, přičemž obzvlášť vysoké rotační rychlosti dosahují tropické cyklony. Kromě cyklon můžeme pomocí meteorologických družic detekovat i další oblačné víry, a to i mezosynoptického měřítka, např. polární cyklony a závětrné víry. Nejmenšími víry s přibližně vertikální osou jsou tromby, které mohou být viditelné díky rotujícím nebo na zemském povrchu vířeným pevným nebo kapalným částicím. V atmosféře se dále tvoří i stabilní víry s přibližně horiz. osou, tzv. rotory. Prakticky neustále jsou v atmosféře přítomny náhodně se pohybující nestabilní turbulentní víry s různou orientací osy rotace. Viz též vorticita, proudění vírové, měřítko atmosférických vírů.
česky: vír atmosférický; angl: whirl, vortex; něm: atmosphärischer Wirbel m; rus: вихр в атмосфере  1993-a3
atmosférický vlnovod
horiz. vrstva atmosféry, poměrně malého vert. rozsahu, ve které vlivem silné inverze teploty a/nebo vlhkosti vzduchu je šíření elektromagnetického vlnění v atmosféře ovlivněno superrefrakcí. Vlny se uvnitř této vrstvy mohou šířit na velké vzdálenosti, neboť dochází k jejich úplnému vnitřnímu odrazu, podobně jako v kovových nebo dielektrických radiotechnických vlnovodech. V důsledku toho lze pomocí radaru zjišťovat cíle ležící pod radiohorizontem nebo přijímat televizní signál velmi vzdálených vysílačů apod. Atmosferický vlnovod se může vyskytovat v přízemních i vyšších vrstvách atmosféry. Jeho horiz. délka závisí na rozloze oblasti a teplotním zvrstvení. Viz též index lomu elektromagnetického vlnění ve vzduchu.
česky: vlnovod atmosférický; angl: atmospheric wave guide; něm: atmosphärischer Wellenleiter m; rus: атмосферный волновод  1993-a3
atmosfériky
syn. sfériky.
Termín je odvozen od slova atmosféra. Odkazuje na atmosférický původ těchto rozruchů radiových vln.
česky: atmosfériky; angl: spherics, atmospherics, sferics; něm: Sferics m/pl; rus: атмосферики  1993-a1
atraktor
Termín pochází z lat. attractor „přitahovatel“, které je odvozeno od slovesa attrahere „přitahovat“ (z ad- „k, při“ a trahere „táhnout, nést“, srov. traktor).
česky: atraktor; angl: attractor; něm: Attraktor m  2017
aureola
1. vnitřní barevný sled koróny. Obvykle se vyznačuje zřetelným vnějším kruhem červenavé nebo hnědavé barvy, jehož poloměr nebývá větší než 5°. Čím menší je tento kruh, tím větší jsou vodní kapičky, na nichž dochází k ohybu světla. V tom spočívá diagnostický význam aureoly i korón;
2. oblast na obloze sahající do vzdálenosti několika úhlových stupňů od slunečního disku, z níž vychází cirkumsolární záření.
Termín byl přejat z lat. aureola „svatozář“.
česky: aureola; angl: aureole; něm: Aureole f, Kranz m; fr: auréole coronitique f; rus: ореол  1993-a1
autobarotropná atmosféra
modelová atmosféra, která se sama udržuje ve stavu barotropie. Viz též atmosféra barotropní.
česky: atmosféra autobarotropní; angl: autobarotropic atmosphere; něm: autobarotrope Atmosphäre f; fr: atmosphère autobarotrope f; rus: автобаротропная атмосфера  1993-a3
autokonvekcia
teoretický koncept konvekce, k níž by docházelo v podmínkách extrémní vertikální instability atmosféry při inverzi hustoty vzduchu, kde velikost vertikálního teplotního gradientu přesahuje velikost autokonvekčního gradientu.
Termín se skládá z řec. αὐτός [autos] „sám, sám od sebe“ a ze slova konvekce. To naznačuje spontánní vznik konvekce, k němuž však ve skutečnosti stačí, aby velikost vert. teplotního gradientu překročila jen hodnotu adiabatického teplotního gradientu.
česky: autokonvekce; angl: autoconvection; něm: Autokonvektion f; fr: autoconvection; rus: автоконвекция  1993-a3
autokonvekčný gradient
vertikální teplotní gradienthomogenní atmosféře. Použijeme-li stavovou rovnici pro suchý vzduch a rovnici hydrostatické rovnováhy, dostaneme v homogenní atmosféře hodnotu autokonvekčního gradientu rovnou hodnotě g / R, kde g značí velikost tíhového zrychlení a R měrnou plynovou konstantu vzduchu. Pro suchý vzduch je hodnota autokonvekčního gradientu rovna 0,0342 K.m–1, tj. přibližně 3,4 K na 100 m. Jestliže je hodnota skutečného vert. gradientu teploty vzduchu větší než hodnota gradientu autokonvekčního, tedy klesá-li teplota vzduchu s výškou rychleji než o 0,0342 K.m–1, což může nastat pouze v silně ohřáté vrstvě vzduchu bezprostředně přiléhající k zemskému povrchu, vytvoří se inverze hustoty vzduchu, tedy hustota vzduchu v příslušné vrstvě roste s výškou.
Adjektivum autokonvekční je odvozeno od termínu autokonvekce, který se skládá z řec. αὐτός [autos] „sám, sám od sebe“ a ze slova konvekce. Termín autokonvekční gradient tedy odráží představu, že konvekce může nastat, až když vert. teplotní gradient překročí jeho velikost. Ve skutečnosti k tomu běžně dochází již při překročení hodnoty adiabatického teplotního gradientu (v suchém vzduchu přibližně 1 K na 100 m).
česky: gradient autokonvekční; angl: autoconvective lapse rate; něm: autokonvektiver Temperaturgradient m; fr: taux de refroidissement autoconvectif m, gradient vertical autoconvectif m; rus: автоконвективный градиент  1993-a3
autokonvekčný teplotný gradient
česky: gradient teplotní autokonvekční; něm: autokonvektiver Temperaturgradient m; fr: taux de refroidissement autoconvectif m; rus: автоконвективный градиент температуры  1993-a1
autokonverzia
původně označení parametrizace mikrofyzikálního procesu, při němž dochází k růstu směšovacího poměru srážkové vody pouze na úkor směšovacího poměru oblačné vody. V současné době je termín autokonverze chápán v širším smyslu jako počáteční stadium procesu růstu kapek v oblaku koalescencí, kdy srážkové kapky vznikají pouze koalescencí kapek oblačných. Vzhledem k nízké zachycovací účinnosti při srážkách oblačných kapek je autokonverze limitujícím faktorem při vzniku prvních srážkových kapek. Setkáváme se i s rozšířeným významem tohoto termínu, užívaného také pro vznik srážkového ledu z ledu oblačného.
Termín se skládá z řec. αὐτός [autos] „sám, sám od sebe“ a z lat. conversio „otáčení, obrat, změna“. Vyjadřuje skutečnost, že vznik prvních dešťových kapek probíhá pouze z již přítomných kapek oblačných.
česky: autokonverze; angl: autoconversion; něm: Autokonversion f, Autokonversion f; fr: autoconversion f; rus: автоконверсия  2014
automatická meteorologická stanica
meteorologická stanice, která měří meteorologické prvky bez přímé součinnosti s člověkem. Výsledky měření jsou vysílány automaticky do centra ve formě kódovaných zpráv nebo v datových souborech. V praxi je často užívaná anglická zkratka AWS. Viz též automatizace v meteorologii.
česky: stanice meteorologická automatická; angl: automatic weather station; něm: automatische Wetterstation f; rus: автоматическая метеорологическая станция  1993-a3
automatické vysielanie informácií o letiskách a ich meteorologických podmienkach
(ATIS) – automatická informační služba koncové řízené oblasti, kterou ve formě pravidelného zpravodajství vysílaného pozemní radiostanicí poskytuje Řízení letového provozu ČR, s. p. na letištích Václava Havla Praha, Karlovy Vary, Brno–Tuřany a Ostrava–Mošnov pro posádky přilétávajících a odlétávajících letadel, vysílané pozemní radiostanicí. Toto vysílání obsahuje z met. údajů hodnoty charakteristik větru, dohlednosti, dráhové dohlednosti, stavu počasí, oblačnosti, údaje o teplotě vzduchu, teplotě rosného bodu, tlaku vzduchu redukovaném na střední hladinu moře podle standardní atmosféry a popř. informace o hlášeném střihu větru. Viz též informace meteorologické o podmínkách na letištích pro posádky během letu, briefing meteorologický.
česky: vysílání informací o letištích a o jejich meteorologických podmínkách automatické; angl: automatic terminal information service  1993-a3
automatický meriaci systém
systém pro měření met. veličin, jehož centrální jednotkou je datová ústředna nebo počítač, do kterých se přenášejí naměřené hodnoty meteorologických prvků z jednotlivých senzorů. Datová ústředna zajišťuje přechodné uložení dat, v případě senzorů s analogovým přenosem signálu také digitalizaci naměřených hodnot a jejich následnou distribuci k dalšímu zpracování. Na automatických meteorologických stanicích se data ze senzorů přenášejí do počítače, jehož programové vybavení umožňuje základní zpracování dat a jejich přenos do centra v požadovaných datových formátech. Viz též automatizace v meteorologii.
česky: systém měřicí automatický; angl: automatic measuring system; něm: automatisches Messsystem n  2014
automatický váhový zrážkomer
automatický srážkoměr, jehož měření je založeno na vážení nádoby, která zachycuje padající srážky, tenzometrickou váhou připojenou na řídicí elektroniku. Odstraňuje nedostatky jednoduššího člunkového srážkoměru, protože zachytí a ihned vyhodnotí i tuhé srážky a jeho přesnost není závislá na intenzitě srážek. Pro zachycení tuhých srážek je ve vážené nádobě ekologická nemrznoucí kapalina. Samovolný výpar z hladiny vážené nádoby je potlačen použitím vrstvy silikonového oleje na povrchu vážené kapaliny. Pro zamezení falešných srážek bývá vybaven detektorem srážek. Zast. označení váhového srážkoměru je chionograf, případně srážkový intenzograf.
česky: srážkoměr váhový; angl: weighing raingauge; něm: Niederschlagswaage f  2014
automatický zrážkomer
srážkoměr měřící průběžně srážky bez přímé součinnosti s lidskou obsluhou. Kromě úhrnu srážek umožňuje měřit i okamžitou intenzitu srážek. Podle principu měření se automatické srážkoměry dělí na člunkové a váhové. Viz též ombrograf.
česky: srážkoměr automatický; angl: automatic raingauge, recording raingauge; rus: автоматический дождемер  2019
automatizácia v meteorológii
způsob plnění rutinních operací v meteorologii, jenž pomocí měřicí a informační technologie vylučuje nebo omezuje subj. vlivy člověka. Současná automatizace v meteorologii se týká především měření, sběru, ukládání, distribuce i vizualizace meteorologických informací. Uplatňuje se především u staničních měření, distančních měření, v oblasti numerické předpovědi počasí a v dodávce produktů pro zákazníky meteorologických služeb. Viz též linka pro předpověď počasí automatizovaná, stanice meteorologická automatická.
česky: automatizace v meteorologii; angl: automatization in meteorology; něm: Automatisierung f; fr: automatisation de l'observation météorologique f, automatisation des stations d'observation f; rus: автоматизация в метеорологии  1993-a3
automatizovaná linka pre predpoveď počasia
vytváření předpovědi počasí praktickým uskutečněním automatizace v meteorologii pro vytváření a distribuci předpovědi počasí. Jedná se o automatický informační systém sestávající z podsystémů monitorování atmosféry (tj. sběru, zpracování a vizualizace meteorologických informací, a to zejména informací z meteorologických stanic a metod dálkové detekce) a výstupů numerických předpovědních modelů. Automatizovaná linka pro předpověď počasí může být doplněna automatickou aplikací statistických metod (následným statistickým zpracováním např. výstupů více modelů numerické předpovědi počasí nebo operativních informací). Úloha meteorologa se uplatňuje především při závěrečné analýze povětrnostní situace, při interpretaci a případné korekci výstupů modelů numerické předpovědi počasí, zejména při výskytu nejednoznačných informací a při předpovědi nebezpečných meteorologických jevů.
česky: linka pro předpověď počasí automatizovaná; rus: автоматизированная система прогнозирования погоды  1993-a3
automatizovaná meteorologická stanica
meteorologická stanice vybavená automatickým měřicím systémem. Všechny profesionální stanice ČR jsou automatizovány.
česky: stanice meteorologická automatizovaná; angl: automated meteorological station  2014
Avogadrov zákon
zákon, podle něhož stejné objemy všech ideálních plynů obsahují za téhož tlaku a téže teploty vždy stejný počet molekul. Avogadrův zákon lze formulovat také tak, že při daném tlaku a určité teplotě je molární objem všech ideálních plynů stejný. Molární objem V0 při teplotě T0 = 273 K a tlaku p0 = 1 013,25 hPa činí
V=22,414.10-3 m3mol.-1
Avogadrův zákon patří k základním zákonům ideálního plynu a má široké uplatnění v termodynamice atmosféry. Zákon formuloval italský fyzik A. Avogadro v r. 1811 na základě prací J. L. Gay-Lussaca z r. 1808.
česky: zákon Avogadrův; angl: Avogadro law; něm: Avogadrosches Gesetz n; rus: закон Авогадро  1993-a1
Avogadrova konštanta
počet částic dané látky v jednom molu. Její hodnota činí 6,022 140 857.1023 mol-1. V literatuře se někdy jako syn. vyskytuje Avogadrovo číslo, což však není korektní, neboť tato veličina má fyzikální rozměr.
česky: konstanta Avogadrova; angl: Avogadro constant; něm: Avogadro-Zahl f  2016
Avogadrovo číslo
česky: číslo Avogadrovo; něm: Avogadro-Zahl f; fr: nombre d'Avogadro m  2016
azorská anticyklóna
syn. anticyklona severoatlantická – subtropická kvazipermanentní anticyklona rozprostírající se nad subtropickými a tropickými oblastmi sev. části Atlantského oceánu se středem nejčastěji v oblasti Azorských ostrovů. Azorská anticyklona je permanentním akčním centrem atmosféry a pro Evropu ohniskem vzniku mořského tropického vzduchu. Počasí u nás ovlivňuje velmi často, a to především v létě, kdy svým hřebenem vysokého tlaku vzduchu zasahuje od jz. do stř. Evropy.
česky: anticyklona azorská; angl: Azores anticyclone; něm: Azorenhoch n; fr: anticyclone des Açores m; rus: азорский антициклон  1993-a3
Ängströmov pyrgeometer
pyrgeometr, jehož čidlo se skládá ze dvou párů tenkých manganinových pásků, z nichž jeden pár je začerněn a druhý pozlacen. Pracuje na kompenzačním principu a je použitelný pouze v noci. V současné době se již nepoužívá.
česky: pyrgeometr Ångströmův; angl: Ängström pyrgeometer; něm: Angström-Pyrgeometer n; rus: пиргеометр Онгстрема  1993-b3
Ängströmov pyrheliometer
pyrheliometr využívající kompenzačního principu. Jako čidla se používá dvou stejných tenkých a začerněných manganinových pásků. Teplotní diference mezi nimi se při střídavém ozařování a zastiňování určuje pomocí termočlánků přilepených na jejich neozařované straně. Zastíněný pásek se vyhřívá el. proudem takové intenzity, aby měl stejnou teplotu s teplotou ozářeného pásku. Intenzita měřeného záření je přímo úměrná čtverci kompenzačního proudu. Pyrheliometr Ångströmův byl v minulosti používán především jako standardní radiometr. Uvedený pyrheliometr zkonstruoval švédský fyzik K. Ångström v r. 1893.
česky: pyrheliometr Ångströmův; angl: Ängström pyrheliometer; něm: Pyrheliometer nach Angström n; rus: пиргелиометр Онгстрема  1993-a3
Ängströmov vzorec
1. jeden z empirických vzorců pro výpočet efektivního vyzařování zemského povrchu E při jasné obloze. Má tvar:
E=σT4[ A+Bexp(Ce) ],
kde T značí teplotu vzduchu v K a e dílčí tlak vodní páry, v obou případech podle měření v meteorologické budce, σ je Stefanova–Boltzmannova konstanta, A, B, C značí empir. konstanty platící pro dané místo. Považujeme-li zemský povrch za dokonale černý v oboru dlouhovlnného záření, lze z Ångströmova vzorce pro zpětné záření Ez odvodit vztah:
EZ=σT4[ 1-A-Bexp (-Ce)],
který bývá v literatuře rovněž označován jako vzorec Ångströmův. Viz též vzorec Bruntův;
2. jeden ze skupiny empir. vzorců pro výpočet denních nebo měs. úhrnů globálního slunečního záření Q. Obvykle se uvádí ve tvaru
Q=Q0(1( 1τ)k),
kde Q0 značí příslušný úhrn globálního slunečního záření při stále jasné obloze, τ je empir. parametr měnící se s místem a roč. dobou a za k se dosazuje 1 – sr, kde sr je relativní trvání slunečního svitu. Obdobný je např. vzorec Kimballův, v němž k se rovná prům. pokrytí oblohy oblaky n¯ za uvažované období (den, měsíc), nebo vzorec Savinovův, v němž
k=(n¯ +1sr)/2.
Vzorec Ångströmův je pojmenován podle švédského fyzika K. Ångströma.
česky: vzorec Ångströmův; angl: Ängström formula; něm: Angström-Formel f; rus: формула Онгстрема  1993-a2
Ängströmova stupnica
česky: stupnice Ångströmova; angl: Ängström scale; něm: Angström-Skala f  1993-a1
vertikálny rez atmosférou
česky: řez aerologický; angl: vertical section; něm: Vertikalschnitt m; rus: вертикальный разрез  1993-a1
podpořila:
spolupracují: