Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene m

X
macroburst
[makrobé(r)st] – downburst velkého měřítka s horiz. průměrem přesahujícím cca 4 km. Ničivé větry trvají zpravidla 5 až 30 minut a dosahují rychlosti až 60 m.s–1. Macroburst je nebezpečný meteorologický jev, který může ovlivnit rozsáhlé území a způsobit podobné škody jako tornádo.
Termín vznikl z termínu downburst dosazením řec. μακρός [makros] „velký“ na místo jeho první části, analogicky k termínu microburst.
česky: macroburst; angl: macroburst; něm: Macroburst m; rus: макропорыв, макрошквал  1993-a2
Maddenova–Julianova oscilácia
(MJO) – významná vysokofrekvenční oscilace podmínek v troposféře v tropické oblasti, která se nejvýrazněji projevuje v zonální složce cirkulacemezní vrstvě atmosféry a v horní troposféře. Vyskytuje se hlavně nad Indickým oceánem a nad západní částí rovníkového Tichého oceánu. Perioda MJO se pohybuje mezi 30 a 60 dny. Projevuje se jako kolísání výskytu vertikální mohutné konvekce a s ní spojených srážek, přičemž výkyvy postupují směrem na východ rychlostí 4 až 8 km.h-1. V jednotlivých místech se tak střídá vlhká fáze, spojená s podporou konvekce a výskytem nadnormálních srážek, s fází suchou, ve které je bouřková činnost potlačena. MJO je hlavním faktorem proměnlivosti počasí v tropických oblastech od východní Afriky po střední Pacifik, nicméně může působit na počasí i mimo tuto oblast. Mj. ovlivňuje nástup, vývoj a intenzitu hlavních center monzunové cirkulace a ve své vlhké fázi rovněž podporuje vývoj tropických cyklón.
Oscilace je pojmenována podle amer. meteorologů R. Maddena a P. Juliana, kteří ji popsali v roce 1971.
česky: oscilace Maddenova–Julianova; angl: Madden-Julian oscilation  2020
magnetopauza
vnější hranice magnetosféry, ležící ve výšce řádově 10 zemských poloměrů na denní straně Země, na noční straně tvořící magnetický chvost Země dlouhý několik stovek tisíc km. Poloha magnetoupauzy je dána podmínkou rovnosti tlaku slunečního větru a tlaku magnetického pole Země.
Termín zavedli amer. astronomové C. P. Sonett a I. J. Abrams v r. 1963. Sestavili ho ze slov magnet (z řec. Μαγνῆτις λίθος [magnétis lithos] „magnetický kámen“) a lat. pausa „přerušení, ukončení“.
česky: magnetopauza; angl: magnetopause; něm: Magnetopause f; rus: магнитопауза  1993-a3
Magnusov vzorec
empir. vzorec pro závislost tlaku nasycené vodní páry es nad rovinným vodním povrchem na teplotě vzduchu. Má tvar:
es=es0 107,45T235+T,
kde es0 = 6,10 hPa je tlak nasycené vodní páry při 0 °C a T teplota vzduchu ve °C. Z Magnusova vzorce vyplývá, že tlak nasycené vodní páry je funkcí pouze teploty vzduchu. Vzorec je použitelný i pro přechlazenou vodu. Viz též vztah Thomsonův.
česky: vzorec Magnusův; angl: Magnus formula; něm: Magnus-Formel f; rus: формула Магнуса  1993-a1
Machovo číslo
relativní číslo, vyjadřující poměr rychlosti proudění, resp. rychlosti letu v k rychlosti zvuku c.
M=vc.
Pro mezinárodní standardní atmosféru ICAO je hodnota c dána vztahem
c=20,046794T,
kde T je teplota vzduchu v K; c vychází v m.s–1. Viz též vlna rázová, třesk sonický, kritéria podobnostní.
česky: číslo Machovo; angl: Mach number; něm: Mach-Zahl f; fr: nombre de Mach m; rus: число Маха  1993-a1
makroklíma
klima utvářené převážně vlivy atmosférických vírů s vert. osou v oblastech o horiz. rozměru aspoň stovek km. Určujícím faktorem makroklimatu je všeobecná cirkulace atmosféry a energetická bilance závisející na zeměp. šířce a na rozložení pevnin a oceánů. Horní hranicí makroklimatu je tropopauza, dolní hranicí je výška, nad níž aktivní povrch již nepodmiňuje utváření mezoklimatu, která tedy závisí na vert. rozsahu jednotlivých druhů mezoklimatu. Met. měření na stanicích konaná ve výšce 2 m nad zemí je možno považovat za makroklimatologicky reprezentativní jen v případě, že výstižně charakterizují klimatické poměry dostatečně širokého okolí nebo je zpracován jejich dostatečný soubor. V názorech na horiz. i vert. rozměr makroklimatu existuje mezi autory značná nejednotnost způsobená i tím, že k definování makroklimatu lze přistupovat z různých hledisek. Pod pojem makroklima můžeme zahrnout mnohé jiné kategorie klimatu, jako např. klima velkoprostorové, zonální (zón), geogr. oblastí, rozsáhlých krajin, klima světové aj. Čes. pojem velkopodnebí se pro makroklima neujal. Viz též kategorizace klimatu, makroklimatologie.
Termín zavedl indický meteorolog L. A. Ramdas v r. 1934 jako protiklad termínu mikroklima. Skládá se z řec. μακρός [makros] „velký“ a slova klima.
česky: makroklima; angl: macroclimate; něm: Makroklima n; rus: макроклимат  1993-a2
makroklimatológia
část klimatologie zabývající se makroklimatem. Studuje vlastnosti klimatických pásem Země, klima pevnin a oceánů a jejich částí většího plošného rozsahu. Lze však hovořit např. nejen o makroklimatologii stř. zeměp. šířek, nýbrž i o makroklimatologii Čech, Moravy apod. Viz též mezoklimatologie, mikroklimatologie.
Termín zavedl indický meteorolog L. A. Ramdas v r. 1934 jako protiklad termínu mikroklimatologie. Skládá se z řec. μακρός [makros] „velký“ a slova klimatologie.
česky: makroklimatologie; angl: macroclimatology; něm: Makroklimatologie f; rus: макроклиматология  1993-a1
makrometeorológia
část meteorologie pojednávající o met. dějích velkého měřítka. Jedná se o děje charakterizované přítomností atmosférických vírů s vert. osou rotace a s poloměry řádu nejméně stovek km. Viz též mezometeorologie, mikrometeorologie.
Termín se skládá z řec. μακρός [makros] „velký“ a slova meteorologie.
česky: makrometeorologie; angl: macrometeorology; něm: Makrometeorologie f; rus: макрометеорология  1993-a1
makromierka
Termín se skládá z řec. μακρός [makros] „velký“ a slova měřítko.
česky: makroměřítko; angl: macroscale; něm: makroskopische Skala f, Makroskala f  2018
malá doba ľadová
(LIA) – období rychlého růstu ledovců na mnoha místech na Zemi, umísťované tradičně zhruba mezi roky 1550 a 1850, přičemž sporné je především vymezení jejího počátku, který bývá někdy umísťován již do závěru 13. století. Nejde zřejmě o souvislou klimatickou anomálii na celé Zemi, spíše o seskupení regionálně diferencovaných a opakovaných poklesů teploty vzduchu i změn srážkových poměrů. Přinejmenším v severoatlantickém prostoru se zřejmě ochladilo o 1 – 2 °C oproti předchozímu středověkému teplému období. Ve větší míře se zde vyskytovaly tuhé zimy i jiné nepříznivé projevy počasí, došlo k nárůstu horského zalednění i zamrzání okrajových moří. Zhoršení přírodních podmínek v tomto regionu mělo zřejmě i negativní socio-ekonomické dopady.
česky: doba ledová malá; angl: little ice age; něm: kleine Eiszeit f; fr: petit âge glaciaire m; rus: малый (короткий) ледниковый период  1993-a3
malé halo
syn. halo 22°, kolo malé – fotometeor, projevující se jako bělavý nebo duhově zbarvený světelný kruh kolem zdroje světla (Slunce nebo Měsíce) v úhlové vzdálenosti 22°. Vnitřní strana má červený, vnější fialový nádech. Plocha uvnitř kruhu se jeví poněkud tmavší než okolní obloha. Patří k častým halovým jevům. Vzniká dvojitým lomem světelných paprsků na šestibokých hranolcích ledových krystalků, kdy paprsek do krystalku vstupuje i z něho vystupuje stěnami pláště, tzn. že jde o lom na hranolu s lámavým úhlem 60°. V české literatuře se jako synonymum někdy vyskytuje malé kolo, z čehož však mohou vznikat nedorozumění, neboť do vydání české verze Mezinárodního atlasu oblaků v r. 1965 se termínem malé kolo rozuměla koróna, zatímco velké kolo se používalo jak pro velké halo, tak pro malé halo.
česky: halo malé; angl: halo of 22°, small halo; něm: kleiner Ring m, 22°-Ring m; fr: petit halo m, halo de 22° m; rus: гало в 22°, малое гало  1993-a3
mamma
(mam) – jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Má tvar zaoblených výběžků podoby prsů, které visí na spodní straně oblaku. Vyskytuje se u druhů cirrus, cirrocumulus, altocumulus, altostratus, stratocumulus a nejčastěji cumulonimbus.
Termín je přejat z lat. mamma „prs, vemeno“.
česky: mamma; angl: mamma; něm: mamma; rus: вымеобразные облака  1993-a2
manometer
přístroj určený k měření rozdílu tlaku buď mezi dvěma uzavřenými prostory, nebo uzavřeným prostorem a okolní atmosférou. Jako manometr může sloužit po malých konstrukčních úpravách tlakoměr.
Termín pochází z franc. manomètre, složeného z řec. μανός [manos] „řídký, volný“ a μέτρον [metron] „míra, meřidlo“.
česky: manometr; angl: manometer; něm: Manometer n; rus: манометр  1993-a2
manometrický teplomer
kapalinový teploměr, jehož čidlem je ocelová nádobka naplněná rtutí (kapalinou) a spojená kapilárním vedením s Bourdonovou trubicí, sloužící jako indikátor tlakových změn v nádobce.
česky: teploměr manometrický; angl: mercury in steel thermometer; něm: manometrisches Thermometer n; rus: манометрический термометр  1993-a3
manuálna meteorologická stanica
česky: stanice meteorologická manuální  2014
manuálny zrážkomer
srážkoměr tvořený dvěma záchytnými nádobami, nálevkou se stejnou záchytnou plochou, konvicí a odměrkou. Při měření se vystavuje vždy jedna nádoba na podstavec tak, aby její záchytná plocha byla ve výšce 1 m nad terénem, popř. nad sněhovou pokrývkou. V letním období se na nádobu nasazuje nálevka omezující výpar zachycené srážkové vody. Kapalné srážky se měří po přelití ze záchytné nádoby do odměrky, která je rozdělená na dílky odpovídající milimetrům srážek. Tuhé srážky se před měřením objemu nechají roztát v mírně teplém prostředí. Na profesionálních stanicích ČR se údaje z manuálních srážkoměrů používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým srážkoměrem.
česky: srážkoměr manuální; angl: manual precipitation gauge  2014
mapa absolútnej topografie
výšková synoptická mapa některých standardních izobarických hladin, na níž je zakreslena výška této hladiny nad hladinou moře pomocí absolutních izohyps. Může obsahovat též údaje o teplotě a vlhkosti vzduchu, směru a rychlosti větru, při synoptické analýze se zakreslují i izotermy, popř. jiné izolinie. K nejčastěji používaným mapám absolutní (barické) topografie (zkr. AT) v předpovědní praxi patří mapy AT 850, 700, 500 a 300 hPa. Jsou sestaveny buď na základě měření v některých z hlavních synoptických termínů, nebo jsou sestaveny pro některé z budoucích termínů (např. za 24, 48, 72 hodin atd.), pak hovoříme o předpovědních mapách. V met. praxi se dnes zpravidla tyto mapy vytvářejí jako jeden z výstupů numerických předpovědních modelů, ať už ve formě analýzy nebo předpovědní mapy. Viz též mapa barické topografie, mapa relativní (barické) topografiemapa termobarického pole, výška geopotenciální.
česky: mapa absolutní (barické) topografie; angl: constant pressure chart, isobaric chart, isobaric contour chart; něm: Karte der absoluten Topographie f, Isohypsenkarte f; rus: карта абсолютной топографии, карта изогипс  1993-a3
mapa anomálií
česky: mapa anomálií; angl: anomaly chart; něm: Anomaliekarte f; rus: карта аномалий  1993-a1
mapa barickej topografie
výšková synoptická mapa, do níž jsou pomocí izohyps zakresleny výšky určité izobarické hladiny nad hladinou moře nebo nad jinou izobarickou hladinou. Podle toho rozlišujeme mapy absolutní a relativní (barické) topografie. V předpovědní službě se sestavují mapy barické topografie standardních izobarických hladin, do kterých se zakreslují i údaje o dalších met. prvcích. Mapy barické topografie ve svém souhrnu podávají představu o prostorovém rozložení tlaku, teploty, vlhkosti a proudění vzduchu v atmosféře, a proto jsou nepostradatelnou pomůckou při met. rozborech a předpovědích (diagnóze a prognóze počasí). Viz též mapa termobarického pole, výška geopotenciální.
česky: mapa barické topografie; angl: baric topography chart; rus: карта барической топографии  1993-a3
mapa izalobár
mapa, do níž jsou pomocí izalobar zakresleny změny tlaku vzduchu za určitý časový interval. Viz též metoda izalobar, mapa izalohyps.
česky: mapa izalobar; angl: isallobaric chart; něm: Druckänderungskarte f, Isallobarenkarte f; rus: изаллобарическая карта, карта изаллобар  1993-a3
mapa izalohýps
mapa, do níž jsou pomocí izalohyps zakresleny změny výšky absolutní (barické) topografie  izobarické hladiny nebo tloušťky relativní (barické) topografie za určitý časový interval. Mapy izalohyps abs. topografie znázorňují změny výšky standardních izobarických hladin, a proto jsou do jisté míry analogické mapám izalobar. Mapy izalohyps rel. topografie vyjadřují změny prům. virtuální teploty ve vrstvě vzduchu mezi standardními izobarickými hladinami, a jsou tedy mapami izaloterm.
česky: mapa izalohyps; angl: isallohyptic chart; něm: Isallohypsenkarte f; rus: карта изаллогипс  1993-a3
mapa izaloteriem
mapa rozdílů teploty vzduchu za určitý časový úsek, znázorněných pomocí izaloterm. Nejčastěji se sestavují mapy izaloterm za 24 h, aby se vyloučil vliv denního chodu teploty vzduchu. Izalotermami se vyčleňují oblasti růstu a poklesu teploty (oteplení a ochlazení). Mapa izaloterm je i mapa izalohyps relativní topografie.Tyto mapy používané v synoptické meteorologii se dnes konstruují pomocí výpočetní techniky. Kromě syn. meteorologie se mapa izaloterm využívají i v klimatologii, a to většinou pro znázornění ročního chodu teploty vzduchu. V tom případě izalotermy vyjadřují rozdíly prům. měs. teploty sousedních měsíců v dané oblasti, např.rozdíl teploty vzduchu v Evropě mezi dubnem a březnem.
česky: mapa izaloterm; angl: isallotherm chart; něm: Isallothermenkarte f; rus: карта изаллотерм  1993-a3
mapa izanomál
mapa znázorňující rozložení odchylek hodnot met. prvků od jejich prům. (norm.) hodnoty pomocí izanomál. Nejčastěji znázorňuje odchylky prům. denních, měs., roč. a jiných hodnot meteorologických prvků v daném roce od klimatologických normálů. V tom případě bývá mapa izanomál označována jako mapa anomálií. V jiném případě mapa izanomál znázorňuje rozložení odchylek hodnot met. prvků od prům. hodnot vypočítaných pro určitou polohu, např. rovnoběžku, nadm. výšku apod. V současné době se časteji používá označení mapa anomálií.
česky: mapa izanomál; angl: isanomal chart; něm: Isanomalenkarte f; rus: карта изаномал  1993-a3
mapa izobár
mapa rozložení tlaku vzduchu znázorněného pomocí izobar. Nejčastěji se používá map tlaku vzduchu redukovaného na hladinu moře na nichž izobary vymezují tlakové útvary. Mapy izobar znázorňují buď okamžité rozložení tlaku vzduchu, zpravidla na přízemních synoptických mapách, nebo rozložení prům., především dlouhodobých hodnot tlaku vzduchu na klimatologických mapách. Viz též redukce tlaku vzduchu na dohodnutou hladinu, mapa izohyps.
česky: mapa izobar; angl: isobaric chart; něm: Isobarenkarte f; rus: изобарическая карта  1993-a1
mapa izobront
mapa, na níž jsou izobrontami spojena místa zemského povrchu s prvním slyšitelným zahřměním. Mapy izobront se dříve konstruovaly ke zjišťování tahu bouřek, v současnosti je nahradily výstupy detekce blesků.
česky: mapa izobront; angl: isobront chart; něm: Isobrontenkarte f; rus: карта изобронт  1993-a3
mapa izohýps
v provozní met. praxi dříve obvyklé označení pro mapy absolutní (barické) topografie. Viz též mapa izobar.
česky: mapa izohyps; angl: isohyptic chart; něm: Isohypsenkarte f; rus: карта изогипс  1993-a3
mapa klímy
klimatologická mapa v užším smyslu, znázorňující rozložení klimatických typů podle některé klasifikace klimatu.
česky: mapa klimatu; angl: climate chart  1993-b1
mapa maximálneho vetra a strihu
met. mapa, na které jsou zobrazeny výšky s maximální rychlostí větru, dále je na nich zobrazena velikost maximální rychlosti větru, v závislosti na směru větru, a rychlost větru ve stanovených hladinách nad i pod hladinou maximálního větru. Využívá se zejména při meteorologickém zabezpečení letectva. Viz též vítr maximální.
česky: mapa maximálního větru a střihu; angl: maximum-wind chart; něm: Maximalwindkarte f; rus: карта максимальных ветров  1993-b3
mapa relatívnej topografie
výšková synoptická mapa, do níž je pomocí relativních izohyps zakreslena tloušťka vrstvy mezi dvěma standardními izobarickými hladinami. Vzdálenost dvou izobarických hladin, neboli tloušťka vrstvy vzduchu mezi nimi, je úměrná prům. virtuální teplotě vzduchu v dané vrstvě. V praxi se nejčastěji používá mapa relativní topografie mezi hladinami 500 a 1 000 hPa, označovaná jakoRT1000500 . Tato mapa se většinou sestavuje v kombinaci s mapou absolutní topografie 700 hPa a nazývá se mapou termobarického pole spodní poloviny troposféry. Viz též mapa barické topografie, výška geopotenciální.
česky: mapa relativní (barické) topografie; angl: thickness chart; něm: Karte der relativen Topographie f; rus: карта относительной топографии  1993-b3
mapa termobarického poľa
výšková synoptická mapa na níž jsou vedle absolutních izohyps dané izobarické hladiny zakresleny buď izotermy v této hladině, nebo relativní izohypsy zvolené vrstvy omezené dvěma izobarickými hladinami. Izohypsy se zpravidla zakreslují po 40 geopotenciálních metrech do hladiny 500 hPa a pro výše ležící hladiny obvykle po 80 geopotenciálních metrech. V meteorologické službě se používá zejména mapa AT 700 (absolutní topografie hladiny 700 hPa) se zakreslením RT1000500 (relativní topografie hladiny 500 hPa nad hladinou 1 000 hPa), která bývá označována jako mapa termobarického pole spodní poloviny troposféry, a dále též mapa izohyps a izoterm v hladině 850 hPa. Izohypsy abs. topografie se zakreslují plnou černou čarou, zatímco izohypsy rel. topografie a izotermy červenou, popř. přerušovanou černou čarou. Z úhlů, které svírají abs. a rel. izohypsy, a z hustoty izohyps lze usuzovat o tlakových a teplotních změnách v atmosféře.
česky: mapa termobarického pole; angl: thermobaric field chart; něm: Karte des thermobarischen Feldes f; rus: карта термобарического поля  1993-a3
mapa topografie frontu
synoptická mapa, do níž jsou zakresleny hodnoty výšky frontální plochy nad hladinou moře určené z radiosondážních měření v různých místech v témže synoptickém termínu nebo na základě výstupů z numerických předpovědních modelů. Hodnoty stejné výšky frontální plochy se spojují izohypsami. Sestavuje se pouze pro speciální účely. Viz též výška geopotenciální.
česky: mapa topografie fronty; angl: frontal contour chart; něm: Karte des Frontenverlaufs f; rus: карта топографии фронта  1993-a3
mapa topografie tropopauzy
česky: mapa topografie tropopauzy; angl: tropopause topography chart; něm: Karte der Tropopausenhöhe f; rus: карта топографии тропопаузы  1993-a1
mapa tropopauzy
synoptická mapa, do níž je zakreslen tlak vzduchutropopauze nebo nadm. výšky (topografie) tropopauzy a teploty vzduchu v ní. Analyzovaná mapa obsahuje izobary nebo izohypsy tropopauzy a izotermy v ní. Někdy se do mapy tropopauzy zakreslují i údaje o maximálním větru. Viz též tropopauza.
česky: mapa tropopauzy; angl: tropopause chart; něm: Tropopausenkarte f; rus: карта тропопаузы  1993-a3
mapa výškového vetra
mapa, na níž je znázorněno rozložení větru v určité izobarické hladině ve volné atmosféře. Je jednou z výškových map.
česky: mapa výškového větru; angl: upper wind chart; něm: Höhenwindkarte f; rus: карта высотнoго ветра  1993-a1
mapa význačného počasia
letecká povětrnostní mapa obsahující grafický popis význačného počasí pro letový provoz. Mapa význačného počasí pro letové hladiny mezi FL100-270 nebo nad FL270 označované SWM nebo SWH (Significant weather chart for Middle or High levels) obsahující hranice oblastí s význačným počasím, údaje o výšce základny význačných oblaků a jejich horní hranici, údaje o výšce tropopauzy, o vrstvách s výskytem námrazy a turbulence, o oblastech s výskytem tropických, písečných nebo prachových bouří, o poloze tryskového proudění (jet streamu) nebo o poloze vulkanických erupcí s vyznačením výraznosti příslušného jevu pomocí mezinárodně přijatých symbolů. Mapy význačného počasí jsou jedním ze základních materiálů letecké meteorologické dokumentace. Označují se jako SW mapy (Significant weather chart). Viz též jevy počasí význačné.
česky: mapa význačného počasí; angl: significant weather chart; něm: Karte signifikanter Wettererscheinungen f; rus: карта опасных явлений погоды  1993-a3
Margulesova rovnica
vzorec, který vyjadřuje úhel sklonu frontální plochy v závislosti na rychlosti proudění a teplotě vzduchových hmot po obou stranách frontální plochy. Pro stacionární frontu ho odvodil M. Margules (1906) ve tvaru
tgα=λg v1T2v2 T1T2T1,
kde α je úhel sklonu atmosférické fronty, λ Coriolisův parametr, g velikost tíhového zrychlení, T1 teplota v K a v1 rychlost proudění studeného vzduchu, T2 teplota a v2 rychlost proudění teplého vzduchu. Předpokládá se při tom, že obě proudění jsou geostrofická a rovnoběžná s frontální plochou. Viz též vítr geostrofický.
česky: vzorec Margulesův; angl: Margules formula; něm: Margules-Gleichung f; rus: уравнение Маргулеса  1993-b2
Mariotteov zákon
česky: zákon Mariotteův; angl: Mariotte law; něm: Mariottesches Gesetz n; rus: закон Мариотта  1993-a1
maritimita klímy
česky: maritimita klimatu; něm: Maritimität f; rus: океаничность  1993-b2
maritímna klíma
česky: klima maritimní; angl: maritime climate; něm: maritimes Klima n, Küstenklima n; rus: морской климат  1993-b2
maritímny vzduch
česky: vzduch maritimní; něm: maritime Luft f  1993-a1
Markhamov index
charakteristika rovnoměrnosti ročního chodu srážek, navržená C. G. Markhamem (1970). Určuje se jako velikost vektorového součtu dvanácti vektorů relativních srážek, vynesených na polopřímky se společným počátkem a svírající úhly 30°. Minimálních hodnot dosahuje při rovnoměrném rozdělení srážek během roku, případně při existenci více srážkových maxim v navzájem opačných částech roku. Jedním z faktorů, které způsobují nerovnoměrnost rozdělení srážek během roku, je ombrická kontinentalita klimatu, proto v rámci jednoho klimatického typu může Markhamův index sloužit i jako index kontinentality. Je však třeba uvažovat i směr výsledného vektoru. Ombrická oceánita klimatu se projevuje nízkými hodnotami Markhamova indexu, silně oceánické klima ve stř. zeměp. šířkách se nicméně vyznačuje vyššími hodnotami indexu s vektorem orientovaným do zimních měsíců.
česky: index Markhamův; angl: Markham index; rus: индекс Мархамa  2014
Marshall-Palmerovo spektrum
česky: spektrum Marshallovo a Palmerovo; něm: Marshall-Palmer-Spektrum n  2014
Marshallov a Palmerov vzorec
česky: vzorec Marshallův–Palmerův; něm: Marshall-Palmer-Verteilung f  1993-b1
Marshallov a Palmerov vzťah
česky: vztah Marshallův–Palmerův; angl: Marshall and Palmer formula; něm: Marshall-Palmer-Formel f  1993-b1
maskovanie atmosférického frontu
česky: maskování atmosférické fronty  2019
maskovaný front
atmosférická fronta, jejíž polohu nelze pomocí příznaků na přízemní synoptické mapě určit buď vůbec, nebo jen velmi obtížně, popř. o níž přízemní pozorování dávají nesprávné představy. Nejčastější příčinou maskované fronty bývá bezprostřední vliv zemského povrchu na teplotu přízemních vrstev vzduchu (výskyt přízemních radiačních inverzí teploty vzduchu, silné ohřívání vzduchu nad pevninou v létě, popř. vliv fénu). Pro správné určení maskované fronty musíme mít k dispozici výškové synoptické mapy a vyhodnocené křivky teplotního zvrstvení atmosféry.
česky: fronta maskovaná; angl: masked front; něm: maskierte Front f; fr: front masqué m, front diffus m; rus: маскированный фронт  1993-a3
matematická klíma
česky: klima matematické; angl: mathematical climate; něm: matematisches Klima n; rus: солярный климат (расчетный)  1993-b2
materský oblak
druh oblaku, z něhož vývojem vznikl oblak jiného druhu. Morfologická klasifikace oblaků rozlišuje dva způsoby takového vývoje; změní-li se pouze část oblaku, používáme označení genitus, změní-li se oblak jako celek, používáme označení mutatus. K druhu nově vzniklého oblaku se pak připojuje přívlastek, jehož první část vyjadřuje druh mateřského oblaku, druhá část způsob vývoje nového oblaku, např. stratocumulus cumulogenitus (Sc cugen) nebo cumulus stratocumulomutatus (Cu scmut).
česky: oblak mateřský; angl: mother-cloud; něm: Mutterwolke f; fr: nuage-origine; rus: материнское облако  1993-a2
mauricijská anticyklóna
syn. anticyklona jihoindická – teplá, vysoká a kvazipermanentní anticyklona v tropech a subtropech již. části Indického oceánu mezi Madagaskarem a Austrálií, patřící mezi akční centra atmosféry. Název dostala podle ostrova Mauritius, který však leží na jejím sz. okraji.
česky: anticyklona mauricijská; fr: anticyclone des Mascareignes m; rus: маурийский антициклон  1993-a3
maximálna pravdepodobná povodeň
(PMF, z angl. Probable Maximum Flood) – odhad velikosti návrhové povodně stanovený na základě hodnoty pravděpodobné maximální srážky pro dané povodí a trvání srážky. V některých zemích se PMF používá při posuzování nových i stávajících vodních děl a jejich kapacitních, stavebních a odtokových vlastností.
česky: povodeň maximální pravděpodobná; angl: probable maximum flood (PMF); něm: wahrscheinlich maximales Hochwasser n  2018
maximálna teplota
nejvyšší hodnota teploty vzduchu zaznamenaná za určité časové období, např. za den, měsíc nebo rok. Ve zprávách SYNOP z Evropy a Afriky se uvádí maximální teplota za období od 06 do 18 UTC ve zprávě z 18 UTC, pro ostatní regiony jsou období i termíny zprávy určeny příslušnými regionálními pravidly. Pro klimatologické účely je maximální denní teplota vzduchu stanovena za období 24 hodin před večerním klimatologickým termínem
Maximální teplota vzduchu na většině stanic ČR se získává automatickým vyhodnocením dat měřených elektrickým teploměrem ve výšce 2 m nad zemí za dané období. Na některých stanicích se maximální teplota dosud měří maximálním teploměrem. V předpovědích počasí je maximální teplota obvykle označována jako nejvyšší denní teplota. Viz též teploty vzduchu extrémní.
česky: teplota maximální; angl: maximal temperature; něm: Maximumtemperatur f; rus: максимальная температура  1993-a3
maximálny teplomer
teploměr používaný v meteorologii pro měření maximální teploty vzduchu v daném časovém intervalu, obvykle za 24 hodiny. Nejčastěji bývá užíván skleněný rtuťový teploměr se zúženým průřezem kapiláry nad nádobkou. Tímto průřezem rtuť proniká pouze při zvyšování teploty, při poklesu teploty dojde v tomto místě k přetržení rtuťového sloupce, jehož délka v kapiláře určuje dosažené teplotní maximum. Po přečtení údaje se teploměr nastaví pro další měření sklepáním (na stejném principu je založen lékařský teploměr). Instaluje se v meteorologické budce ve vodorovné poloze. V meteorologii se používal i k přibližnému určení nejvyšší denní intenzity globálního a odraženého slunečního záření jako součást pyranometru Aragova–Davyova. Na profesionálních stanicích ČR se údaje z maximálního teploměru používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s elektrickým teploměrem.
česky: teploměr maximální; angl: maximum thermometer; něm: Maximumthermometer n; rus: максимальный термометр  1993-a3
maximálny vietor
aeorologii a letecké meteorologii označení pro max. rychlost větru ve vertikálním profilu větru. Označení maximální vítr se používá jen pro rychlosti větru větší než 30 m.s–1 vyskytující se ve význačných hladinách nad izobarickou hladinou 500 hPa. Může se vyskytovat i několik hladin s maximálním větrem za předpokladu, že mezi dvěma sousedními hladinami s maximy rychlosti poklesne rychlost větru alespoň o 10 m.s–1. Používá se též zkráceného označení MAX WIND. Uvádí se v aerol. zprávách a jeho prostorové rozložení se zobrazuje na mapách maximálního větru používaných při met. zabezpečení leteckého provozu. Viz též mapa tropopauzy.
česky: vítr maximální (MAX WIND); angl: maximum wind; něm: Windmaximum n; rus: максимальный ветер  1993-a3
maximo-minimálny teplomer
česky: teploměr maximo-minimální; angl: Six thermometer; něm: Minimum-Maximum-Thermometer n  1993-a1
Mayerov vzťah
vztah mezi měrným teplem plynů za stálého tlaku a měrným teplem plynů za stálého objemu, uváděný ve tvaru:
cpcv=R,
kde cp je měrné teplo daného plynu za stálého tlaku, cv měrné teplo za stálého objemu a R měrná plynová konstanta. Mayerův vztah platí přesně pouze pro ideální plyn. Uvedený vztah, který objevil a formuloval něm. lékař a fyzik J. R. von Mayer v r. 1867, má časté uplatnění v termodynamice atmosféry.
česky: vztah Mayerův; angl: Mayer formula; něm: Mayers-Formel f  1993-a1
mäkké freóny
freony s relativně nižším potenciálem ničit ozonovou vrstvu. Na rozdíl od tvrdých freonů obsahují v molekule atom vodíku (látky typu HCFC). Mají sice rovněž potenciál ničit ozonovou vrstvu, v troposféře jsou však méně stabilní, a proto se jich část chemicky rozloží dříve, než proniknou do stratosféry.
česky: freony měkké  2018
Medard
Sv. Medard působil v 6. století jako biskup ve franském Nyonu. V římskokatolické církvi je považován mj. za ochránce před deštěm. Podle legendy ho totiž v dětství zastihl liják, před nímž ho ochránil svými křídly obrovský orel.
česky: Medard; rus: Медард  1993-a1
medardovské počasie
lid. označení pro převážně deštivé a chladné počasí v červnu a začátkem července ve stř. Evropě, vyvolávané dlouhotrvajícím přílivem mořského vzduchu od západu až severozápadu z Atlantského oceánu do evropského vnitrozemí. Název je odvozen od svátku svatého Medarda, připadajícího na 8. červen, kolem něhož medardovské počasí obvykle nastupuje. Medardovské počasí je nejvýraznější středoevropskou singularitou. V ročním chodu teploty vzduchu se projevuje zastavením vzestupu, popřípadě poklesem prům. denní teploty vzduchu. Pro medardovské počasí je rovněž charakteristická zvýšená srážková činnost. Viz též monzun evropský, chladna ovčí.
česky: počasí medardovské  1993-a2
medicínsko-meteorologická predpoveď
česky: předpověď medicínsko-meteorologická; angl: medical-meteorological forecast; něm: medizinmeteorologische Vorhersage f; rus: медицинско-метеорологический прогноз  1993-a2
medikán
cyklona o průměru několik málo stovek kilometrů, která se vyskytuje v průměru jednou až dvakrát za rok v oblasti Středomoří, případně Černomoří, a to obvykle v chladném pololetí. Svým vzhledem na družicových snímcích připomíná tropickou cyklonu a projevuje se přívalovými srážkami, silným větrem a vysokými vlnami. Pro medikán je typická kruhová oblast s malou oblačností ve středu cyklony, podobající se oku tropické cyklony. Kolem centra se spirálovitě otáčejí výrazné oblačné pásy s výskytem konvektivních bouří často velmi silné intenzity. V centru medikánu je relativně vyšší teplota vzduchu než v okolí a charakteristické je pro něj též minimum rychlosti větru. V bezprostředním okolí centra je rychlost větru maximální a v ojedinělých případech zde může dosáhnout síly orkánu.
Vznik a vývoj medikánu je podmíněn fyzikálními mechanizmy, které jsou určující jak pro tropické cyklony, tak pro baroklinní mimotropické cyklony. Medikán se vytváří nad relativně teplým mořem, které je hlavním zdrojem vlhkosti i energie potřebné pro cyklogenezi. Podstatnou roli hrají zejména uvolňování latentního tepla při kondenzaci vodní páry, příp. toky zjevného tepla od moře do atmosféry. Pro generování a udržení potřebných výstupných pohybů vzduchu jsou nutné často též dostatečně silná baroklinita ve spodní troposféře, spojená např. s výškovou brázdou nebo izolovanou cyklonou, a instabilní teplotní zvrstvení atmosféry, které se vyskytují zpravidla při vpádech studeného vzduchu z vyšších zeměp. šířek.
Termín medikán je odvozen z anglických slov „Mediterranean“ a „hurricane“, proto je někdy nevhodně označován jako „středomořský hurikán“. Viz též cyklona subtropická.
česky: medikán; angl: medicane; něm: Medicane n  2018
mediocris
(med) [medyokris] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má podobu kupy stř. vertikálního rozsahu a vrcholek oblaku má jen poměrně malé výběžky. Vyskytuje se pouze u oblaků druhu cumulus. Viz též humilis, congestus.
Termín byl zaveden v r. 1951. Je přejat z lat. mediocris „(pro)střední, průměrný"
česky: mediocris; angl: mediocris; něm: mediocris; rus: медиокрис, средние облака  1993-a2
medziľadová doba
česky: doba meziledová; angl: interglacial, interglacial period; něm: Interglazial n, Zwischeneiszeit f; fr: période interglaciaire f, interglaciation f; rus: интергляциал, интергляциальная фаза, межледниковый период  1993-a1
Medzinárodná geofyzikálna spolupráca
(MGS) – období od 1. ledna do 31. prosince 1959, během něhož pokračovala velká část rozsáhlého pozorovacího programu Mezinárodního geofyzikálního roku.
česky: Mezinárodní geofyzikální spolupráce; angl: International Geophysical Cooperation (IGS); něm: Internationale geophysikalische Kooperation (IGK) f; rus: Международное геофизическое сотрудничество (МГС)  1993-a1
Medzinárodná komisia pre atmosférickú elektrinu
(ICAE, International Committee for Atmospheric Electricity) – orgán při Mezinárodním sdružení pro meteorologii a atmosférické vědy, které je součástí Mezinárodní unie pro geodézii a geofyziku (International Union for Geodesy and Geophysics – IUGG). Zabývá se rozvojem poznatků o el. podmínkách a jevech v atmosféře Země, včetně jejich aplikací v dalších oborech.
česky: Mezinárodní komise pro atmosférickou elektřinu; angl: International Committee for Atmospheric Electricity (ICAE); rus: Международная комиссия по атмосферному электричеству  1993-a3
Medzinárodná organizácia pre civilné letectvo
organizace ke koordinaci civilního letového provozu. Vznikla tzv. Chicagskou úmluvou ze dne 7. prosince 1944, kterou podepsalo 52 států, mezi nimi také Československo. Dohoda nabyla platnosti ke dni 4. dubna 1947 po ratifikaci polovinou členů. V říjnu téhož roku se ICAO stalo specializovanou organizací Spojených národů. K základní dohodě o vzniku ICAO se váže od počátku 18 příloh, které definují standardy mezinárodního civilního leteckého provozu a jsou pro členské státy doporučením, které je posléze přebíráno jednotlivými státy jako zákonná norma. V roce 2013 byla přidána příloha č. 19 Řízení bezpečnosti. V českém zákonodárství tyto přílohy tvoří letecké předpisy Ministerstva dopravy ČR L1 až L19. Pro poskytovatele meteorologických služeb je nejdůležitější předpis L3–Meteorologie. Všechny tyto předpisy lze nalézt na stránkách Letecké informační služby Řízení letového provozu ČR.
Cílem ICAO, definovaným v Chicagské dohodě, je rozvoj mezinárodního civilního letectví, tak aby byla zajištěna jeho bezpečnost, spolehlivost, pravidelnost a hospodárnost. Ústředí ICAO je v kanadském Montrealu. Regionální kanceláře, kterých je celkem 7, jsou pak situovány do jednotlivých částí zeměkoule. Pro Evropu je sídlem regionální kanceláře ICAO Paříž. Nejvyšším orgánem ICAO je tzv. Valné shromáždění. Mezi nejdůležitější standardy definované touto organizací patří především jednoznačné čtyřmístné kódy letišť (4 největší letiště v ČR LKPR–Václava Havla Praha, LKKV–K.Vary, LKTB–Brno/Tuřany a LKMT–Ostrava/Mošnov), leteckých dopravců a typů letadel, které se používají v oficiálních dokumentech a komunikaci. Pro meteorologii je důležitá standardizace leteckých meteorologických kódů (METAR / SPECI, TAF, SIGMET, AIRMET, GAMET), v níž hraje významnou roli meteorologická skupina METG (Meteorological Group) při regionální kanceláři ICAO v Paříži.
Pro výkon dohledu nad civilním letectvím v ČR je ve shodě s Chicagskou úmluvou ustanoven Úřad pro civilní letectví České republiky (ÚCL), který nejen licencuje piloty a certifikuje letadla a letecká technická zařízení, ale také certifikuje meteorologická letecká pozemní zařízení, tj. systémy a senzory poskytující zejména aktuální informace o jednotlivých meteorologických prvcích (směru a rychlosti větru, dohlednosti, dráhové dohlednosti, pokrytí a výšce oblačnosti, teplotě a tlaku). Úřad je podřízen Ministerstvu dopravy ČR a v jeho čele stojí generální ředitel, který je jmenován ministrem dopravy.
česky: Mezinárodní organizace pro civilní letectví (ICAO); angl: International Civil Aviation Organization; něm: Internationale Zivilluftfahrtorganisation ICAO f  2014
medzinárodné indikatívy
česky: indikativy mezinárodní; angl: international index number; rus: международные индексы-индексы станций  1993-a1
Medzinárodné združenie pre meteorológiu a atmosférické vedy
(IAMAS, z angl. International Association of Meteorology and Atmospheric Sciences) – jedno ze sdružení Mezinárodní unie pro geodézii a geofyziku (International Union of Geodesy and Geophysics – IUGG), se kterou spolupracuje Světová meteorologická organizace podle dohody uzavřené v roce 1955. Do roku 1993 se toto sdružení nazývalo Mezinárodní sdružení pro meteorologii a fyziku atmosféry (International Association of Meteorology and Atmospheric Physics, IAMAP).
česky: Mezinárodní sdružení pro meteorologii a atmosférické vědy; angl: International Association of Meteorology and Atmospheric Sciences; něm: Internationale Vereinigung für Meteorologie und Physik der Atmosphäre f; rus: Международная ассоциация по геодезии и геофизике  1993-b3
Medzinárodný album oblakov pre pozorovateľov v lietadlách
album ze série atlasu oblaků vydaných Světovou meteorologickou organizací v roce 1956. Série vychází ze zákl. díla, tj. z Mezinárodního atlasu oblaků. Album je určeno posádkám letadel pro získání správné představy o oblacích, o nichž jsou informovány meteorologickou službou před letem i během letu, a které pozorují za letu. Album obsahuje 32 fotografií oblaků. Prvých 10 fotografií zobrazuje typický vzhled zákl. 10 druhů oblaků, jak se jeví pozorovateli ze země. Ostatních 22 fotografií je příkladem oblaků pozorovaných z letadla během letu.
česky: Mezinárodní album oblaků pro pozorovatele v letadlech; rus: Международный атлас облаков для авиационных наблюдателей  1993-a2
medzinárodný atlas oblakov
česky: atlas oblaků mezinárodní; něm: Internationaler Wolkenatlas m; fr: Atlas international des nuages m, Atlas des nuages m; rus: международный атлас облаков  1993-a1
Medzinárodný atlas oblakov
publikace vydaná Světovou meteorologickou organizací v roce 1956 angl. a franc., revidovaná v r. 1975 a přeložená do dalších jazyků. Uvádí klasifikaci oblaků a meteorů, jejich definice a metodické pokyny, i jak má být klasifikace využívána v met. praxi. Mezinárodní atlas oblaků je dvoudílný, v prvním díle je textová, ve druhém obrazová část. Kromě této úplné verze vydala WMO jednodílnou zkrácenou verzi atlasu (česky vyšla v roce 1965) a Mezinárodní album oblaků pro pozorovatele v letadlech. Mezinárodní atlas oblaků navazuje na obdobnou mezinárodní publikaci vydanou v roce 1939. Je využíván při sestavování návodů pro pozorovatele met. stanic, do nichž jsou převzaty jak definice, tak i metodické pokyny uvedené v atlasu. V roce 2017 byla vydána nová elektronická (internetová) verze Mezinárodního atlasu oblaků dostupná na linku https://cloudatlas.wmo.int/home.html.
česky: Mezinárodní atlas oblaků; angl: International cloud atlas; něm: Internationaler Wolkenatlas m; rus: Международный атлас облаков  1993-a3
Medzinárodný geofyzikálny rok
(MGR) – období od 1. července 1957 do 31. prosince 1958, stanovené Mezinárodní unií pro geodézii a geofyziku (IUGG), během něhož byla prováděna geofyz. pozorování, včetně meteorologických, s rozsáhlým programem ve světové síti stanic. Na MGR navázala akce zvaná Mezinárodní geofyzikální spolupráce.
česky: Mezinárodní geofyzikální rok; angl: International Geophysical Year (IGY); něm: Internationales geophysikalisches Jahr (IGJ) n; rus: Международный геофизический год (МГГ)  1993-a1
Medzinárodný polárny rok
(MPR) – období let 1882–1883, 1932–1933 a 2006–2007, stanovená mezinárodní dohodou, během nichž byla prováděna geofyz. pozorování, včetně meteorologických, s rozsáhlým programem na různých dočasně zřízených stanicích zejména v polárních oblastech. Po stránce koncepční byl MPR předchůdcem Mezinárodního geofyzikálního roku.
česky: Mezinárodní polární rok; angl: International Polar Year (IPY); něm: Internationales Polarjahr n; rus: Международный полярный год (МПГ)  1993-a1
medzišírková výmena vzduchu
přenos vzduchových hmot mezi vyššími a nižšími zeměp. šířkami v důsledku meridionální cirkulace. Ve spodní troposféře sev. polokoule je tato výměna realizována pronikáním studených vzduchových hmot k jihu a teplých vzduchových hmot k severu. V systému všeobecné cirkulace atmosféry je mezišířková výměna vzduchu realizována v souvislosti s cirkulačními buňkami (Hadleyova buňka, Ferrelova buňka, polární buňka), eventuálně ve vyšších vrstvách atmosféry je spojena s transportem např. ozonu v rámci Brewerovy–Dobsonovy cirkulace. Viz též vpád teplého vzduchu, vpád studeného vzduchu.
česky: výměna vzduchu mezišířková; angl: interlatitudinal exchange, meridional exchange; něm: Meridionalaustausch m; rus: междуширотный обмен, меридиональный обмен  1993-a3
Medzivládny panel pre zmenu klímy
(IPCC) – mezivládní organizace ke komplexnímu vědeckému posuzování publikovaných vědeckých, technických a sociálně-ekonomických informací o změnách klimatu, jejich potenciálních environmentálních a sociálně-ekonomických důsledcích a o možnostech přizpůsobení se těmto důsledkům (adaptace) nebo o možnostech zmírnění jejich účinků (mitigace). IPCC byl založen v roce 1988 Světovou meteorologickou organizací a programem OSN pro životní prostředí (UNEP). V několikaletých intervalech vydává shrnující hodnotící zprávy. První (FAR) byla vydána v roce 1990, druhá (SAR) v roce 1995, třetí (TAR) v roce 2001, čtvrtá (AR4) v roce 2007, pátá (AR5) v roce 2014 a šestá (AR6) v letech 2021 až 2023.
česky: Mezivládní panel pro změnu klimatu; angl: Intergovernmental Panel on Climate Change; něm: Zwischenstaatlicher Ausschuss für Klimaänderungen m  2014
megatermická klíma
málo používané označení pro tropické dešťové klima, které odkazuje na jedno z vegetačních pásem, vymezených v 19. století botanikem A. P. de Candollem. Podle C. W. Thornthwaitea zde potenciální výpar přesahuje 1 140 mm za rok. Viz též klasifikace klimatu Thornthwaiteova.
česky: klima megatermické; angl: megathermal climate; něm: megathermales Klima n; rus: мегатермический климат  1993-b3
mechanická konvekcia
nevh. označení pro vynucenou konvekci.
česky: konvekce mechanická; angl: mechanic convection; něm: mechanische Konvektion f; rus: механическая конвекция  1993-a3
mechanická turbulencia
turbulence vyvolaná mech. příčinami. Vytváří se zejména v mezní vrstvě atmosféry působením vertikálního střihu větru, který je důsledkem tření proudícího vzduchu o zemský povrch, dále vzniká při obtékání orografických překážek a nerovností zemského povrchu (orografická turbulence). Mechanická turbulence se však může vytvářet i ve volné atmosféře působením vertikálního i horizontálního střihu větru vzniklých z dyn. příčin, a to v oblastech silné baroklinity nebo tryskového proudění a v blízkosti atm. diskontinuit, jako např. v oblasti tropopauzy, v blízkosti hranic inverzí teploty, frontálních ploch apod. Mechanická turbulence, při jejímž vzniku se bezprostředně neuplatňuje vliv zemského povrchu, tedy zpravidla turbulence ve volné atmosféře vznikající z dyn. příčin, se obvykle označuje jako dynamická turbulence. Viz též vlny Helmholtzovy.
česky: turbulence mechanická; angl: mechanic turbulence; něm: mechanische Turbulenz f; rus: механическая турбулентность  1993-a2
meión
Termín je přejat z řec. μείων [meión] „menší“.
česky: meion; angl: meion; rus: мейон  1993-a3
meltemi
viz etézie.
Termín je přejat z novořeckého slova μελτέμι [meltemi], které má původ v tureckém výrazu meltem téhož významu; obě slova možná pocházejí z italského maltempo „špatné počasí“.
česky: meltemi; angl: meltemi; něm: Meltemi m; rus: мельтеми  1993-a1
membránový tlakomer
tlakoměr deformační využívající deformaci křemíkové membrány, která uzavírá vakuovaný prostor uvnitř mikromechanického senzoru. Používá se v současných elektronických čidlech pro měření tlaku. Opačné strany vakuované mezery jsou pokoveny a tvoří kondenzátor, jehož kapacita závisí na prohnutí membrány. Jedná se o tzv. BAROCAP sensor. Výhodou je přesnost, malá hystereze, nízká teplotní závislost a dlouhodobá stabilita.
česky: tlakoměr membránový; angl: membrane anemometer  2014
merač hmly
dříve používanné označení pro zařízení pro odběr kapalných usazených srážek. Jeho čidlem obvykle bývalo drátěné síto, které se umisťovalo v exponovaných horských polohách.
česky: mlhoměr; angl: fog gauge; něm: Nebelmesser m; rus: измеритель тумана  1993-a3
merač hmly
zařízení, které slouží k zachycování, odběru a měření kapek usazených srážekmlhy nebo oblaku, nebo jen ke zjišťování doby ovlhnutí. Jeho čidlem je teflonové síto, případně jejich soustava. Monitorovací pasivní zařízení jsou používána  např. v horských oblastech, nebo oblastech tropických mlžných pralesů. Aktivní zařízení, v nichž je proud vzduchu s kapkami mlhy podporován ventilátorem, mají převážně staniční využití a lze je využívat i v nižších nadmořských výškách. Nepřesně je zařízení pro odběr kapalných usazených srážek nazýváno mlhoměr.
darez, úprava podle Fišáka
česky: zařízení pro odběr kapalných usazených srážek; angl: fog gauge; něm: Nebelmesser m; rus: измеритель тумана  2019
merač ovlhnutia
syn. ovlhoměr.
česky: měřič ovlhnutí  1993-a1
merač priepustnosti
česky: měřič propustnosti; rus: измеритель пропускания  1993-a1
merač priezračnosti
syn. měřič propustnosti, transmisometr – zařízení používané k určování meteorologické dohlednosti, kterým se nejčastěji měří zeslabení sondovacího paprsku po průchodu stanoveným sloupcem ovzduší. Ke generování paprsku slouží v opt. systému nejčastěji laserová dioda, přičemž úzký paprsek je směrován do přijímače, kde je zpravidla elektronicky srovnávána intenzita vyslaného a po průchodu atmosférou zeslabeného paprsku. Délka sondovaného vzorku ovzduší bývá zpravidla desítky metrů. Jinou skupinu tvoří měřiče dohlednosti, které měří dopředný rozptyl záření, tzv. forward scatterometry. Viz též měření dohlednosti, vztah Allardův.
česky: měřič průzračnosti; angl: transmissometer; něm: Transmissometer n; rus: измеритель прозрачности, трансмиссометр  1993-a3
merač základne oblakov
syn. ceilometr.
česky: měřič základny oblaků; angl: ceilometer; něm: Wolkenhöhenmesser m; rus: облакомер  1993-b3
meranie brzdného účinku letištných dráh
soubor měření a postupů, kterými jsou získávány veličiny potřebné pro určení stavu drah ovlivněných povětrnostními vlivy. Změřené hodnoty brzdných účinků poskytované provozovatelem letiště pak musí být v souladu s regionálními postupy ICAO uváděny ve zprávách METAR a SPECI v doplňujících informacích.
česky: měření brzdného účinku letištních drah; angl: measurement of braking action of runways; něm: Messung der Bremswirkung der Landebahnen f; rus: измерение тормозящего действия на взлетно-посадочных полосах  1993-a3
meranie dohľadnosti
meteorologické měření za účelem zjišťování definované dohlednosti, jakou je např. meteorologická dohlednost, šikmá dohlednost, vertikální dohlednost, dohlednost dráhových světel aj. Vzdálenosti, na které jsou vidět definovaná světla za soumraku nebo v noci, lze převádět na hodnoty met. dohlednosti, která se vyjadřuje v m nebo v km. Pro přístrojová měření bývá použit měřič průzračnosti neboli transmisometr, popř. měřič dohlednosti, používající dopředný rozptyl světla v atmosféře neboli forward scatterometr. Viz též měření dráhové dohlednosti, pozorování meteorologické dohlednosti.
česky: měření dohlednosti; angl: visibility measurement; něm: Sichtweitenmessung f; rus: измерение видимости  1993-a3
meranie dráhovej dohľadnosti
(RVR, Runway Visual Range) – objektivní postup při stanovení hodnot dráhové dohlednosti na letištích. Dráhová dohlednost se z praktických důvodů nemůže měřit přímo nad vzletovou a přistávací dráhou. Ve smyslu platných předpisů se její měření uskutečňuje rovnoběžně s osou vzletové a přistávací dráhy ve vzdálenosti maximálně 120 m od této osy a ve výšce 7,5 FT, přičemž údaj o dráhové dohlednosti, který reprezentuje podmínky v bodě dotyku, má být z prostoru zhruba 300 m od prahu a ve směru příslušné dráhy. Měření RVR se provádí v případě, když horizontální dohlednost klesne pod 2 000 m a to v kroku 25 m při RVR menší než 400 m, v kroku 50 m pro RVR v intervalu 400–800 m a v kroku 100 m při RVR větší než 800 m. Naměřené hodnoty jsou zakódovány jednak ve zprávách METAR, jednak při změně dráhové dohlednosti (v souladu s kritérii v předpisu L3 – Meteorologie a stanovenými poskytovatelem letecké meteorologické služby na základě konzultací s příslušným úřadem ATS, provozovateli a provozovatelelm letiště) ve zprávách SPECI. K měření dráhové dohlednosti se používají měřiče průzračnosti neboli transmisometry nebo měřiče dopředného rozptylu neboli forward scatterometry. Dráhová dohlednost není měřena přímo. Transmisometry nebo forward scatterometry měří MOR a RVR je následně vyhodnocována automatizovaným meteorologickým systémem (AWOS). Viz též systém RVR.
česky: měření dráhové dohlednosti; angl: measurement of runway visual range; něm: Messung der Landebahnsicht f; rus: измерение видимости на взлетно-посадочных полосах  1993-a3
meranie evapotranspirácie
česky: měření evapotranspirace; angl: measurement of evapotranspiration; něm: Messung der Evapotranspiration f; rus: измерение суммарного испарения, измерение эвапотранспирации  1993-a2
meranie imisií
česky: měření imisí; angl: ambient air pollution monitoring; něm: Immissionsmessung f; rus: метеорологическое измерение примесей  1993-a1
meranie meteorologických prvkov v hraničnej vrstve a vo voľnej atmosfére
meteorologické měření prováděné přístrojem umístěným nebo se pohybujícím v atmosféře nad její přízemní vrstvou. Tento druh měření zahrnuje především radiosondážní měření a většinu dalších přímých aerologických měření, včetně stožárových meteorologických měření. Do zavedení radiosond počátkem 30. let 20. století byla měření v mezní vrstvě a ve volné atmosféře prováděna pomocí meteorografů, vynášených do ovzduší balony nebo upoutanými meteorologickými draky, případně přímo posádkami volných balonů. Viz též sondáž ovzduší, stanice měřící v mezní vrstvě atmosféry.
česky: měření meteorologických prvků v mezní vrstvě a volné atmosféře; angl: measurement of meteorological elements in boundary layer and free atmosphere; něm: Messung von meteorologischen Größen in der Grenzschicht und in der freien Atmosphäre f; rus: измерение метеорологических элементов в пограничном слое и в свободной атмосфере  1993-a3
meranie námrazkov
určování hmotnosti a rozměru námrazků. Pro operativní účely se podle doporučení Světové meteorologické organizace měří průměr vrstvy námrazků při výskytu jakéhokoliv typu námrazků v termínu pozorování. Za průměr námrazku se považuje max. průměr námrazku minus průměr měrné tyče. Cílem měření námrazků může být také stanovení max. hodnot námrazků ve víceletém období na daném místě. Kromě synoptických stanic se námrazky v České republice měří:
a) na běžných námrazkoměrných stanicích pomocí horizontálně exponovaných námrazkoměrných tyčí;
b) na speciálních námrazkoměrných stanicích, kde se zjišťuje usazování námrazků na různých materiálech a tvarech konstrukcí (tyče, úhelníky, lana atd.);
c) na el. vedeních pomocí Brinellových přístrojů. Podle tloušťky vrstvy námrazků, která se vyjadřuje jako kolmá vzdálenost od povrchu podkladu k povrchu námrazku, rozlišujeme slabou, mírnou a silnou „intenzitu“ jevu. Námrazky se měří ve výši 2, 6 nebo 10 m na tělesech o průměrech 5, 10 i 60 mm, někdy se používá i vert. expozice tyčí. K registraci změn hmotnosti námrazků s časem slouží námrazoměr, popř. na jeho principu upravená zařízení. Viz též intenzita námrazků.
česky: měření námrazků; angl: icing measurement; něm: Vereisungsmessung m; rus: измерение обледенения  1993-a3
meranie ozónu
určení množství ozonu v určitém bodě, vrstvě nebo hladině atmosféry. Nejčastěji se jedná o měření koncentrace ozonu v přízemní vrstvě atmosféry (parametr znečištění ovzduší), měření celkového množství ozonu v jednotkovém sloupci atmosféry (tloušťka ozonové vrstvy) nebo měření vertikálního profilu koncentrace ozonu (profil ozonové vrstvy). Celkový obsah ozonu v atmosféře se většinou měří Dobsonovým nebo Brewerovým spektrofotometrem a vyjadřuje se v Dobsonových jednotkách. Vert. rozložení ozonu v atmosféře se měří především pomocí balonových elektrochemických ozonových sond a ozonovými lidary. Kromě toho se k monitorování ozonu v atmosféře používají i družicová měření ozonu.
česky: měření ozonu; angl: ozone measurement; něm: Ozonmessung f; rus: измерение озона  1993-a3
meranie premŕzania pôdy
v agrometeorologii zjišťování hloubky pod povrchem země, v níž dochází k mrznutí půdní vody. Informace o hloubce promrznuti půdy je důležitá např. k posouzení nebezpečí poškození kořenové soustavy rostlin. Kromě zemědělství je využívána i některými technickými obory (nezámrzná hloubka ve stavebnictví). Měření promrzání půdy se provádí půdními mrazoměry. Viz též promrzání půdy, měření teploty půdy.
česky: měření promrzání půdy; angl: soil freezing measurement; něm: Messung der Bodengefrornis f; rus: измерение промерзания почвы  1993-a3
meranie rádioaktivity atmosféry
určování radioaktivity atmosféry, srážek a suchého spadu. Zjišťuje se jako radioaktivita:
a) aerosolu zachyceného na filtru, jímž byl prosát známý objem vzduchu;
b) odparku ze srážkové vody zachycené za dané období (obvykle dny až 1 měsíc);
c) spadu, tj. pevných částic, které se usadily na vodorovném suchém nebo mokrém dnu sběrné nádoby za dané období (obvykle dny až 1 měsíc);
odebrané vzorky se měří pomocí zařízení indikujícího záření α, β, γ (popř. jen některých z nich) laboratorně nebo přímo v místě odběru (automatické systémy pro odběr a měření vzorků). V případě měření vzorků přímo v místě odběru výsledky zahrnují i příspěvek radionuklidů s krátkým poločasem přeměny, při laboratorních měřeních lze tento vliv eliminovat. Dále se provádí přímá měření příkonu dávky/dávkového ekvivalentu příslušnými detektory (např. Geiger-Müllerovy počítače, proporcionální počítače). Detektory mohou být umístěny na stacionárních měřicích místech, na přízemních mobilních stanicích nebo na radiosondách pro zjišťování vertikálních profilů beta a gama záření. V případě přímého měření příkonu dávky/dávkového ekvivalentu měřená hodnota zahrnuje kromě složky atmosférické radioaktivity i složky odpovídající terestriálnímu a kosmickému záření. Radioaktivita ovzduší se obvykle vyjadřuje v jednotkách becquerel (Bq), a to pro spad v Bq.m–2 a pro ovzduší v Bq.m–3. Dříve používaná jednotka aktivity curie (Ci) souvisí s novou jednotkou becquerel vztahem 1 Bq = 2,7.10–11 Ci, tj. 1 Bq = 27 pCi. Příkon dávkového ekvivalentu se vyjadřuje v jednotkách Sievert za hodinu (Sv.h–1). Odběry vzorků a měření příkonu se provádí na vybraných met. stanicích, odebrané vzorky se předávají do měřicích laboratoří Radiační monitorovací sítě (RMS), výsledky měření prováděných na místě se průběžně předávají na centrální pracoviště RMS. Viz též spad radioaktivní, zpráva o příkonu fotonového dávkového ekvivalentu (RAD).
česky: měření radioaktivity atmosféry; angl: atmospheric radioactivity measurement; něm: Messung der atmosphärischen Radioaktivität f; rus: измерение радиоактивности атмосферы  1993-a3
meranie snehovej pokrývky
zjišťování výšky a vodní hodnoty sněhové pokrývky. U sněhové pokrývky se měří výška celkové sněhové pokrývky v klimatologickém termínu 7 h, na synoptických stanicích ještě také v termínu 06 UTC a 18 UTC. Měření se provádí pomocí sněhoměrné latě a na vybraných automatických meteorologických stanicích použitím ultrasonických nebo laserových senzorů. Výška nového sněhu se měří na sněhoměrném prkénku v klimatologickém termínu 7 h za období 24 hodin, na synoptických stanicích ČR také za 1 hodinu, pokud je výška nového sněhu 1 cm nebo více. U nesouvislé sněhové pokrývky se výška sněhové pokrývky neměří. Vodní hodnota sněhové pokrývky se měří sněhoměry a na vybraných meteorologických stanicích s použitím sněhového polštáře. Výška sněhové pokrývky se udává v cm, vodní hodnota sněhové pokrývky v mm vodního sloupce, nebo v kg.m–2 a ve stavebnictví také v kPa.
česky: měření sněhové pokrývky; angl: measurement of snow cover; něm: Schneedeckenmessung f; rus: измерение снежного покрова  1993-a3
meranie teploty pôdy
určení teploty čidla teploměru, které je v tepelné rovnováze s okolní vrstvou půdy. Teplota půdy se měří ve °C půdními teploměry v hloubkách 5, 10, 20, 50, 100, 150 a 300 cm (v ČR jen 5, 10, 20, 50 a 100 cm) na pozemku s přirozeným složením půdy, porostlém ošetřovaným trávníkem. K měření se používají půdní teploměry, a to elektrické, případně rtuťové. Viz též měření promrzání půdy.
česky: měření teploty půdy; angl: soil temperature measurement; něm: Messung der Bodentemperatur f; rus: измерение температуры почвы  1993-a3
meranie teploty vzduchu
určení teploty čidla teploměru, které je v tepelné rovnováze s okolním vzduchem. Pro met. účely se teplota vzduchu měří na základě Celsiovy teplotní stupnice s přesností na desetiny °C, v některých zemích na základě Fahrenheitovy teplotní stupnice. Měří se elektrickým, případně také kapalinovým nebo bimetalickým teploměrem. Teploměr musí být stíněn nebo jinak chráněn před rušivými účinky přímého slunečního záření. Na met. stanicích se proto umísťuje v meteorologické budce nebo v radiačním krytu. Zákl. přístroj pro měření teploty vzduchu je elektrický teploměr s čidlem ve výšce 2 m nad zemským povrchem. K měření hodnot extrémní teploty vzduchu za určité časové období se někdy ještě používají maximální a minimální teploměr, většinou se však tyto hodnoty získávají automatickým zpracováním údajů el. teploměru. Viz též staniční teploměr.
česky: měření teploty vzduchu; angl: air temperature measurement; něm: Messung der Lufttemperatur f; rus: измерение температуры воздуха  1993-a3
meranie tlaku vzduchu
určení hydrostatického tlaku v určitém místě atmosféry. Tlak vzduchu se měří v N.m–2, tj. v pascalech (Pa). V meteorologii je povolena jednotka hPa, která souvisí s dalšími jednotkami používanými v dřívější době těmito převodními vztahy:
1hPa=1mbar(milibar)= 103dyn.cm2=0,75006 torr.
Tlak vzduchu na met. stanicích se měří staničními tlakoměry s přesností na desetiny hPa. V dříve používaných rtuťových tlakoměrech bylo nutné odečtený údaj tlaku redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. Ve volné atmosféře se tlak vzduchu měří aneroidovými tlakoměry neboli aneroidy, popř. hypsometry. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
česky: měření tlaku vzduchu; angl: air pressure measurement; něm: Luftdruckmessung f; rus: измерение давления воздуха  1993-a3
meranie vetra
stanovení vektoru větru, popř. jeho časových fluktuací. Zpravidla se měří jen horiz. složka tohoto vektoru, a to jeho velikost neboli rychlost větru a směr, jemuž opačný je směr větru. Vert. složka vektoru větru neboli vertikální rychlost se zjišťuje pouze pro speciální účely. K přímému měření rychlosti větru se používají různé druhy anemometrů, z nichž některé měří současně i směr větru. Ten lze určit i pomocí větrné směrovky, příp. větrného rukávu.
Přízemní vítr se měří během určitého časového intervalu, na čes. stanicích převážně od roku 2010 v délce 10 minut. Kromě desetiminutové rychlosti větru se v týchž časových invervalech stanovuje i průměrná a maximální rychlost větru a jim odpovídající směry větru; zaznamenává se i čas výskytu nejvyšší denní hodnoty maximální rychlosti větru. Před automatizací se na přízemních synoptických stanicích vyhodnocovala z anemogramů desetiminutová rychlost větru, dále pak rychlost větru v nárazu, a to v případě, že přesáhla průměrnou alespoň o 5 m.s-1. Na klimatologických stanicích se odhadovala 4-minutová rychlost větru podle měření anemoindikátoru. Pro odhad rychlosti větru se užívala a i v současnosti je v případě potřeby možné užít Beaufortovu stupnici větru.
Hlavními nástroji měření výškového větru jsou různé způsoby měření větru radiotechnickými prostředky, v mezní vrstvě atmosféry lze využít rovněž meteorologických stožárů.
česky: měření větru; angl: measurement of wind; něm: Windmessung f; rus: измерение ветра  1993-a3
meranie vetra rádiotechnickými prostriedkami
měření potřebné k výpočtu výškového větru z polohových parametrů cíle pohybujícího se ve volné atmosféře a sledovaného různými radiotechnickými prostředky. Nejčastěji používanými radiotechnickými prostředky jsou:
a) navigační systém, radioteodolit nebo radiogoniometrický systém v případě aktivního cíle, tj. radiosondy, kdy se měření označuje termínem radiopilotáž;
b) meteorologický radar jak v případě aktivního cíle (radiosondy), tak v případě pasivního cíle, tj. koutového odražeče;
c) umělé družice Země při časovém sledování poloh transoceánských sond;
Pomocí meteorologického radaru je dále možné měřit vítr sledováním pohybu vhodných meteorologických cílů. Měření větru radiotechnickými prostředky bývá někdy nevhodně označováno jako radiovětrové pozorování. Údaje o výškovém větru, zjištěné jeho měřením radiotechnickými prostředky, jsou občas označovány jako radiovítr.
česky: měření větru radiotechnickými prostředky; angl: radio wind observation; něm: Radiowindmessung f; rus: радиоветровое зондирование  1993-b3
meranie vlhkosti vzduchu
určení obsahu vodní páry ve vzduchu v určitém místě atmosféry, zpravidla relativní vlhkosti vzduchu nebo tlaku vodní páry. Relativní vlhkost se měří v %, tlak vodní páry v hPa. Ostatní vlhkostní charakteristiky se v případě potřeby stanoví výpočtem s použitím hodnoty teploty a tlaku vzduchu změřených současně s vlhkostí. Vlhkost vzduchu se měří vlhkoměrem; na met. stanicích v ČR se používá vlhkostní čidlo umístěné v radiačním krytu. Dříve se měřila Augustovým psychrometrem a vlasovým vlhkoměrem umístěným v meteorologické budce. Z údajů meteorologických družic lze v důsledku pohlcování odraženého nebo vlastního záření zemského povrchu v absorpčních pásech vodní páry určit vertikální profil vlhkosti vzduchu.
česky: měření vlhkosti vzduchu; angl: air humidity measurement; něm: Messung der Luftfeuchte f; rus: измерение влажности воздуха  1993-a3
meranie výparu
určení množství vodní páry, které je za zvolený časový interval předáno do atmosféry sledovaným vodním nebo jiným vlhkým povrchem. Výpar se měří v mm vodního sloupce, který by se vytvořil z vypařené vody na ploše shodné velikosti s velikostí vypařujícího se povrchu. Výpar z volné vodní hladiny se měří výparoměry, které jsou umístěny v půdě nebo na jejím povrchu. V ČR se výpar měří na vybraných stanicích ČHMÚ výparoměrem EWM, který nahradil starší výparoměr GGI 3000.
česky: měření výparu; angl: measurement of evaporation; něm: Verdunstungsmessung f; rus: измерение испарения  1993-a3
meranie výšky základne oblakov
určení výšky základny oblaků nad zemí. Provádí se ceilometrem, příp. lidarem. Princip měření je založen na zjišťování času, který potřebuje krátký světelný impulz na průchod atmosférou z vysílače ceilometru k oblaku rozptylujícímu světlo a zpět do přijímače ceilometru. Okamžitá amplituda vráceného signálu pak poskytuje informace o charakteristikách zpětného rozptylu záření v atmosféře na určité výšce. Z přijatého rozptýleného signálu lze odvodit informace o oblačnosti a také o mlze a srážkách. V minulosti se výška základny oblaků určovala pomocí tzv. píchacího balonku se známou stoupací rychlostí, a to výpočtem z doby jeho letu od vypuštění do zmizení v základně oblaku, nebo trigonometrickou metodou z měření oblakoměrným světlometem.
česky: měření výšky základny oblaků; angl: measurement of cloud base height; něm: Wolkenhöhenmessung f; rus: измерение высоты нижней границы облаков  1993-a3
meranie znečistenia ovzdušia
zjišťování množství znečišťujících příměsí v atmosféře. Při měření znečištění ovzduší se používá buď aerochemických metod (např. zachycování dané příměsi do chem. reagentu při průchodu známého množství znečištěného vzduchu), nebo fyz. metod (opt. pohltivost v dané části spektra lidary apod.), atomové absorpce a dalších analytických metod. Výsledkem je zpravidla určení koncentrace znečišťujících látek, u nás obvykle v rozměru hmotnost příměsi na objem vzduchu, např. v µg.m–3, v anglosaské literatuře v poměrných číslech, často ppm (parts per million) nebo ppb (parts per billion). Měření znečištění ovzduší se organizuje zpravidla na více bodech kontinuálně či ve stacionárních nebo mobilních sítích měření. Časovou jednotkou měření je buď konečný časový interval čili odběrová doba, nebo se měří kontinuálně okamžité hodnoty. Informace v reálném čase poskytuje monitorování znečištění ovzduší. Viz též emise, imise.
česky: měření znečištění ovzduší; angl: air pollution monitoring; něm: Messung der Luftverunreinigung f, Messung der Schadstoffbelastung der Luft f; rus: измерение загрязнения воздуха  1993-a2
meranie zrážok
měření parametrů srážek, především jejich úhrnu a intenzity, různými druhy přístrojů na srážkoměrných, klimatologických a dalších meteorologických stanicích. Zákl. přístrojem je srážkoměr používaný k měření množství kapalných i tuhých srážek. K měření srážek na těžko dostupných místech se používá totalizátor. U tuhých srážek se měří výška sněhové pokrývky (v cm), někdy též vodní hodnota sněhové pokrývky (v mm nebo v kg.m–2) a hustota sněhu (v kg.m–3). U usazených srážek se jedná především o měření rosy různými typy rosoměrů, popř. drosografů a o měření námrazků. Měření srážek nespočívá jen v získávání dat z indikačních a registračních přístrojů, nýbrž i ve vizuálním pozorování usazených srážek (kondenzačních jevů a námrazků), v určování doby trvání padajících i usazených hydrometeorů.
česky: měření srážek; angl: precipitation measurement; něm: Niederschlagsmessung f; rus: измерение осадков  1993-a3
meridionálna brázda nízkeho tlaku vzduchu
nejčastěji brázda nízkého tlaku vzduchu v mírných zeměp. šířkách, jejíž osa je orientována ve směru poledníků. Na její záp. straně převládá sz. až sev. proudění, které přenáší na sev. polokouli většinou studené vzduchové hmoty, a na vých. straně naopak již. proudění přenášející teplé vzduchové hmoty. Tato brázda značně podporuje meridionální výměnu vzduchu. Viz též brázda nízkého tlaku vzduchu zonální, proudění meridionální.
česky: brázda nízkého tlaku vzduchu meridionální; angl: meridional trough; něm: meridionaler Trog m; fr: thalweg orienté du nord au sud m, thalweg orienté du sud au nord m; rus: меридиональная ложбина  1993-a2
meridionálna cirkulácia
1. souhrn meridionálích složek proudění vzduchu a na ně navazujících vertikálních pohybů vzduchu v systému všeobecné cirkulace atmosféry;
2. atmosférická cirkulace s nenulovou meridionální složkou, která v dané oblasti působí významnou mezišířkovou výměnu vzduchu a tím i přenos tepla a hybnosti. Viz též index rneridionální cirkulace.
česky: cirkulace meridionální; angl: meridional circulation; něm: meridionale Zirkulation f; fr: circulation méridienne f; rus: меридиональная циркуляция  1993-a3
meridionálna zložka cirkulácie
průmět vektoru větru popisujícího v daném místě a hladině všeobecnou cirkulaci atmosféry na místní poledník. Pokud je meridionální složka cirkulace orientována od jihu k severu, považuje se za kladnou, v opačném případě za zápornou. Viz též cirkulace meridionální, složka cirkulace zonální.
česky: složka cirkulace meridionální; angl: meridional component of circulation; něm: meridionale Zirkulationskomponente f; rus: меридиональная составляющая циркуляции  1993-a3
meridionálne prúdenie
česky: proudění meridionální; angl: meridional flow; něm: meridionale Strömung f; rus: меридиональное течение  1993-a2
merná hmotnosť vodnej pary
česky: hmotnost vodní páry měrná; angl: water vapour density; něm: Dichte von Wasserdampf f; rus: удельный вес водяного пара  1993-a2
merná hmotnosť vzduchu
česky: hmotnost vzduchu měrná; angl: air density; něm: Dichte der Luft f; rus: удельный вес воздуха  1993-a1
merná plynová konštanta
konstanta úměrnosti ve stavové rovnici daného ideálního plynu. Je vlastností plynu a lze ji vyjádřit vztahem R = R* / m, kde R* je univerzální plynová konstanta a m značí relativní (poměrnou) molekulovou hmotnost plynu. Pro suchý vzduch platí Rd = 287,04 J.kg–1.K–1 a pro vodní páru je Rv = 461,5 J.kg–1.K–1. Ve stavové rovnici pro vlhký vzduch používáme hodnotu Rd a teplotu nahrazujeme hodnotou teploty virtuální. Viz též teplo měrné, Mayerův vztah.
česky: konstanta plynová měrná; angl: specific gas constant; něm: spezifische Gaskonstante f; rus: удельная газовая постоянная  1993-a3
merná vlhkosť vzduchu (špecifická)
syn. vlhkost vzduchu specifická – charakteristika vlhkosti vzduchu s, která udává hmotnost vodní páry v jednotce hmotnosti vlhkého vzduchu, tj.
s=mvmv +md,
kde mv značí hmotnost vodní páry a md hmotnost suchého vzduchu v daném objemu vlhkého vzduchu. Měrnou vlhkost vzduchu lze vyjádřit pomocí tlaku vodní páry e a tlaku vzduchu p vztahem:
s=εep( 1ε)eεep,
kde konstanta ε ≈ 0,622 je poměr měrné plynové konstanty pro suchý vzduch a pro vodní páru. Měrná vlhkost vzduchu je bezrozměrná veličina, která v atmosféře dosahuje hodnot řádu 10–3. V meteorologii ji proto často udáváme v jednotkách g.kg–1. Číselnou hodnotou se měrná vlhkost blíží hodnotě směšovacího poměru vodní páry.
česky: vlhkost vzduchu měrná; angl: specific humidity; něm: spezifische Feuchte f; rus: удельная влажность  1993-b3
merná žiarivosť
poměr L zářivosti dI elementu plošného zdroje o velikosti dS a průmětu této plochy do roviny kolmé k uvažovanému směru zářivého toku, tj.
L=dIdS.cosα,
kde α značí úhel sevřený normálou k ploše zdroje a směrem zářivého toku. Jednotkou záře je W.m–2.sr–1.
česky: zář; angl: radiance, radiant intensity per unit area; něm: spektrale Strahldichte f; rus: заря, излучениe  1993-a1
merné teplo
množství tepelné energie potřebné k ohřátí látky jednotkové hmotnosti o 1 K. U plynů rozlišujeme měrné teplo při stálém tlaku cp a měrné teplo při stálém objemu cv. Měrné teplo plynů závisí na teplotě a tlaku a lze je přímo měřit. V rozsahu podmínek běžných v atmosféře lze tuto závislost zanedbat a považovat hodnoty cp a cv za konstantní. Pro suchý vzduch lze užít hodnoty pro 273,16 K: cpd = 1 004 J.kg–1.K–1, cvd = 717 J.kg–1.K–1. Ve vlhkém vzduchu o směšovacím poměru vodní páry rv je možné použít přibližné vztahy:
cpcpd(1+0.86 rv),cvc vd(1+0.96rv).
Viz též vztah Mayerův.
česky: teplo měrné; angl: specific heat; něm: spezifische Wärme f; rus: удельная теплoтa, удельная теплоемкость  1993-a3
merný objem
objem látky o jednotkové hmotnosti. Udává se v m3.kg–1 a je převrácenou hodnotou hustoty látky. V meteorologii se setkáváme zejména s měrným objemem vzduchu jakožto převrácenou hodnotou hustoty vzduchu. Viz též plocha izosterická.
česky: objem měrný; angl: specific volume; něm: spezifisches Volumen n; rus: удельный объем  1993-a3
mesačná amplitúda
rozdíl mezi měsíčním maximem a měsíčním minimem meteorologického prvku v témž měsíci. Např. na stanici Praha–Klementinum je za období let 1775–2010 největší měsíční amplituda teploty vzduchu 37,4 °C (z února 1871), vypočtená z denního minima –24,4 °C (13. 2.) a denního maxima 13,0 °C (27. 2.).
česky: amplituda měsíční; angl: monthly amplitude, monthly range; něm: monatliche Schwingungsbreite f, monatliche Schwankungsbereich m; fr: amplitude mensuelle f; rus: месячная амплитуда  1993-a3
mesačná dúha
duha v měs. světle. Její barvy jsou velmi chudé.
česky: duha měsíční; angl: lunar rainbow, moon bow; něm: Mondregenbogen m; fr: arc-en-ciel lunaire m; rus: лунная радуга  1993-a1
mesačné maximum
nejvyšší hodnota meteorologického prvku dosažená během kalendářního měsíce v určitém roce.
česky: maximum měsíční; angl: monthly maximum of meteorological element; něm: Monatsmaximum n; rus: месячный максимум метеорологического элемента  1993-a2
mesačné minimum
nejnižší hodnota meteorologického prvku dosažená během kalendářního měsíce v určitém roce.
česky: minimum měsíční; angl: monthly minimum of meteorological element; něm: Monatsminimum n; rus: месячный минимум метеорологического элемента  1993-a2
mesačný stĺp
česky: sloup měsíční; angl: moon pillar; něm: Mondsäule f; rus: лунный столб  1993-a1
mesačný výkaz meteorologických pozorovaní
formulář s účelně uspořádanými tabulkami, obsahujícími výsledky met. měření a pozorování během měsíce. Ve výkazu jsou dále uvedena tzv. metadata, tedy základní údaje o dané meteorologické stanici, o používaných met. přístrojích a jejich opravách, vysvětlivky, některé pokyny pro pozorovatele apod. V současné době je na většině stanic nahrazen elektronickým výkazem, který se následně odešle do centra a zpracuje do databáze klimatologických pozorování. Viz též přehled meteorologický, ročenka meteorologická.
česky: výkaz meteorologických pozorování měsíční; angl: monthly record of meteorological observations; něm: Monatstabelle der meteorologischen Beobachtungen f; rus: месячная таблица метеорологических наблюдений  1993-a3
mestská klíma
klima velkých měst a průmyslových aglomerací, které se vytváří za spolupůsobení specifického aktivního povrchu měst, antropogenní produkce tepelné energie a průmyslové, dopravní i jiné činnosti ve městech. Aktivní povrch měst je tvořen střechami a stěnami budov, vozovkami s umělým povrchem, malou plochou zeleně a jeho vlastnosti závisí i na typu zástavby, šířce ulic apod. Od klimatu přilehlého venkovského okolí se městské klima zpravidla liší nižší prům. rychlostí větru, vytvářením tepelného ostrova města (projevuje se vyššími denními i roč. průměry teploty vzduchu), nižší relativní vlhkostí vzduchu, sníženou dohledností a podstatně vyššími emisemi znečišťujících látek, které unikají do atmosféry z různých zdrojů znečištění (tepelné elektrárny, teplárny, továrny, domácí topeniště, spalovací motory aj.). Větší znečištění ovzduší ve městech se projevuje snížením slunečního záření. Městským klimatem se zabývá klimatologie měst. Viz též smog, znečištění ovzduší tepelné.
česky: klima městské; angl: urban climate; něm: Stadtklima n; rus: городской климат  1993-b2
mestská klimatológia
syn. klimatologie urbanistická – část mezoklimatologie a mikroklimatologie aplikovaná na problémy velkých měst a průmyslových aglomerací. Její součástí je i klimatologie mezní vrstvy atmosféry a klimatologie znečištění ovzduší. Z hlediska mezoklimatu jde o interakci města nebo průmyslové oblasti jako celku s okolím, z hlediska mikroklimatu o části města, jako náměstí, ulice, dvory, např. v úzké součinnosti s bioklimatologií o hodnocení pohody ve venkovních prostorech zástavby apod. Do městské klimatologie zasahují i otázky hygieny ovzduší měst. Městská klimatologie je jednou z pomocných vědních disciplín pro urbanismus, tj. nauku o městě. Viz též klima městské.
česky: klimatologie měst; angl: polisclimatology, urban climatology; něm: Städtklimatologie f; rus: климатология городов  1993-a3
metadáta meteorologickej stanice
údaje o meteorologické stanici, jmenovitě indikativ stanice, jméno stanice, souřadnice meteorologické stanice, období pozorování na stanici a změny ovlivňující reprezentativnost pozorování, informace o přístrojovém vybavení (typ, datum instalace), výšky senzorů nad zemí v místě, kde je přístroj umístěn (pro měření teploty, větru, srážek, dohlednosti a pro detektor počasí), a další informace (typ stanice, standardní izobarická hladina pro stanice s nadmořskou výškou stanice větší než 550 m, hlášení oblačnosti se základnou pod úrovní stanice, vydávání zpráv METAR, SPECI a vydávání zpráv CLIMAT). Pokud se zprávy z dané stanice zařazují do mezinárodní výměny met. informací, jsou metadata stanice uložena v databázi OSCAR/Surface Světové meteorologické organizace.
česky: metadata meteorologické stanice; angl: metadata of a meteorological station; něm: Meta-Daten einer meteorologischen Station pl; rus: метаданные  2014
metán
(CH4), v chemii methan – plynná organická sloučenina, která je přirozenou složkou atmosféry Země.  Chemicky se jedná o nejjednodušší stabilní uhlovodík, tzv. alkan. Ačkoliv je jeho podíl na chemickém složení atmosféry Země velmi nízký, hraje důležitou roli v chemii atmosféry, kdy se např. podílí na vzniku troposférického ozonu. Neméně podstatná je funkce metanu jakožto skleníkového plynu, přičemž vzhledem k jeho radiačně-absorbčním vlastnostem je jeho potenciál globálního oteplování (GWP) asi 28krát vyšší než v případě oxidu uhličitého.
Přibližně 90 % metanu vzniká v důsledku anaerobních procesů (činností mikroorganismů při rozkladu organické hmoty bez přístupu kyslíku), zbývajících cca 10 % se uvolňuje při geologických aktivitách (např. tavením magmatu). Hlavními přirozenými emisními zdroji jsou mokřady a vodní ekosystémy. V současné době množství metanu v atmosféře prudce roste vlivem člověka, přičemž se udává podíl antropogenních emisí asi 60 %. Hlavním antropogenním zdrojem je zemědělství, zejména chov hospodářských zvířat či pěstování rýže. Při probíhající změně klimatu se značné emise metanu mohou do atmosféry uvolňovat při tání permafrostu. Střední doba setrvání metanu v atmosféře se odhaduje na 10–12 let. Hlavním propadem metanu jsou reakce s hydroxylovými radikály (OH).
česky: metan; angl: methane; něm: Methan n; fr: méthane m; rus: мета́н  2024
METAR
Termín je zkratkové slovo, jehož vysvětlení není jednoznačné; uvádí se např. METeorological Aviation Report „meteorologická letecká zpráva“, MEteorological Terminal Air Report „meteorologická letištní zpráva o ovzduší“ nebo METeorological Aerodrome Routine Report „meteorologická letištní pravidelná zpráva“ (oproti zprávě SPECI).
česky: METAR; angl: METAR; něm: METAR; rus: МЕТАР  2014
metelica
lid. název pro silný studený vítr v zimním období, doprovázený zpravidla sněžením nebo zvířeným sněhem. Nemá charakter odb. termínu.
česky: fujavice; fr: tempête de neige f; rus: вьюга, метелица  1993-a1
metelica
dříve používaný název pro větrem zvířený sníh.
Termín pochází ze slovesa mésti se, což je zastaralý výraz pro „prudce se hnát, vířit (o sněhu nebo o větru)“.
česky: metelice; něm: Schneetreiben n; rus: метелица  1993-a2
metelica
lid. označení pro sněžení při vysoké rychlosti větru, kdy pozorujeme vysoko zvířený sníh. Kromě padajícího sněhu může být větrem unášen také již napadlý, především čerstvý sníh, zvláště při nízké teplotě vzduchu. Viz též bouře sněhová, blizard.
česky: vánice sněhová; angl: snowstorm; něm: Schneefegen n, Schneesturm m, Schneetreiben n; rus: снежная метель  1993-a2
meteogram
graf znázorňující chod meteorologického prvku v určitém místě. Může znázornit jak výsledky měření určitého prvku, tak i jeho prognostické hodnoty. Horizontální osa vyjadřuje čas, na vertikální osu se vynáší hodnoty sledovaného meteorologického prvku, přičemž se často využívá více vertikálních stupnic k zobrazení více prvků současně. Může také sloužit k vyjádření průběhu předpovědi počasí pro dané místo.
Termín vznikl v 80. letech 20. století zjednodušením termínu meteorogram.
česky: meteogram; angl: meteogram; něm: Meteogramm n  2014
meteor
v met. smyslu jev (úkaz) pozorovaný v atmosféře nebo na zemském povrchu. Může mít charakter srážek, suspenzí a usazenin pevných nebo kapalných částic, vodních nebo jiných; může jím být také jev opt. nebo el. povahy. Podle složení a podmínek vzniku se meteory dělí na hydrometeory, litometeory, fotometeory a elektrometeory.
Termín pochází z řec. slova μετέωρον [meteóron], které se v antice používalo pouze v množném čísle (ta meteóra, „věci ve výšce“) pro označení jevů v ovzduší i na nebi (z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“, z μετά [meta] „uprostřed, mezi; za, přes“ a ἀείρειν [aeirein] „zvedat, zdvihnout“). Aristotelés (4. stol. př. n. l.) význam zúžil na jevy vyskytující se v oblasti mezi Zemí a Měsícem (jinými slovy jevy neastronomické). Termín se dnes používá i v astronomii pro označení světelného jevu pozorovaného při průchodu kosmické částice atmosférou Země.
česky: meteor; angl: meteor; něm: Meteor n; rus: метеор  1993-a1
meteorograf
přístroj pro současný záznam několika meteorologických prvků (nejčastěji teploty, vlhkosti a tlaku vzduchu) na jednu registrační pásku. Je upraven tak, aby mohl být zavěšen pod meteorologický balon nebo jiný dopravní prostředek a jím vynesen do volné atmosféry. Je-li meteorograf vynášen balonem, je jeho záznam k dispozici až po sestupu přístroje na zem.
Přístroj i jeho pojmenování navrhl v r. 1780 portugalský přírodovědec J. H. de Magellan. Termín se skládá z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“ (viz meteor) a z komponentu -γραφos [-grafos], odvozeného od slovesa γράφειν [grafein] „psát“.
česky: meteorograf; angl: meteorograph; něm: Meteorograph m; rus: метеорограф  1993-a2
meteorogram
záznam meteorografu.
Termín vznikl odvozením od termínu meteorograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“ (viz meteor) a řec. γράμμα [gramma] „písmeno, zápis“.
česky: meteorogram; angl: meteorogram; něm: Meteorogramm n; rus: метеорограмма  1993-a1
meteorológ
odborník s příslušným meteorologickým formálním nebo neformálním vzděláním, který se v tematické oblasti meteorologie profesně angažuje. Podle stupně vzdělání a dosažené praxe se v některých státech na doporučení Světové meteorologické organizace rozeznávají meteorologové 1. až 4. třídy, což kvalifikačně pokrývá celou oblast od technických pracovníků v praxi až po meteorologický výzkum. Viz též klimatolog, synoptik, prognostik.
Termín je přejat z řec. μετεωρολόγος [meteórologos] „ten, kdo zkoumá jevy ve výši, nad zemským povrchem“, původně též „astronom“ (z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“ a komponentu -λόγoς [logos] „vědec“).
česky: meteorolog; angl: meteorologist; něm: Meteorologe m; rus: метеоролог  1993-a3
meteorológia
základní věda o zemské atmosféře, o jejím složení, vlastnostech, atmosférických procesech a jevech, a to včetně vazeb s ostatními složkami klimatického systému a při uvažování vlivu Slunce a dalších kosmických faktorů. V nejširším smyslu meteorologie zahrnuje všechny vědy o atmosféře včetně klimatologie, chemie atmosféry apod. V tomto smyslu pod ni spadá i aeronomie, jakkoliv hlavním předmětem meteorologie jsou procesy a jevy v troposféře. Jádrem meteorologie je fyzika atmosféry, na kterou navazuje celá řada oborů aplikované meteorologie a hraniční disciplíny, jako např. biometeorologie a hydrometeorologie. Podle měřítka studovaných jevů rozlišujeme především synoptickou a mezosynoptickou meteorologii, příp. mikrometeorologii. Podle metod práce vymezujeme mj. dynamickou meteorologii, podle studovaného prostředí dále označujeme např. tropickou, mořskou nebo horskou meteorologii.
Počátky meteorologie sahají do antického Řecka. Důležitým mezníkem vývoje byla  1. polovina 17. století, kdy byly vynalezeny základní meteorologické přístroje, čímž bylo zahájeno tzv. přístrojové období meteorologie. V souvislosti s meteorologickými měřeními se etablovaly i jim příslušné obory, jako např. aktinometrie, fotometrie apod. Kromě získávání empirických vědeckých poznatků o atmosféře Země se především od poloviny 19. století rozvíjel systematický monitoring atmosféry, na němž se v současnosti podílí rovněž aerologie, družicová a radarová meteorologie. Neméně důležitou činností dnešní meteorologie je předpověď počasí a vydávání případných meteorologických výstrah.
Operativní úlohy meteorologie v jednotlivých státech plní národní meteorologické služby, jejich koordinaci v celosvětovém měřítku se věnuje Světová meteorologická organizace, v Evropě organizace EUMETNET. Důležitými nástroji evropské spolupráce jsou dále Evropské centrum pro střednědobé předpovědi počasí (ECMWF), EUMETSAT aj. Na mezinárodní spolupráci v oblasti met. výzkumu se podílí mj. Mezinárodní sdružení pro meteorologii a atmosférické vědy (IAMAS) a Evropská meteorologická společnost. Viz též meteorologie v ČR.
Termín byl přejat z řec. slova μετεωρολογία [meteórologia], které je složeno z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“ (viz meteor) a z komponentu -λoγία [logia] „nauka, věda“, tj. věda studující jevy nad zemským povrchem. Původně se vztahoval ke všem jevům ve výšce, včetně těch astronomických. Teprve pod vlivem Aristotela (4. stol. př. n. l.) se předmět zkoumání meteorologie zúžil na jevy v oblasti mezi Zemí a Měsícem.
česky: meteorologie; angl: meteorology; něm: Meteorologie f; rus: метеорология  1993-a3
meteorológia hraničnej vrstvy atmosféry
česky: meteorologie mezní vrstvy atmosféry; angl: boundary layer meteorology; něm: Grenzschichtmeteorologie f, Meteorologie der atmosphärischen Grenzschicht f; rus: метеорология пограничного слоя атмосферы  1993-a1
meteorológia v ČR
v České republice zajišťuje provoz a aplikovaný výzkum v oboru meteorologie Český hydrometeorologický ústav (ČHMÚ) se sídlem v Praze a Hydrometeorologická služba Armády ČR, které organizují zejména sběr, přenos, zpracování a poskytování met. údajů pro operativní i režimové účely, jakož i archivaci dat. Uvedené organizace udržují v provozu rozsáhlé sítě meteorologických stanic, obsluhované profesionálními i dobrovolnými pozorovateli. Spolupracují s obdobnou organizací v SR, kterou je Slovenský hydrometeorologický ústav (SHMÚ) se sídlem v Bratislavě.
Výzkumem v oboru meteorologie a klimatologie se jako svou hlavní činností zabývá Ústav fyziky atmosféry AV ČR, v. v. i., a v rámci své vědecké činnosti řada vysokých škol. Meteorologický a klimatologický výzkum je dílčí součástí práce i v dalších vědeckých ústavech AV ČR v rámci výzkumu problémů specifických pro jejich zaměření.
Výchovu a vzdělávání vysokoškolsky kvalifikovaných meteorologů a klimatologů zajišťují hlavně Matematicko-fyzikální fakulta UK v Praze, Přírodovědecká fakulta UK v Praze, Univerzita obrany v Brně a Přírodovědecká fakulta Masarykovy univerzity v Brně. Meteorologické předměty se kromě toho přednášejí na několika dalších fakultách ve studijních oborech zaměřených na geografii, zemědělství, lesní a vodní hospodářství, životní prostředí, medicínu atp.
Jednotlivé instituce reprezentují ČR ve vybraných mezinárodních organizacích, jejichž činnost se k meteorologii a klimatologii vztahuje. ČHMÚ zastupuje ČR ve Světové meteorologické organizaci (WMO), v EUMETSAT, ECMWF, EUMETNET, IPCC, GEO a dalších. Kromě toho většina jmenovaných organizací navazuje dvoustranné dohody o spolupráci s partnerskými orgány v řadě zemí.
Zájmovou činnost v oboru meteorologie organizují Česká meteorologická společnost (dříve Československá meteorologická společnost při ČSAV) a Česká bioklimatologická společnost. Česká meteorologická společnost má svého zástupce i v Evropské meteorologické organizaci (EMS).
česky: meteorologie v ČR; angl: meteorology in the Czech Republic; rus: метеорология в ЧР  1993-a2
meteorologická anomália
odchylka meteorologického prvku od jeho průměrné hodnoty v dané fázi roku, podmíněná proměnlivostí počasí. Na rozdíl od klimatické anomálie přetrvává v omezené oblasti maximálně několik dní, neboť je vázána na určitou povětrnostní situaci. Mimořádně silné meteorologické anomálie mohou být projevem povětrnostních ohrožení, případně mohou vést k jejich vzniku. V tom případě má jejich výskyt prognostický význam, viz např. anomálie potenciální vorticity.
česky: anomálie meteorologická; angl: meteorological anomaly; něm: meteorologische Anomalie f, meteorologische Anomalie f  2014
meteorologická búdka
bílá plastová nebo dřevěná skříňka sloužící jako ochrana jednoho nebo několika v ní umístěných meteorologických přístrojů před rušivými účinky záření a srážek, která umožňuje dostatečnou přirozenou ventilaci čidel přístrojů. Má stěny z dvojitých žaluzií, dvojitou střechu, perforované dno nebo dno z drátěného síta a dvířka orientovaná na sever na severní polokouli. Výška umístění budky nad povrchem země je dána požadavkem Světové meteorologické organizace, aby čidla teploměrů byla ve výšce 1,25 až 2,0 m nad zemí. V ČR se umísťuje na čtyřnohém podstavci tak, aby čidla teploměrů byla ve výšce 200 cm nad zemí, resp. nad povrchem sněhu. V horských oblastech s vysokou sněhovou pokrývkou je tedy vhodné použít výškově nastavitelnou budku. Do meteorologické budky se umísťují: psychrometr, maximální a minimální teploměr, vlhkoměr, popř. další přístroje. V minulosti se v meteorologické budce prováděla základní meteorologická měření, což dosud platí pro meteorologické stanice, které nejsou automatizované. Na profesionálních stanicích ČR se údaje z přístrojů v meteorologické budce používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem.
česky: budka meteorologická; angl: Stevenson screen, thermometer screen; něm: Thermometerhütte f; fr: abri météorologique m, abri météo m, abri Stevenson m; rus: английская будка, метеорологическая будка  1993-a3
meteorologická dohľadnosť
ve dne největší vzdálenost, na kterou lze spolehlivě rozeznat černý předmět o úhlové velikosti mezi 0,5 až 5°, umístěný u země na pozadí mlhy nebo oblohy; v noci největší vzdálenost, na kterou jsou spolehlivě rozeznatelná světla určité stálé a směrově málo proměnlivé svítivosti.
Tato definice je závislá na vlastnostech lidského oka. Pro účely vizuálního pozorování meteorologické dohlednosti se předpokládá, že pozorovatel má normální zrak. Pro účely přístr. měření meteorologické dohlednosti ve dne se definuje práh kontrastové citlivosti hodnotou 0,025, v noci se definuje prahová hodnota osvětlení např. za občanského soumraku 106 luxů a za tmavé noci při svitu hvězd 107,5 luxů. Použití těchto hodnot zaručuje srovnatelnost výsledků vizuálních a přístr. pozorování. Meteorologická dohlednost závisí na množství vody v různých fázích, prachu, kouře a mikroorganismů v ovzduší mezi pozorovatelem a pozorovaným předmětem. Může proto nabývat v různých směrech různých hodnot. Vyjadřuje se v m, popř. v km.
letecké meteorologii jsou zavedeny termíny dohlednost, dráhová dohlednost (RVR), šikmá dohlednost a letová dohlednost. Obj. fyz. veličinou, charakterizující stav opt. průzračnosti atmosféry, je meteorologický optický dosah. Viz též měření dohlednosti, měření dráhové dohlednosti, měřič průzračnosti, objekt pro zjišťování dohlednosti, vztah Allardův, vztah Koschmiederův.
česky: dohlednost meteorologická; angl: meteorological visibility; něm: meteorologische Sichtweite f; fr: visibilité météorologique f; rus: метеорологическая видимость , метеорологическая дальность видимости  1993-a3
meteorologická družica
umělá družice Země určená primárně pro družicová meteorologická měření. Podle oběžné dráhy se družice dělí na družice geostacionární a družice na nízkých dráhách (nejčastěji polárních), zkráceně polární družice. Podle zaměření rozlišujeme družice operativní a výzkumné. Kromě primárních přístrojů, zaměřených na meteorologické využití, má většina současných meteorologických družic na své palubě řadu přístrojů umožňujících dálkový průzkum Země i v jiných oborech – systémy pro monitorování stavu hladiny světového oceánu, astronomické a geofyzikální přístroje, systémy pro přenos nouzových signálů aj.
česky: družice meteorologická; angl: meteorological satellite, meteorological spacecraft; něm: meteorologischer Satellit m, Wettersatellit m; fr: satellite météorologique m; rus: метеорологический спутник  1993-a3
meteorologická informácia
soubor údajů o stavu atmosféry nebo o hodnotách jednotlivých meteorologických prvků. Lze rozlišit dva typy met. informací:
1. prvotní met. informace, což jsou aktuální informace, bezprostředně získané jako výsledek meteorologických měření a pozorování. Na jejich kvalitě, úplnosti a včasnosti závisí správnost analýzy atm. procesů, úspěšnost předpovědí počasí a všech druhotných informací;
2. druhotné met. informace, což jsou informace o počasí ve formě přehledů počasí a předpovědí, zpráv a rozborů, synoptických map, aerologických diagramů, vertikálních řezů atmosférou, výsledků numerických předpovědních modelů apod.
Jiné členění rozlišuje informace meteorologické operativní, vypracované převážně s využitím aktuálních met. dat, a informace meteorologické režimové, vypracované převážně s využitím archivovaných dat.
česky: informace meteorologická; angl: meteorological information; něm: meteorologische Information f, Wetterinformation f; rus: метеорологическая информация  1993-a3
meteorologická konzultácia
jeden z pracovních nástrojů užívaných v meteorologických službách v procesu přípravy předpovědi počasí. Výsledkem konzultace je jednotný názor meteorologů na časové a prostorové aspekty předpovědi počasí v daný okamžik. V ČHMÚ se meteorologická konzultace běžně užívá pro komunikaci centrálního a regionálních prognózních pracovišť.
česky: konzultace meteorologická; něm: meteorologische Beratung f; rus: метеорологическая консультация  2014
meteorologická letová dokumentácia
soubor mapových, tabulkových, popř. i dalších met. informací, které v souladu s příslušnými předpisy poskytuje letecká meteorologická služba při předletové přípravě posádkám letadel. Příslušné formuláře, měřítka map, soustava jednotek, čas vydávání předpovědí, symbolika, zkratky a další náležitosti dokumentace jsou stanoveny příslušnými doporučeními Mezinárodní organizace pro civilní letectví (ICAO), resp. národními předpisy. Poskytovaná dokumentace letecké meteorologie musí zahrnovat tyto informace: předpovědi výškového větru a teploty vzduchu ve výšce ve standardních izobarických hladinách a význačných jevů počasí (např. mapu význačného počasí), zprávy METAR nebo SPECI (včetně předpovědí trend, vydávané v souladu s regionálními postupy ICAO) pro letiště odletu a předpokládaného přistání a pro náhradní letiště při vzletu, na trati a určení; předpovědi TAF nebo opravené předpovědi TAF pro letiště odletu nebo předpokládaného přistání a pro náhradní letiště při vzletu, na trati a určení; informace SIGMET a příslušná mimořádná hlášení z letadel týkající se celé trati letu; informační zprávy o vulkanickém popelu a tropických cyklonách týkající se celé trati letu. Pro lety v nízkých hladinách pak i oblastní předpovědi GAMET a/nebo oblastní předpovědi pro lety v nízkých hladinách v mapovém formátu připravené jako podklad pro vydání informací AIRMET a informace AIRMET pro lety v nízkých hladinách, týkající se celé trati letu v souladu s regionálními postupy ICAO.
česky: dokumentace letová meteorologická; angl: flight meteorological documentation; něm: flugmeteorologische Dokumentation f; fr: bulletin aéronautique m, bulletin d'information prévol m; rus: полетная метеорологическая документация  1993-a3
meteorologická loď
loď zpravidla specializovaná na plnění úkolů v systému meteorologických a oceánologických pozorování, na prvotní zpracování těchto pozorování a rozšiřování získaných výsledků. Meteorologické lodě dnes pracují pouze jako expediční (lodě v expedicích TROPEX, POLEX, MONEX apod.) a jejich úkoly plní i dopravní lodě (včetně lodí říčních) a majáky. Kromě zákl. přízemních meteorologických pozorování se na meteorologických lodích konají i oceánologická pozorování (rychlosti oceánských proudů, výšky vln, teploty mořské vody a jejího vert. profilu, znečištění moře apod.). Výsledky měření meteorologických lodí doplňují pozorování v síti pozemních meteorologických stanic a slouží hlavně pro zabezpečování námořní dopravy, rybářských lodí i další činnosti na moři. Po 2. světové válce se rozšířily stacionární meteorologické lodě, které prováděly mj. i měření aerologická. Ovšem od 60. let docházelo k jejich útlumu, když jejich pozorování postupně nahradily meteorologické družice, bóje a dopravní lodě. Poslední stacionární meteorologická loď ukončila svůj provoz na konci roku 2009.
česky: loď meteorologická; angl: ocean station vessel (OSV), ocean weather station, weather ship; něm: Wetterschiff n; rus: метеорологическое судно  1993-a3
meteorologická mapa
mapa podávající meteorologické informace. Nejrozšířenějšími meteorologickými mapami jsou mapy synoptické a klimatologické.
česky: mapa meteorologická; angl: meteorological chart; něm: meteorologische Karte f; rus: метеорологическая карта  1993-a1
meteorologická navigácia
zajišťování námořní a letecké dopravy vzhledem ke klimatickým podmínkám a aktuálním i očekávaným met. podmínkám v příslušném regionu. Jejím cílem je minimalizace rizik a optimalizace z hlediska rychlosti dopravy, spotřeby paliva apod.
česky: navigace meteorologická; angl: meteorological navigation; něm: meteorologische Navigation f; rus: метеорологическая навигация  1993-a3
meteorologická pravidelnosť
zvýšená pravděpodobnost výskytu určitého počasí v průběhu roku, která se nedá vysvětlit střídáním roč. období a souvisí s typickým charakterem všeobecné cirkulace atmosféry. H. Flohn považuje za meteorologickou pravidelnost výskyt určité povětrnostní situace v určitém kalendářním období za dlouhou řadu roků s pravděpodobností 67 % a větší. Viz též singularita.
česky: pravidelnost meteorologická; angl: meteorological regularity; něm: meteorologische Regularität f; rus: метеорологическая регулярность  1993-a1
meteorologická predpoveď
předpověď počasí, popř. jednotlivých meteorologických prvků nebo jejich polí, vypracovaná na základě met. poznatků. Meteorologické předpovědi lze třídit podle několika kritérií:
a) podle účelu, pro který jsou vydávány, se rozlišují předpověď počasí všeobecná a speciální;
b) podle metody zpracování se rozlišují předpověď počasí numerická, synoptická, klimatologická, statistická a perzistentní;
c) podle předstihu předpovědi se rozlišují předpověď počasí velmi krátkodobá, krátkodobá, střednědobá a dlouhodobá;
d) podle místa, oblasti nebo trasy, pro něž jsou vydávány, se rozlišují např. předpověď počasí místní, oblastní atd.
česky: předpověď meteorologická; angl: meteorological forecast, meteorological prediction; něm: meteorologische Vorhersage f; rus: метеорологический прогноз  1993-a2
meteorologická rádiolokačná sieť
systém synchronizovaných měření, zpracování a přenosu dat z několika meteorologických radiolokátorů, organizovaných obvykle v rámci jednotlivých zemí nebo regionů (např. síť CZRAD v Česku, NEXRAD v USA, NORDRAD ve Skandinávii nebo středoevropská síť CERAD). Tvorba sloučené radiolokační informace předpokládá dohodu o typu, formátu, rozlišovací schopnosti, časování a geografické projekci radarových dat. Pro mezinárodní výměnu radarových dat se používá formát WMO FM–94 BUFR nebo HDF5.
česky: síť radiolokační meteorologická; angl: weather radar network; něm: Radarnetz n  2014
meteorologická raketa
raketa určená pro raketovou, popř. raketo-balonovou sondáž atmosféry, a to především jejích vyšších vrstev. Speciálními přístroji instalovanými na raketě se měří tlak vzduchu, teplota vzduchu, složení vzduchu, kosmické záření, magnetické pole Země, sluneční spektrum atd. Z trajektorie met. rakety se určuje výškové proudění, někdy se teplota vzduchu vyčísluje na zákl. změřeného tlaku a složení vzduchu. Přístroje se obvykle umísťují v hlavici rakety (nazývané často jako raketová sonda), která se po výstupu a odpojení od těla rakety snáší na padáku. Údaje se registrují nebo předávají z rakety rádiovými signály.
česky: raketa meteorologická; angl: meteorological rocket; něm: meteorologische Rakete f, Wetterrakete f; rus: метеорологическая ракета  1993-a3
meteorologická ročenka
publikace obsahující přehled met. údajů naměřených a pozorovaných na meteorologických stanicích v určitém roce. Meteorologické ročenky bývaly obvykle sestavovány pro soubor vybraných stanic jednotlivých států, pro některé významné stanice byly publikovány i ročenky samostatné (např. Milešovka, Hurbanovo, Lomnický štít).
česky: ročenka meteorologická; angl: annual meteorological report; něm: meteorologisches Jahrbuch n; rus: метеорологический ежегодник  1993-a2
meteorologická služba
1. poskytování zpravidla účelově zaměřených meteorologických informací různým organizacím i jednotlivcům k tomu kompetentními institucemi. Jedná se např. o met. zabezpečení silniční, železniční, lodní a letecké dopravy, zemědělství, energetiky, vojenství, výstražnou službu před nebezpečnými meteorologickými jevy atd.;
2. instituce, která zajišťuje met. službu ve významu 1., získává, zpracovává, rozšiřuje a archivuje met. data a informace. V ČR těmito institucemi jsou Český hydrometeorologický ústav a Vojenský geografický a hydrometeorologický úřad (VGHMÚř) Armády České republiky.
Viz též meteorologie v ČR, předpis L 3 – Meteorologie.
česky: služba meteorologická; angl: meteorological service; něm: meteorologischer Dienst m, Wetterdienst m; rus: метеорологическая служба  1993-a2
meteorologická správa
označení pro soubor pozorovaných, naměřených, zpracovaných nebo předpověděných met. údajů a příslušných identifikačních údajů (místo, čas, přístrojové vybavení apod.). Meteorologická zpráva je opatřena stanoveným telekomunikačním záhlavím a je zakódována podle mezinárodních nebo vnitrostátních meteorologických kódů a příslušných pravidel. Zprávy zakódované podle tradičních alfanumerických kódů mají přesně stanovený obsah, daný předepsaným pořadím jednotlivých prvků, z nichž některé je možné za stanovených podmínek vypustit. Mezi met. zprávy tohoto typu patří např. SYNOP, TEMP, PILOT, METAR, SPECI,  BOUŘE, CLIMAT a v současné době již nepoužívané zprávy INTER, SYRED, AERO a CLIMAT TEMP. Zcela odlišnou strukturu mají zprávy, které obsahují nejen met. data a příslušné identifikační údaje, ale také popis vlastního obsahu dané zprávy. Tento typ zpráv je většinou v binárním formátu BUFR, případně v alfanumerickém kódu CREX.
česky: zpráva meteorologická; angl: meteorological report; něm: Wetterbericht m, Wettermeldung f; rus: метеорологическая сводка  1993-a3
meteorologická stanica
místo, v němž se konají stanovená meteorologická pozorování podle dohodnutých mezinárodních nebo vnitrostátních postupů. Základním předpokladem je odpovídající technické, personální a komunikační vybavení. Meteorologické stanice je možné dělit podle různých hledisek:
a) podle odb. zaměření se rozlišují synoptické, klimatologické a letecké meteorologické stanice, agrometeorologické stanice a stanice speciální;
b) podle charakteru získávaných dat se dělí na meteorologické stanice přízemní, stanice aerologické a na stanice měřící v mezní vrstvě atmosféry;
c) podle umístění se dělí na meteorologické stanice pozemní, mořské a letadlové.
Jedna meteorologická stanice může plnit úkoly různého odborného zaměření a rozsahu.
česky: stanice meteorologická; angl: meteorological station, weather station; něm: meteorologische Station f, Wetterstation f; rus: метеорологическая станция  1993-a3
meteorologická stanica na „fixnej lodi
námořní meteorologické stanice na stacionární meteorologické lodi nebo na majákové lodi.
česky: stanice meteorologická na „fixní“ lodi; angl: fixed ship station; něm: feste Schiffsstation f; rus: постооянная судовая станция  1993-a3
meteorologická stanica na lietadlách
česky: stanice meteorologická na letadle; angl: aircraft meteorological station; něm: Flugzeugwetterstation f; rus: самолетная метеорологическая станция  1993-a3
meteorologická stanica na pohybujúcej sa lodi
syn. stanice meteorologická lodní – meteorologická stanice umístěná na lodi, na níž se měření a pozorování provádí během plavby.
česky: stanice meteorologická na pohybující se lodi; angl: mobile ship station; něm: mobile Schiffsstation f; rus: подвижная судовая станция  1993-b3
meteorologická výstraha
výstraha před předpokládanými nebo již vyskytujícími se nebezpečnými povětrnostními jevy vydaná met. předpovědní službou a určená pro širokou veřejnost nebo speciální okruhy uživatelů. Rozšiřuje se prostřednictvím veřejných médií, pomocí internetu nebo přes účelová spojová zařízení Hasičského záchranného sboru, orgánů krizového řízenínebo státní správy a samosprávy. Pro distribuci výstrah se kromě otevřené řeči používá i všeobecný výstražný protokol (CAP).
Od roku 2000 se met. výstrahy Českého hydrometeorologického ústavu určené pro veřejnost a státní správu a samosprávu vydávají v rámci tzv. Systému integrované výstražné služby. Výstrahy se vydávají zejména na extrémní teplotní podmínky (vysoké teploty, silný mráz, náhlý pokles teploty), ale i na velmi silný vítr, sněhové jevy (silné nebo trvalé sněžení, sněhové jazyky, závěje), námrazové jevy (ledovka, náledí, silná námraza), bouřkové jevy (přívalový déšť, kroupy, nárazový vítr), vydatný déšť vedoucí k povodňovým jevům a nebezpečí vzniku požárů.
česky: výstraha meteorologická; angl: weather warning; něm: Wetterwarnung f, Unwetterwarnung f; rus: метеорологическое предупреждение  1993-a3
meteorologické informácie o podmienkach na letiskách pre posádky počas letu
soubor met. informací o podmínkách na letištích, vysílaný zprav. v půlhodinových intervalech z pozemních stanic pro posádky letadel v době letu. Vysílání VOLMET provozuje na základě dodávky dat poskytovatele meteorologické služby pro civilní letectví (v ČR ČHMÚ) poskytovatel letových navigačních služeb (v ČR Řízení letového provozu s.p.).
česky: informace meteorologické o podmínkách na letištích pro posádky během letu (VOLMET); angl: meteorological information on airport conditions for the crew during the flight; něm: Wetterinformationen für Luftffahrzeuge im Flug ( VOLMET) f/pl; rus: метеорологическая информация об условиях на аэродроме для экипажа во время полета (VOLMET)  1993-a3
meteorologické meranie
zjišťování hodnot jednoho nebo více meteorologických prvků pomocí meteorologického přístroje. Meteorologická měření mohou být bodová, liniová, plošná nebo prostorová. Bodová měření se provádějí nejčastěji na meteorologických stanicích, podle jejichž charakteru můžeme měření dále dělit. Liniová měření označujeme jako sondáž atmosféry, která může být prováděna i pomocí distančních meteorologických měření; některé druhy distančních měření umožňují získat i plošné či prostorové informace. Kvalita měření je ovlivněna použitou technikou a metodikou měření, proto by příslušná metadata měla vždy být doplňkem souboru met. údajů. Viz též pozorování meteorologické, monitoring atmosféry.
česky: měření meteorologické; angl: meteorological measurement; něm: meteorologische Messung f; rus: метеорологическое измерение  1993-a3
meteorologické mikroseizmy
stálé kmitání zemského povrchu ve formě elastických vln, které se šíří od pobřeží na velké vzdálenosti do nitra kontinentů. Časová perioda kmitů se řádově rovná jednotkám sekund, rychlost šíření je nejčastěji 2 až 4 km.s–1 a amplituda odpovídá 10–6 m a méně. Příčiny vzniku spočívají v atmosféricko-oceánické cirkulaci, značná úloha se přisuzuje zejména pohybům tropických i mimotropických cyklon.
česky: mikroseismy meteorologické; angl: meteorological microseisms; něm: meteorologische Mikroschwingungen pl; rus: метеорологические микросейсмы  1993-a2
meteorologické observatórium
pracoviště, jehož činnost je zaměřena na podrobná, přesná a pečlivá meteorologická pozorování a na studium meteorologických prvků za pomoci speciálního vybavení, které nemají k dispozici jiné typy meteorologických stanic.
česky: observatoř meteorologická; angl: meteorological observatory; něm: meteorologisches Observatorium n; rus: метеорологическая обсерватория  1993-a1
meteorologické podmienky pre let podľa prístrojov
(IMC, IFR) – met. podmínky horší než stanovená minima pro dohlednost, vzdálenost od oblaků a od základny oblaků. Viz též let s použitím přístrojů, minima letištní provozní.
česky: podmínky meteorologické pro let s použitím přístrojů; angl: instrument meteorological conditions; něm: Wetterbedingungen für Instrumentenflug f/pl; rus: метеорологические условия для полета по приборам  1993-a3
meteorologické podmienky pre let za viditeľnosti
(VMC, VFR) – met. podmínky stejné nebo lepší než stanovená minima pro dohlednost, vzdálenost od oblaků a od základny oblaků. Viz též let za viditelnosti povrchu Země, minima letištní provozní.
česky: podmínky meteorologické pro let za viditelnosti; angl: visual meteorological conditions; něm: Wetterbedingungen für Sichtflug f/pl; rus: условия визуального полета  1993-a3
meteorologické pozorovanie
získávání kvantitativních, popř. kvalitativních údajů o jednom nebo více meteorologických prvcích a jevech, prováděná především na stálých meteorologických stanicích. Většina pozorování se provádí meteorologickým měřením pomocí meteorologických přístrojů, z nichž některé umožňují nepřetržité pozorování s danou vzorkovací frekvencí; jinak meteorologická pozorování probíhají ve stanovených pozorovacích termínech. Meteorologická pozorování můžeme dělit podle různých kritérií: podle místa pozorování na pozemní, námořní, letadlová a družicová, podle výšky nad terénem na přízemní a výšková, podle rozsahu na základní a doplňková, podle času pozorování na hlavní a vedlejší, podle účelu na klimatologická, synoptická, letecká, aktinometrická, aerologická apod. Viz též pozorovatel meteorologický, monitoring atmosféry.
česky: pozorování meteorologické; angl: meteorological observation; něm: meteorologische Beobachtung f; rus: метеорологическое наблюдение  1993-a3
meteorologické pozorovanie z lietadiel počas letu
česky: pozorování meteorologické z letadel během letu; angl: aircraft meteorological observation; něm: meteorologische Flugzeugbeobachtung; rus: самолетное метеорологическое наблюдение  1993-b3
meteorologické pracoviská v ČR
česky: pracoviště meteorologická v ČR; angl: meteorological institute in the Czech Republic, meteorological office in the Czech Republic, meteorological service in the Czech Republic; něm: meteorologischer Dienst der tschechischen Republik m; rus: метеорологические институты в ЧР  1993-a3
meteorologické spojovacie ústredie
pracoviště provádějící sběr a výměnu meteorologických informací a zpráv, většinou v mezinárodním měřítku. V rámci Světové služby počasí plní funkci met. spojovacího ústředí světová meteorologická centra, regionální telekomunikační centra a národní meteorologická centra.
česky: ústředí spojovací meteorologické; angl: meteorological communication centre; něm: meteorologische Fernmeldezentrale f  1993-a3
meteorologické sucho
sucho definované pomocí meteorologických prvků, především srážek, resp. jejich deficitu, často vztahovaného ke klimatologickému normálu. Vzniká následkem dlouhých nebo často se opakujících suchých období, přičemž důležitou roli hrají i další faktory, především výpar. Indexy sucha k hodnocení meteorologického sucha proto berou často v úvahu kromě množství a intenzity srážek buď přímo výpar, nebo meteorologické prvky, které ho ovlivňují: teplotu vzduchu, rychlost větru, vlhkost vzduchu aj. V teplé části roku přitom bývá srážkový deficit často provázen nadnormální teplotou vzduchu, nižší relativní vlhkostí vzduchu, zmenšenou oblačností a delším trváním slunečního svitu. Tyto faktory mají za následek větší evapotranspiraci a zmenšování vlhkosti půdy, což vyvolává agronomické sucho. Viz též hydrologická bilance.
česky: sucho meteorologické; angl: meteorological drought; něm: meteorologische Dürre f; rus: метеорологическая засуха  1993-a3
meteorologické symboly
1. písmena nebo číslice používané pro popis meteorologických prvků na synoptické mapě;
2. graf. znaky pro met. prvky, jevy a děje, popř. jejich intenzitu. Používají se především pro znázornění počasí na přízemních synoptických mapách a ve výkazech meteorologických pozorování. Meteorologické symboly jsou mezinárodně dohodnuté.
česky: symboly meteorologické; angl: meteorological symbols; něm: meteorologische Symbole n/pl; rus: метеорологические символы  1993-a3
meteorologické tsunami
syn. meteotsunami.
česky: tsunami meteorologické; angl: meteorological tsunami; rus: метеорологическое цунами  2019
meteorologické zabezpečenie letectva
souborné označení pro služby poskytované leteckými met. pracovišti pro přímé zajištění letů. Viz též dokumentace letová meteorologická, služba meteorologická letecká.
česky: zabezpečení letectva meteorologické; něm: Flugsicherung f  1993-a1
Meteorologické zprávy
čes. odborný časopis, který publikuje odborné statě a informativní články z oborů meteorologie, klimatologie, ochrany čistoty ovzduší a hydrologie. Meteorologické zprávy vydává Český hydrometeorologický ústav v Praze. Ročně vychází 6 čísel a první číslo Meteorologických zpráv vyšlo 30. dubna 1947. Příspěvky jsou uveřejňovány v čes., slov. a angl. jazyce. Čes. a slov. příspěvky obsahují shrnutí v angličtině a titulky k obrázkům a tabulkám v čes. i angl. verzi.
česky: Meteorologické zprávy; angl: Meteorological Bulletin; něm: Meteorologische Berichte m/pl; rus: Метеорологические известия  1993-a3
meteorologický briefing
letecké meteorologii slovní komentář meteorologa o existujících a očekávaných podmínkách počasí na letové trati určený posádce letadla. Obsahuje zejména upozornění na nebezpečné jevy. Viz též předpověď počasí letecká.
česky: briefing meteorologický; angl: meteorological briefing; něm: Wetter-Briefing n; fr: exposé verbal météorologique m, exposé verbal m; rus: устная (метеорологическая) консультация  1993-a3
meteorologický cieľ
obecné označení meteorologického objektu či jevu, který může být detekován, sledován a analyzován distančním meteorologickým měřením. Podle použitého prostředku mohou být meteorologickými cíli shluky meteorologicky významných atmosférických částic (oblaky, další hydrometeory, litometeory), výrazné nehomogenity v ovzduší (např. diskontinuity hustoty vzduchu), turbulence nebo elektrometeory. Tyto objekty či jevy odrážejí, popř. samy generují vlny různého charakteru, které jsou příslušnými přístroji zaznamenávány. Viz též cíl radiolokačníodrazivost radarová, plocha rozptylu efektivní.
česky: cíl meteorologický; angl: meteorological target; něm: meteorologisches Beobachtungsziel n; fr: cible météorologique f; rus: метеорологическая цель  1993-a3
meteorologický dron
dron využívaný pro met. měření a pozorování. Viz též stanice meteorologická letadlová.
česky: dron meteorologický; angl: meteorological dron; něm: Meteodrohne f  2018
meteorologický kód
kód užívaný pro tvorbu a přenos met. informací podle mezinárodně platných pravidel. Dělí se na tradiční alfanumerické kódy a binární kódy. Tradiční alfanumerické kódy, např. SYNOP, TEMP, CLIMAT nebo TAF, byly vytvořeny pro jednotlivé typy zpráv nebo předpovědí a mají pevnou strukturu definovanou tvarem kódu. Jednotlivé veličiny jsou ve tvaru kódu reprezentovány symbolickými písmeny. Binární kódy BUFR a GRIB mají univerzální použití (BUFR = binární univerzální formát pro reprezentaci meteorologických dat, GRIB = obecná informace v pravidelné síti bodů v binárním formátu). Flexibilita těchto kódů je umožněna tím, že obsahují kromě vlastních dat také jejich přesný popis. To platí i pro alfanumerický kód CREX (znakový formát pro reprezentaci a výměnu dat).
česky: kód meteorologický; angl: meteorological code; něm: meteorologischer Code m, Wetterschlüssel m; rus: метеорологический код  1993-b3
meteorologický odbor ICAO
šestý z jedenácti odborů komise úřadu pro leteckou navigaci Mezinárodní organizace pro civilní letectví (ICAO). Meteorologický odbor ICAO sleduje především celosvětovou unifikaci a zdokonalování pravidel a postupů při met. zabezpečování provozu civilního letectva.
česky: odbor meteorologický ICAO; angl: ICAO meteorological department; něm: meteorologische ICAO-Abteilung f; rus: секция метеорологии ИКАО  1993-a3
meteorologický optický dosah
(Meteorological Optical Range, MOR) – délka dráhy v atmosféře, podél níž se světelný tok ve svazku vytvořeném žárovkou o barevné teplotě 2 700 K zeslabí na 5 % původní hodnoty. Viz též dohlednost meteorologická.
česky: dosah optický meteorologický; angl: meteorological optical range (MOR); něm: Normsichtweite f; fr: portée optique météorologique (POM) f; rus: метеорологическая оптическая дальность (МОД)  1993-a3
meteorologický pozorovateľ
vyškolený nebo zacvičený pracovník meteorologické služby, její dobrovolný spolupracovník, popř. zaměstnanec jiné organizace, který koná podle platných metodických předpisů meteorologická pozorování a předává met. službě pravidelně jejich výsledky. Viz též meteorolog.
česky: pozorovatel meteorologický; angl: meteorological observer; něm: meteorologischer Beobachter m; rus: метеорологический наблюдатель  1993-a1
meteorologický prehľad
periodická publikace, která obsahuje informaci o meteorologických měřeních a pozorováních, popř. o zpracovaných met. údajích z určitého území. V ČR byly nejznámějšími meteorologickými přehledy Denní přehled počasí a Měsíční přehled počasí, které obsahovaly podrobná data z území státu a podávaly všeobecnou informaci o celkové povětrnostní situaci v Evropě a nad Atlantským oceánem. Vydávání tištěné verze Denního přehledu počasí a Měsíčního přehledu počasí bylo ukončeno v roce 2010. Viz též ročenka meteorologická, zpráva meteorologická.
česky: přehled meteorologický; angl: weather report; něm: Wetterbericht m; rus: бюллетень погоды, метеорологический бюллетень, сводка погоды  1993-a3
meteorologický prístroj
přístroj k měření kvantit. údajů (zpravidla přímo ve fyz. jednotkách) o jednom, popř. několika meteorologických prvcích nebo jevech, nebo pro zjištění výskytu či zaměření polohy meteorologického jevu. Podle způsobu získávání a záznamu výsledků prováděných meteorologických měření rozlišujeme meteorologické přístroje manuální a automatické, příp. registrační.
česky: přístroj meteorologický; angl: meteorological instrument; něm: meteorologisches Gerät n; rus: метеорологический прибор  1993-a3
meteorologický prvok
fyz. charakteristika stavu atmosféry, např. teplota, vlhkost a tlak vzduchu nebo atm. jev, např. výskyt oblaků, mlhy, srážek, bouřek apod. Soubor meteorologických prvků v určitém místě a čase charakterizuje počasí. Někteří autoři považují za met. prvky pouze kvantit. charakteristiky stavu atmosféry, nikoliv atm. jevy. Viz též prvek klimatický, chod meteorologického prvku, proměnlivost meteorologického prvku, pole meteorologického prvku, extrém.
česky: prvek meteorologický; angl: meteorological variable; něm: meteorologisches Element n; rus: метеорологический элемент  1993-a3
meteorologický rádiolokačný potenciál
česky: potenciál radiolokační meteorologický; angl: meteorological radar potential; něm: meteorologisches Radarpotential n; rus: метеорологический радиолокационный потенциал  1993-a3
meteorologický rovník
prům. roční poloha osy rovníkové deprese neboli intertropické zóny konvergence. Obepíná Zemi v blízkosti 5. stupně s. š., proto bývá někdy jako meteorologický rovník označována přímo tato rovnoběžka. Viz též rovník termický.
česky: rovník meteorologický; angl: meteorological equator; něm: meteorologischer Äquator m; rus: метеорологический экватор  1993-a3
meteorologický stĺp
samostatně stojící sériově vyráběný objekt, nebo drobná okrasná, též historizující stavba sloužící k umístění několika meteorologických přístrojů. Meteorologické sloupy byly zřizovány na často navštěvovaných veřejných prostranstvích (náměstí, promenády, parky u škol apod.) převážně od konce 19. století do 30. let 20. století. Jejich kamenná, dřevěná či železná konstrukce je zpravidla čtyřboká a dosahuje výšky 2 až 4 m. Středová část konstrukce, spojená s kamenným nebo zděným podstavcem, vytváří prostor pro výklenky nebo prosklené skříňky na měřící přístroje. Celý objekt bývá zakončen různě tvarovanou stříškou s funkční nebo jen ozdobnou větrnou korouhví. Výjimečně je sloup součástí další kamenné architektury v podobě altánu, která pak funguje jako radiační kryt. Do výklenků nebo skříněk sloupu mohl být instalován tlakoměr, teploměr, extrémní teploměry, vlhkoměr a registrační přístroje. Vrcholným či spíše pozoruhodným přístrojem své doby byl v mnohých sloupech vystavený Lambrechtův povětrnostní telegraf. Sloupy též prezentovaly různé klimatické přehledy a další informace pro obyvatelstvo. Problémem oproti standardní meteorologické budce bylo nedostatečně redukované oslunění přístrojů v určité části dne a nedostatečná ventilace uzavřených prostor sloupu s přístroji. Rovněž ošetřování a seřizování přístrojů bylo jen sporadické a nesystémové. Přesto meteorologické sloupy ve své době významně přispěly k popularizaci meteorologie mezi širokou veřejností.
česky: sloup meteorologický; angl: weather column; něm: Wettersäule; fr: Les colonnes météorologiques; rus: метеорологический столб  2018
meteorologický stožiar
česky: stožár meteorologický; angl: meteorological mast, meteorological tower; něm: meteorologischer Mast m; rus: метеорологическая мачта  1993-a1
meteorologický šarkan
zařízení těžší než vzduch, které se ve vzduchu udržuje pomocí aerodynamického vztlaku a s pozemním stanovištěm je spojeno lanem; před zavedením radiosondážních měření bylo používáno k drakové sondáži atmosféry. Meteorologický drak je kombinací vztlakových a stabilizačních ploch, přičemž buňková konstrukce draka je potažena bavlněným plátnem o ploše 5 až 8 m2. Drakové výstupy dosahovaly prům. výšky 3 km, prům. doba trvání výstupu činila asi 3 hodiny.
česky: drak meteorologický; angl: meteorological kite; něm: meteorologischer Drachen m; fr: cerf-volant météorologique m; rus: змей, воздушный змей  1993-a3
meteorologický šum
synoptické a dynamické meteorologii atm. procesy, které jsou nezajímavé z hlediska předpovědi počasí (např. zvukové vlny), případně jsou nerealisticky zesíleny v modelech atmosféry (gravitační vlny) apod. K oddělení žádoucích složek časových řad od nežádoucích (šumu) se používá tzv. filtrace. V numerických předpovědích počasí se meteorologický šum odstraňuje filtrací počáteční podmínky (inicializace vstupních dat), anebo se použijí vhodně aproximované (filtrované) rovnice. Zvukové vlny se vylučují hydrostatickou nebo anelastickou aproximací, vliv gravitačních vln vysokých rychlostí se omezuje geostrofickou aproximací. Meteorologický šum se uplatňuje i při meteorologických měřeních, kde k jeho potlačení slouží vhodná konstrukce (setrvačnost) meteorologického přístroje, resp. vhodné průměrování vzorků měření.
česky: šum meteorologický; angl: meteorological noise; rus: метеорологический шум  1993-a3
meteorologický úrad
v oboru letectví instituce poskytující nebo na základě souhlasu smluvního státu zařizující poskytování meteorologických služeb mezinárodnímu civilnímu letectví. V ČR má tuto roli Úřad pro civilní letectví (ÚCL), který leteckou meteorologickou službou pověřuje Český hydrometeorologický ústav.
česky: úřad meteorologický; angl: meteorological authority; něm: Wetterdienstbehörde f; rus: полномочный метеорологический орган  1993-a3
meteorosenzibilita
vnímavost organizmu vůči počasí neboli schopnost organizmu reagovat na stav a změny atm. prostředí. Nízký stupeň meteosenzibility, označovaný jako citlivost na počasí, se projevuje únavou, malátností, nechutenstvím, depresemi, neklidným spánkem apod., vyšší formou meteosenzibility jsou předzvěstné pocity, kdy člověk reaguje na změny atm. prostředí již 2 až 3 dny předem, např. při chronické progresivní polyartritidě. Nejvyšší formou meteosenzibility jsou meteotropní nemoci (choroby). Podle různých autorů tvoří lidé citliví na počasí 35 až 70 % celkové populace a s rostoucí civilizací těchto lidí přibývá. Meteosenzibilita je předmětem zájmu lékařské meteorologie. Viz též meteotropismus.
Termín se skládá z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“ (viz meteor) a z lat. sensibilitas „citlivost, senzibilita“ (od sensibilis „smyslově vnímatelný, smyslový“, odvozeného od sensus „smysl, smyslový vjem, pocit“; srov. senzace).
česky: meteosenzibilita; angl: meteorosensibility; něm: Wetterfühligkeit f; rus: метеочувствительность, ощущение погоды  1993-b2
meteorotropné choroby
nemoci, jejichž vznik nebo průběh jsou spjaty s komplexem met. faktorů, k nimž patří např. teplota a vlhkost vzduchu, změny tlaku vzduchu, nadbytek nebo nedostatek ultrafialového záření, el. vlastnosti ovzduší apod. U některých meteotropních nemocí byl podíl počasí bezpečně prokázán, u jiných je jeho spoluúčast pravděpodobná. V současné době se mezi meteotropní nemoci počítají srdečně cévní onemocnění, alergické stavy, některé nemoci kožní, infekční a také nemoci dýchacího ústrojí aj. Viz též meteotropismus.
česky: nemoci meteotropní; angl: meteorotropic diseases; něm: meteorotrope Krankheiten f/pl; rus: метеоротропные заболевания  1993-a2
Meteosat
geostacionární meteorologické družice provozované evropskou organizací EUMETSAT. Družice Meteosat-1 (1977) až Meteosat-7 patřily do první generace družic Meteosat, Meteosat-8 (2002) byl první družicí Meteosat druhé generace (MSG), která sestávala ještě z dalších tří družic (Meteosat-9 až Meteosat-11). Start první družice Meteosat třetí generace (MTG) se uskutečnil 13. prosince 2022, v současné době je družice MTG-I1 (budoucí Meteosat-12) postupně testována. Družice Meteosat monitorují hlavně Evropu, Afriku a východní Atlantik, dále pak Indický oceán a většinu Asie.
česky: Meteosat; angl: Meteosat; něm: Meteosat m; rus: Метеосат  2014
meteotropizmus
syn. meteorotropismus, meteotropie, biotropie počasí – fyziologické i patologické reakce na změny počasí. Prvek nebo komplex počasí, u něhož se předpokládá účinek na organizmus, se nazývá meteotropní činitel. Účinky vyvolávající biologickou odezvu se označují jako biotropní, resp. meteotropní účinky. Studiem meteotropismu se zabývá lékařská meteorologie. Viz též meteosenzibilita, nemoci meteotropní.
Termín se skládá z řec. μετέωρος [meteóros] „vznášející se ve vzduchu, ve výši“ (viz meteor), τρόπος [tropos] „obrat; způsob“, příp. τρόπη [tropé] „změna, obrat“, a přípony –ismus (též řec. původu).
česky: meteotropismus; angl: meteotropism; něm: Meteorotropismus m; rus: метеоротропизм  1993-b2
meteotsunami
syn. tsunami meteorologické – ojedinělá mimořádně velká vlna nebo jejich série na moři či velké vodní nádrží, způsobená procesy v atmosféře. Vzniká v důsledku prudkého výkyvu tlaku vzduchu při rychlém pohybu určitého atmosférického útvaru, nejčastěji squall line, nad rozsáhlou vodní plochou. Podobně jako v případě tsunami vyvolaného např. zemětřesením, také vlny meteotsunami se v mělkých vodách při pobřeží zkracují a roste jejich výška, která může v závislosti na tvaru pobřeží a morfologii mořského dna dosáhnout i několika metrů. Viz též vzdutí způsobené bouří.
česky: meteotsunami; angl: meteotsunami; rus: метеорологическое цунами  2019
metóda analógu
metoda předpovědi počasí založená na předpokladu, že atm. procesy, které se v minulosti rozvíjely analogicky, budou se tak rozvíjet i v budoucnu. Většinou se hledá analogie synoptických procesů (někdy pouze meteorologických prvků) na určitém území během několika dnů až měsíců. Do roku 2006 byla tato metoda používaná v provozní praxi ČHMÚ pro konstrukci měsíční předpovědi počasí.
česky: metoda analogu; angl: analogue method; něm: Methode der ähnlichen Fälle f; rus: метод аналогов  1993-a2
metóda CAVT
(Constant Absolute Vorticity Trajectory) – dříve používáná metoda předpovědi změn proudění vzduchu, která se zakládá na předpokladu, že absolutní vorticita individuální vzduchové částice je na konci každé trajektorie stejná jako na jejím začátku. Metodu navrhl C. G. Rossby. V souvislosti s nástupem moderních numerických předpovědních metod ztratila metoda CAVT na praktickém významu.
česky: metoda CAVT; angl: CAVT method; rus: метод постоянной траектории абсолютного вихря?, метод траектории постоянного абсолютного вихря скорости  1993-a3
metóda častice
metoda hodnocení stabilitních podmínek ve vztahu k pohybující se vzduchové částici. Nejčastěji se takto hodnotí vertikální stability atmosféry, přičemž se porovnávají hodnoty adiabatického teplotního gradientu a vertikálního teplotního gradientu v dané hladině nebo vrstvě atmosféry. Metoda částice předpokládá adiabatickou změnu teploty při vert. pohybu vzduchové částice. Tlak vzduchu v částici se okamžitě přizpůsobuje tlaku vzduchu v okolí, které je v hydrostatické rovnováze. Zrychlení vert. pohybu vzduchové částice lze vyjádřit vztahem
adv dt=gT-TT,
kde g značí tíhové zrychlení, T' teplotu částice a T teplotu okolního vzduchu. Při instabilním teplotním zvrstvení atmosféry je hodnota zrychlení kladná, při indiferentním nulová a stabilnímu zvrstvení odpovídá hodnota záporná. Viz též rovnice hydrostatické rovnováhy, metoda vrstvy, metoda vtahování, CAPE.
česky: metoda částice; angl: parcel method; něm: Parcel-Methode f; rus: метод частицы  1993-a3
metóda izalobár
dříve metoda používaná při předpovědi přízemního tlakového pole pomocí map izalobar. Extrapolací se určila budoucí poloha oblastí poklesů nebo vzestupů tlaku vzduchu, přičemž se odhadla změna jejich intenzity a směr postupu. Extrapolované izalobarické pole se sečetlo se současným tlakovým polem, a tím se získalo předpovídané tlakové pole na určitou dobu, většinou na 12 až 24 h dopředu. Na území ČR se používala do cca 60. let 20. století. S nástupem numerických předpovědních metod ztratila metoda izalobar význam. Viz též izolinie.
česky: metoda izalobar; angl: isallobaric method; něm: Isallobarenmethode f; rus: метод изаллобар  1993-a3
metóda Multanovského
z historického hlediska zajímavá synoptická metoda střednědobé a dlouhodobé předpovědi počasí, vypracovaná B. P. Multanovským. Základem předpovědi byly dvě hypotézy:
1. všechny synoptické procesy jsou určovány akčními centry atmosféry;
2. postupující cyklony a anticyklony se přemísťují ve směru proudění vzduchu ve stř. vrstvách troposféry.
Multanovskij objevil a formuloval řadu zákonitostí vývoje makroprocesů v atmosféře, k jeho nejvýznamnějším přínosům patří vymezení pojmu přirozeného synoptického období. Metoda Multanovského měla prognostický význam hlavně v 1. polovině 20. století, částečně se ale využívala pro prognostické účely do 70. let 20. století.
česky: metoda Multanovského; angl: Multanovski method; něm: Multanovski-Methode f; rus: метод Мультановского  1993-a3
metóda nudging
empirická metoda asimilace dat do numerického modelu předpovědi počasí. Je založena na doplnění pomocného členu na pravou stranu prognostických rovnic, který závisí na naměřených datech a působí tak, že prognostické modelové veličiny se blíží v odpovídajících místech a časech naměřeným hodnotám. Nakolik odpovídají měřením, závisí na parametrech metody nudging, které jsou určovány empiricky. Výhodou nudgingu je, že je snadno aplikovatelná, výpočetně nenáročná a je aplikovatelná i pro silně nelineární modely. Nevýhodou je, že metoda nemá teoretický základ a výběr jejích parametrů závisí na testovacích výpočtech. Obecně se tvrdí, že vliv asimilovaných dat na předpověď metodou nudging mizí rychleji než v případě jiných metod. To však zpravidla platí pro asimilaci veličin s menší variabilitou, jako je tlak, teplota či vítr.
česky: metoda nudging; angl: nudging method; něm: Nudging-Methode f; rus: метод пошагового перемещения  2014
metóda priamej simulácie DNS
(Direct Numerical Simulation) – metoda numerického modelování turbulence, která vychází z přímého řešení pohybových (Navierových – Stokesových) rovnic na zvolené prostorové oblasti pro velmi rychle se měnící okamžité hodnoty složek rychlosti proudění, teploty, tlaku, popř. dalších veličin, např. koncentrací příměsí při vhodně zadaných počátečních a okrajových podmínkách. Nalezení obecného řešení tohoto problému je velice obtížné zejména z hlediska nároků na výpočetní techniku, neboť výpočetní síť musí být natolik hustá, aby zachytila i nejmenší turbulentní víry, a této hustotě musí odpovídat i velikost časového kroku při numerické integraci. Přibližně od 80. let 20. století se v odborné literatuře objevují různá dílčí řešení, zejména pro případy proudění v oblasti charakterizované Reynoldsovým číslem o velikosti odpovídající max. řádu 103.
česky: metoda přímé simulace DNS; angl: direct numerical simulation method; něm: Direkte Numerische Simulation f (DNS)  2014
metóda simulácie veľkých vírov LES
(Large Eddy Simulation) – metoda modelování turbulence spočívající v aplikaci filtru (prostorového, časového), pomocí něhož dojde k rozdělení spektra velikostí třírozměrných turbulentních vírů na dvě části, tj. na víry velkých měřítek a vírové pohyby měřítek malých. Víry velkých měřítek jsou přitom v modelu řízeny přímo pohybovými (Navierovými-Stokesovými) rovnicemi pro okamžité hodnoty složek rychlosti proudění, zatímco malé víry jsou parametrizovány.
česky: metoda simulace velkých vírů LES; angl: large eddy simulation method; něm: Large Eddy Simulation f (LES)  2014
metóda vrstvy
metoda hodnocení stability teplotního zvrstvení ovzduší v horiz. vrstvě atmosféry o jednotkové tloušťce, kterou současně procházejí výstupné i kompenzující sestupné proudy. Metoda předpokládá, že hmotnosti vystupujícího a sestupujícího vzduchu jsou si rovny, změny teploty ve vystupujícím vzduchu probíhají podle nasycené adiabaty a v sestupujícím vzduchu přibližně podle suché adiabaty. Zahrnutí sestupných proudů způsobuje, že ve srovnání s metodou částice se zmenšuje rozdíl teploty mezi vystupujícím vzduchem a vzduchem v jeho okolí. Odhad horní hladiny konvekce stanovený metodou vrstvy obvykle lépe odpovídá skutečnosti než výsledek metody částice. Metoda vrstvy však vyžaduje odhad nebo znalost poměru plošného rozsahu výstupných a sestupných proudů. Nutnost znát tento parametr způsobuje, že provozní použití metody vrstvy není obvyklé. Viz též metoda vtahování.
česky: metoda vrstvy; angl: layer method, slice method; něm: Schichtmethode f; rus: метод слоя  1993-a3
metóda vt'ahovania
metoda hodnocení stability teplotního zvrstvení, která odstraňuje základní předpoklad metody částice, tzn. adiabatické chování vystupující vzduchové částice při adiabatické expanzi. Metoda vtahování bere v úvahu mísení oblačného vzduchu se vzduchem v okolí oblaku s využitím konceptu homogenního isobarického vtahování. Důsledkem vtahování je oprava teploty a vlhkosti adiabaticky izolované vzduchové částice a odpovídající změna stavové křivky vystupujícího vzduchu. Ve srovnání s metodou částice klesá rozdíl teploty mezi vystupujícím vzduchem a vzduchem v okolí, podobně jako u metody vrstvy. Horní hladina konvekce stanovená metodou vtahování proto lépe odpovídá skutečnosti než výsledek metody částice. Aplikace metody vtahování však vyžaduje odhad nebo znalost parametru vtahování, který udává hmotnost vtaženého vzduchu připadající na jednotku hmotnosti vzduchové částice při daném rozsahu výstupu. V některých aplikacích metody vtahování se předpokládá zvětšení hmotnosti vystupujícího vzduchu v oblaku o 20 % při výstupu o 50 hPa. Hodnota parametru vtahování však může být velmi proměnná a nutnost znát tento parametr způsobuje, že provozní použití metody vtahování není obvyklé.
česky: metoda vtahování; angl: entrainment method; rus: метод вовлечения  1993-a3
metódy výpočtu očakávaného znečistenia ovzdušia
vypočítávají buď dlouhodobé (klimatické) nebo krátkodobé (denní i kratší) očekávané koncentrace znečisťujících látek (imise), popř. se určuje délka doby překročení nějaké hraniční koncentrace znečisťujících látek nebo celková dávka znečisťujících látek na zvolené období. Metody výpočtu jsou buď empirické, založené na jednoduchých statist. modelech (regrese, rozptyl podle Gaussova rozložení atd.) a met. poznatcích o větru a stabilitě teplotního zvrstvení ovzduší, nebo teoretické, založené na řešení systému rovnic atmosferické dynamiky pro mezní vrstvu atmosféry s uvažováním turbulentního promíchávání a faktorů emise. Existují rovněž experimentální fyzikální modely, na nichž se simuluje emise a měří rozptyl příměsí v ovzduší (emitovaných látek). Viz též znečištění ovzduší, model Suttonův.
česky: metody výpočtu očekávaného znečištění ovzduší; angl: methods for calculation of expected air pollution; něm: Verfahren zur Berechnung der erwarteten Luftverunreinigung f; rus: методы расчета ожидаемого загрязнения атмосферы  1993-a3
Metop
označení polárních meteorologických družic provozovaných organizací EUMETSAT. V letech 2006 až 2018 byla postupně vypuštěna trojice těchto družic první generace, vybavených mj. radiometrem AVHRR.
Termín je akronym pro Meteorological Operational Satellite „meteorologická provozní družice“.
česky: Metop; angl: Metop; něm: MetOp  2014
Meyerov kvocient
index humidity navržený A. Meyerem (1926) ve tvaru
QM=RD
kde R je prům. roč. úhrn srážek v mm a D prům. roč. sytostní doplněk v mm rtuťového sloupce neboli torrech.
česky: kvocient Meyerův; angl: Meyer rain factor; něm: Meyerscher Quotient m; rus: плювиометрический коэффициент Майера  1993-a3
mezinarodna Fujitova stupnica
nejnovější modifikace původní Fujitovy stupnice hodnotící intenzitu tornád, k čemuž využívá 23 indikátorů poškození různých druhů vegetace nebo budov podle jejich odolnosti. Na rozdíl od rozšířené Fujitovy stupnice tedy neuvažuje stavby podle jejich účelu, neboť jejich konstrukce se může v různých oblastech zásadně lišit). Podle stupně odolnosti jsou některé indikátory dále rozčleněny do více tříd. Každý indikátor, popř. třída odolnosti obsahuje 1-10 stupňů poškození, ze kterých se určuje intenzita tornáda. Každému z devíti stupňů mezinárodní Fujitovy stupnice je přiřazen odhad tzv. „okamžité“ rychlosti větru ve zlomku sekundy způsobující příslušný stupeň poškození. Mezinárodní Fujitovu stupnici navrhla Evropská laboratoř pro silné bouře (ESSL), první ucelenou verzi publikovala v roce 2023. Narozdíl od výše zmíněných stupnic obsahuje mezinárodní Fujitova stupnice střední hodnotu intervalu maxima rychlosti větru, dolní hranice intervalu se nachází blízko středu nižší kategorie a horní hranice blízko středu vyšší kategorie.
Stupeň Odhad střední max. rychlosti větru
IF0 25 m.s–1
IF0.5 33 m.s–1
F1 40 m.s–1
F1.5 50 m.s–1
F2 60 m.s–1
F2.5 70 m.s–1
F3 80 m.s–1
F4 105 m.s–1
F5 130 m.s–1
česky: stupnice Fujitova mezinárodní; angl: international Fujita scale  2023
mezobara
u nás dnes jen velmi zřídka užívané označení pro izobaru s prům. tlakem vzduchu 1013 hPa, které zřejmě historicky pochází z německé jazykové oblasti. Mezobara pak na klimatologických mapách odděluje oblast vyššího tlaku vzduchu (izobary s hodnotami nad 1013 hPa se potom nazývají pliobary, popř. pleiobary) od oblasti nižšího tlaku vzduchu (izobary s hodnotami pod 1013 hPa se v tomto pojetí nazývají miobary popř. meiobary). Viz též meion, pleión.
Termín se skládá z řec. μέσος [mesos] „střední, prostřední“ a zkráceniny slova izobara.
česky: mezobara; angl: mesobare; něm: Mesobare f; rus: мезобара  1993-a2
mezocyklóna
1. Rotující vír spojený s výstupným proudemsupercele, který může mít jak cyklonální, tak anticyklonální směr rotace. Doba trvání výskytu mezocyklony je maximálně několik hodin a horizontální rozsah je 3–8 km. S mezocyklonou spojená vertikální vorticita je řádu 10–2 s–1, vzniká transformací horizontální vorticity vzniklé v důsledku vertikálního střihu větru. Pokles tlaku vzduchu v mezocyklóně přispívá ke stabilizaci a prodloužení života supercely. Mezocyklony jsou detekovatelné dopplerovskými meteorologickými radary.
2. V čes. literatuře v minulosti používané označení polární cyklony. V současnosti je někdy používáno jako syn. pro mezosynoptickou cyklonu, což není příliš vhodné vzhledem k možné záměna s prvně uvedeným významem.
Termín zavedl japonsko-amer. meteorolog T. Fujita v r. 1963. Skládá se z řec. μέσος [mesos] „střední, prostřední“ a slova cyklona.
česky: mezocyklona; angl: mesocyclone; něm: Mesozyklone f; rus: мезоциклон  1993-a3
mezocyklonálne tornádo
tornádo, které je spojeno s mezocyklonousupercele. Tornádo získává vertikální vorticitu nasáváním vorticity vzniklé na gust frontě do výstupného proudu supercely. Viz též tornádo nemezocyklonální.
česky: tornádo mezocyklonální; angl: mesocyclonic tornado; rus: мезоциклоническое торнадо  2019
mezoklíma
klima oblastí o horiz. rozměru obvykle jednotek až desítek km, v němž se kromě vlivů cirkulačních prvků s vert. osou vírů výrazně uplatňují i vlivy cirkulačních prvků s horiz. osou vírů. Je klimatem prostoru, ve kterém se projevují vlivy tření o zemský povrch a v němž se uplatňuje vert. promíchávání vzduchu turbulencí ve větší míře než u makroklimatu. Vert. rozsah mezoklimatu je dán polohou planetární mezní vrstvy atmosféry, která je horní hranicí mezoklimatu. Je to prostor, v němž mezoklimatické vlastnosti překrývají vlastnosti místně klimatické a mikroklimatické. Viz též kategorizace klimatu, mikroklima, klima místní, mezometeorologie.
Termín poprvé použil franc. meteorolog H. M. C. Scaëtta v r. 1935; skládá se z řec. μέσος [mesos] „střední, prostřední“ a slova klima.
česky: mezoklima; angl: mesoclimate; něm: Mesoklima n; rus: мезоклимат  1993-a2
mezoklimatológia
část klimatologie zabývající se mezoklimatem. Zkoumá především klimatické faktory, které modifikují makroklima na mezoklima a specifické vlastnosti mezoklimatu, jako např. zvláštnosti cirkulačních poměrů (podmínek), rozložení srážek, šíření exhalátů apod. Mezoklimatologie se opírá jednak o standardní met. měření a pozorování, jednak o speciální metody (stožárová meteorologická měření) a jiná měření vert. gradientů meteorologických prvků. Za součást mezoklimatologie lze považovat klimatologii znečištění ovzduší.
Termín se skládá z řec. μέσος [mesos] „střední, prostřední“ a slova klimatologie.
česky: mezoklimatologie; angl: mesoclimatology; něm: Mesoklimatologie f; rus: мезоклиматология  1993-a3
mezometeorológia
syn. mezosynoptická meteorologie, mezoměřítková meteorologie – část meteorologie pojednávající o met. procesech a jevech mezosynoptického měřítka. K mezometeorologickým jevům patří např. konvektivní bouře, mezosynoptické cyklony, tornáda, místní cirkulace aj. Viz též klasifikace meteorologických procesů podle Orlanskiho.
Termín se skládá z řec. μέσος [mesos] „střední, prostřední“ a slova meteorologie.
česky: mezometeorologie; angl: mesometeorology; něm: Mesometeorologie f; rus: мезометеорология  1993-a3
mezomierka
Termín se skládá z řec. μέσος [mesos] „střední, prostřední“ a slova měřítko.
česky: mezoměřítko; angl: mesoscale  2018
mezomierkový konvektívny systém
česky: systém konvektivní mezoměřítkový; angl: mesoscale convective system; něm: mesoskaliges Konvektionssystem n  2020
mezopauza
horní hranice oblasti s prudce klesající teplotou (mezosféry). Odděluje mezosféru a termosféru; leží ve výšce kolem 85 km nad zemským povrchem.
Termín zavedl britský přírodovědec S. Chapman v r. 1950. Skládá se z řec. μέσος [mesos] „střední, prostřední“ a lat. pausa „přerušení, ukončení“.
česky: mezopauza; angl: mesopause; něm: Mesopause f; rus: мезопауза  1993-a3
mezopik
zast. označení stratopauzy.
Termín vznikl počeštěním angl. slova mesopeak, které zavedl britský přírodovědec S. Chapman v r. 1950; skládá se z řec. μέσος [mesos] „střední, prostřední“ a angl. peak „vrchol“. S. Chapman totiž navrhoval širší vymezení mezosféry, do které řadil i svrchní část stratosféry, kde teplota vzduchu roste s výškou. Termínem mesopeak označoval hladinu, kde teplota směrem vzhůru přestává růst a začíná klesat.
česky: mezopík; angl: mesopeak; rus: мезопик  1993-a3
mezosféra
část atmosféry Země, ležící zhruba mezi 50 až 80 km výšky, tj. mezi stratopauzou a mezopauzou. Mezosféru vymezujeme při vertikálním členění atmosféry podle průběhu teploty vzduchu s výškou; teplota vzduchu v ní s výškou klesá a v blízkosti horní hranice mesosféra dosahuje ve vysokých zeměp. šířkách v létě hodnot –80 až –90 °C, v zimě asi –40 až –50 °C. Podle přímých měření je proudění vzduchu v mezosféře značně proměnlivé. V blízkosti mezopauzy pozorujeme někdy v létě noční svítící oblaky.
Termín zavedl britský přírodovědec S. Chapman v r. 1950, nicméně navrhoval pod něj řadit i svrchní část stratosféry, v níž teplota vzduchu s výškou roste. Termín se skládá z řec. μέσος [mesos] „střední, prostřední“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: mezosféra; angl: mesosphere; něm: Mesosphäre f; rus: мезосфера  1993-a1
mezosynoptická cyklóna
cyklona s rozměry mezosynoptického měřítka. K mezosynoptickým cyklonám patří některé termické cyklony, dále pak cyklony, při jejichž vzniku hrají podstatnou roli uvolnění latentního tepla kondenzace a toky zjevného tepla, totiž tropické cyklony, subtropické cyklony, medikány a polární cyklony. Hlavním nástrojem jejich detekce jsou meteorologické družice. Mezosynoptickou cyklonu lze též označit zkráceně jako mezocyklonu, pokud nehrozí terminologická záměna s rotujícím vírem uvnitř supercely.
česky: cyklona mezosynoptická; angl: mesolow  2020
mezosynoptická meteorológia
česky: meteorologie mezosynoptická; angl: mesoscale meteorology  2018
mezosynoptická mierka
charakteristické horizontální měřítko atm. jevů, které mají lineární horiz. rozměry řádu 100 až 102 km, což odpovídá např. rozměrům místních cirkulačních systémů, mezosynoptických konv. systémů, konv. bouří, konv. oblaků apod. Viz též měřítko synoptické, měřítko subsynoptické, klasifikace meteorologických procesů podle Orlanskiho.
česky: měřítko mezosynoptické; angl: mesosynoptic scale; něm: mesosynoptische Skala f; rus: мезосиноптический масштаб  1993-a3
mezosynoptický konvektívny komplex
(MCC), syn. komplex konvektivní mezoměřítkový – mezosynoptický konvektivní systém (MCS) jednoznačně definovaný na základě pozorování z geosynchronních meteorologických družic tvarem a rozměry teplotního pole horní hranice oblačnosti a dobou trvání (Maddox, USA, 1980). U MCS splňujícího podmínky pro klasifikaci jako MCC musí plocha chladné horní hranice oblaků o teplotě T ≤ –32 °C přesáhnout 105 km2 a vnitřní plocha horní hranice oblačnosti o teplotě T ≤ –52 °C přesáhnout 5.104 km2. Obě podmínky musí být splněny po dobu ≥ 6 h. Tvar MCC je poměrně symetrický s hodnotou poměru rozměrů podél vedlejší a hlavní osy ≥ 0,7 v době maximálního plošného rozsahu.
Mezoměřítkové konvektivní komplexy jsou málo pohyblivé a často doprovázené dlouhodobými intenzivními srážkami, silným větrem, krupobitím a velkým množstvím blesků; nelze vyloučit ani výskyt tornád. MCC může vzniknout spojením několika původně samostatných bouří, nejčastěji multicel nebo supercel, do jednoho velkého celku v prostředí se slabým okolním prouděním. Jako MCC však může být na základě družicových měření označena i konvektivní bouře, klasifikovaná současně na základě měření radarových jako squall line.
česky: komplex konvektivní mezosynoptický; angl: mesoscale convective complex; něm: mesoskaliger konvektiver Komplex m  2014
mezosynoptický konvektívny komplex
česky: komplex konvektivní mezoměřítkový; angl: mesoscale convective complex; něm: mesoskaliger konvektiver Komplex m  2020
mezosynoptický konvektívny systém
česky: systém konvektivní mezoměřítkový; angl: mesoscale convective system; něm: mesoskaliges Konvektionssystem n  2020
mezosynoptický konvektívny systém
(MCS), syn. systém konvektivní mezoměřítkový – organizovaná soustava oblaků druhu cumulonimbus, která vytváří souvislou oblast konvektivních srážek o horizontálním rozměru nejméně 100 km alespoň v jednom směru a je doplněna oblastí se stratiformními srážkami. MCS mohou zahrnovat dílčí konvektivní bouře typu multicel i supercel, přičemž během vývoje MCS se jejich struktura zpravidla vyvíjí. Prostorové uspořádání konvektivní i vrstevnaté oblačnosti může nabývat různých forem. Příkladem lineární struktury MCS je squall line, příp. bow echo, dosahuje-li alespoň přibližně požadovaných rozměrů; příkladem oválně uspořádaného MCS je MCC. Vzhledm k definici jednotlivých druhů MCS na základě radarových, resp. družicových měření se zmíněné druhy mohou překrývat.
Podle způsobu vzniku se rozlišují dva typy MCS. První typ vzniká poměrně rychle, a to velkoplošnou iniciací konvekce např. v prostředí atmosférické fronty. MCS druhého typu vzniká z jednotlivých konvektivních bouří spojením jejich bazénů studeného vzduchu, kde výsledná gust fronta je schopna iniciovat nové konvektivní buňky takřka po celém svém rozsahu. Typická doba existence MCS je 10 hodin, přičemž vrstevnatá složka MCS a kovadliny konv. složky mohou přetrvat i podstatně déle. Nad oceánem se MCS mohou transformovat v tropické, příp. subtropické cyklony.
česky: systém konvektivní mezosynoptický; angl: mesoscale convective system; něm: mesoskaliges Konvektionssystem n  2014
mezotermická klíma
málo používané označení pro mírné dešťové klima, které odkazuje na jedno z vegetačních pásem vymezených v 19. století botanikem A. P. de Candollem. C. W. Thornthwaite pro ně uvádí hodnoty potenciálního výparu mezi 571 a 1 140 mm za rok. Z tohoto hlediska lze pod mezotermické klima částečně řadit i suché klima. Viz též klasifikace klimatu Thornthwaiteova.
česky: klima mezotermické; angl: mesothermal climate; něm: mesothermales Klima n; rus: мезотермический климат  1993-b3
mezozoikum
syn. druhohory – prostřední geologická éra v rámci fanerozoika mezi paleozoikem a kenozoikem, zahrnující období před 252 – 66 mil. roků. Do této éry spadají tři periody: trias, jura a křída. Během této éry se rozpadl permský superkontinent Pangea na kontinenty, které svým tvarem již připomínaly dnešní, avšak v odlišné vzájemné poloze. Mezozoikum se vyznačovalo velmi teplým klimatem, postupně rostla humidita klimatu. Objevují se krytosemenné rostliny, které od té doby na Zemi dominují. Hlavní živočišnou skupinou mezozoika byli plazi, kteří ovládli souš i vzduch, vedle nich však již žili i ptáci a drobní savci. Zhoršování podmínek na konci křídy bylo završeno dopadem tzv. Chicxulubského meteoritu do Mexického zálivu v blízkosti poloostrova Yucatan.  Drastické snížení insolace vedlo k propadu produkce biomasy a spolu s kyselým deštěm způsobilo vyhynutí většiny živočišných druhů, mj. dinosaurů.
Termín zavedl angl. geolog J. Phillips v r. 1841. Skládá se z řec. μέσος [mesos] „střední, prostřední“ a ζωή [zóé] „život“.
česky: mezozoikum; angl: Mesozoic; něm: Mesozoikum n  2018
microburst
[majkrobé(r)st] – downburst malého měřítka s horiz. průměrem nepřesahujícím cca 4 km. Ničivé větry trvají zpravidla 2 – 5 minut a změna rychlosti větru u středu roztékání přesahuje 10 m.s–1. Detekce tohoto jevu je velmi obtížná, často dokonce nemožná, pro jeho krátké trvání a malé rozměry. Microburst se projevuje silným střihem větru, který způsobil řadu vážných nehod v leteckém provozu, zejména při vzlétání nebo přistávání letadel v okolí konvektivní bouře. Někdy se rozlišuje vlhký miroburst, při němž vypadne více než 25 mm srážek nebo radarová odrazivost převyšuje 35 dBZ, a suchý microburst, při němž tyto hodnoty nejsou dosaženy.
Termín zavedl japonsko-amer. meteorolog T. T. Fujita v r. 1978. Vytvořil ho z termínu downburst dosazením řec. μικρός [mikros] „malý“ na místo jeho první části.
česky: microburst; angl: microburst; něm: Microburst m; rus: микропорыв  1993-a3
Mieho efekt
zvětšování podílu dopředného rozptylu záření s rostoucí hodnotou poměru poloměru r rozptylujících částic a vlnové délky rozptylovaného záření λ na sférických částicích, pro jejichž poloměr platí nerovnost 2πr  λ. Mieův efekt lze vysvětlit pomocí teorie Mieova rozptylu. V meteorologii se s ním setkáváme zejména při rozptylu přímého slunečního záření na oblačných částicích, na kapičkách mlhy nebo na různých aerosolových částicích v atmosféře, kdy vytváří výrazné protažení rozptylové indikatrice ve směru dopadajících paprsků. Prostřednictvím Mieova efektu se vysvětlují vzácné optické atmosférické jevy modré nebo zelené slunce a modrý nebo zelený měsíc.
česky: efekt Mieův; angl: Mie effect; něm: Mie-Effekt m; fr: théorie de Mie f, solution de Mie f; rus: эффект Ми  1993-a3
Mieho rozptyl
rozptyl záření na libovolně velkých částicích sférického tvaru. Zvláštním případem Mieova rozptylu je Rayleighův rozptyl na dostatečně malých, elektricky nevodivých částicích, jemuž s výjimkou jevu polarizace dobře odpovídá molekulární rozptyl. Na rozdíl od něj rozptyl na atmosférických částicích nezávisí na vlnové délce rozptylovaného záření a rozptylová indikatrice má silně protažený tvar ve směru původního paprsku. Pole takto rozptýleného záření vyjadřujeme podle obecné Mieovy teorie jako superpozici pole vyzařování elektrického a magnetického dipólu, kvadrupólu a vyšších multipólů (zatímco u Rayleighova rozptylu uvažujeme pouze el. dipól). Rozšíření Mieovy teorie na částice tvaru např. rotačního elipsoidu se někdy využívá v radarové meteorologii, neboť velké vodní kapky a ledové částice oblaků a srážek nemají sférický tvar. V souvislosti s rozptylem záření na různých typech atmosférických aerosolů se dnes používají i různé modely složitějšího rozptylu na obecně nesférických částicích. Viz též efekt Mieův.
česky: rozptyl Mieův; angl: Mie scattering; něm: Mie-Streuung f; rus: рассеяние Ми  1993-a3
miera stability
dynamické meteorologii veličina definovaná vztahem Γ = γ - γd pro nenasycený vzduch a Γ = γ - γs pro vzduch nasycený vodní párou (γ, γd, γs po řadě značí vertikální teplotní gradient, suchoadiabatický teplotní gradient a nasyceně adiabatický gradient). Míra stability charakterizuje stabilitní poměry v atmosféře a používá se zejména v prognostických modelech atmosféry. Viz též stabilita atmosféry.
česky: míra stability; angl: stability degree; něm: Stabilitätsmaß f; rus: мера устойчивости  1993-a1
mierka vírov v atmosfére
charakteristický průměr atmosférických vírů, který dosahuje řádově od 10–3 do 107 m. Velikost nejmenších vírů je určena velikostí molekulární vazkosti vzduchu, která zprostředkovává disipaci kinetické energie vířivého pohybu molekul; největšími víry jsou rozsáhlé tlakové útvary s velkou kinetickou energií. Podle rozměru těchto vírů rozlišujeme v meteorologii malé (mikro) měřítko 10–1 až 103 m, střední (mezo) měřítko 104 až 105 m a velké (makro) měřítko 106 až 107 m. Viz též makrometeorologie, mezometeorologie, mikrometeorologie, délka směšovací.
česky: měřítko atmosférických vírů; angl: atmospheric vortices scale; něm: Skala der atmosphärischen Wirbel f  1993-b3
mierny vietor
vítr o prům. rychlosti větru 3,4 až 5,4 m.s–1 nebo 12 až 19 km.h–1. Odpovídá třetímu stupni Beaufortovy stupnice větru.
česky: vítr mírný; angl: gentle breeze; něm: schwache Brise f; rus: слабый ветер, умеренный ветер  1993-a3
miestami
česky: místy; angl: scattered; něm: örtlich  2014
miestna búrka
občas používané hovorové společné označení pro bouřku uvnitř vzduchové hmoty a bouřku orografickou. Označení vyjadřuje i slabší a lokální charakter konvektivní bouře, při jejímž vývoji k bouřce dochází.
česky: bouřka místní; angl: local thunderstorm; něm: örtliches Gewitter n; fr: micro-orage m; rus: местная гроза  1993-a3
miestna cirkulácia
proudění vzduchu nad omezeným územím, ovlivněné lokálními klimatickými faktory a podmíněné nehomogenitou zemského povrchu (pobřeží, orografie, rozdílný krajinný pokryv). Projevem místní cirkulace je místní vítr s rel. malým vertikálním rozsahem. Některé místní cirkulace mají denní periodicitu, neboť jsou vyvolány rozdíly v radiační bilanci, a jsou tudíž vázány na převážně anticyklonální počasí (bríza, svahový vítr, horský a údolní vítr, lesní vítr) Označujeme je též jako místní cirkulační systémy, neboť mají charakter buňkové cirkulace, v níž je přízemní proudění kompenzováno slabším protisměrným prouděním ve větších výškách. Směr proudění se v průběhu dne obvykle mění, to však nemusí být podmínkou. Dále existují místní cirkulace způsobené prouděním vzduchu přes horské překážky (padavý vítr) nebo přítomností ledovce (ledovcový vítr). Mezi místní cirkulace můžeme počítat i některé případy pouštního větru.
česky: cirkulace místní; angl: local circulation; něm: lokale Zirkulation f; fr: circulation atmosphérique régionale f, circulation atmosphérique locale f; rus: местная циркуляция  1993-a3
miestna cyklóna
česky: cyklona místní; angl: local depression; něm: lokale Zyklone f; fr: dépression locale f; rus: местный циклон  1993-a1
miestna klíma
klima, které je mnohem těsněji vázáno na morfologii zemského povrchu, jeho geol. složení a rostlinnou pokrývku než mezoklima. Vyvíjí se také působením mikroklimatu, které je v jeho dosahu. Vert. je vymezeno výškou mezní vrstvy atmosféry. V rozsahu místního klimatu mohou vznikat místní cirkulace, např. horský a údolní vítr, vytvářet se jezera studeného vzduchu apod. Místní klima v uvedeném pojetí je syn. topoklimatu. V odb. literatuře však není vztah místního klimatu k mezoklimatu a topoklimatu jednoznačně stanoven. Někteří autoři považují naopak za syn. termíny místní klima a mezoklima. Viz též počasí místní.
česky: klima místní; angl: local climate; něm: lokales Klima n  1993-b3
miestna oblačnosť
oblačnost, která se vyskytuje v určité lokalitě nad plochou o velikosti od několika km2 do několika desítek km2, zatímco v okolních oblastech takovou oblačnost nepozorujeme. Vývoj místní oblačnosti je podmíněn vlastnostmi zemského povrchu a orografickými poměry bližšího i širšího okolí, přičemž se projevuje i vliv denní a roční doby. V rovinatých oblastech jde převážně o nízkou oblačnost kupovitou nebo vrstevnatou. Místní kupovité oblaky se vyvíjejí nad rychleji se ohřívajícím povrchem (např. nad tepelnými ostrovy měst) a může tak dojít až k vývoji oblaků cumulonimbus. V horských oblastech patří k místní oblačnosti i většinou vrstevnatá oblačnost na návětří hor, a dále rotorové a vlnové oblaky v horském závětří.
česky: oblačnost místní; angl: local cloudiness; něm: lokale Bewölkung f; rus: местная облачность  1993-a2
miestna predpoveď počasia
předpověď počasí pro určité vymezené místo nebo malou oblast, např. pro dané letiště, rekreační středisko apod. Častěji než u oblastní předpovědi se při ní využívají pravděpodobnostní vyjádření výskytu meteorologického jevu.
česky: předpověď počasí místní; angl: local forecast; něm: Gebietswettervorhersage f, lokale Wettervorhersage f; rus: местный прогноз  1993-a3
miestna vzduchová hmota
vzduchová hmota setrvávající delší dobu v jedné oblasti. Je v tepelné a radiační rovnováze s aktivním povrchem. Vlastnosti místní vzduchové hmoty závisí na geogr. poloze a roč. době. Termín navrhl S. P. Chromov.
česky: hmota vzduchová místní; angl: local air mass; něm: lokale Luftmasse f; rus: местная воздушная масса  1993-a2
miestne počasie
počasí v určité oblasti (řádově od několika km2 do několika tisíc km2), odlišné od počasí v sousedních oblastech, a to za téže povětrnostní situace. Je podmíněno především vlastnostmi aktivního povrchu a orografickými podmínkami blízkého a vzdálenějšího okolí. V hodnotách některých meteorologických prvků se též uplatňuje denní a roč. doba. Zvláštnosti místního počasí se projevují ve směru a rychlosti větru, v dohlednosti, v množství a výšce oblaků, v intenzitě a trvání srážek, v teplotě vzduchu apod. Viz též vlivy místní, klima místní.
česky: počasí místní; angl: local weather; něm: Lokalwetter n; rus: местная погода  1993-a1
miestne vplyvy
činitelé vyvolávající místní zvláštnosti počasí a klimatu, ke kterým patří především odlišné fyz. a geometrické vlastnosti aktivního povrchu. Podmiňují např. častější vytváření mlh, jezer studeného vzduchu, zesilování větru, vznik tepelného ostrova měst apod. Uplatňují se v měřítkách mikroklimatu, mezoklimatu a místního klimatu. Viz též faktory klimatické, počasí místní, klima místní, srážky místní, vítr místní, efekt nálevkový, efekt návětrný, efekt závětrný.
česky: vlivy místní; angl: local effects, local influence; něm: lokale Beeinflussung f, lokaler Effekt m; rus: местные влияния  1993-a1
miestne zrážky
srážky vypadávající na poměrně malou plochu, zpravidla s velmi rozdílnou intenzitou i dobou trvání. Místní srážky vypadávají z izolovaných oblaků druhu cumulonimbus a stratocumulus, zřídka i cumulus (zvláště v tropech), v zimním období i z oblaků druhu stratus. Může jít o srážky podmíněné orograficky, např. na pobřežích, návětrných svazích apod. Místní srážky mohou mít formu přeháněk, bouřkových srážek, krupobití, ale i pouze mrholení a v zimním období vypadávání sněhových krupek nebo sněhových zrn. Viz též srážky nefrontální.
česky: srážky místní; angl: local precipitation; něm: lokaler Niederschlag m; rus: местные осадки  1993-a2
miestny cirkulačný systém
česky: systém cirkulační místní; angl: local circulation system; něm: lokales Zirkulationssystem n; rus: местная система циркуляции  1993-a3
miestny obzor
syn. obzor lokální – obzor modifikovaný okolní orografií i dalšími, bližšími překážkami (budovami, stromy apod.).
česky: obzor místní; angl: local horizon; něm: lokaler Horizont m  2016
miestny vietor
vítr specifický pro dané místo či region. Místní větry, které jsou projevem místní cirkulace, mívají různá regionální označení, a to i v případě obdobných příčin a vlastností.
česky: vítr místní; angl: local wind; něm: Lokalwind m; rus: местный ветер  1993-a3
miešanie
česky: mísení; angl: mixing; něm: Mischung f; rus: перемешивание, смешивание  1993-a1
Michelsonov bimetalický aktinometer
aktinometr, jehož čidlem je jemný začerněný bimetalický pásek. Výchylka bimetalu po zahřátí slunečním zářením, která je úměrná intenzitě slunečnímu záření, se čte pomocí slabě zvětšujícího mikroskopu. Doba potřebná k určení záření je 20 až 30 sekund. Použitím barevných filtrů je možné určit intenzitu slunečního záření v různých oblastech spektra. Původní verze přístroje pochází od rus. fyzika V. M. Michelsona z r. 1905, později byl přístroj několikrát zdokonalen, a to především W. Martenem v Německu r. 1928 (aktinometr Michelsonův–Martenův). Stupnice aktinometru se kalibruje srovnáním s pyrheliometrem.
česky: aktinometr bimetalický Michelsonův; angl: Michelson bimetallic actinometer; něm: Bimetallaktinometer nach Michelson n; fr: actinographe de Michaelson m; rus: биметаллический актинометр Михельсона  1993-a2
mikrobarograf
přesný a citlivý barograf, jehož záznam časových změn tlaku vzduchu je detailnější než u barografu. V zahraniční literatuře někdy označení pro mikrobarovariograf.
Přístroj sestrojil britský meteorolog W. H. Dines v r. 1904 na návrh W. N. Shawa; společně také navrhli jeho název. Termín se skládá z řec. μικρός [mikros] „malý“ a slova barograf.
česky: mikrobarograf; angl: microbarograph; něm: Mikrobarograph m; rus: микробарограф  1993-a3
mikrobarogram
záznam mikrobarografu.
Termín vznikl odvozením od termínu mikrobarograf, analogicky k pojmům telegram a telegraf. Skládá se z řec. μικρός [mikros] „malý“ a slova barogram.
česky: mikrobarogram; angl: microbarogram; něm: Mikrobarogramm n; rus: микробарограмма  1993-a1
mikrobarovariograf
syn. variograf – citlivý barograf zapisující s velkým zvětšením krátkodobé odchylky tlaku vzduchu od jeho původně zvolené hodnoty. Tento přístroj se někdy v zahraniční literatuře nazývá též mikrobarograf.
Termín se skládá z řec. μικρός [mikros] „malý“, βάρoς [baros] „tíha, váha“ (srov. bar) a slova variograf.
česky: mikrobarovariograf; angl: microbarovariograph; něm: Mikrovariograph m; rus: микробаровариограф, микровариограф давления  1993-a2
mikrofyzika oblakov a zrážok
část fyziky oblaků a srážek, která studuje především procesy vzniku, růstu a rozpadu oblačných a srážkových částic. Tyto mikrofyzikální procesy mají charakteristické rozměry které odpovídají velikosti jednotlivých částic. Při popisu mikrofyzikálních procesů však užíváme i matematické modely, které popisují chování celého souboru částic v oblasti, která přesahuje charakteristické rozměry jednotlivých částic. Z hlediska mikrofyziky oblaků a srážek nás zajímají hlavně procesy, které vedou k vývoji srážkových částic a jejichž charakteristické rozměry zasahují do oblasti mikroměřítka. Viz též dynamika oblaků, klasifikace meteorologických procesů podle Orlanskiho.
česky: mikrofyzika oblaků a srážek; angl: cloud and precipitation microphysics; něm: Mikrophysik der Wolken und des Niederschlags f; rus: микрофизика облаков и осадков  2014
mikroklíma
klima nejmenších prostorů obvykle o horiz. rozměrech do 1 km, v němž se uplatňují vlivy cirkulačních prvků s jakoukoliv polohou osy vírů. Praktičtěji pojaté definice spojují mikroklima s homogenním aktivním povrchem, nad nímž se podmínky utváření mikroklimatu liší od okolí (např. mikroklima pole, lesa, terénních tvarů, ulic aj.). Mikroklima je vert. omezeno na vrstvu vzduchu přiléhající k zemskému povrchu, v níž se projevují odlišnosti od klimatu širšího okolí. Zvláštním druhem mikroklimatu je mikroklima uzavřených prostor neboli kryptoklima. Čes. pojem malopodnebí místo mikroklima se neujal. Viz též kategorizace klimatu, makroklima, mezoklima, klima místní, topoklima, klima porostové, klima půdní, klima skleníkové.
Termín zavedl ruský mykolog L. F. Rusakov v r. 1922. Skládá se z řec. μικρός [mikros] „malý“ a slova klima.
česky: mikroklima; angl: microclimate; něm: Mikroklima n; rus: микроклимат  1993-a3
mikroklíma uzavretých priestorov
syn. kryptoklima – klimatické podmínky vnitřních prostor umělého i přírodního původu, jako jsou výrobní, provozní, dopravní, pracovní a obytné prostory nebo jeskyně, hnízdní prostory ptáků či nory zvěře, v nichž v důsledku tepelné izolace stěn, hloubky pod zemským povrchem nebo omezeného spojení s venkovním prostředím je značně změněn denní a roční chod meteorologických prvků. Mikroklima uzavřených prostor se projevuje zejména ve specifických teplotních a vlhkostních poměrech, v prašnosti prostředí (tovární haly, důlní prostory) a v podmínkách výměny vzduchu. Mikroklima uzavřených prostor bývá často upravováno vytápěním, zvlhčováním a ventilací. Viz též klimatizace, klima skleníkové.
česky: mikroklima uzavřených prostor; angl: indoor climate; něm: Raumklima n; rus: климат помещений  1993-a3
mikroklimatológia
část klimatologie zabývající se mikroklimatem, a to jak otevřených prostorů (reliéfů, porostů, půdy, ulic aj.), tak uzavřených prostor (místností, stájí, skleníků aj.). Vzhledem k vysokým hodnotám horiz. i vert. gradientů teploty v rozsahu mikroklimatu využívá mikroklimatologický průzkum a výzkum speciálních metod měření, pokud se týká umístění, tj. expozici meteorologických přístrojů, délku měření a u moderních metod také frekvenci měření. Za zakladatele mikroklimatologie se zpravidla považuje něm. botanik G. Kraus, který v r. 1911 publikoval práci o půdě a klimatu nejmenších prostorů, i když praktickým studiem mikroklimatu se zabýval např. český přírodovědec E. Purkyně již v 60. letech 19. století. Viz též měření meteorologická terénní ambulantní, Bowenův poměr.
Termín zavedl indický meteorolog L. A. Ramdas v r. 1934. Skládá se z řec. μικρός [mikros] „malý“ a slova klimatologie.
česky: mikroklimatologie; angl: microclimatology; něm: Mikroklimatologie f; rus: микроклиматология  1993-a2
mikrometeorológia
část meteorologie, jež pojednává o met. dějích v měřítku 1 km a méně. Jde o děje charakterizované přítomností vírových pohybů v atmosféře s osami rotace v obecné poloze a s poloměry nejvýše řádu stovek m. Zvláštní pozornost je v mikrometeorologii věnována studiu toků látek a energie mezi aktivními povrchy (např. půdou, vegetací a jejími složkami, vodním povrchem) a atmosférou. Součástí mikrometeorologie v širším smyslu je mikroklimatologie. Viz též makrometeorologie, mezometeorologie, eddy kovarianční systém.
Termín se skládá z řec. μικρός [mikros] „malý“ a slova meteorologie.
česky: mikrometeorologie; angl: micrometeorology; něm: Mikrometeorologie f; rus: микрометеорология  1993-a3
mikromierka
Termín se skládá z řec. μικρός [mikros] „malý“ a slova měřítko.
česky: mikroměřítko; angl: microscale; něm: Mikroskala f, mikroskopische Skala f  2018
mikropluviograf
přístroj pro registraci srážek natolik slabých, že je nelze změřit nebo zaregistrovat běžným srážkoměrem. Využíval např. pohybujícího se chem. upraveného pásku papíru, který změní barvu, dopadnou-li na něj štěrbinou srážky. V současné době se v ČR pro daný účel užívá detektor počasí nebo detektor srážek.
Termín se skládá z řec. μικρός [mikros] „malý“ a slova pluviograf.
česky: mikropluviograf; angl: micropluviograph; něm: Mikropluviograph m; rus: микроплювиограф  1993-a3
mikrotermická klíma
málo používané označení pro boreální klima, které odkazuje na jedno z vegetačních pásem vymezených v 19. století botanikem A. P. de Candollem. C. W. Thornthwaite pro ně uvádí hodnoty potenciálního výparu mezi 286 a 570 mm za rok. Viz též klasifikace klimatu Thornthwaiteova.
česky: klima mikrotermické; angl: microthermal climate; rus: микротермический климат  1993-b3
Milankovičove cykly
dlouhodobé kvaziperiodické výkyvy orbitálních parametrů Země, které jsou podle astronomické teorie paleoklimatu zodpovědné za kvartérní klimatický cyklus. V rámci cyklu s periodou cca 100 000 roků se mění excentricita oběžné dráhy Země kolem Slunce. S nárůstem výstřednosti se zvětšuje rozdíl mezi periheliem a afeliem z hlediska množství slunečního záření dopadajícího na Zemi. Druhý z cyklů, s periodou cca 41 000 roků, spočívá ve změnách sklonu zemské osy k rovině ekliptiky. Při nárůstu sklonu se v létě příslušné polokoule prodlužuje světlý den a roste výška Slunce, v zimě naopak, čímž narůstají rozdíly mezi sezonami. Třetí cyklus, s periodou cca 21 000 roků, souvisí s precesním stáčením zemské osy, která v prostoru opisuje dvojkužel s osou kolmou k rovině ekliptiky. To má za následek posun perihelia z jedné sezony do druhé, přičemž jeho posun do léta dané polokoule má opět za následek nárůst rozdílů mezi sezonami. Cykly jsou nazývány podle M. Milankoviče, který ve 20. letech 20. století poprvé podrobně propočítal periodické změny orbitálních parametrů a odpovídající změny sum sluneční radiace v chladném a teplém pololetí každé polokoule.
česky: cykly Milankovičovy; angl: Milankovitch Cycles; něm: Milankovic-Zyklus m; fr: paramètres de Milankovitch pl, cycles de Milanković pl  2014
milibar
jednotka tlaku vzduchu, 10–3 baru, pro niž platí vztah:
1 mbar [mb] = 102 Pa = 1 hPa.
Milibar byl do konce roku 1979 v Československu používán jako zákl. jednotka tlaku vzduchu v meteorologii. Po zavedení nové mezinárodní soustavy jednotek SI, která bar a jeho odvozeniny nepřipouští, se postupně přešlo k používání jednotky hektopascal (hPa), doporučené pro met. účely Světovou meteorologickou organizací a číselně rovné jednotce milibar. Viz též měření tlaku vzduchu.
Termín se skládá z lat. mille „tisíc“ a slova bar.
česky: milibar; angl: millibar; něm: Millibar n; rus: миллибар  1993-a3
mimoriadne hlásenie o pozorovaní z lietadiel počas letu (AIREP SPECIAL-ARS)
hlášení, která musí podávat všechna letadla, kdykoliv jsou pozorovány nebo dojde-li ke střetu s následujícími podmínkami: mírná nebo silná turbulence, nebo mírná nebo silná námraza, nebo silná horská vlna, nebo bouřky bez krup, zastřené popř. prorůstající vrstevnatou oblačností, pokrývající rozsáhlé oblasti nebo vyskytující se na squall lines (čarách instability), nebo bouřky s kroupami, zastřené, prorůstající vrstevnatou oblačností, pokrývající rozsáhlé oblasti nebo vyskytující se na squall lines (čárách instability), silná prachová vichřice nebo silná písečná vichřice nebo oblak tvořený vulkanickým popelem, nebo přederupční vulkanická aktivita nebo vulkanická erupce. Mimořádná hlášení jsou zasílána buď datovým spojem letadlo–země nebo radiotelefonním spojením. Je-li meteorologickou výstražnou službou přijato mimořádné hlášení z letadla, ale podle mínění meteorologa nebude mít hlášený jev trvání a není tedy důvod k vydání informace SIGMET, musí být toto mimořádné hlášení rozšířeno vydáním ARS stejným způsobem, jako se rozšiřují informace SIGMET, t.j. meteorologickým výstražným službám, centrům WAFC a dalším meteorologickým služebnám, v souladu s regionálními postupy ICAO.
česky: hlášení mimořádné o pozorování z letadel během letu (AIREP SPECIAL-ARS); angl: AIREP SPECIAL-ARS; něm: AIREP; rus: сводка АЙРЕП  2014
mimotropická cyklóna
nevh. označení pro mimotropickou cyklonu.
česky: cyklona vnětropická; něm: außertropische Zyklone f; fr: cyclone extratropical m; rus: внетропический циклон  1993-a2
mimotropická cyklóna
cyklona, která se vyskytuje v mírných nebo vysokých zeměp. šířkách. Mimotropické cyklony jsou často ztotožňovány pouze s postupujícími frontálními cyklonami. Viz též cyklona tropická.
česky: cyklona mimotropická; angl: extratropical cyclone; něm: aussertropische Zyklone f; fr: cyclone extratropical m; rus: внетропический циклон  1993-a3
mimotropické dýzové prúdenie
tryskové proudění, které je vázáno na polární i arkt. planetární výškovou frontální zónu. Dělí se na tryskové proudění mírných šířek a tryskové proudění arktické. Mimotropické tryskové proudění se vyznačuje velkou proměnlivostí zeměp. polohy i rychlostí. Typickým znakem je velká meandrovitost tohoto proudění, hlavně v mírných šířkách. Viz též proudění tryskové subtropické.
česky: proudění tryskové mimotropické; angl: extratropical jet stream; něm: aussertropischer Strahlstrom m; rus: внетропическое струйное течение  1993-a1
mimotropický monzún
projev monzunové cirkulace ve vyšších zeměp. šířkách. Je charakteristický pro vých. části pevnin, přičemž nejlépe je vyvinut ve vých. Asii, kde se zimní monzun na vých. straně sibiřské anticyklony střídá s letním monzunem v týlu havajské anticyklony. Viz též monzun tropický.
česky: monzun mimotropický; angl: extratropical monsoon; něm: aussertropischer Monsun m; rus: внетропический муссон  1993-a3
Minářov koeficient
česky: koeficient Minářův; angl: Minář coefficient; něm: Koeffizient nach Minář m  1993-a1
mineralizácia zrážok
součet koncentrací rozpuštěných látek s výjimkou plynů, které se dostávají do srážkových elementů (kapek deště, sněhových vloček) při jejich průchodu atmosférou většinou v blízkosti zemského povrchu. Srážková voda je roztokem velmi slabě mineralizovaným. Mineralizaci je možné stanovit na základě měření elektrické vodivosti, které je běžnou součástí chemického rozboru srážek.
česky: mineralizace srážek; angl: mineralization of precipitation; něm: Niederschlagsmineralisation f; rus: минерализация осадков  1993-a3
minimálna prízemná teplota
nejnižší hodnota teploty vzduchu zaznamenaná ve výšce 5 cm nad zemí nebo nad povrchem sněhové pokrývky za určité časové období. Ve zprávách SYNOP se uvádí minimální přízemní teplota za období od 18 do 06 UTC. Na většině stanic se získává automatickým vyhodnocením dat měřených příslušným elektrickým teploměrem, na některých stanicích se minimální přízemní teplota dosud měří minimálním teploměrem. Údaje přízemní minimální teploty jsou využívány zejména v agrometeorologii.
česky: teplota minimální přízemní; angl: grass minimum temperature, ground minimum temperature  2014
minimálna teplota
nejnižší hodnota teploty vzduchu zaznamenaná za určité časové období, např. za den, měsíc nebo rok. Ve zprávách SYNOP z Evropy a Afriky se uvádí minimální teplota za období od 18 do 06 UTC ve zprávě z 06 UTC, pro ostatní regiony jsou období i termíny zprávy určeny příslušnými regionálními pravidly. Pro klimatologické účely je minimální denní teplota vzduchu stanovena za období 24 hodin před večerním klimatologickým termínem.
Minimální teplota vzduchu na většině stanic ČR se získává automatickým vyhodnocením dat měřených elektrickým teploměrem ve výšce 2 m nad zemí za dané období. Na některých stanicích se minimální teplota dosud měří minimálním teploměrem. V předpovědích počasí je minimální teplota obvykle označována jako nejnižší noční teplota. Viz též teplota minimální přízemní, teploty vzduchu extrémní.
česky: teplota minimální; angl: minimal temperature; něm: Minimumtemperatur f; rus: минимальная температура  1993-a3
minimálny teplomer
teploměr používaný v meteorologii k měření minimální teploty vzduchu v daném časovém intervalu, obvykle za 24 hodiny. Nejčastěji se používá skleněný lihový teploměr, který má v kapiláře uvnitř sloupce teploměrné kapaliny umístěnou malou tmavě zabarvenou skleněnou tyčinku (index), která je při poklesu teploty stahována povrchovým napětím hladiny lihu směrem k nádobce. Při vzestupu teploty teploměrná kapalina index obtéká, takže jeho poloha zůstává beze změny. Po přečtení údaje se index posune ke konci lihového sloupce nakloněním. Instaloval se v meteorologické budce ve vodorovné poloze a používal se též k měření přízemního minima teploty vzduchu. Na profesionálních stanicích ČR se údaje z minimálního teploměru používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s elektrickým teploměrem.
česky: teploměr minimální; angl: minimum thermometer; něm: Minimumthermometer n; rus: минимальный термометр  1993-a3
Minnaertova cigara
světelná skvrna doutníkového tvaru s ostře ohraničeným okrajem vytvářející se na povrchu s vysokou odrazivostí pro světelné paprsky, v přírodě nejčastěji na sněhové pokrývce. Vzniká dvojitým lomem světelných paprsků na ledových krystalcích při lámavém úhlu 60°, tj. v tomto směru obdobně jako malé halo, avšak na krystalek dopadající paprsky musí tvořit rozbíhavý svazek, nejsou tedy vzájemně rovnoběžné, jako např. paprsky přímého slunečního záření. Světelné paprsky v tomto případě zpravidla pocházejí z umělého světelného zdroje malých rozměrů, nalézajícího se v relativně nevelké vzdálenosti. K jejich lomu pak dochází na ledových krystalcích rozptýlených v přízemních hladinách atmosféry. Popisy a výklad tohoto jevu se dnes sporadicky vyskytují v meteorologické literatuře v souvislosti s halovými jevy.
česky: doutník Minnaertův; angl: Minnaert's cigar; něm: Minnaert Zigarre f; fr: halo de lumière divergente m; rus: сигара Миннарта  2014
miobara
viz mezobara.
Termín se skládá z řec. μείων [meión] „menší“ a zkráceniny slova izobara.
česky: miobara; angl: miobare; rus: миобара  1993-a1
miskový anemometer
anemometr využívající k měření rychlosti větru úhlovou rychlost otáčení rotoru, sestávajícího z misek rozmístěných symetricky kolem obvykle vertikální osy rotace. První miskový anemometr pochází z r. 1837 od W. Whewella a podstatně jej zlepšil irský přírodovědec J. T. R. Robinson v r. 1846. Základem systému miskového anemometru je rotor tvořený třemi nebo čtyřmi miskami, které jsou umístěny souhlasně vypouklými stranami vzhledem ke směru rotace na stejně dlouhých ramenech ve shodných úhlových vzdálenostech. Ve variantě 4 misek je rotor známý pod termínem Robinsonův kříž, dnes však převládá varianta se 3 miskami, která je podle současných poznatků výhodnější. Misky díky svému polokulovému nebo kuželovitému tvaru kladou proudícímu prostředí svojí dutou stranou přibližně čtyřnásobně větší odpor než vypouklou stranou, což způsobuje rotaci přístroje. Celé těleso rotoru musí být uloženo v kvalitních ložiskách, aby bylo lehce otočné s nízkým prahem citlivosti. Počet otáček rotoru za sekundu n závisí téměř lineárně na rychlosti větru v. Platí vztah:
v=a+bn+c n2, kde a je práh citlivosti, tj. rychlost větru, při níž se miskový kříž anemometru začíná otáčet (zpravidla 0,2 až 1,5 m.s–1), b je konstanta závislá na rozměrech a aerodyn. vlastnostech misek a c konstanta řádu 10–4. Rychlost větru se určí pomocí:
a) mech. počítadla zabudovaného v přístroji a stopek;
b) generátoru střídavého napětí, které je úměrné rychlosti rotace miskového systému;
c) el. impulzů vytvářených rotujícím systémem, které mají frekvenci úměrnou rychlosti větru a které se vyhodnocují prostřednictvím světelných, zvukových nebo el. signálů a chronometrického zařízení.
Miskový anemometr měří složku rychlosti větru kolmou na osu otáčení rotoru. Ta je standardně orientována vertikálně, a přístroj tak slouží k měření horizontální složky rychlosti větru. Pro měření směru větru je obvykle doplněn větrnou směrovkou. Spolu s ultrasonickými anemometry se jedná o nejrozšířenější typ anemometru.
česky: anemometr miskový; angl: cup anemometer; něm: Schalenkreuzanemometer n; fr: anémomètre à coupelles m, anémomètre de Robinson m; rus: чашечный анемометр  1993-a3
mistrál
silný, chladný, nárazovitý a suchý sev. až sv. vítr charakteru bóry, vanoucí v údolí Rhôny ve Francii. Vyskytuje se po celý rok, nejčastěji však v prosinci, lednu a červnu při převládajícím sz. až sev. proudění, které je v úzkém severojižně orientovaném údolí Rhôny zesilováno tryskovým efektem. Obvykle vzniká v souvislosti s vývojem cyklony nad Tyrhénským mořem nebo Janovským zálivem, když se azorská anticyklona přesouvá nad stř. Francii. Rychlost mistralu v oblasti Marseille dosahuje 80 až 130 km.h–1 a jeho vert. rozsah bývá 2 až 3 km. Působí četné škody, mimo jiné ztěžuje námořní a leteckou dopravu a nepříznivě působí na osoby se zvýšenou meteosensibilitou. V přilehlých oblastech má řadu místních názvů.
Termín je přejat z francouzštiny, kam pronikl z okcitánštiny. Pochází z lat. (ventus) magistralis „hlavní, dominantní (vítr)“ (od magister „vůdce, učitel“, srov. magistr, magistrála, mistr).
česky: mistral; angl: mistral; něm: Mistral m; fr: mistral; rus: мистраль  1993-a2
mitigácia
cílená aktivita člověka omezující zdroje skleníkových plynů nebo snižující jejich koncentrace v ovzduší. V širším významu se jedná i o zásahy omezující zdroje a koncentrace jiných látek, které mohou přímo či nepřímo přispívat k antropogenní změně klimatu (např. snižování množství prašného aerosolu) nebo cílené odčerpávání oxidu uhličitého z atmosféry (CCS – Carbon dioxide Capture and Storage). Viz též efekt skleníkový, adaptace, IPCC.
Termín pochází z lat. mitigatio „zmírnění, zklidnění“ (od mitigare „mírnit, krotit“).
česky: mitigace; angl: mitigation  2014
mladá cyklóna
frontální cyklona ve druhém stadiu vývoje. Střed mladé cyklony souhlasí s vrcholem teplého sektoru, který je na přední straně ve směru postupu ohraničen teplou frontou a na zadní straně studenou frontou s charakteristickým počasím. Mladá cyklona se prohlubuje, přičemž největší pokles tlaku vzduchu je v blízkosti jejího středu. Vyvíjí se obvykle na přední straně brázdy nízkého tlaku vzduchu vyskytující se v hladině 700 až 500 hPa. Viz též prohlubování cyklony.
česky: cyklona mladá; angl: deepening cyclone; něm: junge Zyklone f; fr: dépression creuse f; rus: молодой циклон  1993-a3
mladšie štvrtohory
syn. holocén.
česky: čtvrtohory mladší; angl: Holocene  2018
mladšie treťohory
syn. neogén.
česky: třetihory mladší; angl: Neogene; něm: Neogen n  2018
množstvo oblakov
viz oblačnost.
česky: množství oblaků; angl: cloud amount; něm: Bewölkungsmenge f, Bedeckungsgrad m; rus: количество облаков  1993-a1
množstvo zrážok
česky: množství srážek; angl: precipitation amount; něm: Niederschlagsmenge f; rus: количество осадков  1993-a1
moazagotl
původně místní označení pro orografický oblak pozorovaný na sev. straně Krkonoš při převládajícím jz. proudění. Vzhledem k tomu, že oblast patří ke kolébkám bezmotorového létání, rozšířil se tento termín na stacionární oblaky vyskytující se i v jiných částech světa a někdy se používá i pro fén, s nímž je výskyt tohoto oblaku spojen. Viz též oblak vlnový.
Termín pochází z Dolního Slezska, kde v obci Warmbrunn (dnes Cieplice Śląskie-Zdrój poblíž města Jelenia Góra) údajně působil jako „prorok povětrnosti" rolník jménem Gottlieb Matz. Protože podle výskytu uvedeného oblaku úspěšně předpovídal zhoršení počasí, začali tamní obyvatelé oblak označovat v dialektu jako „Moazagotls Waterwulke" (Matz Gottliebs Wetterwolke).
česky: moazagotl; angl: Moazagotl cloud; něm: Moazagotl-Wolke f; rus: Моазаготл  1993-a1
mobilná meteorologická stanica
meteorologická stanice instalovaná dočasně na místě, kde není stálá met. stanice nebo kde je třeba provádět specializovaná měření. Mobilní met. stanice může provádět přízemní i aerologická měření.
česky: stanice meteorologická mobilní; angl: mobile weather station; něm: mobile meteorologische Station f, mobile Wetterstation f; rus: подвижная метеорологическая станция  1993-a3
mocninový vertikálny profil vetra
empiricky odvozený vztah pro vyjádření závislosti rychlosti větru v na výšce z nad zemským povrchem v přízemní vrstvě atmosféry. Obvykle se uvádí ve tvaru
v(z)=v1 (zz1)α
kde v1 značí změřenou rychlost ve zvolené hladině z1 a exponent a vyjadřuje vliv teplotního zvrstvení ovzduší. Z uvedeného profilu vyplývá tzv. mocninový zákon, podle něhož koeficient turbulentní difuze K závisí na vertikální souřadnici podle vztahu
K=konst.z1-a
česky: profil větru vertikální mocninový; angl: power-law profile of wind; něm: vertikales Potenzwindprofil n  1993-a1
mód premenlivosti
syn. oscilace.
česky: mód proměnlivosti  2014
model algebraický
lagrangeovský model aplikovaný na atmosférický transport znečišťujících příměsí od jejich zdrojů. Z těchto zdrojů se v poli atmosférického proudění konstruují trajektorie vzduchových částic a podél těchto trajektorií se pak modelují příslušné vlečky znečištění. Při modelování vleček se uvažují zejména procesy turbulentní difuze, suché a mokré depozice, popř. chem. reakce probíhající uvnitř těchto vleček, změny spektra částic atmosférického aerosolu apod. Tento typ modelů se používá i při modelování vleček vystupujících z chladících věží elektráren či jiných zařízení. V tom případě se jedná především o šíření tepelného znečistění a využití formalizmů lagrangeovských modelů oblaku.
česky: model vlečkový; něm: Rauchfahne-Modell n  2014
model cyklóny
1. schematický model znázorňující podstatné charakteristiky skutečné cyklony. Obvykle bývá sestavován z dílčích modelů pro určitá stadia vývoje cyklony, např. model mladé cyklony, model okludované cyklony aj. Mezi základní a v Evropě nejpoužívanější modely cyklony patří model cyklony podle norské meteorologické školy a Shapirův-Keyserův model cyklony.
2. Matematické vyjádření dynamiky atmosféry, které popisuje atmosférické pohyby a podmínky typické pro cyklonu.
česky: model cyklony; angl: model of cyclone; něm: Zyklonenmodell n; rus: модель циклона  1993-a3
model makroskopický
klasický koncepční model mimotropické cyklony založený na popisu vývoje struktury atmosférických front, jehož základy vytvořil norský meteorolog J. Bjerknes podle povětrnostní situace ze dne 15. srpna 1918. Podle tohoto modelu se cyklona vyvíjí spolu s frontální vlnou, tvořenou teplou frontou v přední a studenou frontou v zadní části cyklony. Během vývoje cyklony roste amplituda a současně se zkracuje délka frontální vlny, jak se rychleji pohybující studená fronta přibližuje k teplé frontě, což v konečném důsledku vede ke vzniku okluzní fronty. Přestože byl model původně vytvořen pouze na základě pozemních pozorování, stále zůstává dobrým přiblížením popisu reálných cyklon především nad kontinenty. Viz též Shapirův-Keyserův model cyklony.
česky: model cyklony podle norské meteorologické školy; angl: Norwegian cyclone model; něm: Zyklonenmodell der norwegischen Schule n  2015
model numerickej predpovede počasia
výpočetní model, v němž je prostorový transport určité příměsi nebo charakteristiky stavu atmosféry v poli proudění uvažován prostřednictvím eulerovského přístupu k popisu tohoto pole. Eulerovský přístup v principu spočívá v tom, že se vychází z pevného zadání vektoru rychlosti proudění v dostatečně husté síti bodů pokrývající zájmovou oblast a odtud se přímo dospívá k vyjádření okamžitého stavu pole proudnic. V současné době se pojem eulerovský model v meteorologii vyskytuje především v souvislostech s modely znečištění ovzduší. Příslušné modely jsou pak obvykle založeny na numerickém řešení rovnice difuze pro uvažované znečišťující příměsi. Tato rovnice bývá většinou součástí širšího systému modelových rovnic.
česky: model eulerovský; angl: eulerian model; něm: Eulersche Betrachtungsweise f  2014
model predpovede počasia na obmedzenej oblasti
(NWP model, numerical weather prediction model) – prognostický model atmosféry určený k provozní předpovědi počasí. Jeho základními součástmi jsou dynamické jádro, soubor parametrizací, model zemského povrchu a schéma asimilace meteorologických dat. Model zemského povrchu může obsahovat další sofistikované moduly, jako například model města, nebo model jezer. Pro integrace na delší předpovědní období (například měsíční nebo sezonní), se obvykle provádí propojení s modelem oceánu. Z hlediska modelové oblasti, na které je model řešen, rozeznáváme dva základní typy modelů: globální model a model na omezené oblasti.
Pro řešení úlohy předpovědi počasí musí mít model numerické předpovědi počasí vždy určené počáteční podmínky, na rozdíl od modelů klimatu. Pokud je model řešen pro celou zeměkouli, tzv. globální model, jsou jeho počáteční podmínky určeny asimilací meteorologických dat. U modelů na omezené oblasti je třeba určit nejen počáteční podmínky, ale též podmínky okrajové. Ty jsou získány z předpovědí jiného modelu, tzv. řídícího, který je zpravidla integrován s menším horizontálním rozlišením avšak na větší oblasti, většinou na glóbu. Počáteční podmínky lze též získat interpolací analýzy řídicího modelu. V takovém případě se jedná o dynamickou adaptaci řídicího modelu. Přidaná hodnota dynamické adaptace spočívá v tom, že model s vyšším rozlišením využívá podrobnější topografii a charakteristiky zemského povrchu. Vyšší rozlišení dále umožňuje popsat cirkulace jemnějších měřítek, které díky nelinearitě proudění ovlivňují i hrubší měřítka. Tento způsob adaptace se využívá i při klimatickém modelování (dynamical downscaling). Pro účely předpovědi počasí je však vhodnější využít vyššího rozlišení již při tvorbě počátečních podmínek asimilací dat.
česky: model numerické předpovědi počasí; angl: numerical weather prediction model; něm: numerisches Wettervorhersagemodell n; rus: модель численного прогноза погоды  2014
model predpovedi počasia na obmedzenej oblasti
(LAM) – model numerické předpovědi počasí, který je řešen na omezené oblasti na zeměkouli s horizontálním rozlišením zpravidla v rozmezí 2 až 20 km. Tento model potřebuje pro výpočet počáteční a okrajové podmínky. LAM modely používají kartézský systém souřadnic (např. model ALADIN), nebo sférické souřadnice.
česky: model předpovědi počasí na omezené oblasti; angl: limited area model; něm: Ausschnittmodell n; rus: локальная модель прогноза погоды, модель прогнозa для ограниченной площади  2014
model prízemnej vrstvy atmosféry
teor. schémata přízemní vrstvy atmosféry zahrnující určité zjednodušující předpoklady o jejích vlastnostech, zejména o vert. rozložení meteorologických prvků a veličin. Základem jsou funkce popisující závislost bezrozměrných gradientů meteorologických veličin na stabilitě (angl. flux-gradient relationships). Používají se různé empirické tvary univerzálních funkcí, principiálně to mohou být i funkce odvozené z teorie. Integrujeme-li univerzální funkce v gradientovém tvaru podél vertikály, získáme vertikální profily příslušných veličin v závislosti na stabilitě. Ty se používají např. pro parametrizaci přízemní vrstvy atmosféry v numerických modelech.Viz též modely mezní vrstvy atmosféry.
česky: modely přízemní vrstvy atmosféry; angl: constant flux layer model, surface layer model; něm: Modell der bodennahen Grenzschicht n, Modell der Prandtl-Schicht n; rus: модел приземного слоя атмосферы  1993-a3
modelová atmosféra
zjednodušující teoretický model podmínek v atmosféře. Mezi modelové atmosféry patří např. různé druhy polytropní atmosféry, dále autobarotropní atmosféra, Rayleighova atmosféra a v širším smyslu i barotropní atmosféra nebo standardní atmosféra.
česky: atmosféra modelová  2020
modely CFD
(Computional Fluid Dynamics) – souhrnné označení pro modely, jež jsou založeny na numerickém řešení soustav diferenciálních rovnic popisujících dynamiku proudění tekutin a na formulaci k tomu vhodných okrajových a počátečních podmínek. Z hlediska procesů v zemské atmosféře se jedná zejména o modelování turbulentního proudění nad komplexně pojatým reliéfem zemského povrchu. Lze sem zařadit starší modely založené zejména na řešení Reynoldsových rovnic nebo statistické modely turbulence, ze soudobých metod např. metodu simulace velkých vírů (LES). V obecné hydrodynamice dnes existuje řada speciálních typů těchto modelových rovnic. Další rozvoj problematiky CFD modelů evidentně přímo souvisí s rozvojem možností výpočetní techniky, zejména v oblasti nejvýkonnějších počítačů.
česky: modely CFD; angl: computional fluid dynamics models; něm: CFD-Modell n, Modell der numerischen Strömungsdynamik n  2014
modely dvojrovnicové
pojem používaný v teoriích turbulence a v modelování mezní vrstvy atmosféry. Ve srovnání s jednoduššími nularovnicovými a jednorovnicovými modely je zde problém uzávěru rovnic turbulentního proudění řešen prostřednictvím dvou řídicích parametrů, pro něž se v modelu formulují dvě diferenciální rovnice. Těmito dvěma parametry jsou nejčastěji kinetická energie turbulentních fluktuací okamžité rychlosti proudění k a rychlost disipace (epsilon) této energie. Podle obvyklého značení těchto veličin se pak užívá názvu modely k-epsilon. Určitou alternativou jsou tzv. k-omega modely, kde omega představuje míru specifické disipace, vztaženou na jednotkovou kinetickou energii turbulence.
česky: modely dvourovnicové; angl: two equations models  2014
modely hraničnej vrstvy atmosféry
teor. nebo experimentální schémata, jež slouží k popisu hlavních charakteristik mezní vrstvy atmosféry. Jsou dvojího druhu:
a) mat.-fyz. modely, tj. soustavy termodyn. a hydrodyn. rovnic, zahrnujících mimo jiné popis vert. i horiz. turbulentního promíchávání a zdrojové funkce tepla, vodní páry, znečišťujících příměsí atd. Systém rovnic se zpravidla uzavírá empir. stanovenou vzájemnou závislostí různých parametrů atm. turbulence;
b) fyz. modely uvažovaných objektů, kolem nichž se proměřují charakteristiky proudění tekutiny (vzduchu, jiného plynu, vody, jiné kapaliny apod.). Slouží k popisu těch vlastností turbulentního obtékání objektů, které pro složitost nelze početně, nebo přímým měřením ve skutečných podmínkách stanovit.
Uvedené modely se používají k určení hledaných charakteristik mezní vrstvy atmosféry, popř. rozptylu příměsí v ovzduší v konkrétních podmínkách. Viz též vrstva atmosféry mezní planetární.
česky: modely mezní vrstvy atmosféry; angl: atmospheric boundary layer models; něm: Modelle der atmosphärischen Grenzschicht n/pl; rus: модели атмосферного пограничного слоя, модели пограничного слоя атмосферы  1993-a1
modely jednorovnicové
pojem používaný v teoriích turbulence a v modelování mezní vrstvy atmosféry. Jedná se o modely, v nichž je problém uzávěru rovnic turbulentního proudění řešen určením jednoho řídicího parametru, k jehož stanovení se v modelu formuluje vhodná diferenciální rovnice. V roli tohoto parametru velmi často vystupuje kinetická energie příslušející turbulentním fluktuacím okamžité rychlosti proudění, existují však i jiné varianty řešení, např. Spalartův-Allmarasův model, kde se řídicí parametr určuje prostřednictvím turbulentní vazkosti.
česky: modely jednorovnicové; angl: one equation models  2014
modely k-epsilon
česky: modely k-epsilon; angl: k-epsilon models; něm: k-epsilon-Modell n  2014
modely k-omega
česky: modely k-omega; angl: k-omega models  2014
modely klímy
soubory fyz. a chem. vztahů vyjadřujících vazby mezi složkami klimatického systému, reprezentované ve formě mat. rovnic. Zpravidla je dělíme na modely klimatu cirkulační (dynamické), vycházející z popisu všeobecné atmosférické cirkulace, a na modely zabývající se jednotlivými vazbami nebo malým počtem jednoduše propojených vazeb. Z těchto tzv. jednoduchých modelů jsou nejrozšířenější bilanční energetické a radiačně-konv. modely klimatu. Modely klimatu se používají ke studiu hypotetických změn klimatu vyvolaných změnami modelových parametrů. Viz též systém klimatický.
česky: modely klimatu; angl: climate models; něm: Klimamodelle n/pl; rus: модели климата  1993-a1
modely nula-rovnicové
pojem používaný v teoriích turbulence a v modelování mezní vrstvy atmosféry. Pro řešení problému uzávěru vyjádřením druhých korelací fluktuujících turbulentních částí složek okamžité rychlosti proudění není použita žádná rovnice, jejíž řešení by v tomto směru představovalo řídicí parametr, ale používá se pouze algebraický výraz neobsahující přímá vyjádření pomocí zmíněných turbulentních částí složek okamžité rychlosti turbulentního proudění. Typickým příkladem je řešení problému uzávěru prostřednictvím teorie směšovací délky. Viz též model algebraický.
česky: modely nularovnicové; angl: zero equation models  2014
modely podnebia
česky: modely podnebí; angl: climate models; něm: Klimamodell n; rus: модели климата  1993-a3
modely RSM
(Reynolds Stress Models) – viz problém uzávěru.
česky: modely RSM; angl: Reynolds Stress Models; něm: Reynolds'scher Reibungstensor m  2014
modely znečistenia
rozsáhlá skupina modelů různých druhů, které se používají při modelování transportu, rozptylu a transformací znečišťujících příměsí, zpravidla antropogenního původu, v atmosféře, při hodnocení stavu znečištění vzduchu, k vyhodnocení příspěvků jednotlivých zdrojů znečištění k imisní situaci v daných místech apod. Nejstarším a nejjednodušším druhem těchto modelů jsou gaussovské rozptylové modely, později se rozvíjejí např. modely vlečkové nebo tzv. puff modely. V zásadě lze rozlišovat modely disperzní zahrnující přímé modelování prostorového rozptylu příměsí a modely receptorové, které při vyhodnocování příspěvků jednotlivých zdrojů ke znečištění vzduchu v daném bodě (tzv. receptoru) používají vhodné matematické metody a pracují s daty o složení a vlastnostech směsi imisí v receptorovém bodě a obdobnými údaji pocházejícími z emisních inventur zdrojů znečištění v zájmové oblasti. Dále se např. podle přístupu k vyjádření přenosového pole proudění vzduchu rozlišují modely lagrangeovské a modely eulerovské. Při řešení problémů v tematické oblasti ochrany čistoty ovzduší se též uplatňují modely statistické, v nichž jsou prostřednictvím volby vhodných prediktorů modelovány statist. vazby mezi charakteristikami stavu znečištění ovzduší a meteorologickými parametry, vývojové trendy imisí apod.
česky: modely znečištění ovzduší; angl: air pollution models; něm: Ausbreitungsmodelle n/pl; rus: модели загрязнения атмосферы  2014
modifikácia oblakov
česky: modifikace oblaků; angl: cloud modification; něm: Wolkenbeeinflussung f, Wolkenmodifikation f; rus: модификация облаков  1993-a2
modré alebo zelené slnko
ojediněle se vyskytující fotometeor vznikající v důsledku Mieova efektu při dostatečné koncentraci částic atmosférického aerosolu. Při typických velikostech těchto částic roste s klesající vlnovou délkou převaha dopředného rozptylu, což znamená, že kratší vlnové délky jsou účiněji rozptylovány do velmi malého prostorového úhlu kolem směru přímých slunečních paprsků. Sluneční kotouč se pak jeví jako namodralý nebo nazelenalý. Obdobným úkazem je modrý nebo zelený měsíc.
česky: slunce modré nebo zelené; angl: blue or green sun; něm: blaue oder grüne Sonne f; rus: голубое или зеленое солнце  1993-a3
modrosť oblohy
charakteristické modré zabarvení bezoblačné oblohy, popř. bezoblačné části oblohy, způsobené molekulárním rozptylem světla. Tento jev lze kvantit. popsat pomocí Rayleighova zákona. Ve viditelné oblasti rozptýleného slunečního záření tedy převažují kratší vlnové délky, z modrofialového konce spektra. Jsou-li v atmosféře přítomny prachové či vodní částice, rozptyl se stává méně závislým na vlnové délce, takže barva rozptýleného světla přechází k bílé. Modř oblohy je proto určitým indikátorem zakalení atmosféry.
Modř oblohy se měří pomocí různých druhů tzv. cyanometrů, jejichž základem je stupnice odstínů modré barvy, sahající od bílé přes ultramarínovou k černé. První kvantitativní měření modře oblohy provedl a popsal Horace Bénédict de Saussure v letech 1788 - 1789. Využil přitom stupnici o 53 různých odstínech modré. Pro obdobný odhad bylo užito několika dalších typů stupnic a provedena řada srovnávacích měření. Tato aktivita vyústila v definici Linkeho stupnice modře oblohy. V současné době se v ČR podobná měření provozně neprovádějí.
česky: modř oblohy; angl: blue of the sky; něm: Himmelsblau n; rus: голубой цвет неба, синева неба  1993-a3
modrý alebo zelený mesiac
česky: měsíc modrý nebo zelený; angl: blue or green moon; něm: blauer Mond m; rus: синяя или зеленая луна  1993-a1
modrý spúšťač
česky: spouštěč modrý; angl: blue starter  2016
modrý výstrek
česky: výtrysk modrý; angl: blue jet; něm: blue jet m  2016
mohutná oblačnosť
vert. silně vyvinuté kupovité nebo vrstevnaté oblaky, zejména druhu cumulonimbus, cumulus congestus nebo nimbostratus.
česky: oblačnost mohutná; něm: mächtige Wolken f/pl; rus: мощная облачность  1993-a1
mohutná víchrica
vítr o prům. rychlosti 28,5 až 32,6 m.s–1 nebo 103 až 117 km.h–1. Odpovídá jedenáctému stupni Beaufortovy stupnice větru.
česky: vichřice mohutná; angl: violent storm; něm: orkanartiger Sturm m; rus: жестокий шторм  1993-a3
mohutnenie anticyklóny
česky: zesilování anticyklony; něm: Intensivierung des Hochdruckgebiets f  1993-a1
mohutnenie anticyklóny
syn. zesilování anticyklony – stadium vývoje anticyklony, v němž zesiluje anticyklonální cirkulace a které se na synoptické mapě projevuje vzestupem tlaku vzduchu nebo geopotenciálu ve středu anticyklony. Mohutnění anticyklony začíná objevením první uzavřené izobary nebo izohypsy a končí dosažením nejvyšší hodnoty tlaku vzduchu nebo geopotenciálu. Může trvat několik dnů. Viz též slábnutí anticyklony.
česky: mohutnění anticyklony; angl: strengthening of an anticyclone; něm: Verstärkung der Antizyklone f; rus: усиление антициклона  1993-a3
Moilanenov oblúk
velmi vzácný halový jev popsaný r. 1996 na základě pozorování z roku 1995. Má tvar písmene V a nalézá se cca 11° nad Sluncem při jeho velmi nízkých polohách nad obzorem.
česky: oblouk Moilanenův; angl: Moilanen arc; něm: Moilanen-Bogen m  2014
mokrá depozícia
depozice ve smyslu ukládání atm. příměsi na zemském povrchu, k níž dochází prostřednictvím atmoférických srážek, popř. hmotnost příměsi, která je tímto způsobem uložena na jednotku plochy za jednotku času. Rozlišujeme vertikální mokrou depozici, která vzniká následkem vymývání příměsí padajícími srážkami, a horizontální mokrou depozici, která je spojena s usazenými srážkami. Na rozdíl od suché depozice probíhá mokrá depozice epizodicky.
česky: depozice mokrá; angl: wet deposition; něm: nasse Deposition f; fr: dépôt humide m; rus: влажные выпадения (осаждения, накопления)  1993-a3
mokrý rast krúp
proces růstu krup, při němž nedochází k okamžitému mrznutí vodních kapek zachycených kroupou vzhledem k uvolněnému latentnímu teplu mrznutí, které ohřívá kroupu. Na povrchu kroupy se tvoří vrstva kapalné vody, která teprve postupně mrzne nebo stéká po povrchu a může být při pádu kroupy odstříknuta. Mrznutí stékající vody vyvolává vznik tzv. rampouchovitých výběžků. Mokrý růst nastává, pokud se teplota povrchu kroupy blíží k 0 °C. Při mrznutí zachycené kapalné vody vzniká kompaktní led převážně bez vzduchových bublin. Viz mez Schumanova-Ludlamova.
česky: růst krup mokrý; angl: wet growth of hailstones; něm: nasses Hagelwachstum n  2014
mol
zákl. fyz. jednotka látkového množství. Jeden mol dané látky obsahuje stejný počet částic, jako je obsaženo atomů ve 12 g izotopu uhlíku 12C (v atomovém jádru 6 protonů a 6 neutronů). Tento počet udává Avogadrova konstanta. V termodynamice atmosféry v aplikacích na atmosférické plyny se částicemi rozumí molekuly.
Termín v uvedeném smyslu zavedl něm. chemik W. Ostwald v r. 1894. Vznikl zkrácením slova molekula.
česky: mol; angl: mole; něm: Mol n  2016
molárny objem
objem jednoho molu dané látky. Pro plyny odpovídající ideálnímu plynu má při standardních podmínkách 1013,25 hPa a 0 °C hodnotu 22,414 dm3.
česky: objem molární; angl: molar volume; něm: molares Volumen n, Molvolumen n  2016
Molčanovov kruh
pomůcka k sestrojení horiz. průmětu dráhy pilotovacího balonu v určitém měřítku na základě úhlů měřených optickým pilotovacím teodolitem. Z průmětu dráhy se určuje směr a rychlost větru v různých výškách. Molčanovův kruh se skládá z pevné desky s odpovídajícím nomogramem, otočného průsvitného kruhu a otočného průsvitného pravítka. Zařízení je pojmenováno podle aerologa P. A. Molčanova (1893–1941). Viz též měření pilotovací.
česky: kruh Molčanovův; angl: pilot-balloon plotting board; něm: Molčanovsches Auswertegerät n; rus: круг Молчанова  1993-a2
molekulárna viskozita
syn. viskozita molekulární – viz tření v atmosféře.
česky: vazkost molekulární; angl: molecular viscosity; něm: molekulare Viskosität f; rus: молекулярная вязкость  1993-a1
molekulárna viskozita
syn. vazkost molekulární – viz tření v atmosféře.
česky: viskozita molekulární; něm: molekulare Viskosität f  1993-a1
molekulárna výmena
vzájemná výměna molekul mezi různými vrstvami nebo jinými objemy v plynu nebo kapalině. Příčinou molekulární výměny je difuze molekul, která u plynů probíhá přibližně podle kinetické teorie ideálního plynu. Molekulární výměna působí molekulární přenos hybnosti, tepla, vodní páry, popř. různých znečišťujících příměsí. V reálné atmosféře je účinnost molekulární výměny prakticky zanedbatelná ve srovnání s turbulentní výměnou.
česky: výměna molekulární; angl: molecular exchange; něm: molekularer Austausch m; rus: молекулярный обмен  1993-a1
molekulárny rozptyl
rozptyl záření, popř. konkrétněji rozptyl světla na molekulách vzduchu. Molekulární rozptyl vyhovuje, kromě odchylek týkajících se polarizace elektromagnetických vln, velmi dobře konceptu Rayleighova rozptylu.
česky: rozptyl molekulární; angl: molecular scattering  2016
Möllerov diagram
česky: diagram Möllerův; angl: Möller diagram; něm: Möller-Diagramm n; fr: diagramme de Möller m; rus: радиационная диаграмма Мюллера  1993-a1
Möllerov nomogram
česky: nomogram Möllerův; angl: Möller diagram; rus: номограмма Миллера  1993-a1
moment dipólu búrkového oblaku
označení užívané pro změnu elektrického momentu tohoto oblaku při výboji blesku, je tvořen součinem náboje bouřkového oblaku, tj. cumulonimbu, který se neutralizoval výbojem blesku, a vzdálenosti, jež je:
a) při úderu do země dvojnásobek vzdálenosti mezi středem náboje oblaku a zemí;
b) při výboji blesku mezi oblaky vzdálenost mezi nábojem oblaku jedné polarity a zrcadlovým obrazem proti zemi středu náboje druhé polarity.
Moment dipólu má rozměr Coulomb na metr [C.m]. Užívá se k výpočtu indukovaného elektrostatického napětí na izolovaných objektech na zemi (el. silnoproudých a sdělovacích vedeních, anténách, izolovaných střechách, zábradlích atd.). Hodnoty tohoto momentu dosahují až velikostí kolem 100 C.km.
česky: moment dipólu bouřkového oblaku; angl: thunderstorm cloud dipole moment; něm: Dipolmoment der Gewitterwolke n; rus: момент диполя грозового облака  1993-a3
Moninova a Obuchovova dĺžka
česky: délka Moninova–Obuchovova; něm: Monin-Obuchov-Länge f, Monin-Obukhov-Länge f; fr: longueur de Monin-Obukhov f; rus: длина Монина- Обухова  2014
Moninova a Obuchovova teória podobnosti
ve fyzice mezní vrstvy atmosféry teorie turbulentního přenosu hybnosti, tepla a vodní páry, vypracovaná v 50. letech 20. století A. S. Moninem a A. M. Obuchovem. Používá se při studiu procesů v přízemní vrstvě atmosféry, někdy i v celé mezní vrstvě atmosféry. Je založena na aplikaci Obuchovovy délky L. Roli charakteristiky podobnosti má poměr z/L, kde z je výška nad rovinným zemským povrchem. Je-li hodnota tohoto poměru konstantní, zůstává např. zachován poměr mezi mech. a termickou produkcí kinetické energie, příslušející turbulentním fluktuacím rychlosti proudění. Viz též proudění turbulentní.
česky: teorie podobnosti Moninova–Obuchovova; angl: similarity theory; něm: Ähnlichkeitstheorie f; rus: теория подобия  1993-b3
monitorovanie atmosféry
systém pořizování, shromažďování, popř. i zpracování a vizualizace informací o stavu atmosféry, tedy meteorologické pozorování v nejširším smyslu. V celosvětovém měřítku ho koordinuje Světová meteorologická organizace prostřednictvím Globálního pozorovacího systému, v rámci Evropy organizace EUMETNET prostřednictvím systému EUCOS. V Česku je od 90. let 20. století monitoring atmosféry z velké části automatizovaný bez nutnosti manuálních zásahů (kromě technické údržby a oprav), takže může sloužit jako primární vstup do automatizované linky pro předpověď počasí. Viz též měření meteorologické distanční.
česky: monitoring atmosféry; angl: atmosphere monitoring; něm: Monitoring der Atmosphäre m, Überwachung der Atmosphäre f; rus: мониторинг  1993-a3
monodisperzná prímes
atmosférická příměs pevného nebo kapalného skupenství tvořící atmosférický aerosol, jejíž všechny částice mají stejnou (v reálné praxi alespoň přibližně stejnou) velikost, tvar a hustotu. Při přenosu, difuzi, sedimentaci apod. v atmosféře proto tyto částice vykazují obdobné chování. Viz též příměs polydisperzní.
česky: příměs monodisperzní; angl: monodispersal pollutant; něm: monodisperse Beimengung f; rus: монодисперсионная примесь  1993-a3
Montrealský protokol
česky: protokol Montrealský; angl: Montreal Protocol; něm: Montreal-Protokoll n  2018
Montrealský protokol o látkach poškodujúcich ozónovú vrstvu
první právně závazný dokument navazující na Vídeňskou konvenci na ochranu ozonové vrstvy, který byl schválen v Montrealu v roce 1987. Stanovil seznam látek poškozujících ozonovou vrstvu a časový harmonogram omezování jejich výroby a spotřeby. Montrealský protokol byl v následujících letech značně rozšířen a zpřísněn formou dodatků. Pro jejich signatáře vyplývají právně závazná realizační opatření. ČR je signatářem Videňské konvence i Montrealského protokolu včetně všech jeho dodatků.
česky: Montrealský protokol o látkách poškozujících ozonovou vrstvu; angl: Montreal Protocol on Substances that Deplete the Ozone Layer; něm: Montreal Protokoll über Stoffe, die zum Abbau der Ozonschicht führen n  2017
monzún
složka monzunové cirkulace s více méně stálým převládajícím směrem proudění v jednom pololetí, tedy letní nebo zimní monzun. Z geogr. hlediska se rozlišuje monzun tropický a mimotropický. Často je pod pojmem monzun myšlen pouze letní monzun, viz např. období monzunové, mlha monzunová, nástup monzunu. Pokud však opačné proudění neexistuje, je označení monzun nesprávné, viz monzun evropský.
Termín pochází z arabského mausim „sezóna“; kolem r. 1500 pronikl do portugalštiny a z ní do dalších jazyků. Také v met. smyslu označoval původně období, kdy monzuny vanou. V některých cizích jazycích má termín i v současnosti více významů, mj. jako synonymum pro monzunové období nebo monzunové srážky.
česky: monzun; angl: monsoon; něm: Monsun m; rus: муссон  1993-a3
monzúnová cirkulácia
součást všeobecné cirkulace atmosférypřevládajícím větrem, který se mezi hlavními klimatickými sezonami mění na opačný nebo blízký k opačnému, viz úhel monzunový. Jde o složitý systém, který hraje významnou roli při kompenzaci nerovnovážných stavů v atmosféře mezi oceánem a pevninou. Roční periodicita monzunů je dána střídáním sezonních akčních center atmosféry nad kontinenty. Kontinentální anticyklona způsobuje zimní monzun vanoucí z pevniny na moře, kde dominuje monzunová cyklona. Ta se v létě dané polokoule nachází nad pevninou, čímž vyvolává letní monzun, který sem přináší vydatné monzunové srážky. Charakteristický srážkový režim je hlavním znakem monzunového klimatu. Monzunová cirkulace je více vyjádřena v tropických oblastech (tropický monzun), především v již. a jv. Asii, vyskytuje se však i ve vyšších zeměp. šířkách (mimotropický monzun). Intenzita cirkulace i délka monzunového období meziročně kolísá, mj. v souvislosti s ENSO. Zeslabení monzunové cirkulace, v Indii často spojené s fází El Niño, způsobuje v dotčených oblastech katastrofální sucho.
česky: cirkulace monzunová; angl: monsoon circulation; něm: monsunale Zirkulation f, Monsunzirkulation f; fr: circulation de mousson f; rus: муссонная цикруляция  1993-a3
monzúnová cyklóna
syn. cyklona sezonní – cyklona vznikající v důsledku silného prohřátí pevniny v teplém pololetí a podílející se na vzniku monzunové cirkulace. Nejvýraznější monzunová cyklona setrvává v létě nad Íránem, přičemž může někdy proniknout až do vých. Středomoří. Viz též seistan, etézie.
česky: cyklona monzunová; angl: monsoon low; něm: Monsuntief n; fr: dépression de mousson f; rus: муссонная депрессия  1993-a2
monzúnová hmla
zřídka se vyskytující pobřežní mlha, která vzniká při postupu letního monzunu nad chladný povrch pevniny.
česky: mlha monzunová; angl: monsoon fog; něm: Monsunnebel m; rus: муссонный туман  1993-a3
monzúnová klíma
1. v Köppenově klasifikaci klimatu typ tropického dešťového klimatu, označovaný Am;
2. obecně klima ovlivňované monzunovou cirkulací. Ta se uplatňuje v některých oblastech zmíněného typu Am, avšak i v rámci dalších klimatických typů se suchou zimou: tropického dešťového klimatu (Aw), mírného dešťového klimatu (Cw) a dokonce i boreálního klimatu (Dw). Společným znakem všech těchto typů je suché a jasné počasí v zimě, zatímco v létě převládá oblačné počasí bohaté na monzunové srážky. Viz též pól dešťů, deště tropické.
česky: klima monzunové; angl: monsoon climate; něm: Monsunklima n; rus: муссонный климат  1993-b3
monzúnové akčné centrum
česky: centrum atmosféry akční monzunové; angl: monsoon atmospheric center of action; něm: monsunales Aktionszentrum n; fr: creux de mousson m; rus: муссонный центр действия  1993-a1
monzúnové obdobie
období dešťů na pevnině s monzunovým klimatem, kdy vane letní monzun. Je charakteristické vlhkým deštivým počasím, při němž spadne převážná část roč. úhrnu srážek.
česky: období monzunové; angl: monsoon season; něm: Monsunperiode f, Monsunzeit f; rus: муссонный сезон  1993-a3
monzúnové zrážky
srážky přinášené do oblastí s monzunovým klimatem převážně prostřednictvím letního monzunu, v případě např. ostrovních lokalit i zimním monzunem, který se nad mořem obohatil vodní párou. Bývají velmi vydatné, zvláště v případě orografického zesílení srážek. V zasažených oblastech představují hlavní období dešťů, přičemž směrem do nitra pevnin nastávají obecně později a jejich vydatnost klesá. Viz též pól dešťů, extrémy srážek.
česky: srážky monzunové; angl: monsoon precipitation; něm: Monsunniederschlag m; rus: муссонные осадки  1993-a3
monzúnový dážď
česky: déšť monzunový; angl: monsoon rain; něm: Monsunregen m; fr: pluie maussade f; rus: муссонный дождь  1993-a1
monzúnový uhol
málo používané kritérium pro vymezení monzunových oblastí na základě sezonních změn směru proudění definovaných jako úhel mezi vektory převládajícího větru v měsících, v nichž dominuje letní a zimní monzun (např. v červenci a lednu). S. P. Chromov označil jako monzunové ty oblasti, ve kterých monzunový úhel přesahuje 120°.
česky: úhel monzunový; angl: monsoon angle; něm: Monsunwinkel m; rus: муссонный угол  1993-a3
morfologická klasifikácia oblakov
klasifikace oblaků podle jejich vzhledu. Základem je dělení do 10 druhů, u nichž lze dále rozlišovat tvary, odrůdy, případně i zvláštností, průvodní oblaky a mateřské oblaky. Základem pro současnou mezinárodní morfologickou klasifikaci oblaků se stalo roztřídění oblaků do čtyř druhů z r. 1803 podle návrhu L. Howarda (1772–1864), který rozeznával cirrus, stratus, cumulus a nimbus. Viz též Mezinárodní atlas oblaků, Mezinárodní album oblaků pro pozorovatele v letadlech, oblaky zvláštní, oblaky horní atmosféry.
česky: klasifikace oblaků morfologická; angl: morphological cloud classification; něm: morphologische Wolkenklassifikation f; rus: морфологическая классификация облаков  1993-a3
morská bríza
bríza vanoucí během dne od moře na pevninu, když je povrch moře chladnější než povrch pevniny. V tropických oblastech sahá od zemského povrchu často do výšky 1 500 m, zatímco v mírných zeměp. šířkách v létě nejvýše do 600 m. V zimě se ve stř. a vysokých šířkách prakticky nevyskytuje. V oblasti Baltského moře zasahuje tento vítr na pevninu 20 až 30 km od pobřežní čáry, v tropických oblastech až 100 km. Mořská bríza na pobřežích přispívá ke snížení teploty vzduchu v poledních a odpoledních hodinách, ke zvýšení vlhkosti vzduchu a vytváření typických pobřežních kupovitých oblaků. Viz též cirkulace brízová.
česky: bríza mořská; angl: sea breeze; něm: Seewind m; fr: brise de mer f; rus: морской бриз  1993-a3
morská hmla
advekční mlha, vznikající nad mořem ve vzduchové hmotě, která se přemísťuje z teplejšího povrchu vody nad chladnější. Proto jsou hlavními oblastmi tvorby mořské mlhy oblasti, kde se setkávají oceánské proudy o různé teplotě povrchu moře, např. u Newfoundlandu na styku Golfského a Labradorského proudu nebo východně od Japonska na rozhraní proudu Kurošio a proudu Ojašio. Mořská mlha se zde často tvoří především v létě. Viz též mlha pobřežní.
česky: mlha mořská; angl: sea fog; něm: Meernebel m, Seenebel m; rus: морской туман  1993-a3
morská meteorológia
speciální disciplína meteorologie zabývající se interakcemi mezi moři (oceány) a atmosférou, tj. zvláštnostmi vlivu moří a oceánů na atm. procesy jak místního rozsahu (pobřežní cirkulační systémy a jevy), tak procesy všeobecné cirkulace atmosféry. Součástí mořské meteorologie je meteorologie námořní. Mořská meteorologie vychází ze systému met. pozorování přímo na oceánech (pomocí bójí) a také z informací meteorologických družic či specializovaných družic pro sledování oceánů, ze zpráv z letadel a z měření meteorologických radarů. Pozorování na meteorologických lodích se v polovině 20. století rozvinulo zejména v sev. části Atlantského oceánu. Síť devíti stálých lodí NAOS (North atlantic observation system), vytvořená roku 1948, sloužila především zabezpečování letecké dopravy mezi Evropou a Amerikou. V souvislosti s rozvojem nových zabezpečovacích systémů byla síť NAOS redukována. Od roku 1978 byly v rámci NAOS v činnosti tyto stálé lodě: C (Sovětský svaz, 52°45' s. š., 35°30' z. d.), L (Velká Británie, 57° s. š., 20° z. d.), M (Nizozemsko, Norsko a Švédsko, 66° s. š., 2° v. d.) a R (Francie, 47° s. š., 17° z. d.). Činnost stacinonárních lodí skončila na konci roku 2009, kdy svůj provoz ukončila norská loď Polarfront. Pravidelné informace o povětrnostních podmínkách se ale stále získávají z výzkumných, obchodních a oceánských lodí. Viz též loď meteorologická.
česky: meteorologie mořská; angl: marine meteorology; něm: maritime Meteorologie f; rus: морская метеорология  1993-a3
morská meteorologická stanica
meteorologická stanice, která provádí měření a pozorování na prostředku plovoucím nebo zakotveném na moři, např. na lodi, bóji nebo těžní plošině. Mezi mořské met. stanice patří stanice meteorologické námořní, stanice meteorologické lodní a stanice na majákových lodích. Některé postupy při obsluze přístrojů, pozorování met. jevů a umísťování čidel na mořských met. stanicích jsou odlišné od postupů používaných na pozemních met. stanicích.
česky: stanice meteorologická mořská; angl: sea station; něm: Seestation f, Seewetterstation f; rus: морская станция  1993-a3
morský prúd
česky: proud mořský; angl: ocean current; něm: Meeresströmung f  2017
morský vietor
starší označení pro mořskou brízu.
česky: vítr mořský  1993-a2
morský vzduch
syn. vzduch maritimní, vzduch oceánský – vzduchová hmota, která vznikla nebo se transformovala nad mořem. V typech vymezených geografickou klasifikací vzduchových hmot se liší od pevninského vzduchu především větší vlhkostí vzduchu, menší průměrnou denní i průměrnou roční amplitudou teploty vzduchu aj.
česky: vzduch mořský; angl: maritime air; něm: maritime Luft f; rus: морской воздух  1993-a3
mračno
neodborné označení pro oblak. Viz též průtrž mračen.
česky: mračno; něm: Wolke f  1993-a1
mrak
neodborné označení pro oblak. Odb. termínem je den zamračený, ne však výraz zamračeno. Viz též oblačnost.
Slovo má základ v indoevropském kořeni *merg- „míhat se; zatmívat se“ (zde se projevil druhý význam; srov. také sloveso smrákat se), s nímž souvisí i termín mrholení.
česky: mrak; něm: Wolke f  1993-a3
mráz
teplota vzduchu nižší než 0 °C. V běžné met. praxi se výskyt mrazu zjišťuje z měření staničního teploměru, tj. zhruba ve výšce 2 m nad zemí. Viz též den mrazový, období mrazové, holomráz, intenzita mrazů, kotlina mrazová.
česky: mráz; angl: freeze, frost; něm: Frost m; rus: мороз  1993-a3
mrazík, mrázik
zpravidla krátkodobé (několikahodinové) snížení teploty vzduchu při zemském povrchu ve vegetačním období pod 0 °C. Při mrazíku je teplota vzduchu ve výšce 2 m obvykle nad 0 °C. Vyskytuje se zvláště na počátku a konci vegetačního období, a to především v ranních hodinách. Hlavní příčinou mrazíku bývá radiační ochlazování. Z agromet. hlediska jsou jako škodlivé označovány mrazíky, klesne-li teplota vzduchu pod kritickou hranici, rozdílnou pro různé druhy rostlin a jejich vývojová stadia. Viz též ochrana před mrazíky.
česky: mrazík; něm: leichter Frost m; rus: заморозок  1993-a1
mrazová kotlina
konkávní (dutý) útvar reliéfu, obvykle kotlina nebo úzké údolí, v němž se mrazy vyskytují častěji než v okolí a mají větší intenzitu. Jsou podmíněny především menší ventilací (provětráváním) a nahromaděním stud. vzduchu. Mrazová kotlina se může vytvořit i za umělými překážkami, např. za železničním náspem, který brání odtékání stud. vzduchu do nižších poloh. Viz též jezero studeného vzduchu.
česky: kotlina mrazová; angl: frost hollow, frost pocket; něm: Frostloch n; rus: котловина холодного воздуха, морозная ложбина, морозный карман  1993-a1
mrazové obdobie
v klimatologii časový interval mezi prům. datem prvního mrazu na podzim a prům. datem posledního mrazu na jaře. Běžně se určuje podle denních minimálních teplot vzduchu v meteorologické budce. Viz též období bezmrazové.
česky: období mrazové; angl: frost period; něm: Frostperiode f; rus: морозный период  1993-a1
mrazový deň
mezinárodně standardizovaný charakteristický den, v němž minimální teplota vzduchu klesla pod 0,0 °C, takže se alespoň část dne vyskytl mráz. Podmnožinou mrazových dní jsou ledové, případně arktické dny.
česky: den mrazový; angl: frost day; něm: Frosttag m; fr: jour de gelée m, jour de gel m; rus: день с морозом  1993-a3
mrholenie
poměrně stejnoměrné, husté kapalné srážky, složené výhradně z velmi malých kapiček o průměru menším než 500 µm. Mrholení nejčastěji vypadává z hustých vrstev oblaku druhu stratus, dosahujícího někdy až k zemi. Zvláště v chladné roční době se často vyskytuje po přechodu teplé frontyteplém sektoru cyklony. Mrholení patří mezi hydrometeory. Viz též déšť, mrholení mrznoucí.
Termín má, obdobně jako slovo mrak, základ v indoevropském *merg- „míhat se; zatmívat se“, zde ve smyslu pohybu drobných kapek (srov. též mlha a mžení).
česky: mrholení; angl: drizzle; něm: Nieseln n, Sprühregen m; rus: морось  1993-a2
mrznúca hmla
mlha tvořená přechlazenými vodními kapičkami při teplotách vzduchu často hluboko pod bodem mrazu. Protože absolutní vlhkost vzduchu je vyšší než při zmrzlé mlze, působí sychravým dojmem. Jelikož se skládá z přechlazených vodních kapiček, nepozorujeme při ní tzv. jiskření světla. Typickým projevem mrznoucí mlhy je tvoření námrazkových jevů, někdy velmi intenzivních. V letecké meteorologii je místo mrznoucí používáno adjektivum namrzající. Viz též mlha přechlazená.
česky: mlha mrznoucí; angl: fog depositing rime, freezing fog; něm: Gefrierender Nebel m; rus: замерзающий туман, туман дающий изморозь  1993-a3
mrznúce mrholenie
mrholení, jehož kapičky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. Při mrznoucím mrholení dochází buď k namrzání přechlazených vodních kapek při dopadu na zemský povrch nebo na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo k namrzání nepřechlazených vodních kapek okamžitě při dopadu na zemský povrch nebo na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího mrholení je ledovka. V letecké meteorologii je místo mrznoucí používáno adjektivum namrzající.
česky: mrholení mrznoucí; angl: freezing drizzle; něm: Gefrierender Sprühregen m; rus: переохлажденная морось  1993-a3
mrznúci dážď
déšť, jehož kapky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. K mrznoucímu dešti dochází buď v důsledku přechlazeného deště dopadajícího na zemský povrch či na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo při dopadání nepřechlazených vodních kapek na zemský povrch či na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího deště je ledovka. V letecké meteorologii se místo „mrznoucí“ používá adjektivum „namrzající“. Viz též mrholení mrznoucí.
česky: déšť mrznoucí; angl: freezing rain; něm: gefrierender Regen m; fr: pluie verglaçante f; rus: замерзающий дождь  1993-a3
mrznutie vody
česky: mrznutí vody; angl: freezing; něm: Gefrieren von Wasser n; rus: замерзание  2014
MSG
(Meteosat Second Generation, Meteosat druhé generace) [emesdží] – série čtyř geostacionárních družic Meteosat vypouštěná postupně v období 2002 až 2015. Hlavním přístrojem na jejich palubě je radiometr SEVIRI.
česky: MSG; angl: MSG; něm: MSG; rus: MSG  2014
MTG
(Meteosat Third Generation, Meteosat třetí generace) [emtýdží] – nejnovější generace geostacionárních družic Meteosat. Je rozdělena na dvě větve, MTG-I (MTG Imager) a MTG-S (MTG Sounder). Družice MTG-I jsou vybaveny dvěma hlavními přístroji, zobrazovacími radiometry FCI (Flexible Combined Imager) a LI (Lightning Imager). Družice MTG-S ponesou dva hlavní přístroje, sondážní radiometr IRS (Infrared Sounder) a spektrometr UVN (Ultraviolet, Visible and Near-Infrared Spectrometer), alternativně označovaný i jako Sentinel-4. Družice MTG-I budou vypuštěny celkem čtyři (první odstartovala 13. prosince 2022), družice MTG-S dvě.
česky: MTG; angl: MTG; něm: MTG; rus: MTG  2014
multicela
konvektivní bouře sestávající z několika jednoduchých cel v různém stádiu vývoje, které při sledování radarem, družicí či vizuálně ze zemského povrchu tvoří jednolitý oblačný systém. Multicela se od běžných konv. bouří liší delší dobou trvání až několik hodin a během její existence obvykle postupně vzniká až několik desítek jednotlivých konv. buněk. Tato struktura je příčinou značné časové a prostorové proměnlivosti průvodních jevů, např. výskytu silných srážek a krup.
Pohyb multicely je dán součtem vektoru průměrné rychlosti pohybu jednotlivých cel v okolním proudění a vektoru rychlosti diskrétního šíření bouře v důsledku vývoje nových cel na okraji multicely. Vznik nových cel může nastávat kdekoli podél gust fronty v závislosti na okolních podmínkách, především na střihu větru. V extrémním případě, kdy budou oba vektory rychlosti přibližně opačné, budou se nové cely vyvíjet na zadní straně multicely. Výsledný pohyb bouře bude velmi pomalý a srážky z jednotlivých cel tak budou vypadávat přibližně na stejném místě. Taková konfigurace proudění může vést ke vzniku přívalových povodní.
Pomocí radaru lze v každém okamžiku vývoje multicely rozlišit několik výrazných jader vysoké radarové odrazivosti (ca 40–50 dBZ) společně uzavřených izolinií nižší odrazivosti (ca 20 dBZ). Na družicových snímcích je zpravidla možné multicelu odlišit od supercely větším počtem přestřelujících vrcholků, a to jak na snímcích ve viditelném či blízkém infračerveném pásmu, tak v tepelném oboru elmag. záření.
Termín v češtině a dalších jazycích vznikl zpodstatněním angl. přídavného jména multicell „mnohobuněčný“, složeného z lat. komponentu multi- „více než jeden“ a cella „schránka, komůrka, buňka (medového plástu)“.
česky: multicela; angl: multicell storm; něm: Multizelle f; rus: многоячейковая гроза  1993-a3
multiplikácia ľadových častíc
česky: multiplikace ledových částic; angl: ice multiplication; něm: Eismultiplikation f; rus: размножение ледяных частиц  2014
murus
[murus] – jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Jde o označení zvolené pro jev známý jako wall cloud.
Do morfologické klasifikace oblaků byla zvláštnost murus doplněna v roce 2017. Termín byl přejat z lat. murus „zeď“, tedy ekvivalentu angl. wall.
česky: murus; angl: murus; něm: murus  2018
mutatus
(mut) – označení oblaku, který vznikl transformací jiného, tzv. mateřského oblaku. Přitom se celý mateřský oblak vnitřním vývojem změnil v oblak jiného druhu. Označení nově vytvořeného oblaku se pak skládá z názvu nového druhu, k němuž se připojuje adjektivum složené z názvu druhu mateřského oblaku a z komponentu mutatus (mut). Podle druhu mateřského oblaku rozeznáváme Cc a Cs cirromutatus (cimut), Cs a Ac cirrocumulomutatus (ccmut), Ci, Cc a As cirrostratomutatus (csmut), Cc, Ns, Sc altocumulomutatus (acmut), Cs, Ac a Ns altostratomutatus (asmut), Ac, As a Sc nimbostratomutatus (nsmut), Sc a Cu stratomutatus (stmut), Ac, Ns, Sc, St a Cu stratocumulomutatus (scmut), Cb cumulomutatus (cumut). 
Podle mezinárodní morfologické klasifikace oblaků ve verzi z roku 2017 je označení mutatus také součástí názvu jednoho ze zvláštních oblaků ve tvaru adjektiva homomutatus (homut), které se připojí k názvu druhu vzniklého oblaku. Viz též genitus.
Termín je přejat z lat. mutatus „změněný“, příčestí minulého slovesa mutare „měnit“ (srov. mutovat).
česky: mutatus; angl: mutatus; něm: mutatus; rus: мутатус  1993-a3
mženie
dříve odb. termín pro mrholení za současného výskytu mlhy. Protože nejde o zvláštní druh srážek, používá se nyní jen termín mrholení.
Termín, obdobně jako slovo mlha, souvisí se slovesem „míhat se“, zde ve smyslu pohybu drobných kapek.
česky: mžení; něm: Nieseln n; rus: моросящий туман  1993-a2
podpořila:
spolupracují: