Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene p

X
panache de fumée en éventail
jeden z tvarů kouřové vlečky. Vlečka je charakterizována velmi malým vert. rozptylem, zatímco laterální (boční) rozptyl může být významný. Čeření kouřové vlečky se vyskytuje v inverzní vrstvě při slabém proudění vzduchu.
česky: čeření kouřové vlečky; angl: fanning; slov: čerenie dymovej vlečky; něm: Rauchfahne f; rus: веерообразный шлейф загразнений, лентообразный факел  1993-a1
paramètres de Milankovitch pl
dlouhodobé kvaziperiodické výkyvy orbitálních parametrů Země, které jsou podle astronomické teorie paleoklimatu zodpovědné za kvartérní klimatický cyklus. V rámci cyklu s periodou cca 100 000 roků se mění excentricita oběžné dráhy Země kolem Slunce. S nárůstem výstřednosti se zvětšuje rozdíl mezi periheliem a afeliem z hlediska množství slunečního záření dopadajícího na Zemi. Druhý z cyklů, s periodou cca 41 000 roků, spočívá ve změnách sklonu zemské osy k rovině ekliptiky. Při nárůstu sklonu se v létě příslušné polokoule prodlužuje světlý den a roste výška Slunce, v zimě naopak, čímž narůstají rozdíly mezi sezonami. Třetí cyklus, s periodou cca 21 000 roků, souvisí s precesním stáčením zemské osy, která v prostoru opisuje dvojkužel s osou kolmou k rovině ekliptiky. To má za následek posun perihelia z jedné sezony do druhé, přičemž jeho posun do léta dané polokoule má opět za následek nárůst rozdílů mezi sezonami. Cykly jsou nazývány podle M. Milankoviče, který ve 20. letech 20. století poprvé podrobně propočítal periodické změny orbitálních parametrů a odpovídající změny sum sluneční radiace v chladném a teplém pololetí každé polokoule.
česky: cykly Milankovičovy; angl: Milankovitch Cycles; slov: Milankovičove cykly; něm: Milankovic-Zyklus m  2014
parasélène
Termín se skládá z řec. παρα- [para-] „vedle, po straně“ a σελήνη [seléné] „Měsíc“.
česky: paraselenium; angl: paraselene; slov: paraselénium; něm: Nebenmond m; rus: параселена  1993-a1
paratonnerre m
syn. hromosvod.
česky: bleskosvod; slov: bleskozvod; rus: молнеотвод  1993-a3
parcelle d'air f
v meteorologii označení pro modelový objem vzduchu, o němž předpokládáme, že:
a) je dostatečně velký, takže jeho stav lze popsat hodnotami makroskopických proměnných;
b) je dostatečně malý, aby při svém pohybu nevyvolával kompenzační pohyby v okolním vzduchu.
Uvnitř vzduchové částice tedy neuvažujeme prostorové změny makroskopických proměnných (teploty, tlaku, hustoty a vlhkosti vzduchu, koncentrace znečištění apod.). Pojem vzduchová částice využíváme hlavně při modelování procesů spojených s pohybem vzduchu, zejména se změnou stavových proměnných při vertikálních pohybech. Viz též metoda částice.
česky: částice vzduchová; angl: air parcel; slov: vzduchová častica; něm: Luftpaket n; rus: воздушная частица, , частица воздуха  1993-a3
particularité supplémentaire de nuage
doplňující kategorie mezinárodní morfologické klasifikace oblaků, která si všímá zvláštních detailů ve tvaru oblaků, jejich výčnělků, útržků apod. Týž oblak se může vyznačovat několika zvláštnostmi. V současné době rozeznáváme celkem 11 zvláštností oblaků. Ke zvláštnostem označeným jako incus, mamma, virga, praecipitatio, arcus a tuba byly v roce 2017 přidány zvláštnosti označené jako asperitas, cauda, cavum, fluctus a murus.
česky: zvláštnost oblaku; angl: supplementary feature of a cloud; slov: zvláštnosť oblaku; něm: Wolkensonderform f; rus: дополнительная особенность облака  1993-a3
particule d'air f
v meteorologii označení pro modelový objem vzduchu, o němž předpokládáme, že:
a) je dostatečně velký, takže jeho stav lze popsat hodnotami makroskopických proměnných;
b) je dostatečně malý, aby při svém pohybu nevyvolával kompenzační pohyby v okolním vzduchu.
Uvnitř vzduchové částice tedy neuvažujeme prostorové změny makroskopických proměnných (teploty, tlaku, hustoty a vlhkosti vzduchu, koncentrace znečištění apod.). Pojem vzduchová částice využíváme hlavně při modelování procesů spojených s pohybem vzduchu, zejména se změnou stavových proměnných při vertikálních pohybech. Viz též metoda částice.
česky: částice vzduchová; angl: air parcel; slov: vzduchová častica; něm: Luftpaket n; rus: воздушная частица, , частица воздуха  1993-a3
particule nuageuse f
syn. element oblačný
1. obecné označení pro vodní kapky a ledové částice, které jsou součástí oblaku;
2. v numerických modelech označení malých vodních kapiček nebo ledových krystalků, jejichž ekvivalentní průměr je řádu 10–6 až 10–5 m. Vzhledem k jejich malé pádové rychlosti lze předpokládat, že oblačné částice jsou zcela unášeny prouděním v oblaku. Srážkotvorné procesy v oblacích jsou spojeny s růstem části oblačných částic difuzí vodní páry a koalescencí do velikosti částic srážkových. Za hranici velikosti mezi oblačnými a srážkovými částicemi se obvykle pokládá hodnota ekvivalentního průměru částic 10–4 m. Viz též fyzika oblaků a srážek, rozdělení velikosti oblačných kapek, voda oblačná, led oblačný, autokonverze.
česky: částice oblačná; angl: cloud particle; slov: oblačná častica; něm: Wolkenelement n, Wolkenteilchen n; rus: облачная частица  1993-a3
particules à (noyau de) condensation pl
česky: aerosoly kondenzační; slov: kondenzačné aerosoly  2014
particules d'aérosols pl
1. suspenze pevných a/nebo kapalných atmosférických částic ve vzduchu. Ačkoli toto vymezení splňují i oblačné částice, v meteorologii je většinou pod pojem atmosférický aerosol nezahrnujeme. Částice atmosférického aerosolu mohou být původu přírodního (částice mořské soli, atmosférický prach, vulkanický popel, atmosférický plankton apod.) nebo antropogenního (kouř, popílek průmyslového původu a jiné zplodiny spalovacích procesů, chem. a mech. technologií apod.). Důležitými charakteristikami atmosférického aerosolu jsou chemické složení aerosolových částic, jejich hmotnostní či objemová koncentrace, spektrum velikosti částic apod. Velikost částic zahrnovaných pod pojem atmosférický aerosol v literatuře kolísá, v nejširším pojetí zahrnuje všechny částice o ekvivalentním poloměru pod 100 µm, tedy včetně nanočástic. Podle velikosti rozlišujeme v případě pevných částic frakce PM10, PM2,5, PM1 a PM0,1. Velikost a tvar částic podmiňují jejich pádovou rychlost, která spolu s povětrnostními podmínkami určuje míru depozice na zemský povrch. Pro aerosolové částice se obvykle předpokládá, že jejich pádová rychlost dosahuje max. několika cm.s–1, jejich setrvačnost je při pohybech ve vzduchu zanedbatelná a lze na ně aplikovat podmínky Brownova pohybu. Viz též částice suspendované.
2. v současné terminologii se pojem aerosoly používá v množném čísle též jako syn. pro samotné aerosolové částice. Podle původu částic se pak v literatuře někdy rozlišují pojmy aerosoly přirozené (mořské, kontinentální, pouštní apod.) a antropogenní (městské, průmyslové, dopravní apod.). Podle způsobu vzniku se rozlišují aerosoly primární a aerosoly sekundární (popř. aerosoly disperzní, resp. nukleační), z nichž hlavní pozornost zasluhují sekundární organické aerosolůy (SOA).
česky: aerosol atmosférický; angl: atmospheric aerosol; slov: atmosférický aerosol; něm: atmosphärisches Aerosol n; rus: атмосферный аэрозоль  1993-a3
particules d'Aitken pl
česky: částice Aitkenovy; angl: Aitken particles; slov: Aitkenove častice; něm: Aitkenteilchen n; rus: частицы Айткена  1993-a2
période d'échantillonnage f
syn. doba vzorkovací – délka časového intervalu, po který se v aerochemických měřeních odebírá jeden vzorek. Měření se pak vztahuje k celému časovému intervalu. V praxi se užívá 30 minut, 1 hodina, 24 hodin, nebo i více (týden, měsíc).
česky: doba odběrová; angl: sampling interval; slov: doba odberu; něm: Beprobungszeitpunkt m, Probenahmezeit f; rus: период отбора (проб)  1993-a2
période d'échantillonnage f
česky: doba vzorkovací; slov: doba vzorkovania  1993-a1
période de givrage f
období, které v daném místě začíná prvním usazováním námrazků a končí tím, že se všechny námrazky vypaří (sublimují), roztají nebo opadnou. Viz též období námrazové, námraza.
česky: cyklus námrazový; slov: námrazový cyklus  1993-a1
période de validité de la prévision f
časový interval, ve kterém se předpokládá uskutečnění vývoje počasí uvedeného v předpovědi. Podle doporučení Světové meteorologické organizace je v tabulce uvedena doba platnosti stanovená pro jednotlivé typy předpovědí. Viz též předstih předpovědi.
Definice doby platnosti předpovědi
Nowcasting 0 až 2 hodiny
Velmi krátkodobá předpověď počasí 0 až 12 hodin
Krátkodobá předpověď počasí 12 až 72 hodin
Střednědobá předpověď počasí 72 až 240 hodin
Prodloužená střednědobá předpověď počasí 10 dní až 30 dní
Dlouhodobá předpověď počasí 30 dní až 2 roky
Měsíční výhled 1 měsíc (nikoliv nutně hned následující měsíc)
Výhled na 3 měsíce nebo 90 dní 90 dní (nikoliv nutně hned následujících 90 dní)
Sezonní výhled Jaro, léto, podzim, zima (např. zima na sev. polokouli = prosinec, leden, únor)
Klimatologická předpověď počasí Více než 2 roky
česky: doba platnosti předpovědi; angl: meteorological forecasting range; slov: doba platnosti predpovede; něm: Vorhersagezeitraum m; rus: заблаговременность прогноза  1993-a3
période glaciaire f
syn. glaciál.
česky: doba ledová; angl: glacial age; slov: doba ľadová; něm: Eiszeit f, Glazial n; rus: ледниковая эпоха  1993-a2
période glaciaire f
syn. doba ledová – období relativního nárůstu zalednění na Zemi. V geol. minulosti nastal tento jev vícekrát, pravidelně se opakoval v rámci kvartérního klimatického cyklu. Tehdy prům. teplota vzduchu na Zemi klesala až o 10 °C oproti současnosti. Docházelo k mohutnému rozvoji zalednění, především k postupu pevninského ledovce, k periglaciálním jevům a k výraznému poklesu mořské hladiny o více než 100 metrů oproti interglaciálům. V drsném a suchém kontinentálním klimatu se šířila step a tundra, probíhaly intenzívní zvětrávací pochody, zvané zesprašnění, rozvíjela se geol. činnost větru (eolická činnost) a vytvářely se surové půdy.
Termín pochází z lat. glacialis „ledový“ (z glacies „led“).
česky: glaciál; angl: glacial, ice age; slov: glaciál; něm: Glazial n, Eiszeit n, Kaltzeit n; rus: гляциал, ледниковый период  1993-a3
période Holocène f
viz holocén.
česky: doba poledová; angl: postglacial age; slov: poľadová doba; něm: Postglazial n, Nacheiszeit f  1993-a3
période interglaciaire f
česky: doba meziledová; angl: interglacial, interglacial period; slov: medziľadová doba; něm: Interglazial n, Zwischeneiszeit f; rus: интергляциал, интергляциальная фаза, межледниковый период  1993-a1
période postglaciaire f
viz holocén.
česky: doba poledová; angl: postglacial age; slov: poľadová doba; něm: Postglazial n, Nacheiszeit f  1993-a3
petit âge glaciaire m
(LIA) – období rychlého růstu ledovců na mnoha místech na Zemi, umísťované tradičně zhruba mezi roky 1550 a 1850, přičemž sporné je především vymezení jejího počátku, který bývá někdy umísťován již do závěru 13. století. Nejde zřejmě o souvislou klimatickou anomálii na celé Zemi, spíše o seskupení regionálně diferencovaných a opakovaných poklesů teploty vzduchu i změn srážkových poměrů. Přinejmenším v severoatlantickém prostoru se zřejmě ochladilo o 1 – 2 °C oproti předchozímu středověkému teplému období. Ve větší míře se zde vyskytovaly tuhé zimy i jiné nepříznivé projevy počasí, došlo k nárůstu horského zalednění i zamrzání okrajových moří. Zhoršení přírodních podmínek v tomto regionu mělo zřejmě i negativní socio-ekonomické dopady.
česky: doba ledová malá; angl: little ice age; slov: malá doba ľadová; něm: kleine Eiszeit f; rus: малый (короткий) ледниковый период  1993-a3
petit halo m
syn. halo 22°, kolo malé – fotometeor, projevující se jako bělavý nebo duhově zbarvený světelný kruh kolem zdroje světla (Slunce nebo Měsíce) v úhlové vzdálenosti 22°. Vnitřní strana má červený, vnější fialový nádech. Plocha uvnitř kruhu se jeví poněkud tmavší než okolní obloha. Patří k častým halovým jevům. Vzniká dvojitým lomem světelných paprsků na šestibokých hranolcích ledových krystalků, kdy paprsek do krystalku vstupuje i z něho vystupuje stěnami pláště, tzn. že jde o lom na hranolu s lámavým úhlem 60°. V české literatuře se jako synonymum někdy vyskytuje malé kolo, z čehož však mohou vznikat nedorozumění, neboť do vydání české verze Mezinárodního atlasu oblaků v r. 1965 se termínem malé kolo rozuměla koróna, zatímco velké kolo se používalo jak pro velké halo, tak pro malé halo.
česky: halo malé; angl: halo of 22°, small halo; slov: malé halo; něm: kleiner Ring m, 22°-Ring m; rus: гало в 22°, малое гало  1993-a3
phase d'OQB f
západní nebo východní fáze kvazidvouletého cyklu určená podle převládajícího směru zonálního proudění ve vybrané hladině rovníkové stratosféry. Historicky je tato hladina vybírána v rozmezí 50 – 20 hPa.
česky: fáze kvazidvouletého cyklu; angl: phase of the QBO; slov: fáza kvázidvojročného cyklu; něm: quasi-zweijährige Oszillation f (QBO f)  2015
phase de l'oscillation quasi biennale f
západní nebo východní fáze kvazidvouletého cyklu určená podle převládajícího směru zonálního proudění ve vybrané hladině rovníkové stratosféry. Historicky je tato hladina vybírána v rozmezí 50 – 20 hPa.
česky: fáze kvazidvouletého cyklu; angl: phase of the QBO; slov: fáza kvázidvojročného cyklu; něm: quasi-zweijährige Oszillation f (QBO f)  2015
phénogramme m
graf znázorňující časové změny fenol. jevů, zvláště nástupy fenologických fází, v závislosti na meteorologických prvcích a povětrnostních jevech.
Termín se skládá z řec. komponentu φαίνο- [faino-], odvozeného od slovesa φαίνειν [fainein] „jevit se“ (srov. fenomén), a γράμμα [gramma] „písmeno, zápis“, tj. doslova „zápis o jevech".
česky: fenogram; angl: phenogram; slov: fenogram; něm: Phänogramm n; rus: фенограмма  1993-a1
phénologie des plantes f
část fenologie zabývající se studiem časového průběhu významných periodicky se opakujících životních projevů rostlin v závislosti na počasí a klimatu. K rostlinným fenologickým fázím (fytofenofázím) patří vzcházení, odnožování, sloupkování, metání, žlutá čili vosková zralost, plná zralost, první listy, všeobecné listění, první květy, všeobecné kvetení, první zralé plody, všeobecné žloutnutí listů a všeobecný opad listů.
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova fenologie.
česky: fytofenologie; angl: phytophenology; slov: fytofenológia; něm: Pflanzen-Phänologie f, Phytophänologie f; rus: фитофенология  1993-a1
phénologie f
věda o časovém průběhu významných periodicky se opakujících životních projevů rostlin a živočichů, tzv. fenologických fází, v závislosti na komplexu podmínek vnějšího prostředí, zejména na počasí a klima. Úzký vztah mezi fenol. daty a klimatickými podmínkami činí z fenologie významnou pomocnou vědu klimatologie, neboť výsledků fenologických pozorování a výzkumů lze zpětně využít k charakteristice klimatických podmínek místa nebo oblasti. Podle objektu pozorování se fenologie dělí na fytofenologii a zoofenologii. U nás byla fenol. služba zorganizována celostátně v letech 1923 až 1924 V. Novákem. Viz též předpověď fenologická.
Termín zřejmě poprvé použil pražský rodák K. Fritsch v r. 1858. Skládá se z řec. komponentu φαίνο- [faino-], odvozeného od řec. φαίνειν [fainein] „jevit se“ (srov. fenomén), a z komponentu -λoγία [-logia] „nauka, věda“, který je příbuzný se slovem λόγoς [logos] „výklad, slovo“.
česky: fenologie; angl: phenology; slov: fenológia; něm: Phänologie f; rus: фенология  1993-a1
phénophase f
syn. fenofáze – významný, dobře pozorovatelný a periodicky se opakující životní projev rostlin a živočichů, který je podmíněn střídáním sezon a změnami počasí (vývojem povětrnosti), jako např. kvetení, olistění, přílet ptactva aj. Mezi fenologické fáze v širším smyslu patří i polní práce související s pěstováním polních kultur, např. setí, sklizeň aj. Podle objektu fenologických pozorování rozlišujeme fytofenofáze a zoofenofáze. Viz též fytofenologie, zoofenologie, fenogram, izofena.
česky: fáze fenologická; angl: phenological phase, phenophase; slov: fenologická fáza; něm: phänologische Phase f; rus: фенологическая фаза, фенофаза  1993-a1
phénophase f
Termín se skládá z řec. komponentu φαίνο- [faino-], odvozeného od slovesa φαίνειν [fainein] „jevit se“ (srov. fenomén), a z φάσις [fasis] „objevení se, východ (o hvězdách), fáze (Měsíce)“, které je rovněž příbuzné s výše uvedeným slovesem φαίνειν.
česky: fenofáze; slov: fenofáza; něm: phänologische Phase f; rus: фенологическая фаза  1993-a1
photométéore m
světelný jev v atmosféře, vytvořený odrazem, lomem, ohybem nebo interferencí slunečního, popř. měs. světla. K fotometeorům, objevujícím se ve více méně jasném ovzduší, patří zrcadlení, chvění, scintilace, zelený paprsek a soumrakové barvy. V oblacích vznikají halové jevy, koróny, irizace a glórie. V některých hydrometeorech či litometeorech lze pozorovat glorie, duhy, mlhové duhy, Bishopův kruh a krepuskulární paprsky. Viz též meteor.
Termín se skládá z řec. φῶς [fós, gen. fótos] „světlo“ a ze slova meteor.
česky: fotometeor; angl: photometeor; slov: fotometeor; něm: Photometeor n; rus: фотометeoр  1993-a1
photomètre m
přístroj pro měření intenzity světla. V meteorologii je termín fotometr většinou vyhrazen pro přístroj měřící ve viditelné vlnové oblasti slunečního spektra (400 až 760 nm).
Termín se skládá z řec. φῶς [fós, gen. fótos] „světlo“ a μέτρον [metron] „míra, měřítko“.
česky: fotometr; angl: photometer; slov: fotometer; něm: Photometer n; rus: фотометр  1993-a3
photométrie f
vědní obor zabývající se měřením a kvantitativním popisem světla z hlediska jeho účinků na lidské oko. K tomu využívá řadu fotometrických veličin, jako jsou svítivost, světelný tok, jas, (intenzita) osvětlení, osvit apod. Z hlediska meteorologie je důležitá především problematika viditelného záření Slunce a oblohy.
Termín se skládá z řec. φῶς [fós, gen. fótos] „světlo“ a -μετρία [-metria] „měření“.
česky: fotometrie; angl: photometry; slov: fotometria; něm: Photometrie f; rus: фотометрия  1993-a3
photosphère f
vrstva plynného tělesa hvězdy, v užším smyslu Slunce, kde toto těleso začíná být neprůhledné. Sluneční fotosféra, jejíž mocnost  se udává v rozmezí 200 – 500 km, je tak pozorována jako povrch Slunce. Fotosféra emituje až 99 % spojitého spektra elektromagnetického záření Slunce, přičemž vlastnosti tohoto záření jsou podmíněny teplotou fotosféry, která dosahuje cca 5500 – 6000 K. Fotosféra tak představuje nejchladnější část Slunce, od níž dolů i vzhůru (do chromosféry) teplota roste.
V podloží fotosféry probíhá bouřlivá konvekce žhavých plynů, která proniká i do fotosféry a způsobuje její granulaci, tedy členění do domén stoupajících a klesajících proudů plazmatu. Prostorové uspořádání granulí připomíná včelí plásty o rozměrech jednotlivých buněk cca 1000 – 1200 km. Vnitřní části granulí, v nichž proudí horké plazma vzhůru, se jeví jako světlejší; okraje granulí, kde relativně chladnější plazma klesá dolů, jsou tmavší. Při zvýšené sluneční aktivitě vznikají fotosférické deprese, označované jako sluneční skvrny, obklopené výrazně světlejšími, nepravidelně strukturovanými fakulovými poli, jejichž jednotlivé jasné prvky označujeme jako fakule.
česky: fotosféra; angl: photosphere, solar photosphere; slov: fotosféra; něm: Photosphäre f; rus: фотосфера  2020
physique atmosphérique f
1. syn. meteorologie v užším slova smyslu;
2. souhrnné označení pro fyzikální vědy o atmosféře.
Viz též meteorologie fyzikální.
česky: fyzika atmosféry; angl: atmospheric physics; slov: fyzika atmosféry; něm: Physik der Atmosphäre f; rus: физика атмосферы  1993-a3
physique de l'atmosphère f
1. syn. meteorologie v užším slova smyslu;
2. souhrnné označení pro fyzikální vědy o atmosféře.
Viz též meteorologie fyzikální.
česky: fyzika atmosféry; angl: atmospheric physics; slov: fyzika atmosféry; něm: Physik der Atmosphäre f; rus: физика атмосферы  1993-a3
physique des nuages et des précipitations f
meteorologická disciplina, která studuje procesy probíhající při vzniku a vývoji oblaků a srážek, i procesy, při nichž oblaky působí na okolní prostředí. Základní oblasti fyziky oblaků a srážek jsou mikrofyzika oblaků a dynamika oblaků. Obecně zařazujeme do oblasti fyziky oblaků a srážek také oblačnou elektřinu a studium optických jevů působených oblaky a srážkami, popř. chemizmus oblaků a srážek. Kromě poznávací složky nacházejí výsledky fyziky oblaků a srážek uplatnění při vývoji parametrizace mikrofyziky a parametrizace konvekce v modelech numerické předpovědi počasí.
česky: fyzika oblaků a srážek; angl: physics of clouds and precipitation; slov: fyzika oblakov a zrážok; něm: Wolken- und Niederschlagsphysik f; rus: физика облаков и осадков  1993-a3
physique des nuages f
meteorologická disciplina, která studuje procesy probíhající při vzniku a vývoji oblaků a srážek, i procesy, při nichž oblaky působí na okolní prostředí. Základní oblasti fyziky oblaků a srážek jsou mikrofyzika oblaků a dynamika oblaků. Obecně zařazujeme do oblasti fyziky oblaků a srážek také oblačnou elektřinu a studium optických jevů působených oblaky a srážkami, popř. chemizmus oblaků a srážek. Kromě poznávací složky nacházejí výsledky fyziky oblaků a srážek uplatnění při vývoji parametrizace mikrofyziky a parametrizace konvekce v modelech numerické předpovědi počasí.
česky: fyzika oblaků a srážek; angl: physics of clouds and precipitation; slov: fyzika oblakov a zrážok; něm: Wolken- und Niederschlagsphysik f; rus: физика облаков и осадков  1993-a3
phytoclimat m
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova klima.
česky: fytoklima; angl: phytoclimate; slov: fytoklíma; něm: Phytoklima n; rus: климат растений, фитоклимат  1993-a1
phytoclimatologie f
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova klimatologie.
česky: fytoklimatologie; angl: phytoclimatology; slov: fytoklimatológia; něm: Phytoklimatologie f; rus: фитоклиматология  1993-a1
phytophénologie f
část fenologie zabývající se studiem časového průběhu významných periodicky se opakujících životních projevů rostlin v závislosti na počasí a klimatu. K rostlinným fenologickým fázím (fytofenofázím) patří vzcházení, odnožování, sloupkování, metání, žlutá čili vosková zralost, plná zralost, první listy, všeobecné listění, první květy, všeobecné kvetení, první zralé plody, všeobecné žloutnutí listů a všeobecný opad listů.
Termín se skládá z řec. φυτόν [fyton] „rostlina“ a slova fenologie.
česky: fytofenologie; angl: phytophenology; slov: fytofenológia; něm: Pflanzen-Phänologie f, Phytophänologie f; rus: фитофенология  1993-a1
pileus m
přibližně symetrický orografický oblak, přikrývající osamocené horské vrcholy. Zatímco jeho horní okraj je nad horským vrcholem, výška jeho vzhůru vyklenuté základny je pod úrovní vrcholu. Viz též pileus.
česky: čepice oblačná; angl: cap cloud, cloud cap; slov: oblačná čiapka; něm: Wolkenkappe f; rus: облачная шапка  1993-a2
plancton aérien m
Termín byl zaveden v r. 1912 v němčině; vznikl přidáním předpony aero- (z řec. ἀήρ [aér] „vzduch“) k pojmu plankton (z řec. πλαγκτός [planktos] „bloudící, zmatený“).
česky: aeroplankton; slov: aeroplanktón; něm: Aeroplankton f, Luftplankton f; rus: атмосферный планктон, воздушный планктон  1993-a2
pluie acide f
kapalné padající srážky, které mají v důsledku antropogenního znečišťování ovzduší výrazně zvýšenou kyselost, tj. snížené pH. Kyselý déšť vzniká zejména rozpouštěním oxidů síry a dusíku ve srážkové vodě a představuje značné ekologické nebezpečí, poškozuje půdu a vegetaci, zamořuje povrchové vody, působí škody na architektonických objektech apod. Srážková voda má určitou přirozenou kyselost, způsobenou rozpuštěným oxidem uhličitým a dosahující hodnot pH 5,6 až 6,0, zatímco u kyselého deště může být pH sníženo až na hodnoty 3 až 4, v extrémních případech i menší. Termín kyselý déšť poprvé použil angl. chemik R. A. Smith, když ve 2. polovině 19. století popisoval znečištění ovzduší v Manchesteru. Viz též složení srážek chemické, chemie atmosféry.
česky: déšť kyselý; angl: acid rain; slov: kyslý dážď; něm: sauerer Regen m; rus: кислотный дождь  1993-a1
pluie artificielle f
česky: déšť umělý; angl: artificial rain; slov: umelý dážď; něm: künstlicher Regen m; rus: искусственный дождь  1993-a1
pluie boueuse f
déšť, jehož kapky obsahují abnormálně velké množství jemných minerálních částic, zachycených při vzniku nebo pádu kapek v ovzduší znečištěném prachovou bouří. Viz též déšť krvavý, déšť žlutý.
česky: déšť bahnitý; angl: mud rain; slov: bahnitý dážď; něm: Schlammregen m; rus: грязевoй дождь  1993-a1
pluie continue f
syn. déšť regionální – déšť vypadávající po delší dobu z oblaků druhu nimbostratus nebo altostratus. Bývá tvořen dešťovými kapkami střední velikosti. Trvá většinou několik hodin, někdy však i několik dní, během tohoto období se však mohou vyskytnout i krátké přestávky. Mívá zpravidla větší plošný rozsah a dosti stálou intenzitu, v našich oblastech obvykle slabou až mírnou. Vzniká před teplou frontou nebo v teplém sektoru cyklony, v oblasti studené fronty 1. druhu, zvlněné studené fronty, v oblasti výškové brázdy nebo výškové cyklony. K trvalosti deště významně přispívá orografie. Viz též srážky trvalé.
česky: déšť trvalý; angl: continuous rain; slov: trvalý dážď; něm: Dauerregen m; rus: обложной дождь  1993-a2
pluie de boue f
déšť, jehož kapky obsahují abnormálně velké množství jemných minerálních částic, zachycených při vzniku nebo pádu kapek v ovzduší znečištěném prachovou bouří. Viz též déšť krvavý, déšť žlutý.
česky: déšť bahnitý; angl: mud rain; slov: bahnitý dážď; něm: Schlammregen m; rus: грязевoй дождь  1993-a1
pluie de sable f
déšť žlutě zabarvený částicemi pylu, popř. žlutavým prachem apod. Na našem území se žlutý déšť vyskytuje obvykle v jarních měsících, v období hromadného rozkvětu jehličnatých stromů, hlavně smrků a borovic. Množství pylu, které žlutý déšť podmiňuje, závisí na povětrnostním průběhu zimy a jara; sytěji zbarvený žlutý déšť se vyskytuje obvykle jednou za 4 až 5 let. Viz též déšť bahnitý, déšť krvavý.
česky: déšť žlutý; angl: sulphur rain; slov: žltý dážď; něm: Schwefelregen m; rus: серный дождь  1993-a1
pluie de sang f
syn. déšť červený – déšť zabarvený červeným prachem, popř. červenými řasami. Ve stř. Evropě je krvavý déšť zabarven především pouštním africkým prachem, pronikajícím do této oblasti ve vyšších vrstvách atmosféry při silném proudění již. směrů, zpravidla na přední straně výškových brázd. Po oschnutí dešťových kapek zůstává na povrchu předmětů nebo na sněhové pokrývce minerální vrstvička červeného zabarvení. Viz též déšť bahnitý, déšť žlutý.
česky: déšť krvavý; angl: blood rain; slov: krvavý dážď; něm: Blutregen m; rus: кровaвый дождь  1993-a1
pluie de soufre f
déšť žlutě zabarvený částicemi pylu, popř. žlutavým prachem apod. Na našem území se žlutý déšť vyskytuje obvykle v jarních měsících, v období hromadného rozkvětu jehličnatých stromů, hlavně smrků a borovic. Množství pylu, které žlutý déšť podmiňuje, závisí na povětrnostním průběhu zimy a jara; sytěji zbarvený žlutý déšť se vyskytuje obvykle jednou za 4 až 5 let. Viz též déšť bahnitý, déšť krvavý.
česky: déšť žlutý; angl: sulphur rain; slov: žltý dážď; něm: Schwefelregen m; rus: серный дождь  1993-a1
pluie f
kapalné padající srážky tvořené dešťovými kapkami o průměru větším než 500 µm, které dopadají na zemský povrch. Podle intenzity deště rozeznáváme déšť trvalý a přívalový. Viz též mrholení.
Termín pochází z praslovanského *dъždžь, jehož původ není jednoznačný.
česky: déšť; angl: rain; slov: dážď; něm: Regen m; rus: дождь  1993-a3
pluie forte f
syn. příval – déšť velké intenzity a v našich oblastech převážně krátkého trvání a malého plošného rozsahu. Většinou se jedná o silné konvektivní srážky. Přívalový déšť způsobuje prudké rozvodnění malých toků a značné zatížení kanalizačních sítí. Údaje o přívalových deštích (intenzita, trvání, četnost, doba opakování apod.) jsou nezbytné v hydrotechnických výpočtech. Kritéria přívalového deště nejsou jednotná, např. podle G. Hellmanna je za přívalový považován déšť s úhrnem srážek 10 až 80 mm za dobu kratší než 180 minut. Viz též vztah Wussovův, vztah Němcův, extrémy srážek, povodeň.
česky: déšť přívalový; slov: lejak; něm: Platzregen n; rus: ливень, ливневой дождь, проливной дождь  1993-a3
pluie intense f
syn. příval – déšť velké intenzity a v našich oblastech převážně krátkého trvání a malého plošného rozsahu. Většinou se jedná o silné konvektivní srážky. Přívalový déšť způsobuje prudké rozvodnění malých toků a značné zatížení kanalizačních sítí. Údaje o přívalových deštích (intenzita, trvání, četnost, doba opakování apod.) jsou nezbytné v hydrotechnických výpočtech. Kritéria přívalového deště nejsou jednotná, např. podle G. Hellmanna je za přívalový považován déšť s úhrnem srážek 10 až 80 mm za dobu kratší než 180 minut. Viz též vztah Wussovův, vztah Němcův, extrémy srážek, povodeň.
česky: déšť přívalový; slov: lejak; něm: Platzregen n; rus: ливень, ливневой дождь, проливной дождь  1993-a3
pluie intermittente f
česky: déšť občasný; angl: intermittent rain; slov: občasný dážď; něm: zeitweiliger Regen m; rus: временами дождь, дождь с перерывами  1993-a1
pluie maussade f
česky: déšť monzunový; angl: monsoon rain; slov: monzúnový dážď; něm: Monsunregen m; rus: муссонный дождь  1993-a1
pluie régionale f
zast. označení pro trvalý déšť.
česky: déšť krajinný; angl: widespread rain; slov: krajinský dážď; něm: Landregen m; rus: обложной дождь  1993-a3
pluie rouge f
česky: déšť červený; slov: červený dážď; rus: красный дождь  1993-a1
pluie rouge f
syn. déšť červený – déšť zabarvený červeným prachem, popř. červenými řasami. Ve stř. Evropě je krvavý déšť zabarven především pouštním africkým prachem, pronikajícím do této oblasti ve vyšších vrstvách atmosféry při silném proudění již. směrů, zpravidla na přední straně výškových brázd. Po oschnutí dešťových kapek zůstává na povrchu předmětů nebo na sněhové pokrývce minerální vrstvička červeného zabarvení. Viz též déšť bahnitý, déšť žlutý.
česky: déšť krvavý; angl: blood rain; slov: krvavý dážď; něm: Blutregen m; rus: кровaвый дождь  1993-a1
pluie soutenue f
syn. déšť regionální – déšť vypadávající po delší dobu z oblaků druhu nimbostratus nebo altostratus. Bývá tvořen dešťovými kapkami střední velikosti. Trvá většinou několik hodin, někdy však i několik dní, během tohoto období se však mohou vyskytnout i krátké přestávky. Mívá zpravidla větší plošný rozsah a dosti stálou intenzitu, v našich oblastech obvykle slabou až mírnou. Vzniká před teplou frontou nebo v teplém sektoru cyklony, v oblasti studené fronty 1. druhu, zvlněné studené fronty, v oblasti výškové brázdy nebo výškové cyklony. K trvalosti deště významně přispívá orografie. Viz též srážky trvalé.
česky: déšť trvalý; angl: continuous rain; slov: trvalý dážď; něm: Dauerregen m; rus: обложной дождь  1993-a2
pluie surfondue f
déšť tvořený kapkami přechlazené vody. Způsobuje mrznoucí déšť a vznik ledovky.
česky: déšť přechlazený; angl: supercooled rain; slov: prechladený dážď; něm: unterkühlter Regen m; rus: переохлажденный дождь  1993-a3
pluie torrentielle f
syn. příval – déšť velké intenzity a v našich oblastech převážně krátkého trvání a malého plošného rozsahu. Většinou se jedná o silné konvektivní srážky. Přívalový déšť způsobuje prudké rozvodnění malých toků a značné zatížení kanalizačních sítí. Údaje o přívalových deštích (intenzita, trvání, četnost, doba opakování apod.) jsou nezbytné v hydrotechnických výpočtech. Kritéria přívalového deště nejsou jednotná, např. podle G. Hellmanna je za přívalový považován déšť s úhrnem srážek 10 až 80 mm za dobu kratší než 180 minut. Viz též vztah Wussovův, vztah Němcův, extrémy srážek, povodeň.
česky: déšť přívalový; slov: lejak; něm: Platzregen n; rus: ливень, ливневой дождь, проливной дождь  1993-a3
pluie verglaçante f
déšť, jehož kapky okamžitě mrznou při dopadu na zemský povrch nebo na předměty, které nejsou uměle zahřívány nebo ochlazovány. K mrznoucímu dešti dochází buď v důsledku přechlazeného deště dopadajícího na zemský povrch či na předměty, jejichž teplota je záporná nebo slabě nad 0 °C, nebo při dopadání nepřechlazených vodních kapek na zemský povrch či na předměty, jejichž teplota je výrazně záporná. Průvodním jevem mrznoucího deště je ledovka. V letecké meteorologii se místo „mrznoucí“ používá adjektivum „namrzající“. Viz též mrholení mrznoucí.
česky: déšť mrznoucí; angl: freezing rain; slov: mrznúci dážď; něm: gefrierender Regen m; rus: замерзающий дождь  1993-a3
pluie verglaçante f
česky: déšť namrzající; angl: freezing rain; slov: namŕzajúci dážď; něm: Eisregen m, Eisregen m; rus: замерзающий дождь  2014
pluies équinoxiales f
syn. deště zenitální – zesílení srážek, které nastává v některých oblastech s tropickým dešťovým klimatem v blízkosti rovníku asi měsíc po obou rovnodennostech, kdy zde Slunce v poledne vrcholí v zenitu. V době jednoho nebo obou slunovratů naopak dochází k zeslabení srážek.
česky: deště rovnodennostní; angl: equinoctial rains; slov: dažde rovnodennosti; něm: Äquinoktialregen m; rus: равноденственные дожди  1993-a3
pluies tropicales f
vydatné srážky v tropických oblastech; vázané na intertropickou zónu konvergence, jejíž pohyb způsobuje roční chod tropických dešťů, který je hlavním kritériem rozlišení typů tropického klimatu. Pouze v klimatu tropického dešťového pralesa se tropické deště vyskytují celoročně, někdy se dvěma maximy ve formě rovnodennostních dešťů. V ostatních oblastech jsou koncentrovány do delšího nebo kratšího období dešťů, což platí především pro oblasti s tropickým monzunovým klimatem. Tropické deště jsou provázeny silnými bouřkami a na pevnině mají výrazný denní chod s maximem v odpoledních hodinách. Viz též pól dešťů, extrémy srážek.
česky: deště tropické; angl: tropical rain; slov: tropické dažde; něm: tropischer Regen m; rus: тропические дожди  1993-a3
pluies zénithales f
česky: deště zenitální; angl: zenithal rains; slov: zenitálne dažde; něm: Zenitalregen m; rus: зенитальные дожди  1993-a1
poche d'air f
v letecké terminologii zastaralý a nevhodný název pro intenzívní sestupné pohyby působené termickou i mechanickou turbulencí zejména nad členitým terénem.
česky: díra vzdušná; angl: air-pocket; slov: vzduchová diera; něm: Fallbö f, Luftloch n; rus: воздушная яма  1993-a1
point antisolaire m
bod na nebeské sféře ležící opačným směrem na přímce směřující od stanoviště pozorovatele ke Slunci. Při poloze Slunce nad (pod) obzorem se antisolární bod nalézá pod (nad) obzorem. Viz též protisvit, oblouky protisluneční, duha.
česky: bod antisolární; angl: antisolar point; slov: antisolárny bod; něm: Sonnengegenpunkt m; rus: антисолярная точка  1993-a3
point d'ébullition m
syn. teplota varu – teplota, při níž je tlak nasycené páry nad povrchem kapalné fáze dané látky roven vnějšímu tlaku, v atmosférických podmínkách tlaku vzduchu. Bod varu čisté vody je při normálním tlaku roven 100 °C (373,15 K). Tato teplota byla zvolena jako jeden ze dvou základních bodů při definování Celsiovy teplotní stupnice. S klesajícím tlakem vzduchu se bod varu vody snižuje. Této závislosti se využívá při měření nadm. výšek hypsometry. Viz též bod sublimace.
česky: bod varu; angl: boiling point; slov: bod varu; něm: Siedepunkt m; rus: точка кипения  1993-a3
point d'inflexion m
bod na přízemní synoptické mapě, který tvoří vrchol teplého sektoru cyklony a z něhož se směrem do vyššího tlaku vzduchu rozbíhají v okludované cykloně zbývající části teplé a studené fronty. Během procesu okluze se okluzní bod přemísťuje k okraji cyklony. Někdy se poblíž okluzního bodu vytváří nový střed cyklony. Viz též fronta okluzní.
česky: bod okluzní; angl: point of occlusion; slov: oklúzny bod; něm: Okklusionspunkt m; rus: точка окклюзии  1993-a3
point de congélation m
syn. teplota mrznutí – v meteorologii označení pro bod tuhnutí nebo bod tání čisté vody při daném tlaku vzduchu. Je-li tento tlak roven normálnímu tlaku, je odpovídající teplota mrznutí rovna 0 °C a označuje se pak v české meteorologické literatuře jako bod mrazu. Tato hodnota teploty byla jako nulový bod zvolena při definování Celsiovy teplotní stupnice. Teplota mrznutí kapek v oblacích může být hluboko pod 0 °C vzhledem k existenci přechlazené vody.
Je třeba vzít také v úvahu, že oblačná voda může zahrnovat i kapky vodních roztoků solí, kyselin apod., jejichž teplota mrznutí je nižší než bod mrznutí čisté vody. Viz též jádra ledová.
česky: bod mrznutí; angl: freezing point; slov: bod mrznutia; něm: Gefrierpunkt m; rus: точка замерзания  1993-a3
point de départ à la formation d'un cyclone m
místo v atmosféře, v němž se začíná vytvářet cyklona. Nejčastěji se nachází v mezní vrstvě atmosféry na dynamicky instabilních frontálních vlnách. V širším smyslu můžeme hovořit o cyklogenetickém bodu i za situací, kdy vzniká mělká cyklona v důsledku termické nebo orografické cyklogeneze.
česky: bod cyklogenetický; angl: cyclogenetic point; slov: cyklogenetický bod  1993-a3
point de fusion m
syn. teplota tání – teplota, při níž dochází k fázovému přechodu dané látky ze skupenství pevného do skupenství kapalného při rovinném fázovém rozhraní. Ohříváme-li pevnou látku, její teplota se zvyšuje až k bodu tání. Další ohřev již vyvolá tání a dodané teplo je spotřebováváno na latentní teplo tání, přičemž teplota tající látky zůstává zachována. Po úplném roztátí pevné fáze pak teplota vzniklé kapaliny při dalším ohřívání roste. Teplota tání závisí na tlaku. U většiny látek teplota tání s rostoucím tlakem roste, u ledu a několika dalších látek však s růstem tlaku klesá (viz regelace ledu). Čistý led při normálním tlaku má bod tání 0 °C (273,15 K). Při inverzní změně skupenství odpovídá bodu tání bod tuhnutí (bod mrznutí).
česky: bod tání; angl: melting point; slov: bod topenia; něm: Schmelzpunkt m; rus: точка таяния  1993-a3
point de givrage m
česky: bod ojínění; slov: bod osrienenia  2014
point de rosée m
česky: bod rosný; angl: dew point; slov: rosný bod; něm: Taupunkt m; rus: точка росы  1993-a3
point hyperbolique m
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický; angl: col, hyperbolic point, neutral point, saddle point; slov: hyperbolický bod; něm: hyperbolischer Punkt m, Sattelpunkt m; rus: гиперболическая точка, точка седловины  1993-a3
point nadir m
průsečík spojnice družice a středu Země se zemským povrchem, označovaný též jako nadir družice. V tomto bodě mají přístroje na meteorologické družici vždy nejvyšší rozlišení. Posloupnost poddružicových bodů daná pohybem družice po její dráze kolem Země vytváří průmět dráhy na zemský povrch, označovaný jako trajektorie družice.
česky: bod poddružicový; angl: subsatellite point; slov: poddružicový bod; něm: Subsatellitenpunkt m, Subsatellitenpunkt m; rus: подспутниковая точка  1993-a2
point neutre d'Arago m
jeden ze tří neutrálních bodů nalézající se ve výšce asi 20° nad antisolárním bodem.
česky: bod Aragův; angl: Arago's point; slov: Aragov bod; něm: Aragopunkt m; rus: точка Араго  1993-a1
point neutre de Babinet m
jeden ze tří neutrálních bodů nalézající se ve výšce 15 až 20° nad Sluncem. Objevil jej franc. fyzik J. Babinet v r. 1840.
česky: bod Babinetův; angl: Babinet point; slov: Babinetov bod; něm: Babinetpunkt m; rus: точка Бабинэ  1993-a1
point neutre de Brewster m
jeden ze tří neutrálních bodů, nalézající se ve výšce 15 až 20° pod Sluncem. Objevil jej skotský fyzik D. Brewster v r. 1840.
česky: bod Brewsterův; angl: Brewster point; slov: Brewsterov bod; něm: Brewsterpunkt m; rus: точка Брюстера  1993-a1
point neutre m
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický; angl: col, hyperbolic point, neutral point, saddle point; slov: hyperbolický bod; něm: hyperbolischer Punkt m, Sattelpunkt m; rus: гиперболическая точка, точка седловины  1993-a3
point neutre m
1. v atmosférické optice označení pro místo na obloze, situované ve vert. rovině proložené Sluncem, z něhož vycházející difuzní světlo není polarizováno. K neutrálním bodům počítáme bod Aragův, Babinetův a Brewsterův, jejichž přesná poloha závisí na výšce Slunce nad obzorem a na zakalení atmosféry.
2. syn. bod hyperbolický.
česky: bod neutrální; angl: neutral point; slov: neutrálny bod; něm: neutraler Punkt m; rus: нейтральная точка  1993-a3
point subanthélique m
bod na nebeské sféře ležící opačným směrem na přímce směřující od stanoviště pozorovatele ke Slunci. Při poloze Slunce nad (pod) obzorem se antisolární bod nalézá pod (nad) obzorem. Viz též protisvit, oblouky protisluneční, duha.
česky: bod antisolární; angl: antisolar point; slov: antisolárny bod; něm: Sonnengegenpunkt m; rus: антисолярная точка  1993-a3
point triple m
syn. trojbod – v termodynamice jediný bod na fázovém diagramu, který je společný všem křivkám rozhraní mezi jednotlivými fázemi. Udává tedy podmínky, za nichž jsou v rovnováze fáze plynná, kapalná i pevná, přičemž systém nemá žádný stupeň volnosti. V meteorologii se s ním setkáváme především v souvislosti s fázemi vody. Odpovídá mu pak teplota 273,16 K (0,01 °C) a tlak vodní páry 611,7 Pa (6,117 mbar). Jedině za těchto podmínek může nastat rovnovážný stav mezi vodní párou, kapalnou vodou a ledem.
česky: bod trojný; angl: triple point; slov: trojný bod; něm: Tripelpunkt m  2017
point-col m
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický; angl: col, hyperbolic point, neutral point, saddle point; slov: hyperbolický bod; něm: hyperbolischer Punkt m, Sattelpunkt m; rus: гиперболическая точка, точка седловины  1993-a3
point-selle m
syn. bod neutrální – v meteorologii průsečík čáry konfluence a čáry difluence uvnitř barického sedla na meteorologické mapě. Na obě strany od tohoto bodu směrem k anticyklonám, popř. k hřebenům vysokého tlaku vzduchu tlak vzduchu stoupá, směrem k cyklonám, popř. brázdám nízkého tlaku vzduchu klesá. Hyperbolický bod je tedy bod s rel. nejvyšším tlakem mezi dvěma cyklonami a bod s rel. nejnižším tlakem mezi dvěma anticyklonami tvořícími barické sedlo. Viz též pole deformační.
česky: bod hyperbolický; angl: col, hyperbolic point, neutral point, saddle point; slov: hyperbolický bod; něm: hyperbolischer Punkt m, Sattelpunkt m; rus: гиперболическая точка, точка седловины  1993-a3
portée optique météorologique (POM) f
(Meteorological Optical Range, MOR) – délka dráhy v atmosféře, podél níž se světelný tok ve svazku vytvořeném žárovkou o barevné teplotě 2 700 K zeslabí na 5 % původní hodnoty. Viz též dohlednost meteorologická.
česky: dosah optický meteorologický; angl: meteorological optical range (MOR); slov: meteorologický optický dosah; něm: Normsichtweite f; rus: метеорологическая оптическая дальность (МОД)  1993-a3
portée visuelle de piste (PVP) f
vzdálenost, na kterou pilot letadla nacházejícího se na ose vzletové nebo přistávací dráhy, vidí denní dráhové označení nebo návěstidla ohraničující vzletovou nebo přistávací dráhu, nebo vyznačující její osu. Dráhová dohlednost se dříve určovala vizuálně, nyní se na většině letišť určuje pomocí transmisometrů, umístěných obvykle na obou koncích a uprostřed vzletové nebo přistávací dráhy.
česky: dohlednost dráhová (RVR); angl: runway visual range; slov: dráhová dohľadnosť (RVR); něm: Pistensichtweite f; rus: максимальнaя дальность видимости ВПП  1993-b3
pot au noir m
Termín byl původně užíván v prostředí mořeplavby jako expresivní označení stavu, kdy plachetnice nemohou plout vpřed vlivem bezvětří nebo kvůli proměnlivému větru. Od 2. pol. 19. stol. je doložen i jako označení oblasti rovníkových tišin, kde k tomuto jevu dochází. Vznikl  zřejmě ze staroangl. dold, pravděpodobně příbuzného s dull „tupý“.
česky: doldrums; slov: doldrums; něm: tropische Kalmen f/pl  1993-a2
potentiel d'évaporation m
celkové množství vody, které se může vypařit z půdy (výpar z půdy) a vegetačního krytu (transpirace rostlin) při nasycení půdy vodou nebo při sněhové pokrývce. V přírodních podmínkách potenciální evapotranspirace zpravidla převyšuje evapotranspiraci aktuální. Pojem zavedl C. W. Thornthwaite (1948), který potenciální evapotranspiraci využíval k vyjádření humidity klimatu.
česky: evapotranspirace potenciální; angl: potential evapotranspiration; slov: potenciálna evapotranspirácia; něm: potentielle Evapotranspiration f; rus: возможное суммарное испарение  1993-a2
pression aérostatique f
česky: tlak aerostatický; angl: aerostatic pressure; slov: aerostatický tlak; něm: aerostatischer Druck m; rus: аэростатическое давление  2023
pression extrême f
označení pro absolutní minimum a absolutní maximum tlaku vzduchu redukovaného na hladinu moře. Absolutní maximum vypočtené z měření nízko položené met. stanice na Zemi dosahuje 1 083,3 hPa. Bylo dosaženo 31. 12. 1968 na sibiřské stanici Agata (Rusko) v nadmořské výšce 261 m. V kategorii stanic s nadmořskou výškou přes 750 m, kde se redukce tlaku vzduchu na hladinu moře standardně neprovádí, byla zjištěna nejvyšší hodnota 1084,8 hPa, a to 19. 12. 2001 na mongolské stanici Tosontsengel v nadmořské výšce 1 724,6 m. Abs. minimum tlaku vzduchu na Zemi 870 hPa bylo zjištěno 12. 10. 1979 v centru supertajfunu Tip v Tichém oceánu (17° N, 138° E). Hodnoty tlaku vzduchu ve středu tornáda však mohou být ještě podstatně nižší.
Na území ČR je za abs. maximum tlaku vzduchu redukovaného na hladinu moře považována hodnota 1 057,2 hPa, zjištěná ke dni 23. 1. 1907 na stanici Bystřice pod Hostýnem. Abs. minimum tlaku vzduchu redukovaného na hladinu moře má v ČR hodnotu 967,2 hPa, bylo zaznamenáno 26. 2. 1989 na stanici Čáslav. Viz též anticyklona sibiřská.
česky: extrémy tlaku vzduchu; angl: extremes of air pressure; slov: extrémy tlaku vzduchu; něm: Extremwerte des Luftdrucks m/pl; rus: экстремумы давления воздуха  1993-a3
pression f
jedna ze zákl. fyz. veličin, která vyjadřuje působení síly kolmo na jednotkovou plochu. Síla zemské tíže způsobuje v nepohybujících se tekutinách statický tlak, který v případě atmosféry Země označujeme jako tlak vzduchu neboli atmosférický tlak. Protože je vzduch tvořen směsí plynů, můžeme rozlišovat parciální tlaky jednotlivých plynů, především tlak vodní páry. Pohyb tekutin navíc vyvolává dynamický tlak; v atmosféře  tímto způsobem vzniká tlak větru. Součet statického a dynamického tlaku můžeme označit jako tlak celkový.
Jednotkou tlaku v soustavě SI je pascal (Pa), v meteorologii se převážně používá jeho stonásobek neboli hektopascal (hPa). Zast. jednotkou tlaku je atmosféra.
česky: tlak; angl: pressure; slov: tlak; něm: Druck m; rus: давление  2023
pression hydrostatique f
česky: tlak hydrostatický; angl: hydrostatic pressure; slov: hydrostatický tlak; něm: hydrostatischer Druck m; rus: гидростатическое давление  2023
processus adiabatique m
termodyn. vratný děj v dané soustavě (v meteorologii obvykle ve vzduchu), probíhající bez výměny tepla mezi touto soustavou a okolím. Pro adiabatický děj v ideálním plynu platí Poissonovy rovnice, které lze vyjádřit takto:
T=konst.pθ, p.ακ=konst.,
kde θ = R / cp, κ = cp / cv, T značí teplotu v K, p tlak, α měrný objem, R měrnou plynovou konstantu, cp měrné teplo při stálém tlaku, cv měrné teplo při stálém objemu. Z toho vyplývá, že při adiabatickém poklesu tlaku (expanzi plynu) dochází k poklesu teploty, tj. k adiabatickému ochlazování, při adiabatickém zvýšení tlaku (kompresi plynu) ke zvýšení teploty, tj. k adiabatickému oteplování. Přibližně adiabatické jsou např. procesy ve vzduchové částici nenasycené vodní párou během jejího vert. přemísťování v atmosféře. Pojem adiabatický děj poprvé použil jeden ze zakladatelů termodynamiky, skotský inženýr W. J. M. Rankine (1820–1872). Viz též děj pseudoadiabatický.
česky: děj adiabatický; angl: adiabatic process; slov: adiabatický dej; něm: adiabatischer Prozess m; rus: адиабатический процесс  1993-a1
processus isentropique m
termodyn. děj, při němž zůstává konstantní hodnota entropie. V nenasyceném vzduchu je izentropickým každý adiabatický děj. Označení děj izentropický zavedl amer. fyzik J. W. Gibbs v r. 1883. Viz též izentropa.
česky: děj izentropický; angl: isentropic process; slov: izentropický dej; něm: isentroper Prozess m; rus: изэнтропический процесс  1993-a1
processus isobare m
termodyn. děj, který probíhá při konstantním tlaku. Při izobarickém ději v ideálním plynu platí pro měrný objem α a teplotu T v K vztah
αα0 =TT0,
kde α0 a T0 jsou měrný objem a teplota v počátečním stavu.
česky: děj izobarický; angl: isobaric process; slov: izobarický dej; něm: isobarer Prozess m; rus: изобарический процесс  1993-a3
processus isopycnique m
termodyn. děj, který probíhá při konstantní hustotě. Je totožný s dějem izosterickým.
česky: děj izopyknický; angl: isopycnic process; slov: izopyknický dej; něm: isopykner Prozess m; rus: изопикнический процесс  1993-a3
processus isostérique m
termodyn. děj, který probíhá při konstantním měrném objemu systému. Při izosterickém ději v ideálním plynu platí pro tlak p a teplotu T v K vztah
pp0 =TT0,
kde p0 a T0 jsou tlak a teplota v počátečním stavu. Je totožný s dějem izopyknickým.
česky: děj izosterický; angl: isosteric process; slov: izosterický dej; něm: isosterer Prozess m; rus: изостерический процесс  1993-a3
processus isotherme m
termodyn. děj, který probíhá při konstantní teplotě. Při izotermickém ději v ideálním plynu platí zákon Boyleův–Mariotteův.
česky: děj izotermický; angl: isothermal process; slov: izotermický dej; něm: isothermer Prozess m; rus: изотермический процесс  1993-a3
processus m
viz též proces.
česky: děj; angl: process; slov: dej; něm: Prozess m; rus: процесс  1993-a1
profil vertical de la densité de l'air
rozdělení hustoty vzduchu v atmosféře s výškou. Kvůli poklesu tlaku vzduchu jeho hustota s výškou zpravidla exponenciálně klesá, velikost poklesu je však modifikována vertikálním profilem teploty vzduchu a vertikálním profilem vlhkosti vzduchu. Ve speciálním případě, kdy virtuální teplota s výškou klesá rychleji, než odpovídá autokonvekčnímu gradientu, hustota vzduchu s výškou roste. Viz též profil tlaku vzduchu vertikální.
česky: profil hustoty vzduchu vertikální; angl: vertical air density profile; slov: vertikálny profil hustoty vzduchu; něm: vertikales Luftdichteprofil n; rus: вертикальный профиль плотности воздуха  2023
profil vertical de la pression atmosphérique
rozdělení tlaku vzduchu v atmosféře s výškou. Tlak vzduchu s výškou obecně klesá, přičemž za předpokladu hydrostatické rovnováhy je velikost poklesu vyjádřena rovnicí hydrostatické rovnováhy. Vertikální profil tlaku vzduchu má pak obdobně jako vertikální profil hustoty vzduchu exponenciální průběh, přičemž velikost vertikálního tlakového gradientu s výškou klesá; ve studeném vzduchu je pokles tlaku vzduchu rychlejší než v teplém vzduchu. V reálné atmosféře je vertikální profil tlaku vzduchu dále modifikován odchylkami od stavu hydrostatické rovnováhy, k čemuž dochází především v místech intenzívních vertikálních pohybů vzduchu subsynoptického měřítka, např. v konvektivních bouřích. Viz též formule barometrická.
česky: profil tlaku vzduchu vertikální; angl: vertical air pressure profile; slov: vertikálny profil tlaku vzduchu; něm: vertikales Luftdruckprofil n; rus: вертикальный профиль давления воздуха  2023
Programme d'observation composite d'EUMETNET m
evropský kombinovaný systém pozorování. Zahrnuje pozorování z vybraných synoptických a aerologických stanic, měření z letadel (E-AMDAR), pozorování z lodí a bójí (E-SURMAR), aerologická měření z lodí (E-ASAP) a radarová měření profilu větru (E-WINPROF). Důležitou součástí systému je monitoring kvality dat. EUCOS je součástí EUMETNET.
česky: EUCOS; angl: European Composite Observing Network; slov: EUCOS; něm: EUCOS; rus: ЕВКОС  2014
protubérance solaire f
výron relativně chladnějšího, hustšího plazmatu z fotosféry přes chromosféru do žhavé sluneční koróny. Tyto útvary jsou typické pro období zvýšené sluneční aktivity. Při pozorování se jeví jako výběžky boulovitého tvaru, plameny nebo oblouky, vybíhající ze slunečního tělesa. Někdy se mohou od Slunce úplně odpoutat, pak je označujeme jako výrony korónové hmoty; pokud zasáhnou zemskou magnetosféru, způsobí zde geomagnetickou bouři.
česky: protuberance; angl: solar prominence, protuberance; slov: protuberancia; něm: Protuberanz f; rus: протуберанец  2020
pseudo-front m
syn. pseudofronta.
česky: fronta zdánlivá; angl: pseudo front; slov: zdanlivý front; něm: Scheinfront f, Pseudofront f; rus: мнимый фронт  1993-a3
pseudo-gradient adiabatique humide m
česky: gradient teplotní pseudoadiabatický; angl: pseudoadiabatic lapse rate; slov: pseudoadiabatický teplotný gradient; něm: pseudoadiabatischer Temperaturgradient m; rus: псевдоадиабатический градиент температуры  2014
pseudoadiabatique f
křivka na termodynamickém diagramu, vyjadřující vztah mezi dvěma stavovými proměnnými (zpravidla mezi teplotou a tlakem) při adiabatickém dějinasyceném vzduchu, který může obsahovat i zkondenzovanou vodu v kapalné fázi. Sklon křívky  tedy odpovídá nasyceně adiabatickému teplotnímu gradientu a slabě závisí na množství zkondenzované kapalné vody. Protože teplo potřebné ke změně teploty kapalné vody přítomné v nasyceném vzduchu je velmi malé, je rozdíl mezi nasycenou adiabatou a pseudoadiabatou zanedbatelný. Na termodynamickém diagramu se proto při znázornění adiabatického děje v nasyceném vzduchu používají pseudoadiabaty. V americké terminologii se nasycená adiabata označuje jako vlhká adiabata.
česky: adiabata nasycená; angl: moist adiabat, saturated adiabatic , wet adiabat, wet adiabatic; slov: nasýtená adiabata; něm: Sättigungsadiabate f; rus: влажная адиабата  1993-a3
pseudofront m
syn. pseudofronta.
česky: fronta zdánlivá; angl: pseudo front; slov: zdanlivý front; něm: Scheinfront f, Pseudofront f; rus: мнимый фронт  1993-a3
pyrradiomètre m
přístroj pro měření rozdílu celkového záření (0,3 až 100 μm) dopadajícího na horní a spodní stranu vodorovného čidla z prostorového úhlu 2π. Čidlo je nejčastěji tvořeno dvojicí tenkých černých kovových destiček, vzájemně propojených diferenční termobaterií, která měří rozdíl teplot obou destiček. Tento rozdíl je úměrný radiační bilanci záření. Použitý indikátor napětí musí mít posunutou nulu, aby bylo možné měřit kladná i záporná napětí termočlánku. Bilancometry v trvalém provozu mají chráněna čidla tenkými (0,1 mm) polyetylenovými polokoulemi známými jako lupolen-H.
Termín se skládá z lat. bilancia „váha“ (z bi- „dvojitý“ a lanx „miska“) a z řec. μέτρον [metron] „míra, měřidlo“.
česky: bilancometr; angl: net pyrradiometer, radiation balance meter; slov: bilancometer; něm: Strahlungsbilanzmesser m, Pyrradiometer n; rus: балансомер, сумарный пиранометр  1993-a1
podpořila:
spolupracují: