Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene k

X
holocén
syn. čtvrtohory mladší – současná geol. epocha, označovaná dříve též jako doba poledová neboli postglaciál, trvající od konce posledního glaciálu před 11,7 tisíci roků. Holocén představuje v rámci kvartéru zatím poslední interglaciál, takže kolísání klimatu během holocénu je méně výrazné než během kvartéru jako celku. Holocén byl tradičně členěn pomocí pylové analýzy do klimatických fází, které však zřejmě neměly globální charakter. V severní části Evropy po preboreálu a boreálu (do cca 8 000 BP) se spíše kontinentálním klimatem následoval atlantik (do cca 5 000 BP), který bývá dáván do souvislosti s hlavním holocenním klimatickým optimem. Mladšími klimatickými fázemi byly subboreál (do cca 2 500 BP) a subatlantik (do současnosti). Příznivější klimatické podmínky v holocénu umožnily nástup zemědělství (tzv. neolitická revoluce) a civilizace, čímž se lidská aktivita zařadila mezi podstatné klimatické faktory.
česky: holocén angl: Holocene rus: климат Голоцена něm: Klima im Holozän n, Holozän s  1993-b3
K-index
index instability definovaný podle vzorce:
KI=T850-T 500+TD850-( T700-TD700 ),
kde T850, resp. T700 a T500, jsou hodnoty teploty vzduchuhladinách 850 hPa, resp. 700 a 500 hPa a TD850, resp. TD700, je teplota rosného bodu v hladině 850 hPa, resp. 700 hPa. V praxi se neočekávají bouřky pro hodnotu K-indexu nižší než 20, pro hodnoty indexu mezi 20 a 25 se očekávají ojedinělé bouřky, pro hodnoty indexu 25 až 30 bouřky místy a pro hodnoty K-indexu nad 30 se očekávají četné bouřky. K-index formuloval J. J. George v roce 1960.
česky: K-index angl: K-index rus: индекс К, К — индекс неустойчивости něm: K-index m  2014
kalendár poveternostných situácií
přehled o výskytu povětrnostních situací v dané oblasti za určité období. Pro jednotlivé dny jsou uvedeny zkratkami, popř. značkami synoptické typy stanovené na základě určité typizace povětrnostních situací, záznamy o přestavbě povětrnostních situací apod. Některé typizace neuvádějí povětrnostní situace ve dnech, v nichž je situace nevyhraněná. Nejdelší kalendář povětrnostních situací, používaný ve stř. Evropě, vychází z typizace povětrnostních situací Evropy P. Hessa a H. Brezowského; začíná r. 1881 a je průběžně doplňován a publikován. V ČR je vypracován kalendář povětrnostních situací pracovníky předpovědní služby podle typizace povětrnostních situací HMÚ, počínaje r. 1946. V letech 1946–1990 byl sestavován jednotný kalendář pro celé území tehdejšího Československa, od roku 1991 je sestavován po vzájemné konzultaci meteorologů z ČHMÚ a SHMÚ zvlášť pro území České republiky a zvlášť pro území Slovenské republiky a každoročně je doplňován a publikován na webu ČHMÚ. Druhý československý kalendář povětrnostních situací, zpracovaný podle typizace povětrnostních situací M. Končeka a F. Reina, byl publikován za období 1950–1971. Viz též katalog povětrnostních situací.
česky: kalendář povětrnostních situací angl: synoptic situations calendar rus: календарь синоптических положений (ситуаций) něm: Kalender der Grosswetterlagen m  1993-a3
kalibrácia družicových dát
převod dat získaných přístroji meteorologických družic na standardní fyzikální veličiny, např. intenzitu záření, jasovou (radiační) teplotu, odrazivost (albedo) aj.
česky: kalibrace družicových dat angl: satellite data calibration rus: калибровка спутниковых ганных něm: Kalibrrierung (Eichung) der Satellitendaten f  1993-a3
kalibrácia meteorologických prístrojov
je soubor úkonů, kterými se za specifikovaných podmínek stanoví vztah mezi hodnotami měřených meteorologických veličin a odpovídajícími hodnotami, které jsou dány etalony (standardy). Výsledkem kalibračních procesů jsou přístrojové opravy, které je nutno započítat k výsledkům měření. Každý meteorologický přístroj má stanoven tzv. kalibrační interval. V případě podezření, že přístroj neměří správně, je nutné jej neprodleně vyměnit a požádat odborné pracoviště (kalibrační laboratoř) o rekalibraci.
česky: kalibrace meteorologických přístrojů angl: calibration of meteorological instruments rus: колибровка метеорологическых приборов něm: Kalibrrierung (Eichung) meteorologischer Geräte f  2014
kalibračný protokol
výsledek kalibrace meteorologických přístrojů obsahující přesnou identifikaci meteorologického přístroje, popis a výsledky provedené kalibrace. Stanovené přístrojové opravy musí být použity při každém měření. Platnost kalibrace je časově omezena.
česky: protokol kalibrační něm: Kalibrierungsprotokoll n  2014
Kalifornský prúd
studený oceánský proud ve východním segmentu severopacifického subtropického koloběhu oceánské vody. Je pokračováním té části Severního tichomořského proudu, která míří podél západního pobřeží Severní Ameriky k jihu. Přispívá mj. k ariditě klimatu Kalifornského poloostrova. V tropech se vlivem pasátů stáčí k jihozápadu a přechází do Severního rovníkového proudu.
česky: proud Kalifornský angl: California Current něm: Kalifornischr Strom m  2017
kalifornský smog
česky: smog kalifornský angl: California smog 
kalm
1. syn. bezvětří;
2. v letecké meteorologii měřená nebo předpovídaná rychlost větru menší než 0,5 m.s–1 (menší než 1 kt) musí být indikována jako „CALM“.
česky: calm angl: calm něm: Kalme f rus: калм fr: calme m  1993-a3
kalm
česky: kalm angl: calm rus: затишье něm: Calme f, Kalme f  1993-a3
Kalmánov filter
(KF) – rekurzivní algoritmus, který dává optimální odhad (ve smyslu minimalizace střední kvadratické odchylky) stavového vektoru lineárního dynamického systému (např. lineárního modelu) za předpokladu, že chyba lineárního modelu popisujícího dynamický systém má Gaussovo rozdělení a naměřené hodnoty stavového vektoru mají chybu s Gaussovým rozdělením nezávislou na chybě modelu. KF poskytuje optimální odhady pro minulé, současné i budoucí stavy systému společně s odhadem jejich chyby. Proto je KF filtr vhodný pro asimilaci dat do numerického modelu předpovědi počasí. Kromě toho se KF používá i v jiných meteorologických aplikacích jako je např. statistický postprocessing prognostických dat numerických modelů počasí, downscaling apod. Z řady nemeteorologických aplikací se KF využívá např. pro lokalizaci cílů a jejich pohybu na základě radarových měření. Pro nelineární dynamické systémy (nelineární modely) existují různé modifikace základního algoritmu. Zobecněný KF (EKF) linearizuje model v okolí aktuálního stavového vektoru a na tento model aplikuje KF. Vzhledem k tomu, že modely předpovědi počasí jsou silně nelineární, EKF nedává přijatelné výsledky a v meteorologických aplikacích se nepoužívá. Ansámblový KF (EnKF) aplikuje model na ansámbl počátečních stavových vektorů a určuje odhad chyby předpovědi modelu pomocí vyhodnocení získaného ansámblu předpovědí. Přitom se předpokládá Gaussovo rozdělení obou ansámblů. Zobecněním EnKF je částicový KF (PKF), který se liší od EnKF tím, že se neomezuje na Gaussovo rozdělení, což ovšem výrazně navyšuje časovou náročnost výpočtu. V současné době nejpoužívanější metoda aplikace KF v asimilaci dat je LETKF, což je z výpočetního hlediska velmi efektivní aplikace EnKF.
česky: filtr Kalmánův angl: Kalman filter rus: фильтр Калмана něm: Kalman-Filter m fr: filtre de Kalman m  2014
kambrium
nejstarší geol. perioda paleozoika (prvohor), zahrnující období před 541 – 485 mil. roků. Vyznačuje se velmi teplým klimatem a prudkým rozvojem mořských rostlin a živočichů s pevnými schránkami, mj. trilobitů, označovaným jako kambrická exploze.
česky: kambrium angl: Cambrian něm: Kambrium n  2018
Kaminského vzorec
česky: vzorec Kaminského angl: Kaminski formula rus: формула Каминского  1993-a1
kanadská anticyklóna
syn. anticyklona severoamerická – kontinentální anticyklona vytvářející se v zimním období nad sev. částí severoamer. kontinentu. Její střed leží převážně v oblasti mezi Skalnatými horami a Velkými kanadskými jezery. V trvání ani v horiz. rozsahu se nevyznačuje takovou pravidelností jako sibiřská anticyklona. Kanadská anticyklona se může vyskytovat nad větší částí Sev. Ameriky nebo se rozpadávat na několik samostatných anticyklon. I přes značnou rozlohu má kanadská anticyklona malý vert. rozsah, většinou pod 2000 m. Patří mezi studené anticyklony s výraznou inverzí teploty vzduchu ve výškách 1 000 až 1 500 m. Je jedním ze sezonních akčních center atmosféry.
česky: anticyklona kanadská angl: Canadian anticyclone něm: Kanada-Antizyklone f rus: канадский антициклон fr: anticyclone d'Amérique du Nord m, anticyclone canadien m  1993-a3
kanál blesku
vysoce ionizovaná dráha, vytvořená v ovzduší vůdčím výbojem blesku, která má charakter dobrého vodiče. Jí prochází hlavní výboj blesku s neutralizací nábojů kladné a záporné polarity rychlostí od 2.107 do 1,5.108 m.s–1 v závislosti na velikosti neutralizovaného náboje. Kanál blesku, jehož průměr bývá okolo 1 cm, je poměrně ostře ohraničen. Teplota vzduchu v kanálu blesku dosahuje až 30 000 K.
česky: kanál blesku angl: lightning channel rus: канал молнии něm: Blitzkanal m  1993-a2
Kanársky prúd
studený oceánský proud ve východním segmentu severoatlantského subtropického koloběhu oceánské vody. Odděluje se ze Severoatlantského proudu před jeho přiblížením k břehům Evropy a směřuje k jihu, ohřívá se, posléze je působením pasátů stáčen k jihozápadu a přechází do Severního rovníkového proudu. Svými ochlazujícími účinky přispívá k ariditě klimatu pobřeží severní Afriky a těch ostrovů Makaronézie, které se nevyznačují výraznou orografií.
česky: proud Kanárský angl: Canary Current něm: Kanarenstrom m  2017
kanikula
lid. označení pro období největších veder, používané zejména v některých oblastech stř. a již. Evropy. Název se traduje od starověku. Řekové a Římané totiž dávali výskyt veder do souvislosti s východem hvězdy Sírius nazývané též „Psí hvězda" (canis – lat. pes), v jejíž blízkosti se Slunce na obloze nachází od 22. července do 23. srpna. Na sev. polokouli připadá období veder zpravidla na červenec a na prvou dekádu srpna, přičemž jeho délka a výraznost závisí především na stupni kontinentality daného místa a na cirkulačních poměrech.
česky: dny psí angl: dog days, hot days něm: Hundstage m/pl, Hundstaghitze f rus: самые жаркие дни, собачья погода fr: canicule f  1993-a1
kapilára teplomera
skleněná trubička o malém kruhovém, eliptickém nebo prizmatickém průřezu s vnitřním kapilárním otvorem, spojená s nádobkou kapalinového teploměru. Do kapiláry teploměru je vytlačována z nádobky při vzrůstající teplotě teploměrná kapalina.
česky: kapilára teploměru angl: capillary tube of the thermometer rus: капиллярная трубка термометра něm: Kapillare des Thermometers f  1993-a1
karbón
pátá geol. perioda paleozoika (prvohor) mezi devonem a permem, zahrnující období před 359 – 299 mil. roků. Na kontinentech panovalo velmi teplé a humidní klima, které umožnilo všeobecné rozšíření bujných bažinatých lesů. Zuhelnatělé rostliny z tohoto období vytvořily ložiska černého uhlí, které dalo periodě název. Na pevnině žili obojživelníci a objevili se první plazi.
česky: karbon angl: Carboniferous něm: Karbon n  2018
katabatický vietor
syn. vítr sestupný – vítr se sestupnou složkou. Při zemském povrchu se jedná především o gravitační vítr; v uvedeném smyslu sem patří rovněž padavý vítr typu fénu i bóry. Katabatický charakter má také klesavý pohyb vzduchu na katafrontách a subsidence vzduchu v oblastech vyššího tlaku vzduchu. Opačného smyslu je anabatický vítr.
česky: vítr katabatický angl: katabatic wind rus: катабатический ветер  1993-a3
katafront
atmosferická fronta se sestupnými pohyby teplého vzduchu nad frontální plochou. Ke katafrontám patří horní části mnohých studených front, zejména studených front druhého druhu. Sklon katafronty je menší než sklon stacionární fronty, tangens úhlu sklonu katafronty je řádově 0,001. Termín katafronta zavedl švédský meteorolog T. Bergeron v letech 1934–1936. Viz též anafronta, sklon atmosférické fronty.
česky: katafronta angl: katabatic front, katafront rus: катабатический фронт, катафронт něm: Katafront f  1993-a1
katalobara
izalobara spojující místa se stejnou zápornou hodnotou změny tlaku vzduchu za daný časový interval, např. za 3, 6 nebo 24 h. Viz též analobara.
česky: katalobara angl: katallobar rus: каталлобара něm: Katallobare f  1993-a2
katalóg poveternostných situácií
zákl. dokument o typizaci povětrnostních situací. Kromě zásad a metodiky typizace obsahuje podrobný popis jednotlivých synoptických typů, zvláště jejich cirkulační charakteristiku, údaje o jejich výskytu a trvání, průběh počasí v jednotlivých typech apod. Součástí katalogu povětrnostních situací jsou přízemní a výškové synoptické mapy, popř. schematické kinematické mapy ze dnů s typickou situací. Doplňkem katalogu povětrnostních situací bývá kalendář povětrnostních situací. Ve stř. Evropě je nejrozšířenější Katalog der Großwetterlagen Europas, jehož autory jsou P. Hess a H. Brezowsky (1952), v ČR Katalog povětrnostních situací pro území ČSSR (HMÚ, 1968). V polovině 90. let došlo k rozšíření českého katalogu o pět dalších situací a díky tomu jsou nyní u nás typizovány všechny dny.
česky: katalog povětrnostních situací angl: synoptic situation catalogue rus: каталог синоптических положений něm: Katalog der Grosswetterlagen m  1993-a2
katateplomer
v současnosti již nepoužívaný přístroj sloužící ke stanovení klimatického zchlazování. V podstatě šlo o zjednodušený alkoholový nebo toluenový teploměr pouze s dvěma ryskami označujícími body stupnice 35 °C a 38 °C. Zahřátím v termosce s teplou vodou se ponechala zbarvená kapalina vystoupit až do rozšířeného vrcholu kapiláry. Po osušení se přístroj volně zavěsil a stopkami se určil čas, za který kapalina v teploměru klesla od hořejší značky k dolní. Velikost zchlazování (mgcal.cm–2.sec–1) se vypočítala tak, že přístrojová konstanta, obvykle vyleptaná na skle přístroje, se dělila zjištěným časem ve vteřinách. K určení zchlazování vlhkého povrchu tělesa cca 36,5 °C teplého se přes nádobku katateploměru přetahoval navlhčený obal z tenkého tkaniva.
česky: katateploměr angl: katathermometer rus: кататермометр něm: Katathermometer n  1993-a3
kategorizácia klímy
členění klimatu podle jeho horiz. a vert. rozsahu nebo působících klimatických faktorů, popř. metodiky jeho výzkumu. Nejčastěji používanými kategoriemi klimatu jsou makroklima, mezoklima, místní klima a mikroklima. Jako rozlišovací znaky pro vymezování kategorií klimatu se zpravidla volí prostorová, časová a energ. hlediska. Mezi kategoriemi však nelze vést přesnou hranici již vzhledem k velké proměnlivosti jejich rozměrů, vyplývající ze závislosti na vlastnostech aktivního povrchu. To vysvětluje značnou nejednotnost v kategorizacích klimatu od různých autorů. Viz též topoklima, klima globální, klima mezní vrstvy atmosféry, kryptoklima, klima půdní, klasifikace klimatu.
česky: kategorizace klimatu něm: Klimaklassifikation f  1993-b2
Kellerove-Fridmanove rovnice
česky: rovnice Kellerovy–Fridmanovy angl: Keller – Fridman equations něm: Friedmann-Keller Gleichungen f/pl  2014
Kelvinova teplota
česky: teplota Kelvinova angl: Kelvin temperature rus: температура в градусах Кельвина  1993-a3
Kelvinova teplotná stupnica
syn. stupnice teplotní absolutní, stupnice teplotní termodynamická – základní fyzikální teplotní stupnice. Vyjadřuje tzv. termodynamickou teplotu, označovanou též jako Kelvinova teplota nebo slangově absolutní teplota. Jednotkou této stupnice je kelvin (K); navrhl ji v roce 1848 angl. fyzik W. Thomson, pozdější lord Kelvin. Nulová hodnota (0 K) je přiřazena absolutní nule, tj. nejnižší teplotě, jíž lze teoreticky dosáhnout. Druhým referenčním bodem je trojný bod vody (273,16 K). V binárních kódech GRIB a BUFR se teploty uvádějí výhradně v K. Mezi Kelvinovou teplotní stupnicí a Celsiovou teplotní stupnicí platí vztah T(°C)=T(K)273,15.
česky: stupnice teplotní Kelvinova angl: Kelvin temperature scale rus: температурная шкала Кельвина něm: Kelvin-Temperaturskala f  1993-b3
Kelvinova–Helmholtzova instabilita
česky: instabilita Kelvinova–Helmholtzova angl: Kelvin–Helmholtz instability něm: Kelvin-Helmholtz-Instabilität f  2014
Kelvinove vlny
západní rovníkové vlny šířící se na východ se zanedbatelnou meridionální složkou. Jedná se o nízkofrekvenční gravitační vlny. Jejich projev je symetrický vůči rovníku pro zonální rychlosti, pole geopotenciálu a teplotu. Hrají důležitou roli při vzniku kvazidvouletého cyklu, protože přenášejí do vyšších atmosférických hladin západní hybnost.
česky: vlny Kelvinovy angl: Kelvin waves  2015
Kelvinove-Helmholtzove oblaky
česky: oblaky Kelvinovy–Helmholtzovy angl: Kelvin-Helmholtz clouds něm: Kelvin-Helmholtz-Wolken f/pl  2014
Kelvinove-Helmholtzove vlny
gravitační vlny vytvářející se na horiz. rozhraních v atmosféře, kde se vedle diskontinuity v poli vektoru rychlosti větru uplatňuje i diskontinuita v poli hustoty vzduchu. Za daných hydrodynamických podmínek lze pro ně určit kritickou vlnovou délku, jež hraje roli kritéria pro jejich stabilitu. Pro vlnové délky menší než tato kritická vlnová délka jsou Kelvinovy–Helmholtzovy vlny instabilními vlnami, přičemž převládá destabilizující působení vert. střihu větru, v opačném případě jsou stabilními vlnami, neboť se více uplatňuje stabilizující vliv zemské tíže. Instabilita Kelvinových–Helmholtzových vln se projevuje skláněním jejich vrchů do směru střihu větru, a zejména pak uvnitř nich vznikem vírových cirkulací s horizont. osou. Při dostatečné vlhkosti vzduchu se tímto způsobem vytvářejí působivé oblačné útvary, tzv. Kelvinovy–Helmholtzovy oblaky morfologicky klasifikované jako zvláštnost fluctus. V odb. literatuře se též používá pojem Kelvinova–Helmholtzova instabilita.
česky: vlny Kelvinovy–Helmholtzovy angl: Kelvin–Helmholtz waves rus: волны Кельвина-Гельмгольца  2014
Kennelyho a Heavisidova vrstva
syn. vrstva E.
česky: vrstva Kennelyho a Heavisidova angl: Kennely-Heaviside layer  1993-a1
kenozoikum
současná geol. éra v rámci fanerozoika, která navázala na mezozoikum před 66 mil. roků. Zahrnuje periody paleogén, neogén (dohromady tradičně označované jako terciér neboli třetihory) a kvartér (čtvrtohory). Během kenozoika se kontinenty přesunuly do dnešní polohy, což podstatně ovlivnilo všeobecnou cirkulaci atmosféry a oceánské proudy. Dochází k mohutnému rozvoji ptáků a savců. Klima se vyznačuje teplými a chladnými výkyvy s převahou k celkovému postupnému ochlazování.
česky: kenozoikum angl: Cenozoic něm: Känozoikum n  2018
Kernov oblúk
velmi vzácný halový jev popisovaný v odb. literatuře pouze na základě dvou pozorování z let 1895 a 1970. Jeví se jako bělavý oblouk v poloze protilehlé k cirkumzenitálnímu oblouku.
česky: oblouk Kernův angl: Kern arc něm: Kern-Bogen m  2014
Kimballov vzorec
česky: vzorec Kimballův angl: Kimball formula rus: формула Кимбалла  1993-a1
kinematická mapa
obecně met. mapa zobrazující pohybové pole v atmosféře, např. pomocí izotach, proudnic apod. V met. službě se kinematické mapy používaly dříve pro prognostické účely, kdy znázorňovaly např. prognostické trajektorie středů tlakových útvarů a jiných met. objektů, jako jsou atmosferické fronty, pole srážek apod. V současné době slouží už pouze k diagnostickým účelům, při typizaci povětrnostních situací.
česky: mapa kinematická angl: kinematic chart rus: кинематическая карта něm: kinematische Karte f  1993-a3
kinematika atmosféry
část dynamické meteorologie, která se zabývá popisem pohybu vzduchových částiczemské atmosféře bez ohledu na jeho příčiny. Poznatky kinematiky atmosféry vyplývají z klasické mechaniky a aplikují se prakticky ve všech odvětvích meteorologie.
česky: kinematika atmosféry angl: kinematics of atmosphere rus: кинематика атмосферы něm: Kinematik der Atmosphäre f  1993-a2
kinetická energia
energie související s pohybem tělesa nebo vhodného systému. Zdrojem kinetické energie atmosférického proudění je dostupná potenciální energie. Kinetická energie proudícího vzduchu posléze postupně disipuje v kinetickou energii stále se zmenšujících turbulentních vírů (viz energie turbulence), přičemž nejmenší z nich zanikají působením vazkosti vzduchu a transformují se tak v nízkopotenciálové teplo.
česky: energie kinetická angl: kinetic energy něm: kinetische Energie f fr: énergie cinétique f  2017
kinetický ohrev lietadla
zvýšení teploty povrchu letadla, především náběžných hran křídel, vlivem jeho pohybu vzduchem. Velikost kinetického ohřevu letadla se přibližně určí ze vztahu
ΔT=ν22000,
kde ΔT je kinetický ohřev v K a v je rychlost pohybu letadla v m.s–1. V oblacích, v důsledku spotřeby tepla na vypařování oblačných částic, které se dostanou do styku s povrchem letadla, se kinetický ohřev letadla snižuje přibližně na polovinu. V letecké meteorologii má velikost kinetického ohřevu letadla význam pro předpověď námrazy na letadle. Viz intenzita námrazy na letadlech.
česky: ohřev letadla kinetický angl: kinetic aircraft heating rus: кинетический нагрев самолета něm: kinetische Erwärmung des Flugzeuges f  1993-a1
kinetický vietor
jedna ze složek ageostrofického větru. Vektor rychlosti kinetického větru vki je dán vztahem:
vki=1λ vgvgs .n,
kde λ značí Coriolisův parametr, vg rychlost geostrofického větru, n jednotkový horiz. vektor kolmý ke směru geostrofického větru a směřující od něho vlevo, zatímco ∂/∂s reprezentuje prostorovou derivaci ve směru geostrofického větru. Z uvedeného vzorce vyplývá, že kinetický vítr směřuje kolmo ke směru geostrofického větru, a to vlevo (vpravo) od něho, jestliže rychlost geostrofického větru ve směru proudění roste (klesá).
česky: vítr kinetický angl: kinetic wind rus: кинетический ветер  1993-a1
Kirchhoffov zákon
jeden ze základních zákonů záření, podle něhož je podíl intenzity vyzařování a pohltivosti libovolného tělesa vydávajícího tepelné záření pouze funkcí jeho rovnovážné teploty. Jinými slovy, za stavu termodynamické rovnováhy je poměr množství vyzařovaného elmag. záření Eλ* o vlnové délce λ a rel. absorpce Aλ, funkcí vlnové délky záření λ a teploty T daného prostředí vyjádřené v K, tj.
Eλ*Aλ =f(λ,T),
kde Aλ = Wλ / Wλ0, Wλ0 je množství záření o vlnové délce λ vstupujícího do daného prostředí a Wλ značí z něj absorbovanou část. Z Kirchhoffova zákona vyplývá, že každá látka pohlcuje nejsilněji záření té vlnové délky, kterou sama nejsilněji vyzařuje. Zákon formuloval něm. fyzik G. R. Kirchhoff v r. 1859. V poslední době nachází Kirchhoffův zákon uplatnění v dálkovém průzkumu Země a v družicové meteorologii.
česky: zákon Kirchhoffův angl: Kirchhoff law rus: закон Кирхгофа  1993-a1
klasická klimatológia
klimatologický směr, studující klimatické prvky v jejich denním a roč. chodu podle kalendářních úseků, jako je den, pentáda, dekáda, měsíc. Zakládá se především na průměrech, resp. úhrnech a četnostech vypočtených z těchto období a na výpočtu klimatologických normálů. Vychází ze staršího chápání klimatu jako prům. stavu ovzduší. Stále však poskytuje zákl. informace o klimatu daného místa nebo oblasti. Viz též klimatologie dynamická.
česky: klimatologie klasická angl: classical climatology rus: классическая климатология  1993-a1
klasifikácia atmosférických frontov
vzhledem k širokému komplexu dějů probíhajících v oblasti atmosferických front používáme při jejich klasifikaci různá hlediska:
a) v závislosti na délce front a jejich významu pro cirkulační děje v atmosféře rozlišujeme hlavní (základní) fronty, podružné a okluzní fronty a čáry instability;
b) podle směru přesunu rozlišujeme teplé fronty, pohybující se na stranu studené vzduchové hmoty, studené fronty, pohybující se na stranu teplé vzduchové hmoty a málo pohyblivé neboli kvazistacionární fronty. Přitom jedna a táž hlavní fronta může být v některých částech málo pohyblivá, v jiných teplá nebo studená;
c) v závislosti na vert. rozsahu rozeznáváme troposférické fronty, zasahující prakticky celou tloušťku troposféry, přízemní fronty, sahající od zemského povrchu do výšky 2 až 3 km a výškové fronty, které se projevují jen ve stř. a vysoké troposféře. Hlavní fronty jsou obvykle troposférické, podružné přízemní;
d) podle směru vertikálních pohybů teplého vzduchu na frontálním rozhraní rozeznáváme anafronty a katafronty. Klasifikace atm. front je relativní, neboť lze často pozorovat přeměny částí front jednoho typu na jiný. Např. při změně cirkulačních podmínek se část studené fronty mění na teplou nebo naopak. Lze pozorovat i transformaci fronty, při níž např. podružná fronta získává vlastnosti fronty hlavní. Fronta jednoho typu může být jak výrazná, tj. se všemi příznaky v polích meteorologických prvků, tak rozpadávající se.
česky: klasifikace atmosférických front angl: classification of atmospheric fronts rus: классификация атмосферных фронтов něm: Klassifikation von atmosphärischen Fronten f  1993-a3
klasifikácia atmosférických iónov
podle velikosti (poloměru r) dělíme ionty přítomné v atmosféře na:
a) lehké (r < 10–9 m);
b) střední, u nichž někdy dále rozlišujeme ionty malé (r = 10–9 m až 8.10–9 m), a ionty velké (r = 8.10–9 až 2,6.10–8 m);
c) těžké (r = 2,6.10–8 až 5,5.10–8 m);
d) ultratěžké (r > 5,5.10–8 m).
Klasifikace atmosférických iontů, v uvedené podobě označovaná jako klasifikace Israëlova, je v odborné literatuře používána nejčastěji. U některých autorů se však vyskytují určité modifikace. Užívá se např. též dělení na ionty malé, odpovídající svou velikostí shlukům molekul, a ionty velké (Langevinovy), zahrnující zhruba ionty těžké a ultratěžké, které svojí velikostí obvykle odpovídají rozměrům Aitkenových jader. Viz též ionty atmosférické, ionizace atmosférická.
česky: klasifikace atmosférických iontů angl: classification of atmospheric ions rus: классификация атмосферных ионов něm: Klassifikation von atmosphärischen Ionen f  1993-a2
klasifikácia klímy
členění Země nebo její části do regionů relativně homogenních z hlediska geneze klimatu (genetické klasifikace klimatu) nebo jeho projevů (efektivní nebo též konvenční klasifikace klimatu). Z hlediska kategorizace klimatu rozlišujeme globální a regionální klasifikace klimatu. Hlavními vymezovanými jednotkami jsou klimatické oblasti sdružené do klimatických pásem, dále pak klimatické typy. Kritériem pro jejich stanovení mohou být hodnoty vybraných klimatických prvků, klimatologických indexů apod. Regionální klasifikace klimatu s výrazně aplikačním zaměřením je někdy označována i jako klimatologická rajonizace.
česky: klasifikace klimatu angl: classification of climate rus: классификация климатов něm: Klimaklassifikation f  1993-b2
klasifikácia klímy ČR podľa Atlasu podnebia
rozlišuje tři hlavní oblasti (teplou, mírně teplou a chladnou), které dále člení hlavně podle Končekova vláhového indexu. V původním vydání (Atlas podnebí Československé republiky z roku 1958, viz klimatologický atlas) byly použity různě dlouhé časové řady a dokonce i různé hranice některých charakteristik (např. červencová izoterma 15 °C byla v Beskydech nahrazena izotermou 16 °C). V aktualizovaném zpracování (Atlas podnebí Česka z roku 2007) byly vypuštěny agrotechnické charakteristiky (např. plná zralost žita ozimého) a klasifikace obsahuje jen 6 základních charakteristik, včetně vláhového indexu podle Končeka, který obsahuje další 4 klimatologické charakteristiky a pro výpočet bylo použito jednotné období 1961–2000. Upravená metodu výpočtu klasifikace umožňuje přepočet pro jiné časové období.
česky: klasifikace klimatu ČR podle Atlasu podnebí rus: классификация климатов ЧР по климатологичекому атласу  2014
klasifikácia meteorologických procesov podľa Orlanského
klasifikace meteorologických procesů a jevů podle jejich charakteristických rozměrů navržená Orlanskim (1975). Meteorologické jevy o rozměru menším než 2 km se označují jako jevy mikroměřítka, jevy s charakteristickým rozměrem 2 km až 2 000 km jako jevy mezoměřítka (resp. mezosynoptického měřítka) a jevy o charakteristických rozměrech větších než 2 000 km jako jevy makroměřítka, resp. synoptického měřítka. Pro každou ze tří hlavních kategorií vymezuje klasifikace i jemnější dělení, viz tabulku.
Definice charakteristického prostorového měřítka podle Orlanskiho (1985)
Měřítko Rozsah rozměrů Příklady
mikro-γ < 20 m turbulence, vlečky, drsnost
mikro-β 20–200 m prachové víry, termály, brázda za lodí
mikro-α 200–2000 m tornádo, krátké gravitační vlny
mezo-γ 2–20 km bouřková konvekce, proudění ve složitém terénu, vlivy města
mezo-β 20–200 km noční jet v nízkých hladinách, shluky oblaků, mořská bríza
mezo-α 200–2 000 km atmosférické fronty, mimotropické cyklony, tropické cyklony
makro-β 2 000–20 000 km baroklinní vlny
makro-α > 20 000 km slapové vlny

Orlanskiho klasifikace meteorologických procesů se přenáší i do popisu procesů a jevů, které lze vystihnout modelem s danou rozlišovací schopností. Hovoříme pak o modelech příslušného měřítka. Klasifikace podle Orlanskiho je v současné době respektovanou a používanou klasifikací, i když i další autoři navrhli analogické klasifikace. Příkladem je i složitější klasifikace Fujity (1981).
česky: klasifikace meteorologických procesů podle Orlanskiho rus: классификация Орланского něm: Skalenklassifikation atmosphärischer Prozesse nach Orlanski f  2014
klasifikácia oblakov
třídění oblaků do kategorií na základě určitých společných charakteristik. Nejčastější je klasifikace oblaků podle:
a) vzhledu, viz morfologická klasifikace oblaků;
b) vzniku a vývoje, viz genetická klasifikace oblaků;
c) výšky výskytu, viz patra oblaků;
d) mikrofyzikálního složení, viz oblak vodní, oblak ledový a oblak smíšený.
česky: klasifikace oblaků angl: cloud classification rus: классификация облаков něm: Wolkenklassifikation f  1993-a2
klasifikácia tvarov ľadových kryštálikov
česky: klasifikace tvarů ledových krystalků angl: classification of ice crystal shapes rus: классификация форм ледяных кристаллов něm: Klassifikation von Eiskristallformen f  1993-a1
klasifikácia vzduchových hmôt
česky: klasifikace vzduchových hmot angl: air masses classification rus: классификация воздушных масс něm: Luftmassenklassifikation f  1993-a1
klasifikácia zrážok
dělení atm. srážek podle struktury, velikosti a původu srážkových elementů. Podle původu se rozlišují srážky padající a usazené, podle skupenství srážky tuhé a kapalné. Další dělení na srážky trvalé a přeháňky vyjadřuje rozdíl v době trvání srážek a časové proměnlivosti intenzity srážek. Zvláštní klasifikaci mají tvary ledových krystalků.
česky: klasifikace srážek angl: classification of the precipitation rus: классификация осадков něm: Niederschlagsklassifikation f  1993-a3
klasifikácia zvrstvenia ovzdušia
česky: klasifikace zvrstvení ovzduší angl: classification of the atmospheric stratification rus: классификация стратификации атмосферы něm: Klassifikation der Schichtung der Luft f  1993-a3
klesajúca rádiosonda
syn. dropsonda, sonda klesavá – radiosonda, která měří při sestupu atmosférou. Do výšky bývá vynášena obvykle letounem, raketou, nebo nesena transosondou, méně často balonem, nebo dělostřeleckým granátovým kontejnerem. Příslušné přijímací zařízení bývá obvykle umístěno ve speciálních prostředcích (letadlo, mobilní radiosondážní stanice apod.). Při měření bývá klesavá radiosonda nejčastěji aerodyn. brzděná padáčkem. Klesavé radiosondy se používají např. při met. měřeních nad polárními moři, středy tropických cyklon apod.
česky: radiosonda klesavá angl: dropsonde rus: сбрасываемый радиозонд něm: Drop-Sonde f, Fallsonde f  1993-a3
klesavá sonda
česky: sonda klesavá angl: dropsonde něm: Dropsonde f, Abwurfsonde f  1993-a1
klíma
syn. podnebí – dlouhodobý charakteristický režim počasí na Zemi nebo její části, daný variabilitou stavů klimatického systému. Studiem klimatu se zabývá klimatologie. Geneze klimatu je podmíněna společným působením klimatických faktorů a klimatických zpětných vazeb. Klima se projevuje v hodnotách klimatických prvků a z nich odvozených klimatologických indexů, přičemž je jedinečným znakem Země jako celku i každého místa na Zemi. Proces kategorizace klimatu vymezuje různá prostorová měřítka, v nichž pomocí klasifikace klimatu rozlišujeme klimatické typy uspořádané do klimatických pásem. Jejich tvar je podmíněn zonalitou klimatu, která je narušována především rozdíly v kontinentalitě klimatu. Na většině míst je podstatným znakem sezonalita klimatu. Klima podmiňuje ráz a klimatický potenciál krajiny, přičemž značnou roli hraje humidita klimatu. Dynamika klimatických faktorů způsobuje vývoj klimatu. Proměnlivost všeobecné cirkulace atmosféry je vyjádřena klimatickými oscilacemi, které jsou jednou z příčin kolísání klimatu. K eliminaci krátkodobých výkyvů je klima hodnoceno pomocí klimatologických normálů. Jednosměrné změny působení klimatických faktorů vedou ke změnám klimatu, k nimž přispívá i člověk antropogenní změnou klimatu. Viz též klimagram, atlas podnebí, modely klimatu.
česky: klima angl: climate něm: Klima n  1993-a3
klíma doby ľadovej
syn. klima glaciálu, viz též klima glaciální.
česky: klima doby ledové angl: glacial climate rus: климат ледникового периода něm: Eiszeitklima n  1993-b3
klíma hraničnej vrstvy atmosféry
nevhodné označení pro klima posuzované z hlediska faktorů projevujících se typicky v mezní vrstvě atmosféry a souvisejících s bezprostředním působením aktivního povrchu na procesy v atmosféře. Jedná se zejména o klimatologické hodnocení režimů proudění vzduchu, teplotního zvrstvení ovzduší, prostorového rozptylu znečišťujících příměsí, denních a roč. změn teploty a vlhkosti vzduchu v mezní vrstvě, které jsou ovlivňovány tvarem reliéfu a drsností zemského povrchu, jeho teplotou, schopností odrážet sluneční záření, vypařovat vodu, vlastnostmi půdy apod. Viz též klimatologie mezní vrstvy atmosféry.
česky: klima mezní vrstvy atmosféry angl: boundary layer climate rus: климат приземного слоя воздуха něm: Klima in der atmosphaerischen Grenzschicht n  1993-b2
klíma miernych šírok
Alisovově klasifikaci klimatu jedno ze čtyř hlavních klimatických pásem, charakteristické celoroční přítomností vzduchu mírných šířek. Z důvodu různé kontinentality klimatu se značně liší oblasti ve vnitrozemí a při pobřeží, dále pak i západní a východní pobřeží mezi sebou. V efektivní Köppenově klasifikaci klimatu jsou proto mírné zeměpisné šířky rozděleny mezi tři klimatická pásma: mírné dešťové klima, chladné suché klima a boreální klima.
česky: klima mírných šířek angl: climate of middle latitudes rus: климат умеренных широт něm: Klima der mittleren Breiten n  1993-b3
klíma rovníkových monzúnov
česky: klima rovníkových monzunů angl: climate of equatorial monsoons rus: климат экваториальных муссонов, субэкваториальный климат  1993-b3
klíma svahov
syn. klima expoziční – topoklima podmíněné sklonem a orientací svahu vůči světovým stranám, převládajícímu větru apod. Morfologie svahu ovlivňuje jeho insolaci, oblačnost, větrné a srážkové poměry apod. Viz též návětří, závětří, vítr svahový.
česky: klima svahové angl: climate of slopes rus: климат склонов něm: Hangklima n  1993-b3
klíma tajgy
česky: klima tajgy angl: taiga climate rus: климат тайги něm: Taiga-Klima  1993-b3
klíma tropického dažďového pralesa
Köppenově klasifikaci klimatu typ tropického dešťového klimatu, označovaný Af, s celoročně vysokou teplotou a vlhkostí vzduchu a rovnoměrným rozdělením srážek během roku, přičemž ani v nejsušším měsíci neklesá jejich prům. měs. úhrn pod 60 mm. Tropické deště zde mohou mít dvě maxima ve formě rovnodennostních dešťů. Tento klimatický typ poskytuje nejpříhodnější podmínky pro růst vegetace na Zemi. V Alisovově klasifikaci klimatu mu přibližně odpovídá ekvatoriální klima.
česky: klima tropického dešťového pralesa angl: tropical-rain-forest climate rus: климат влажных тропических лесов něm: tropisches Regenwaldklima n  1993-b3
klíma trvalého mrazu
syn. klima ledové – v Köppenově klasifikaci klimatu drsnější typ sněhového klimatu, označovaný EF. Prům. měs. teplota vzduchu ani v nejteplejším měsíci nepřesahuje 0 °C, Vyskytuje se prakticky v celé Antarktidě a ve vnitrozemí Grónska, v malé míře též ve vrcholových partiích velehor. Prům. roč. úhrny srážek často dosahují jen několika desítek, na pobřeží Antarktidy několika set milimetrů. Vypadávají prakticky jen ve formě sněžení, podstatnou roli hrají i pevné usazené srážky. C. W. Thornthwaite uvádí pro ledové klima hodnoty potenciálního výparu do 142 mm za rok. Pokud je proces akumulace sněhu intenzivnější než ablace, dochází k tvorbě ledovců, jejichž prostřednictvím se realizuje odtok srážek. Viz též klasifikace klimatu Thornthwaiteova, čára sněžná, klima antarktické.
česky: klima trvalého mrazu angl: frost climate rus: климат вечного (постоянного) мороза něm: Eisklima n  1993-b3
klíma tundry
Köppenově klasifikaci klimatu mírnější typ sněhového klimatu, označovaný ET. Prům. měs. teplota vzduchu v nejteplejším měsíci sice nedosahuje 10 °C, avšak přesahuje 0 °C, takže se zde nevytváří stálá pokrývka sněhu nebo ledu. Existence krátkého a chladného léta umožňuje růst typické vegetace, tvořené mechy, lišejníky, travinami, případně křovinami. Tundru najdeme v polárních oblastech spíše v blízkosti oceánu, který sice snižuje letní teplotu vzduchu, nicméně zima zde bývá často mírnější než v případě boreálního klimatu. Totéž platí pro tzv. alpinskou tundru ve vysokých horách, která se zpravidla vyznačuje větší humiditou klimatu. C. W. Thornthwaite uvádí pro tundru hodnoty potenciálního výparu 143–285 mm za rok. Viz též klasifikace klimatu Thornthwaiteova, klima periglaciální, klima horské.
česky: klima tundry angl: tundra climate rus: климат тундры něm: Tundrenklima n  1993-b3
klíma voľnej atmosféry
nevh. označení pro charakteristiky dlouhodobého režimu proudění vzduchu, teplotního, tlakového a vlhkostního pole v troposféře nad mezní vrstvou a ve stratosféře. Klima volné atmosféry je předmětem studia aeroklimatologie, které se opírá o výsledky aerologických pozorování. Viz též klimatologie volné atmosféry.
česky: klima volné atmosféry angl: climate of free atmosphere rus: климат свободной атмосферы něm: Klima der freien Atmosphäre n  1993-b3
klimagénny faktor
česky: faktor klimagenní fr: facteur climatique m  1993-a3
klimagram, klimogram
syn. klimogram – graf znázorňující roční chod klimatických prvků pomocí jejich měsíčních průměrů nebo úhrnů.
1. v dnes obecně rozšířeném klimagramu osa x reprezentuje dvanáct měsíců; na jednu osu y se pak vynášejí měsíční průměry teploty vzduchu (většinou znázorněny lomenou čarou), na druhou průměrné měsíční úhrny srážek (znázorňovány též lomenou čarou, barevnou plochou nebo ve formě histogramu). Tento druh klimagramu byl dříve používán hlavně v bioklimatologii, odkud také pochází jeho standardizovaná verze, tzv. Walterův klimagram. V něm jsou teplota vzduchu a úhrny srážek zobrazovány v poměru 1 : 2; část roku, kdy je křivka srážek pod křivkou teploty vzduchu, lze považovat za období s nedostatkem srážek.
2. původní klimagram má formu bodového grafu, kdy hodnoty dvou klimatických prvků, nejčastěji opět teploty vzduchu a srážek, jsou vynášeny na horiz., resp. vert. osu. Jednotlivé body, spojené lomenou čárou, reprezentují kalendářní měsíce, což umožňuje porovnat klima dvou nebo více míst v jednom grafu.
česky: klimagram angl: climagram, climatogram, climogram rus: климатограмма něm: Klimogramm n  1993-a3
klimatická anomália
odchylka klimatického prvku od jeho průměrné hodnoty, a to v časovém nebo prostorovém smyslu:
a) statisticky odlehlá hodnota klimatického prvku v určitém období oproti dlouhodobému průměru, příp. klimatologickému normálu pro danou oblast. Tyto klimatické anomálie jsou důsledkem kolísání klimatu a lze je rozeznat v různých časových měřítkách. Výrazné klimatické anomálie způsobují klimatická ohrožení;
b) odchylka klimatologického normálu v určité oblasti oproti širšímu okolí, např. dané rovnoběžce (šířková anomálie), nadm. výšce (výšková anomálie) apod. V tomto smyslu jsou klimatické anomálie způsobeny vlivem klimatických faktorů, jimiž se dané místo nebo oblast liší od svého okolí. Zast. označení pro oblast s kladnou klimatickou anomálií je pleión (např. hyetopleión v případě atmosférických srážek, termopleión u teploty vzduchu); oblast se zápornou anomálií byla v minulosti analogicky označována jako meión nebo též antipleión. Viz též izanomála.
česky: anomálie klimatická angl: climatic anomaly něm: Klimaanomalie f rus: климатическая аномалия fr: anomalie climatique f  1993-a3
klimatická bariéra
výrazná orografická překážka (vysoké, protáhlé pohoří), stojící v cestě obvykle převládajícímu větru a tvořící klimatický předěl mezi oblastí návětří a závětří. Velmi studené vzduchové hmoty jsou nuceny klimatickou bariéru obtékat. Výraznou klimatickou bariérou v Evropě je např. Skandinávské pohoří, které způsobuje poměrně vysokou kontinentalitu klimatu vých. Švédska a Finska. Viz též efekt návětrný, efekt závětrný.
česky: bariéra klimatická angl: climatic barrier něm: Klimascheide f rus: климатический барьер fr: barrière orographique f  1993-a2
klimatická expozícia
1. orientace svahů nebo různých povrchů vzhledem ke světovým stranám a jejich sklon k rovině horizontu, což je v daném místě a čase určující pro příjem slunečního záření, pro světelné poměry, vystavení větrům a srážkám. Klimatická expozice je velmi významným klimatickým faktorem, který se uplatňuje ve všech měřítkách klimatu. Bývá zejména předmětem studia topoklimatologie. Viz též klima svahové;
2. v pojetí A. Gregora poloha met. stanice v terénu, která rozhoduje o její reprezentativnosti pro užší nebo širší okolí.
česky: expozice klimatická angl: exposure něm: klimatische Exposition f fr: exposition des versants f  1993-a1
klimatická geomorfológia
dílčí disciplína geomorfologie, která studuje vznik a vývoj tvarů zemského povrchu v závislosti na klimatu a jeho změnách v geol. minulosti. Viz též oblast klimatomorfogenetická.
česky: geomorfologie klimatická angl: climatic geomorphology rus: климатическая геоморфология něm: Klimageomorphologie f fr: géomorphologie climatique f  1993-a2
klimatická hranica
zóna oddělující různé klimatické oblasti. Může mít charakter výrazného klimatického předělu nebo pozvolného přechodu. Při klasifikaci klimatu je aproximována linií, jejíž poloha bývá stanovena konvenčně.
česky: hranice klimatická angl: climatic divide rus: климатическая граница něm: Klimascheide f  1993-a3
klimatická hranica lesa
hranice, za níž klimatické podmínky vylučují existenci zapojeného lesa. Na klimatickou hranici lesa mají z klimatických podmínek rozhodující vliv zejména teplotní poměry ve vegetačním období. Např. na sev. polokouli polární hranice lesa odpovídá červencové izotermě 10 °C. Z dalších podmínek je významný vítr, který mnohde určuje horní hranici lesa. V suchých oblastech je klimatická hranice lesa podmíněna zejména množstvím srážek a vlhkostí vzduchu.
česky: hranice lesa klimatická angl: climatic forest line rus: климатическая граница леса něm: klimatische Waldgrenze f  1993-a1
klimatická liečba
česky: léčba klimatická rus: климатическое лечение, климатотерапия  1993-a1
klimatická mapa
česky: mapa klimatická angl: climatic chart rus: карта климатов, климатическая карта něm: Klimakarte f  1993-a1
klimatická oblasť
oblast na zemském povrchu s poměrně homogenním klimatem, oddělená od sousední oblasti klimatickou hranicí. Při klasifikaci klimatu jsou klimatické oblasti největšími jednotkami klimatických pásem.
česky: oblast klimatická angl: climatic region rus: климатическая область, климатический регион něm: Klimagebiet n  1993-a3
klimatická snežná čiara
syn. čára sněžná teoretická – dolní sněžná čára, nad níž se po celý rok částečně uchovávají tuhé srážky na horiz. nezastíněném povrchu. Poloha klimatické sněžné čáry závisí pouze na klimatických podmínkách, a to na množství spadlých tuhých srážek, teplotě vzduchu, množství slunečního záření, oblačnosti, kontinentalitě klimatu aj. V polárních oblastech leží na hladině moří, nejvýše v Andách (6 400 m).
česky: čára sněžná klimatická angl: climatic snow line něm: klimatische Schneegrenze f rus: климатическая снеговая линия fr: limite pluie/neige f  1993-a2
klimatická zabezpečenosť
česky: zabezpečení klimatické  1993-a1
klimatická zabezpečenosť
syn. zabezpečení klimatické – pravděpodobnost překročení, nebo naopak nedosažení určité hodnoty meteorologického nebo klimatického prvku, využívaná v aplikované meteorologii. Příkladem je teplotní zajištění zeměd. kultur sumami teplot potřebnými pro dozrání příslušné plodiny. Klimatické zajištění se určuje buď z empir. křivky kumulativních rel. četností, nebo z kumulativní distribuční funkce teor. rozdělení, pokud jím lze rozdělení četností zkoumané veličiny aproximovat.
česky: zajištění klimatické rus: климатическая обеспеченность  1993-a3
klimatická zmena
syn. změna klimatická – vývoj klimatu probíhající v uvažovaném časovém měřítku po dlouhou dobu jednostranně, např. směrem k oteplení nebo ochlazení. Týká se buď určitého regionu, nebo Země jako celku, i v tom případě se však může na různých místech projevit různě intenzivně; oteplení či ochlazení bývá např. nejvíce patrné ve vysokých zeměp. šířkách. Příčinou změn klimatu bývá jednostranná změna působení některého z globálně působících klimatických faktorů. Paleoklimatologie detekuje celou řadu změn paleoklimatu v různých časových měřítkách, historická klimatologie studuje změny historického klimatu. Dlouhodobé změny klimatu mohou být při uvažování krátkých časových řad maskovány kolísáním klimatu, naopak s větším odstupem se mohou ukázat být projevem periodicity klimatu. V souvislosti s aktivitou člověka dochází ke kombinaci přirozených a antropogenně podmíněných změn klimatu; význam termínů změna klimatu a klimatická změna je někdy nevhodně zužován ve smyslu antropogenní změny klimatu. Viz též adaptace, mitigace, Mezivládní panel pro klimatickou změnu.
česky: změna klimatu angl: climate change, climatic change rus: климатическое изменение  1993-a3
klimatická zmena
česky: změna klimatická angl: climatic change  2018
klimatické kúpele
místo s léčivým klimatem, v němž je zákl. léčebnou metodou klimatická léčba neboli klimatoterapie, kde jsou pro tuto metodu odpovídající léčebná zařízení, je zajištěna odb. lékařská péče a jemuž byl ministerstvem zdravotnictví udělen lázeňský statut. Na klimatické lázně se kladou vyšší požadavky z ekologického hlediska než na přírodní léčebné lázně minerální. Viz též místo klimatické.
česky: lázně klimatické angl: climatic health resort rus: климатический курорт něm: heilklimatischer Kurort m, Klimakurort m  1993-a1
klimatické miesto
místo, které má blíže nespecifické léčivé klima s příznivým léčebným nebo alespoň rekreačním účinkem na organizmus, ale nemá z tohoto hlediska udělen lázeňský statut. Viz též lázně klimatické.
česky: místo klimatické rus: климатическое место něm: Klimastation f  1993-a1
klimatické ohrozenie
hydrometeorologické ohrožení atmosférického původu v délce měsíců, sezon až roků, takže k jeho predikci může sloužit pouze dlouhodobá předpověď počasí. Bývá provázeno časově omezeným výskytem výrazných klimatických anomálií a mívá kumulativní efekt. Pokud příslušný proces nebo jev dosahuje mimořádné intenzity, bývá označován jako klimatický extrém. Typickým příkladem tohoto druhu ohrožení je meteorologické sucho.
česky: ohrožení klimatické angl: climate hazard něm: Klima-Gefahr f  2016
klimatické optimum
obecně období s teplejším a vlhčím klimatem oproti předchozí i následující době, a to v různých časových měřítkách. Nejčastěji se tak označuje fáze ve vývoji klimatu holocénu, která trvala cca 7 000–5 000 BP, tedy během tzv. atlantiku. Na sev. polokouli byla teplota vzduchu mírně vyšší než v současnosti, v Arktidě až o několik °C, oteplení se však zřejmě projevovalo pouze v teplém pololetí. Klimatické optimum se projevilo silným ústupem ledovců a zvýšením hladiny světového oceánu. V nižších zeměp. šířkách bylo horké suché klima do značné míry nahrazeno klimatem savan. Za klimatické optimum v širším smyslu může být dále považována např. perioda křídy v druhé polovině mezozoika (druhohor), naopak sporné je označení malé neboli středověké klimatické optimum, používané někdy pro středověké teplé období.
česky: optimum klimatické angl: climatic optimum rus: климатический оптимум něm: Klimaoptimum n  1993-a3
klimatické pásmo
skupina klimatických oblastí se stejným charakterem makroklimatu, uspořádaných v důsledku zonality klimatu přibližně ve směru rovnoběžek a s ohledem na nadmořskou výšku. Tato pásma jsou základními jednotkami globálních klasifikací klimatu, přičemž se zpravidla dělí do více klimatických typů. Kromě fyzických (skutečných) klimatických pásem, podmíněných též působením azonálních klimatických faktorů, je možné klima Země aproximovat pomocí solárních (matematických) klimatických pásem, která odpovídají solárnímu klimatu. Viz též pásmo teplotní.
česky: pásmo klimatické angl: climatic zone rus: климатическая зона něm: Klimazone f  1993-a3
klimatické podmienky
charakteristika klimatu určitého místa nebo oblasti s ohledem na jeho vliv na jiné přírodní jevy (např. vznik půd) nebo na činnost člověka (např. zemědělství). Termín je často nesprávně zaměňován s termínem povětrnostní podmínky.
česky: podmínky klimatické angl: climatic conditions rus: климатические условия něm: Klimabedingungen f/pl  1993-a3
klimatické pomery
syn. klima.
česky: poměry klimatické angl: climatic conditions rus: климатические условия něm: Klimaverhältnisse n/pl  1993-a3
klimatické zaťaženie
mech. nebo jiný fyz. účinek povětrnostních faktorů na stavby a konstrukce nebo jejich části. Užívají se termíny zatížení sněhem (viz tlak sněhu), námrazky, větrem, teplotou vzduchu apod. Zákl. charakteristiky klimatických zatížení, potřebné pro projektovou činnost a mapy těchto charakteristik jsou uvedeny v tech. normách. Studium těchto charakteristik patří k úkolům technické meteorologie.
česky: zatížení klimatické angl: climatic load rus: климатическая нагрузка  1993-a2
klimatický cyklus
skutečný nebo předpokládaný rytmus hodnot klimatických prvků v sekulárních pozorováních. Viz též rytmy povětrnostní, perioda, periodicita.
česky: cyklus klimatický angl: climatic cycle něm: Klimazyklus m rus: климатический цикл fr: oscillation climatique f  1993-a1
klimatický extrém
česky: extrém klimatický angl: climate extreme něm: klimatologischer Extremwert m  2016
klimatický faktor
1. syn. faktor klimatotvorný, faktor klimagenní – činitel podílející se na genezi klimatu. Změna jednoho nebo více faktorů (v angličtině tzv. forcing) má za následek odpovídající vývoj klimatu ve formě kolísání klimatu, případně jednosměrné změny klimatu. Ta probíhá tak dlouho, dokud prostřednictvím záporných klimatických zpětných vazeb nedojde k opětovnému ustavení rovnováhy klimatického systému. Klimatické faktory se zpravidla navzájem ovlivňují, nicméně lze rozlišit jejich skupiny podle několika kritérií. Nejčastěji se uvádějí astronomické, geografické a antropogenní klimatické faktory, dále podle mechanizmu působení radiační a cirkulační klimatické faktory. Podle měřítka působení můžeme rozlišit faktory od globálních po lokální, z časového hlediska kontinuální a epizodické. Některé klimatické faktory působí v daném místě bezprostředně, působení jiných faktorů se přenáší do určité oblasti prostřednictvím dálkových vazeb.
2. v klimatologii nevhodné označení pro vliv klimatu na určitou lidskou aktivitu, např. na hustotu osídlení, zemědělství nebo cestovní ruch.
česky: faktor klimatický angl: climatic factor, climatic control rus: климатический фактор něm: klimatologischer Wirkungsfaktor m, Klimafaktor m fr: facteur climatique m, facteur du climat m  1993-a3
klimatický potenciál krajiny
označení pro stupeň vhodnosti klimatu určitého místa nebo oblasti pro různé druhy hosp. činnosti člověka. Nejčastěji se hovoří o agroklimatickém potenciálu krajiny, který vyjadřuje stupeň vhodnosti klimatu k zemědělské, především rostlinné výrobě. Dále se používá pojem energetický klimatický potenciál krajiny ve smyslu využitelné větrné nebo sluneční energie určitého místa nebo území. Vyhodnocuje se pro potřeby výstavby větrných nebo slunečních elektráren a podobných zařízení. Viz též agroklimatologie, potenciál znečištění ovzduší.
česky: potenciál krajiny klimatický  1993-a2
klimatický predel
výrazná klimatická hranice, způsobená nejčastěji klimatickou bariérou nebo výrazným rozhraním aktivního povrchu, především na pobřeží oceánů. Např. pohoří rovnoběžkového směru (Alpy, Himaláje aj.) zvýrazňují šířkovou zonalitu klimatu; v případě poledníkového směru (Kordillery, Skandinávské pohoří aj.) tvoří často předěl mezi oceánickým a kontinentálním klimatem.
česky: předěl klimatický angl: climatic divide rus: климатический раздел něm: Klimascheide f  1993-a3
klimatický prvok
statistická charakteristika odvozená z měření nebo pozorování meteorologického prvku (popř. sám met. prvek), využívaná pro klimatologické účely, např. prům. denní teplota vzduchu, roč. úhrn srážek, složky tepelné a vláhové bilance apod. Viz též faktor klimatický, rozložení klimatického prvku, řada klimatologická.
česky: prvek klimatický angl: climatic element rus: климатический элемент něm: Klimaelement n  1993-a3
klimatický režim
souhrnné označení vlastností klimatu charakterizujících jeho dynamiku, tj. denní a roč. chod jednotlivých meteorologických (klimatických) prvků, charakteristický průběh počasí, intersekvenční proměnlivost meteorologických prvků apod.
česky: režim klimatický angl: climatic regime rus: режим климата něm: Klimaregime n  1993-a1
klimatický signál
potenciálně předpověditelná složka klimatu související se změnami vnější části úplného klimatického systému. Časové řady klimatických prvků obsahují vedle této složky, která je z pohledu několika desetiletí většinou velmi malá, jistou nepředpověditelnou složku, zvanou klimatický šum, která je v mnoha případech větší než klimatický signál. Klimatický šum souvisí s vlastní dynamikou vnitřní části úplného klimatického systému projevující se specifickým sledem počasí v každém měsíci, sezoně, roce apod.
česky: signál klimatický angl: climatic signal rus: климатический сигнал něm: Klimasignal n  1993-a3
klimatický systém
část geosféry, která se podílí na procesu geneze klimatu. Zahrnuje atmosféru Země, dále hydrosféru, kryosféru, biosféru a svrchní část litosféry, resp. pedosféry. Jednotlivé složky jsou vzájemně intenzivně provázány, neboť zde v nejrůznějších časových a prostorových měřítkách neustále probíhají fyz., chem. a biologické procesy umožňující výměnu energie, příp. látek (např. záření, vítr, hydrologický cyklus). Zvlášť intenzivní jsou interakce atmosféry a oceánu. Ze statist. souboru stavů klimatického systému je odvozeno klima. Viz též model klimatologický, signál klimatický.
česky: systém klimatický angl: complete climate system, coupled climate system rus: единая климатическая система něm: vollständiges Klimasystem n, gekoppeltes Klimasystem n  1993-b3
klimatický šum
proměnlivost stavu klimatického systému v malých měřítcích, která má malou či žádnou organizovanou strukturu v čase či prostoru. Malé měřítko klimatického šumu je uvažováno relativně vzhledem k měřítkům studovaného klimatického signálu. Oddělení klimatického šumu od klimatického signálu je jeden ze základních úkolů analýzy klimatických dat. Viz šum meteorologický.
česky: šum klimatický angl: climatic noise rus: климатический шум něm: Klimarauschen n  1993-a3
klimatický typ
klima s určitými charakteristickými vlastnostmi, které se vyskytují v různých částech Země, především v rámci téhož klimatického pásma. Klimatické typy jsou rozlišovány při klasifikaci klimatu buď z hlediska genetického (např. monzunový typ, typ klimatu záp. pobřeží), nebo konvenčně hodnotami klimatických prvků, popř. klimatologckými indexy (např. pouštní typ).
česky: typ klimatický angl: climatic type rus: тип климата  1993-a3
klimatizácia
technická zařízení a jejich činnost směřující k vytváření umělých nebo upravených podmínek ovzduší. Klimatizace se provádí v uzavřených prostorách ve snaze zlepšit mikroklima pracovního nebo obytného prostředí, zejména teplotu a vlhkost vzduchu. Spočívá zejména ve vytápění (ohřívání) nebo ochlazování, vysušování nebo zvlhčování vzduchu.
česky: klimatizace angl: air-conditioning, climatization rus: климатизация, кондиционирование воздуха něm: Klimatisierung f  1993-a1
klimatizačná komora
zařízení umožňující v uzavřeném prostoru vytvořit požadované hodnoty teploty, vlhkosti a tlaku vzduchu, popř. alespoň jednoho z těchto prvků. Podle toho, o který prvek se jedná, rozlišuje se termostat, hygrostat a barostat (termokomora, hygrokomora a barokomora). V meteorologii se užívá při kalibraci nebo zkoušení přístrojů. Užívá se též v klimatoterapii. Viz též klimatizace, mikroklima uzavřených prostor.
česky: komora klimatizační angl: climate test chamber rus: камера для кондиционирования воздуха něm: Klimakammer f  1993-a3
klimatogenetický proces
česky: proces klimatogenetický angl: climagenetic process rus: климатообразующий процесс něm: klimagenetischer Prozess m  1993-a3
klimatografia
popis klimatu převážně v tabelární a mapové formě pomocí vybraných charakteristik klimatických prvků a jevů, sestavený pro stanici, oblast nebo celou Zemi (např. klimatografie letišť, okresů apod.).
česky: klimatografie angl: climatography rus: климатография něm: Klimatographie f  1993-a1
klimatológ
pracovník kvalifikovaný pro práci v klimatologii. Viz též meteorolog.
česky: klimatolog angl: climatologist rus: климатолог něm: Klimatologe m  1993-a1
klimatológia
věda o klimatu, studující dlouhodobé aspekty a celkové účinky met. procesů probíhajících na Zemi. Vzhledem k tomu, že met. děje probíhají v konkrétních podmínkách Země a jsou tudíž modifikovány geogr. faktory, označil K. Knoch (1930) klimatologii za regionální meteorologii. Z tohoto hlediska stojí klimatologie na rozhraní geofyz. a geogr. disciplín.
K hlavním úkolům klimatologie patří:
a) studium geneze klimatu na Zemi jako planetě i v jejích jednotlivých částech, tj. studium klimatogenetických procesů;
b) popis a objasnění klimatických zvláštností oblastí Země od velikosti kontinentů a oceánů až po nejmenší měřítka;
c) třídění neboli klasifikace klimatu a vymezování klimatických oblastí, tj. klimatologická rajonizace (regionalizace);
d) studium klimatu v dobách historických a geologických, kolísání klimatu a změn klimatu, které směřuje i k pokusům o jejich předpověď, v poslední době s využitím mat. modelů klimatu.
Klimatologie ve svém vývoji prošla od původně popisného zaměření do stadia analytického s širokým praktickým uplatněním. Z různých hledisek se dělí na klimatologii obecnou a regionální, teoretickou a aplikovanou, podle měřítka klimatu na makroklimatologii, mezoklimatologii, popř. topoklimatologii a na mikroklimatologii. Podle metodického přístupu hovoříme např. o klimatologii klasické, dynamické, synoptické, komplexní. Popisem klimatu se zabývá klimatografie. Viz též bioklimatologie, dendroklimatologie, paleoklimatologie, kategorizace klimatu.
česky: klimatologie angl: climatology rus: климатология něm: Klimatologie f  1993-a2
klimatológia hraničnej vrstvy atmosféry
část klimatologie pojednávající zpravidla v měřítku mezoklimatu o klimatických charakteristikách mezní vrstvy atmosféry. Určujícími veličinami jsou většinou vertikální profily vektoru větru, stability teplotního zvrstvení ovzduší, turbulentního toku tepla, vodní páry atd. Součástí této vědní disciplíny je i klimatologie znečištění ovzduší, poskytující dlouhodobé charakteristiky imisí a potenciálu znečištění ovzduší. Viz též klima mezní vrstvy atmosféry.
česky: klimatologie mezní vrstvy atmosféry angl: boundary layer climatology, climatology of atmospheric boundary layer rus: климатология пограничного слоя атмосферы něm: Klimatologie der Grenzschicht der Atmosphäre f, Klimatologie der atmosphärischen Grenzschicht f  1993-a1
klimatológia imisií
česky: klimatologie imisí něm: Immissionsklimatologie f  1993-a1
klimatológia voľnej atmosféry
syn. aeroklimatologie – část klimatologie, která pojednává o klimatol. charakteristikách meteorologických prvků a veličin ve volné atmosféře. Pozornost se věnuje především dlouhodobým charakteristikám polí meteorologických prvků (veličin) v jednotlivých výškových a izobarických hladinách a vertikálních řezech atmosférou nebo statistickým charakteristikám odvozených met. veličin s cílem např. jejich parametrizace v systémech (předpovědních) rovnic dynamiky atmosféry. Viz též aerologie.
česky: klimatologie volné atmosféry rus: аэроклиматология, климатология свободной атмосферы něm: Klimatologie der freien Atmosphäre f  1993-a2
klimatológia znečistenia ovzdušia
syn. klimatologie imisí – vědní obor, který se zabývá dlouhodobým režimem výskytu znečišťujících příměsí ve spodních vrstvách atmosféry a dlouhodobým režimem met. dějů podmiňujících znečištění ovzduší, šíření a rozptyl příměsi (škodlivin). Viz též klimatologie mezní vrstvy atmosféry, emise, imise, transport znečišťujících příměsí, tvar kouřové vlečky.
česky: klimatologie znečištění ovzduší angl: air pollution climatology rus: климатология загрязнения атмосферы něm: Klimatologie der Luftverunreinigung f  1993-a2
klimatologická bonitácia
hodnocení kvality (též bonity) klimatu malého měřítka z hlediska vhodnosti pro určitý účel, např. v zemědělství, stavebnictví, rekreaci, lázeňství apod. Jde o znalecké a komplexní posouzení klimatických rozdílů zpravidla v měřítku mikroklimatu a místního klimatu prováděné podle metodických schémat, v nichž se např. přihlíží k podmínkám provětrávání čili ventilace daného území, k převládajícím větrům, sklonu k vytváření inverzí teploty vzduchu a mrazových kotlin. Klimatologická bonitace vychází především ze zvláštností reliéfu krajiny a jeho důsledků pro místní klimatické podmínky. Zejména v městských oblastech a průmyslových aglomeracích je vhodné zahrnout do klimatologické bonitace také obsah znečišťujících látek v ovzduší. Je také vhodné, aby klimatologická bonitace byla ověřována ambulantním terénním meteorologickým měřením. Počátky klimatologické bonitace jsou u nás spojovány s pracemi A. Gregora, J. Mrkose a E. Quitta. Viz též bodování počasí.
česky: bonitace klimatologická rus: экспертная оценка локальных климатических условий  1993-a3
klimatologická frontálna zóna
prům. poloha některé frontální zóny na klimatologických mapách za určité delší období. Poloha frontální klimatologické zóny úzce souvisí s prům. polohou hlavních akčních center atmosféry.
česky: zóna frontální klimatologická angl: climatological frontal zone rus: климатическая фронтальная зона  1993-a1
klimatologická mapa
mapa podávající klimatologické informace. Rozlišujeme klimatologické mapy dvojího druhu:
a) mapy plošného (geografického) rozložení klimatologických charakteristik jednotlivých meteorologických prvků a jevů, popř. jejich kombinací, tj. klimatologických indexů. Charakteristiky jsou vypočítány z dlouholetých řad meteorologických pozorování, zpravidla z jednotně stanovených tzv. normálních období. Na klimatologické mapě se především znázorňují průměry, extrémy, amplitudy, data výskytu, trvání jevu apod. Uvedené mapy mají většinou analytický charakter. Nejrozšířenější metodou znázorňování je metoda izolinií;
b) mapy klimatické, tj. mapy geogr. rozložení klimatických typů, podtypů a dalších klimatických jednotek stanovených a vymezených podle zásad některé z klasifikací klimatu. Viz též mapa průměrová, atlas klimatologický, rajonizace klimatologická, normál klimatologický.
česky: mapa klimatologická angl: climatological chart rus: климатологическая карта něm: Klimakarte f  1993-a1
klimatologická predpoveď počasia
předpověď počasí tvořená na základě klimatologických charakteristik daného místa v průběhu kalendářního roku. V oblastech nebo obdobích s velkou proměnlivostí počasí vykazuje velkou neurčitost. Nesmí být zaměňována za scénáře změn klimatu.
česky: předpověď počasí klimatologická angl: climatological weather forecast něm: klimatologische Wettervorhersage f  2014
klimatologická rajonizácia
vyčleňování klimatických oblastí, podoblastí, okresů apod. v různých měřítkách klimatu vyznačujících se určitou homogenitou klimatických veličin. Klimatologické rajonizace jsou buď obecné, vystihující celkovou prostorovou diferenciaci klimatu, nebo jsou provedeny pro speciální účely, např. zemědělství, stavebnictví aj. Místo termínu rajonizace někteří autoři používají ve stejném smyslu pojmu regionalizace, jiní oba pojmy významově odlišují. Viz též hranice klimatická, kategorizace klimatu, klasifikace klimatu.
česky: rajonizace klimatologická angl: climatological regionalization rus: климатологическое районирование něm: klimatologische Regionalisierung f  1993-a1
klimatologická regionalizácia
česky: regionalizace klimatologická angl: climatological regionalization rus: климатологическая регионализация něm: klimatologische Regionalisierung f  1993-a1
klimatologická stanica
meteorologická stanice, jejímž úkolem je provádět klimatologická pozorování a měření v pevně stanovených termínech, v ČR zpravidla v klimatologických termínech. Data jsou předávána do zpracovatelských center a slouží pro získávání režimových časových a prostorových met. a klimatologických informací. Klimatologické stanice se dělí podle rozsahu a zaměření činnosti na klimatologické stanice základní, doplňkové a srážkoměrné.
česky: stanice klimatologická angl: climatological station rus: климатологическая станция něm: klimatologische Station f  1993-a3
klimatologické pozorovanie
meteorologické pozorování prováděné především na klimatologických stanicíchklimatologických termínech. Mezi klimatologická pozorování v širším smyslu patří i ambulantní terénní meteorologická měření, jejichž účelem je bližší poznání mikroklimatu, topoklimatu, popř. mezoklimatu.
česky: pozorování klimatologické angl: climatological observation rus: климатологическое наблюдение něm: klimatologische Beobachtung f  1993-a1
klimatologický atlas
syn. atlas podnebí – ucelený soubor map převážně s klimatologickou tematikou. Obsahuje zejména mapy měs. a roč. charakteristik hlavních klimatických prvků odvozených z dostatečně dlouhého období. Zákl. klimatologickým atlasem pro naše území je Atlas podnebí Česka (ČHMÚ Praha, ÚP Olomouc, 2007), vydaný jako encyklopedické dílo obsahující nejen mapy v měřítcích 1 : 1 mil., 1 : 2 mil. a 1 : 5 mil., nýbrž i obsáhlou textovou, tabulkovou a grafickou část. Atlas byl vydán v česko-anglické mutaci (Climate Atlas of Czechia). Základním zpracovaným obdobím je 1961 – 2000. Předcházejícím mapovým dílem české klimatologie byl Atlas podnebí Československé republiky (Praha, ÚSGK 1958), který obsahoval 89 klimatologických, fenologických a jiných map v měřítku 1 : 1 mil. a 11 listů diagramů. Mapy teplotních a srážkových charakteristik byly sestaveny většinou z období 1901 – 1950. Charakter specializovaného klimatologického atlasu má mapová příloha studie M. Kurpelové, L. Coufala aj. Čulíka „Agroklimatické podmienky ČSSR“ (Bratislava, HMÚ 1975) obsahující mapy agroklimatických charakteristik v měřítku 1 : 1 mil. z období 1931–1960.
česky: atlas klimatologický něm: Klimaatlas m rus: климатологический атлас fr: atlas climatologique m  1993-a1
klimatologický diagram
graf obsahující klimatologické informace. Jde o znázornění jednoho nebo více klimatických prvků nebo veličin v různých souřadnicových soustavách, nejčastěji v pravoúhlé nebo polární soustavě. Viz též klimagram.
česky: diagram klimatologický angl: climatological diagram něm: klimatologisches Diagramm n rus: климатическая диаграмма fr: diagramme climatique m, climagramme m, climatogramme m  1993-a2
klimatologický front
prům. sezonní nebo charakteristická geogr. poloha hlavních atmosférických front, popř. frontálních zón v určité oblasti, zpravidla v místech max. tlakového gradientu mezi klimatickými akčními centry atmosféry. Klimatologické fronty se znázorňují na klimatologických mapách, na rozdíl od reálných atm. front zakreslovaných do synoptických map. Klimatologické fronty se rozpadají na větve, např. polární klimatologická fronta se dělí na atlantickou polární frontu, středomořskou polární frontu aj. Viz též klasifikace klimatu Alisovova.
česky: fronta klimatologická angl: climatological front rus: климатологический фронт něm: klimatologische Front f fr: front climatologique m  1993-a3
klimatologický index
veličina sloužící k vyhodnocení některé vlastnosti klimatu, nebo ke stanovení fáze určité oscilace. V prvním případě jde především o indexy humidity a indexy kontinentality, v druhém případě o nejrůznější indexy cirkulace.
česky: index klimatologický angl: climatic index, climatological index rus: климатический индекс něm: klimatologischer Index m  1993-a3
klimatologický letištný prehľad
soubor tabelárních výsledků statist. zpracování dlouhodobých řad met. měření na daném letišti, vypracovaný v souladu s Technickými pravidly WMO – No. 49, VOL II, kapitola C.3.2 Aeronautical Climatology. Letištní klimatologický přehled se pro mezinárodní letiště zpracovává závazně a tabulky mají stanovenou skladbu. Tabulky modelu A obsahují výsledky zpracování četnosti výskytu (v procentech) dráhové dohlednosti nebo dohlednosti a výšky základny význačné oblačnosti (BKN nebo OVC) ve stanovených intervalech. Tabulky modelu B poskytují přehled o četnostech výskytu dohledností ve stanovených intervalech a termínech. Tabulky modelu C dávají informace o četnosti výskytu výšek základny význačné oblačnosti ve stanovených intervalech a termínech. V tabulkách modelu D je zachycena současná četnost výskytu směru větru (ve 30° intervalech) a rychlosti větru ve stanovených intervalech a tabulky modelu E udávají četnost výskytu teploty ve stanovených intervalech (po 5 °C) a termínech. Viz též klimatografie, meteorologie letecká.
česky: přehled letištní klimatologický angl: aerodrome climatologic summaries rus: авиационные климатологические сводки> něm: Klimainformationen für einen Flughafen f/pl  1993-a3
klimatologický normál
klimatologická charakteristika získaná z mnohaletých pozorování, zpravidla za 30 let, aby se eliminovaly její krátkodobé výkyvy. Pro studium klimatu různých míst je třeba, aby se klimatologické normály vztahovaly ke stejnému období. Podle doporučení Světové meteorologické organizace (WMO) jsou standardní klimatologické normály počítány z třicetiletí 1901–1930, 1931–1960, 1961–1990, atd. Pokud nejsou k dispozici údaje dané stanice z celého období, aktuálně z období 1961–1990, WMO doporučuje výpočet tzv. prozatímních klimatologických normálů za období alespoň deseti let, které začíná 1. ledna roku, který končí číslem 1 (např. z období od 1. ledna 1991 do 31. prosince 2010). V běžné klimatologické praxi v České republice se před výpočtem normálu ze stanice s neúplnou řadou provádí doplnění dat pomocí nejvhodnější okolní stanice (např. pomocí lineární regrese). WMO nově doporučuje počítat normály za vždy nejnovější třicetiletí (1971–2000, 1981–2010, atd.) místo za období stanovené pro výpočet standardních klimatologických normálů.
česky: normál klimatologický angl: climatological normal rus: климатическая норма něm: klimatologischer Normalwert m  1993-a3
klimatologický rad
chronologicky nebo podle velikosti uspořádaná posloupnost klimatických prvků. Mezi nejčastěji používané klimatologické řady patří např. řada denních, pentádních, dekádních, měs. a roč. průměrů teploty vzduchu, řada měs. a roč. úhrnů srážek, řada roč. amplitud teploty vzduchu apod. Při vytváření klimatologické řady z řad met. pozorování a při jejich klimatologickém zpracování se většinou vychází z metod mat. statistiky. V některých případech může klimatologická řada splývat s řadou met. pozorování.
česky: řada klimatologická angl: series of climatological observations (values) rus: климатологический ряд, ряд климатических данных něm: klimatologische Beobachtungsreihe f  1993-a2
klimatologický termín
jednotná doba pozorování na met. stanici, stanovená podle místního stř. slunečního času platného pro lokalitu stanice. V daném dni a pro danou zeměp. šířku je tedy na všech stanicích sítě v témže klimatologickém termínu Slunce ve stejné výšce nad obzorem, čímž jsou zajištěny z tohoto hlediska homogenní podmínky pro získávání met. dat. V ČR se měření provádí v klimatologických termínech 7, 14 a 21 h na základních a v 7 h místního stř. slunečního času na srážkoměrných stanicích.
česky: termín klimatologický angl: climatological time of observation rus: климатологический срок  1993-a3
klimatomorfogenetická oblasť
oblast, v níž je reliéf zemského povrchu utvářen exogenními geomorfologickými procesy, které jsou klimaticky podmíněny. Poloha a velikost takové oblasti se mění v souvislosti se změnami klimatu. Dnešní reliéf povrchu pevnin je zpravidla polygenetický v důsledku pohybu klimatických pásem během geol. minulosti a současného působení endogenních sil. Viz též klimatická geomorfologie, klasifikace klimatu geomorfologická.
česky: oblast klimatomorfogenetická angl: climamorphogenetic region rus: климаморфогенетическая область něm: klimamorphogenetisches Gebiet n  1993-a3
klimatop
klimatická (mikroklimatická) složka abiotických vlastností nejmenší prostorové jednotky, kterou lze považovat za homogenní, tj. ekotopu. Název vyjadřuje soubor klimatických vlastností stanoviště. Termínu se užívá v ekologii a ekologické klimatologii. Viz též energotop.
česky: klimatop angl: climatology of free atmosphere, climatope rus: климатоп něm: Klimatop m  1993-a1
klimatoterapia
syn. léčba klimatická – léčebná metoda, jež využívá příznivých vlastností klimatu k léčbě některých chorobných stavů nebo k prevenci. Provádí se buď v klimatických lázních v přírodních podmínkách (tzv. klimatoterapie přirozená), nebo v klimatizačních komorách za uměle vytvořených podmínek (tzv. klimatoterapie umělá).
česky: klimatoterapie angl: climatotherapy rus: климатотерапия něm: Klimatherapie f  1993-a1
klimatotvorný faktor
česky: faktor klimatotvorný rus: климатообразующий фактор fr: facteur climatique m  1993-a1
klimogram
syn. klimagram.
česky: klimogram rus: климограмма něm: Klimogramm n  1993-a1
klin studeného vzduchu
označení pro typický tvar studené vzduchové hmoty, postupující za studenou frontou na místo teplého vzduchu. O klínu studeného vzduchu lze však hovořit i pod teplou frontou, kdy studený vzduch ustupuje. Viz též profil atmosférické fronty, čelo studeného vzduchu, „blána“ studeného vzduchu.
česky: klín studeného vzduchu angl: wedge of cold air rus: клин холодного воздуха něm: Kaltluftkeil m  1993-a1
knôt
syn. uzel.
česky: knot angl: knot rus: узел něm: Knoten m  1993-a1
koagulácia
souhrnné označení mikrofyzikálních procesů, při nichž vodní kapky nebo ledové částice v oblaku rostou zachycováním jiných oblačných částic při vzájemných nárazech. Vyskytuje se ve starší meteorologické literatuře. V současné době označujeme procesy růstu vodních kapek při jejich vzájemných nárazech jako koalescence, vznik shluků ledových krystalů jako agregace a růst krupek a krup namrzáním přechlazených kapek jako zachycování nebo sběr.
česky: koagulace angl: coagulation rus: коагуляция něm: Koagulation f  1993-a3
koalescencia
ve fyzice oblaků a srážek splývání vodních kapek, k němuž může dojít při vzájemných kolizích kapek v oblaku. Koalescence je základním mechanizmem růstu kapek do velikosti srážkových částic zejména v konvektivních oblacích. Navazuje na počáteční stadium růstu zárodečných kapiček difuzí a kondenzací vodní páry. V tropických oblacích koalescence stačí k vyvolání dešťové srážky. Uplatňuje se však i v kapalné části oblaků mírných šířek, kde při nižší absolutní vlhkosti než v tropech je vznik srážek podmíněn přítomností ledové fáze. Výsledkem koalescence vodních kapek je růst šířky spektra velikosti oblačných kapiček zvýšením rychlosti růstu zejména větších kapek.
Z hlediska příčiny rozlišujeme koalescenci:
a) gravitační, při níž dochází ke srážkám kapek, které mají odlišnou velikost a tedy i pádovou rychlost;
b) turbulentní, vyvolanou turbulentními fluktuacemi rychlosti proudění vzduchu;
c) elektrostatickou, v důsledku elektrostatického přitahování mezi opačně nabitými kapičkami nebo mezi nabitou a el. neutrální kapičkou;
d) spontánní, působenou nepravidelnými pohyby nejmenších zárodečných kapiček (Brownův pohyb) aj.
Dominantním procesem růstu kapek koalescencí v oblacích je gravitační koalescence. Rychle padající velké kapky mohou zachytit malé kapičky vyskytující se v objemu vzduchu vymývaném velkou kapkou. Při matematickém modelování rozlišujeme model spojité koalescence, při níž všechny kapky dané velikosti rostou stejnou rychlostí, a model kvazistochastické koalescence, který bere v úvahu pravděpodobnostní vlastnosti procesu koalescence. Starší meteorologické práce užívají pro koalescenci termín koagulace. Viz též účinnost koalescenční (zachycovací), účinnost srážková, účinnost sběrová, pádová rychlost oblačných částic.
česky: koalescence angl: coalescence rus: коалесценция, слияниe něm: Koaleszenz f  1993-a3
koalescenčná teória
česky: teorie koalescenční angl: coalescence theory rus: теория столкновений  1993-a1
koalescenčná teória vzniku zrážok
syn. teorie koalescenční – v rovníkovém pásu se běžně pozoruje vypadávání intenzivních srážek z teplých oblaků, v nichž vývoj srážek nemůže probíhat za účasti ledové fáze. Vznik srážek v této oblasti vysvětluje koalescenční teorie, podle níž, pokud v oblaku vznikne určitý počet oblačných kapek značně větších než většina ostatních, pohybují se větší kapky ve výstupném proudu pomaleji a mohou koalescencí s malými kapkami růst. Narostou-li do takových rozměrů, že jejich pádová rychlost převýší rychlost výstupných pohybů vzduchu v oblaku, padají oblakem a během svého pádu dále narůstají koalescencí. Po dosažení kritické velikosti se tříští a větší zbytky rozpadlých kapek jsou pak výstupními pohyby znovu unášeny vzhůru, rostou koalescencí s malými oblačnými kapičkami a celý proces se může opakovat. Tímto způsobem se „řetězovou reakcí" v oblaku zvětšuje počet velkých kapek, které posléze mohou vypadnout ve formě kapalných srážek. Podmínkou účinného působení popsaného mechanismu je velký vodní obsah oblaku a výstupná vertikální rychlost, která umožní koalescenční růst kapek do takové velikosti, že se nevypaří u vrcholku oblaku, ale budou padat dolů a dále růst koalescencí. Příčina počátečního rozdílu ve velikosti kapek není jednoznačně určena. Velké kapky mohou vznikat přednostně na řídkých obřích kondenzačních jádrech, mohou být důsledkem změn vertikální rychlosti nebo koncentrace kondenzačních jader v oblasti kondenzační hladiny. V mírných zeměp. šířkách může obdobný koalescenční růst nastat i s účastí ledových částic, ktere přednostně rostou zachycováním přechlazených vodních kapek. Po pádu pod ledovou izotermu tyto ledové částice tají obdobně jako v případě Bergeronovy–Findeisenovy teorie vzniku srážek, která však předpokládá vznik srážkových částic pouze depozicí. Viz též instabilita oblaku koloidní.
česky: teorie vzniku srážek koalescencí angl: coalescence theory rus: теория столкновений  1993-a3
koalescenčná účinnosť
poměr počtu kapek zachycených po srážce větší kapkou (kolektorem) a počtu srážek. Lze ji interpretovat jako pravděpodobnost, že kapka je po srážce skutečně zachycena kolektorem a dochází ke koalescenci. Obvykle se předpokládá koalescenční účinnost rovna jedné.
česky: účinnost koalescenční (zachycovací) angl: coalescence efficiency rus: эффективность слияния  2014
kódovacie číslo
numerická, výjimečně alfanumerická hodnota sloužící k popisu významu met. veličiny, kterou nelze vyjádřit numerickou hodnotou ve stanovených jednotkách, např. typ stanice, typ přístrojového vybavení, stav a průběh počasí, druh oblaků. V tradičních alfanumerických kódech se kódová čísla používají i pro vyjádření hodnoty některých meteorologických prvků, pokud rozsah daného prvku nemůže být přímo uveden stanoveným počtem symbolických písmen. Význam kódových čísel pro daný met. prvek jedefinován v kódové tabulce, která může být společná pro různé meteorologické kódy.
česky: číslo kódové angl: code figure něm: Codeziffer f rus: цифра кода fr: chiffre de code m  1993-b3
koeficient difúzie
česky: koeficient difuze angl: diffusion coefficient rus: коэффициент диффузии něm: Diffusionskoeffizient m  1993-a1
koeficient disperzie
česky: koeficient disperze angl: dispersion coefficient rus: коэффициент рассеяния něm: Dispersionskoeffizient m  1993-a1
koeficient drsnosti
česky: koeficient drsnosti rus: коэффициент шероховатости něm: Rauigkeitslänge f  1993-a1
koeficient dynamickej viskozity
česky: koeficient dynamické vazkosti angl: dynamic viscosity coefficient rus: коэффициент динамической вязкости něm: dynamischer Viskositätskoeffizient m  1993-a1
koeficient kinematickej viskozity
česky: koeficient kinematické vazkosti angl: kinematic viscosity coefficient rus: коэффициент кинематической вязкости něm: kinematischer Viskositätskoeffizient m  1993-a1
koeficient laterálnej disperzie
statist. veličina σy rozměru délky, používaná zejména při studiu horiz. rozptylu pasivní příměsi v atmosféře, která charakterizuje turbulentní stav atmosféry v horiz. rovině. Lze ji určit např. z měření pulzací horiz. složek vektoru větru; charakterizuje intenzitu rozptylu příměsí v ovzduší v horiz. směru kolmém na směr proudění. Viz též model Suttonův, koeficient vertikální disperze, pulzace větru.
česky: koeficient laterální disperze angl: lateral dispersion coefficient rus: коэффициент бокового рассеяния něm: lateraler Dispersionskoeffizient m  1993-a1
koeficient odtoku
viz odtok.
česky: koeficient odtoku angl: runoff coefficient rus: коэффициент стока něm: Abflusskoeffizient m  1993-a3
koeficient pohlcovania
česky: koeficient pohlcování angl: absorption coefficient rus: коэффициент поглащения něm: Absorptionskoeffizient m  1993-a1
koeficient prestupu
faktor úměrnosti CX ve vztahu FX = CX u (X  X*), kde u je rychlost větru, FX značí turbulentní tok tepla, vodní páry, znečišťující příměsi apod. mezi zemským povrchem charakterizovaným hodnotou X příslušné veličiny (teploty, měrné vlhkosti, koncentrace látky apod.) a okolím charakterizovaným hodnotou X* této veličiny. Koeficient přestupu v přízemní vrstvě atmosféry závisí na dynamickém stabilitním parametru.
česky: koeficient přestupu angl: heat transfer coefficient rus: коэффициент теплоотдачи něm: Wärmeübergangszahl f  1993-b3
koeficient priepustnosti atmosféry
syn. koeficient transmisní – poměr intenzity přímého slunečního záření v úrovni zemského povrchu k intenzitě přímého slunečního záření na horní hranici atmosféry, přepočtený pro referenční stav, kdy sluneční paprsky procházejí ovzduším kolmo k zemskému povrchu. Protože schopnost atmosféry propouštět přímé sluneční záření závisí na vlnové délce (zhruba roste se zvětšující se vlnovou délkou), určuje se koeficient propustnosti atmosféry zpravidla pro různé dostatečně úzké části spektra. Potom hovoříme o spektrálním, popř. monochromatickém koeficientu propustnosti atmosféry. Spolu s Linkeho zákalovým faktorem patří koeficient propustnosti atmosféry k základním charakteristikám vyjadřujícím schopnost zemské atmosféry propouštět sluneční záření; souvisí s vlhkostí a s mírou znečištění vzduchu. V suché a čisté atmosféře má koeficient propustnosti atmosféry celkově pro spektrum slunečního záření hodnotu blízkou 0,9; v reálné atmosféře zpravidla od 0,70 do 0,85. Koeficient propustnosti atmosféry f souvisí s objemovým koeficientem extinkce βex vztahem
f=exp(-0 βexdz)
Pokud se jedná o viditelný obor slunečního záření, označuje se též jako koeficient průzračnosti atmosféry. Viz též koeficient absorpce, koeficient rozptylu.
česky: koeficient propustnosti atmosféry angl: transmission coefficient of the atmosphere rus: коэффициент пропускания něm: Durchlässigkeitsvermögen n, Transmissionskoeffizient m  1993-a2
koeficient rozptylu
charakteristika schopnosti daného prostředí rozptylovat záření. Rozlišujeme objemový a hmotový koeficient rozptylu. Objemový koeficient rozptylu je číselně roven množství zářivé energie rozptýlené z paprsku jednotkové intenzity na dráze jednotkové délky. Vynásobením objemového koeficientu rozptylu převrácenou hodnotou hustoty rozptylujícího prostředí dostaneme hmotový koeficient rozptylu. V meteorologii se setkáváme s koeficientem rozptylu slunečního záření, jehož hodnota závisí na vlnové délce. S ohledem na tuto závislost se koeficient rozptylu obvykle udává jen pro určitou dostatečně úzkou část spektra slunečního záření, takže lze hovořit o spektrálním, popř. monochromatickém koeficientu rozptylu. Viz též koeficient absorpce, koeficient extinkce, rozptyl Rayleighův, rozptyl Mieův.
česky: koeficient rozptylu angl: scattering coefficient rus: коэффициент рассеяния něm: Streukoeffizient m  1993-a1
koeficient tepelnej vodivosti
faktor úměrnosti k ve vztahu
Qn=-kTn,
kde Qn je tok tepla transportovaného vedením ve směru n a ∂T/∂n značí změnu teploty připadající na jednotkovou vzdálenost ve směru n. O tomto koeficientu mluvíme v obecné fyzice zpravidla v souvislosti s molekulární vodivostí. V meteorologii se však častěji setkáváme s vodivostí turbulentní, pro niž hodnota koeficientu tepelné vodivosti ve vzduchu vzrůstá oproti molekulární vodivosti až o 6 řádů.
česky: koeficient tepelné vodivosti angl: heat conductivity coefficient rus: коэффициент теплопроводности něm: Wärmeleitfähigkeitskoeffizient m  1993-a1
koeficient teplotnej vodivosti
veličina a, definovaná vztahem
a=kρc,
kde k je koeficient tepelné vodivosti, ρ hustota a c měrné teplo daného prostředí. Jedná-li se o prostředí plynné, potom jako c používáme měrné teplo při stálém tlaku cp. Koeficient teplotní vodivosti charakterizuje schopnost prostředí přenášet teplotní změny. V případě turbulentního přenosu tepla je totožný s koeficientem turbulentní difuze pro teplo.
česky: koeficient teplotní vodivosti angl: coefficient of thermometric conductivity rus: коэффициент температуропроводности něm: Temperaturleitfähigkeit f, Temperaturleitungskoeffizient m, Temperaturleitzahl f  1993-a1
koeficient trenia
v meteorologii nevhodné syn. pro koeficient odporový.
česky: koeficient tření angl: friction coefficient rus: коэффициент трения něm: Reibungskoeffizient m  1993-a1
koeficient turbulentnej difúzie
podíl koeficientu turbulentní výměny a hustoty prostředí, v meteorologii tedy zpravidla hustoty vzduchu. Rozlišujeme koeficient turbulentní difuze pro hybnost, teplo, vodní páru, popř. znečišťující příměsi. Koeficient turbulentní difuze patří k nejužívanějším charakteristikám turbulence. Z hlediska form. analogie mezi charakteristikami turbulentního a vazkého laminárního proudění je koeficient turbulentní difuze pro hybnost analogem kinematického koeficientu vazkosti a koeficient turbulentní difuze pro teplo analogem koeficientu teplotní vodivosti. Viz též koeficient difuze zobecněný.
česky: koeficient turbulentní difuze angl: eddy coefficient, turbulent diffusion coefficient rus: коэффициент турбулентной диффузии něm: turbulenter Austauschkoeffizient m  1993-a1
koeficient turbulentnej výmeny
koeficient A ve vzorci pro turbulentní tok
Q=-Asz,
kde Q je vert. tok fyz. vlastnosti s, vztažené k jednotce hmotnosti. Koeficient turbulentní výměny roste od zemského povrchu zhruba po horní hranici přízemní vrstvy atmosféry, nad ní je buď přibližně konstantní, nebo častěji pomalu klesá. Lze jej určit z měření větru a teploty vzduchu v různých výškách. S koeficientem turbulentní difuze K je spjat vztahem
A=ρK,
kde ρ je hustota prostředí. Jako uvedená vlastnost s se může vyskytovat hybnost, teplo, vodní pára či různé znečišťující příměsi; podle toho rozlišujeme koeficient turbulentní výměny pro hybnost, teplo, vodní páru a znečišťující příměsi. Z hlediska form. analogie mezi charakteristikami turbulentního a vazkého proudění je koeficient turbulentní výměny protějškem dyn. koeficientu vazkosti.
česky: koeficient turbulentní výměny angl: exchange coefficient rus: коэффициент обмена něm: Austauschkoeffizient m  1993-a1
koeficient vertikálnej disperzie
statist. veličina σz, používaná zejména při studiu vert. rozptylu pasivní příměsi v atmosféře, která charakterizuje turbulentní stav atmosféry a intenzitu rozptylu znečištění ve vert. směru. Lze ji určit např. z pulzací vert. složky vektoru větru. Viz též model Suttonův, koeficient laterální disperze.
česky: koeficient vertikální disperze angl: vertical dispersion coefficient rus: коэффициент вертикального рассеяния něm: vertikaler Dispersionskoeffizient m  1993-a1
koeficient viskozity
syn. koeficient viskozity – patří k zákl. hydrodyn. veličinám, v meteorologii se s ním setkáváme zejména ve fyzice mezní vrstvy atmosféry. Rozlišujeme koeficient vazkosti dynamický a kinematický.
1. Koeficient vazkosti dynamický je faktor úměrnosti μ ve vztahu
τ=μvn,
kde τ značí vazké napětí a ∂v/∂n změnu rychlosti proudění připadající na jednotkovou vzdálenost ve směru normály jednotkové plochy, k níž vztahujeme τ. Uvedené mat. vyjádření se obvykle nazývá Newtonovým zákonem pro vazké proudění.
2. Koeficient vazkosti kinematický je poměr dynamického koeficientu vazkosti a hustoty uvažované tekutiny, v meteorologii hustoty vzduchu.
česky: koeficient vazkosti angl: viscosity coefficient rus: коэффициент вязкости něm: Viskositätskoeffizient m  1993-a1
koeficient viskozity
česky: koeficient viskozity rus: коэффициент вязкости něm: Viskositätskoeffizient m  1993-a1
koeficient zavlaženia
syn. index zavlažení – tradiční označení pro některé indexy humidity.
česky: koeficient zavlažení angl: moisture factor rus: коэффициент увлажнения něm: Feuchtigkeitskoeffizient m  1993-a2
koeficient zoslabenia
česky: koeficient zeslabení angl: extinction coefficient rus: коеффициент екстинции, коэффициент ослабления něm: Extinktionskoeffizient m  1993-a1
kolísanie klímy
syn. fluktuace klimatu – vývoj klimatu ve formě nepravidelných, případně periodických víceletých výkyvů klimatu kolem průměrného stavu; v druhém případě někdy mluvíme o klimatických cyklech. Tzv. sekulární kolísání klimatu se odehrávají v měřítku desítek, stovek roků nebo ještě podstatně delších časových úsecích. Tento vývoj nemá jednostranný neboli progresivní charakter, čímž se liší od změn klimatu. Kolísání klimatu zasahují různě velké oblasti Země a projevují se výkyvy klimatických prvkůklimatologických řadách. Příčinami kolísání klimatu mohou být oscilace, spojené s dlouhodobějšími výkyvy všeobecné cirkulace atmosféry.
česky: kolísání klimatu angl: climatic fluctuations rus: климатические флуктуации, колебания климата něm: Klimaschwankungen f/pl  1993-a3
kolízna účinnosť
poměr počtu kapek, které se nacházejí v geometrickém objemu vymývaném padající kapkou (kolektorem) a počtu kapek, které na kolektor narazí v důsledku setrvačné a aerodynamické síly působící při obtékání kolektoru vzduchem. Kolizní účinnost lze interpretovat jako pravděpodobnost, že dojde ke srážce kolektoru s menší kapkou, která se náhodně vyskytuje v geometrickém objemu vymývaném kolektorem. Viz též koalescenční účinnost.
česky: účinnost kolizní (srážková) angl: collision efficiency rus: эффективность столкновения  2014
Kolmogorovova hypotéza
z hlediska turbulentního proudění v atmosféře má značný význam tzv. první a druhá Kolmogorovova hypotéza. První hypotéza říká, že: „Při dostatečně velkém Reynoldsově čísle má v každém turbulentním proudění statistika pohybů malých měřítek (tj. malých vírových turbulentních elementů) univerzální charakter určený jednoznačně kinematickou vazkostí proudící tekutiny a rychlostí disipace“, zatímco druhou hypotézu lze aplikovat na větší turbulentní víry, pro něž podle ní platí: „V každém turbulentním proudění má při dostatečně velkém Reynoldsově čísle statistika pohybů od jisté definované velikosti měřítka univerzální charakter, který závisí na disipaci turbulentní kinetické energie, nikoli však na kinematické vazkosti.“ Tyto hypotézy mají při modelování turbulentního proudění mj. ten praktický důsledek, že je-li dosaženo Reynoldsova čísla dostatečně velkého pro plně vyvinutou turbulenci, je možné zanedbat změny charakteristik turbulence s dalším růstem tohoto čísla.
česky: hypotéza Kolmogorovova angl: Kolmogorov hypothesis něm: Kolmogorov Hypothese f  2014
kolobeh vody v prírode
nevhodné označení pro hydrologický cyklus.
česky: koloběh vody v přírodě rus: круговорот воды в природе něm: natürlicher Wasserkreislauf m  1993-a3
koloidálna instabilita oblaku
vlastnost oblaku, která vystihuje nestabilitu spektra velikosti oblačných elementů i jejich fázového složení. Při vývoji oblaku roste část oblačných elementů na úkor ostatních a až ve formě srážek vypadává z oblaku. Typickým příkladem koloidní instability oblaku je růst kapek koalescencí, agregace ledových krystalů a růst ledových krystalů na úkor přechlazených vodních kapek ve smíšeném oblaku v důsledku rozdílného tlaku nasycené vodní páry nad vodou a ledem. Viz též teorie vzniku srážek Bergeronova–Findeisenova.
česky: instabilita oblaku koloidní angl: colloidal instability of cloud rus: коллоидальная неустойчивость облака něm: kolloidale Instabilität (in Wolken) f  1993-a3
kolorimetrický dozimeter
syn. UV dozimetr.
česky: dozimetr kolorimetrický angl: colorimetric dozimeter něm: kolorimetrisches Dosimeter n rus: колориметрический дозиметр fr: dosimètre colorimétrique m  1993-a1
komplexná klimatológia
klimatologická metoda, jíž se studuje klima nikoliv podle jednotlivých klimatických prvků, nýbrž podle jejich souborů vytvářených na základě předem stanovených intervalů jejich hodnot. Zákl. jednotkami klimatologického zpracování jsou pak třídy a typy počasí charakterizující počasí jednotlivých dní. Klima, jakožto dlouhodobý režim počasí, je z komplexně klimatologického hlediska vyjadřováno četnostmi různých tříd a typů počasí, jejichž výskyt může být hodnocen metodami klasické nebo dynamické klimatologie. Zakladatelem komplexní klimatologie je sovětský klimatolog E. E. Fedorov (1921–1985). Komplexní klimatologií pro území ČR a SR zabýval především slovenský klimatolog Š. Petrovič, který touto metodou zpracoval zejména klima lázní na Slovensku.
česky: klimatologie komplexní angl: complex climatology rus: комплексная климатология něm: komplexe Klimatologie f  1993-a1
komplexná meteorologická rádiosondáž
radiosondážní měření zákl. meteorologických prvků prováděné současně s měřením výškového větru radiotech. prostředky. Je zákl. měřením konaným na radiosondážních stanicích, na jehož podkladě se sestavuje zpráva z pozemní stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách (TEMP, TEMP SHIP).
česky: radiosondáž meteorologická komplexní angl: rawinsonde observation rus: радиозондовое и радиоветровое наблюдение něm: komplexe meteorologische Radiosondierung f  1993-a1
koncentrácia znečiťujúcich látok
množství znečisťujících látek v jednotce objemu vzduchu. U plynných znečišťujících látek musí být objem normován při teplotě 293 K a atmosférickém tlaku 101,3 kPa. U částic a látek, které se mají v částicích analyzovat (např. olovo), se objem odběru vzorků vztahuje k vnějším podmínkám, jako jsou teplota a atmosférický tlak v den měření. Vyjadřuje se buď v rozměru hmotnost na objem, zpravidla v µg.m–3, popř. mg.m–3, nebo v rozměru objemu na objem, tj. počtem objemových částí sledované plynné látky v miliónu objemových částí vzduchu (ppm = parts per million), při menších hodnotách koncentrace znečisťujících látek v miliardě částí vzduchu (ppb = part per billion; billion v amer. angličtině = miliarda). Jednotky ppm a ppb se používají především v anglosaské literatuře. Např. pro SO2 za standardních podmínek přibližně platí, že 1 ppb = 2,66 µg.m–3, 1 µg.m–3 = 0,38 ppb. V oblasti čistoty ovzduší se jako koncentrace znečisťující látky někdy fyz. nesprávně označuje hmotnost znečisťující látky obsažená v jednotce hmotnosti vzduchu. Směrnice Evropské unie, implementované do vnitrostátního práva členských států, stanovují nejvyšší přípustné koncentrace (NPK) znečišťujících látek v ovzduší a povolené počty jejich překročení. Viz též hygiena ovzduší, imise, měření znečištění ovzduší.
česky: koncentrace znečisťujících látek angl: concentration of harmful substances rus: концентрация вредных примесей něm: Schadstoffkonzentration f  1993-b3
Končekov index zavlaženia
index vláhový Končkův index humidity, který navrhl M. Konček (1955) ve tvaru
Iz=R2+Δ r-10T-(30+v2),
kde R je úhrn srážek za období od dubna do září, Δr kladná odchylka srážek za tři zimní měsíce (prosinec až únor) od hodnoty 105 mm, T je prům. teplota vzduchu za období od dubna do září ve °C, v je prům. rychlost větru ve 14 hodin za totéž období v m.s–1.
Index byl použit při klimatologické rajonizaci bývalého Československa, přičemž byly vymezeny následující oblasti: suché (Iz < –20), mírně suché (–20  Iz < 0), mírně vlhké (0  Iz < 60), vlhké (60  Iz < 120) a velmi vlhké (120  Iz).
česky: index zavlažení Končkův rus: индекс увлажнения Кончека  1993-a2
Končekov vlahový index
česky: index vláhový Končkův  1993-a1
kondenzácia vodnej pary
fázový přechod vody ze skupenství plynného (vodní pára) do skupenství kapalného (voda), při němž dochází k uvolňování latentního tepla kondenzace. Kondenzace vodní páry se uplatňuje v atmosféře při vzniku a růstu oblačných a mlžných kapiček, na zemském povrchu při vzniku kapiček rosy, nebo ovlhnutí předmětů při styku relativně teplého vlhkého vzduchu s chladnějším podkladem. Viz též heterogenní nukleace, kondenzační jádra, koalescence.
česky: kondenzace vodní páry angl: condensation of water vapour, water vapour condensation rus: конденсация водяного пара něm: Wasserdampfkondensation f  1993-a3
kondenzačná hladina
hladina v atmosféře, určená svou výškou, popř. tlakem vzduchu, v níž se vzduch stává nasyceným vodní párou při adiabatickém ději. Přechod do nasyceného stavu je vyvolán ochlazením vzduchu při adiabatické expanzi. Podle podmínek, za nichž adiabatický děj probíhá, rozlišujeme kondenzační hladinu výstupnou, konvekční a turbulentní. Viz též kondenzace vodní páry.
česky: hladina kondenzační angl: condensation level rus: уровень конденсации něm: Kondensationsniveau n  1993-a3
kondenzačná stopa
česky: stopa kondenzační angl: condensation trail, contrail něm: Kondensstreifen m  1993-a2
kondenzačné aerosoly
česky: aerosoly kondenzační fr: particules à (noyau de) condensation pl  2014
kondenzačné jadrá
v meteorologii aerosolové částice, které mají fyz. a chem. vlastnosti vhodné k tomu, aby se staly centry kondenzace vodní páry heterogenní nukleací vody. Bez přítomnosti kondenzačních jader by bylo ke vzniku vodních kapiček homogenní nukleací vody třeba přesycení vodní páry řádu 102 %, které se však v přírodních atmosférických podmínkách prakticky nevyskytuje. Část kondenzačních jader je pevninského, popř. i antropogenního původu (např. některé produkty umělých spalovacích procesů rozptýlené ve vzduchu), avšak značný význam se přisuzuje hygroskopickým a ve vodě rozpustným krystalkům mořských solí, které se do atmosféry dostávají následkem vypařování vodních kapek odstřikujících z mořské pěny. Kondenzační jádra lze klasifikovat z mnoha hledisek. Nejčastější je dělení podle:
a) velikosti na jádra Aitkenova (s poloměrem r < 10–7 m), velká kondenzační jádra (10–7 ≤ r ≤ 10–6 m) a obří kondenzační jádra (r > 10–6 m);
b) skupenství na jádra kapalná a tuhá, resp. smíšená z obou fází;
c) povrchových vlastností na jádra nerozpustná, ale smáčitelná vodou, jádra rozpustná a jádra tvořená kapičkami roztoků solí, kyselin apod.;
d) el. vlastností na jádra neutrální a nabitá (ionty);
e) chem. a fyz. vlastností na jádra přechodná a trvalá.
Nukleační schopnost kondenzačních jader popisujeme pomocí tzv. spektra aktivity jader, které udává počet kondenzačních jader v jednotce objemu vzduchu aktivních při daném přesycení. Obvyklým vyjádřením spektra aktivity je vztah ve tvaru n = n0Sk, kde n udává objemovou koncentraci jader aktivních při přesycení S [%] a empirické parametry n0 a k jsou nejčastěji udávány odděleně pro maritimní a kontinentální kondenzační jádra. Viz též aerosol atmosférický.
česky: jádra kondenzační angl: condensation nuclei rus: ядра конденсации něm: Kondensationskerne m/pl  1993-a3
kondenzačné stopy
nevhodné označení, viz pruh kondenzační, pás kondenzační.
česky: sledy kondenzační rus: конденсационные следы něm: Kondensstreifen m  1993-a3
kondenzačný chobot
viz tromba.
česky: chobot kondenzační angl: funnel, funnel cloud, trunk rus: воронка тромба, воронкообразное облако, конденсационный хобот, хобот смерча něm: Trombenschlauch m  1993-b3
kondenzačný pás
česky: pás kondenzační něm: Kondensstreifen m  1993-a1
kondenzačný pruh
syn. pás kondenzační, stopa kondenzační – umělý oblak vzhledu cirrucirrocumulu, který vzniká za letadlem nebo raketou v horní troposféře a ve spodní stratosféře. Kondenzační pruhy bývají zpočátku široké 5 až 10 m a vytvářejí se ve vzdálenosti 50 až 100 m za letadlem. Jejich trvání zpravidla nepřesahuje 40 minut. Nejčastěji se vyskytují při teplotě –40 až –50 °C ve výšce 7 až 12 km. Vert. tloušťka vrstvy s vhodnými podmínkami pro vznik kondenzačních pruhů bývá asi 2 km. Kondenzační pruh vzniká kondenzací vodní páry na kondenzačních jádrech, která dodávají letadla a rakety do ovzduší, a následným mrznutím vzniklých přechlazených kapek. Jeho vznik je ovlivňován i poklesem tlaku vzduchu v oblasti adiabatického rozpínání vzduchu. Z angl. condensation trail vznikl mezinárodně často používaný termín (zkratka) contrail. Ve starší české literature se lze setkat s nevhodným označením „kondenzační sledy“, které vzniklo přímým převzetím ruského termínu.
česky: pruh kondenzační angl: condensation trail , contrail rus: адиабатический след, конденсационный след něm: Kondensstreifen m  1993-a3
kondenzačný vlhkomer
vlhkoměr sloužící k určení teploty rosného bodu nebo teploty bodu ojínění stanovením teploty uměle ochlazovaného, zpravidla leštěného, kovového povrchu v okamžiku, kdy se na něm objeví kapalná nebo pevná fáze vody.
česky: vlhkoměr kondenzační angl: dewpoint hygrometer rus: конденсационный гигрометр  1993-a3
kondenzátor zemský
česky: kondenzátor zemský něm: Erdkondensator m  2016
konfluencia
míra sbíhavosti proudnic v poli proudění. Někdy se nesprávně zaměňuje s konvergencí proudění. Viz též čára konfluence.
česky: konfluence angl: confluence rus: конфлюэнция, сходимость něm: Konfluenz f  1993-a2
konfluentné prúdenie
proudění charakterizované sbíhajícími se proudnicemi. Viz též proudění difluentní.
česky: proudění konfluentní angl: confluent flow rus: сходимый поток něm: konfluente Strömung f  1993-a1
konimeter
syn. prachoměr.
česky: konimetr angl: konimeter rus: кониметр něm: Konimeter n  1993-a1
konské šírky
námořnické označení pro oblasti oceánů v zeměp. šířkách 25 až 40°, přesněji pro vnitřní části subtropických anticyklon se slabým větrem nebo častým bezvětřím. Název koňské šířky pochází z doby plachetnic, kdy se přepravovali koně napříč oceánem z Evropy do Ameriky. V uvedených zeměp. šířkách se pro slabý vítr plavba zdržovala a koně na palubách plachetnic hynuli nedostatkem pitné vody, když se cesta příliš prodloužila. Viz též pás vysokého tlaku vzduchu subtropický, tišiny subtropické, čtyřicítky řvoucí.
česky: šířky koňské angl: horse latitudes rus: конские широты něm: Rossbreiten pl  1993-a1
kontaktový anemometer
miskový nebo lopatkový anemometr, v němž se mžikově uzavírá el. kontakt po určitém konstantním počtu otáček rotujícího čidla. Uzavření kontaktu bývá indikováno pomocí světelných nebo zvukových signálů. Doba mezi dvěma po sobě následujícími signály se měří stopkami nebo jsou el. impulzy zaznamenávány na registrační válec s konstantní rotační rychlostí. Jde o přístroj, který se už v současném meteorologickém provozu nepoužívá.
česky: anemometr kontaktový angl: contact-cup anemometer něm: Kontaktanemometer n rus: контактный анемометр fr: anémomètre à contacts m  1993-a3
kontaminácia
v čes. met. literatuře méně používaný termín pro znečištění ovzduší.
česky: kontaminace angl: contamination rus: загрязнение něm: Kontamination f, Verunreinigung f  1993-a3
kontinentalita klímy
souhrn vlastností klimatu podmíněných působením pevniny na procesy geneze klimatu, a to v protikladu k oceánitě klimatu. Obecně vzrůstá směrem od oceánu do nitra pevniny, přičemž je charakteristická pro vnitrozemí rozlehlých pevnin a pro oblasti ležící od pobřeží proti směru převládajícího větru. Relativně kontinentální je i klima pobřeží omývaných studenými oceánskými proudy. Mezi oceánickým a kontinentálním klimatem může existovat široké pásmo přechodného klimatu nebo naopak výrazný klimatický předěl, způsobený nejčastěji meridionálně orientovanou klimatickou bariérou. V členitém reliéfu je míra kontinentality značně heterogenní v závislosti na jeho tvarech. Kontinentalita klimatu se projevuje v ročním, případně i denním chodu řady klimatických prvků, přičemž tyto projevy nemusí být stejně výrazné. Z tohoto hlediska rozlišujeme především kontinentalitu klimatu termickou a ombrickou, dále pak barickou, vyjádřenou v tlakovém poli přítomností sezonních akčních center atmosféry. Kromě toho se kontinentalita klimatu projevuje v průměru menší relativní vlhkostí vzduchu, menší rychlostí větru a menší oblačností v létě a ve dne. Dynamická klimatologie rozeznává dynamickou kontinentalitu podle četnosti výskytu pevninského, resp. mořského vzduchu. Pro vyjádření míry kontinentality klimatu bylo navrženo mnoho indexů kontinentality, ta nicméně může kolísat během roku nebo se měnit v čase v souvislosti s kolísáním klimatu, případně změnami klimatu.
česky: kontinentalita klimatu angl: continentality of climate rus: континентальность климата něm: Kontinentalität des Klimas f  1993-a3
kontinentálna anticyklóna
studená anticyklona vytvářející se nad prochlazenou pevninou v zimě. Je obvykle sezonním akčním centrem atmosféry. Mezi kontinentální anticyklony patří zejména sibiřská a kanadská anticyklona.
česky: anticyklona kontinentální angl: continental anticyclone něm: kontinentale Antizyklone f rus: континентальный антициклон fr: anticyclone continental m  1993-a3
kontinentálná klíma
syn. klima pevninské – klima s výraznou kontinentalitou klimatu.
česky: klima kontinentální angl: continental climate rus: континентальный климат něm: kontinentales Klima n  1993-b3
kontinentálny vzduch
česky: vzduch kontinentální angl: continental air  1993-a1
kontrolný tlakomer
syn. tlakoměr Wildův–Fuessův – dvouramenný rtuťový nádobkový–násoskový tlakoměr s pohyblivým dnem nádobky, dříve často používaný jako etalonový normální tlakoměr při zkoušení jiných rtuťových tlakoměrů.
česky: tlakoměr kontrolní rus: контрольный барометр  1993-a3
konvekcia
v meteorologii vzestupné a kompenzační sestupné pohyby vzduchu v atmosféře, přičemž vzestupné pohyby mívají větší rychlost. Konvekce je v obvyklém fyzikálním smyslu vyvolávána kladným vztlakem, vznikajícím následkem horiz. nehomogenit hustoty vzduchu při zemském povrchu a ve volné atmosféře. Tyto nehomogenity se projevují hlavně jako nehomogenity teplotní. V meteorologii se však do pojmu konvekce běžně zahrnují i vzestupné pohyby v oblastech frontálních či jiných atmosférických rozhraní, dále pak vert. pohyby vzduchu při obtékání orografických překážek, popř. při proudění nad povrchem s prostorově proměnnou drsností. Podstatným mechanizmem pro vývoj konvekce jsou vynucené vzestupné pohyby na frontálních či jiných atmosférických rozhraních. Konvekce při zemském povrchu vzniká též vlivem orografie, popř. vlivem proměnné drsností povrchu. Vývoj konvekce je významně podporován baroklinitou v atmosféře, sbíhavostí v poli proudění ve spodní troposféře a odchylkami od hydrostatické rovnováhy při rychlejším poklesu atmosférického tlaku s výškou (oblasti výškových cyklon a brázd nízkého tlaku).
Konvekci v atmosféře dělíme z různých hledisek, např. podle vertikálního rozsahu na konvekci mělkou a konvekci vertikálně mohutnou nebo podle iniciačního mechanizmu na konvekci termickou a konvekci vynucenou aj. Konvekce se významně podílí na vertikálním transportu hybnosti, tepla, vlhkosti a dalších komponent atmosféry od zemského povrchu do vyšších hladin a patří k jevům mezosynoptického měřítka nebo mikroměřítka. Rychlosti vzestupných pohybů jsou řádu jednotek až desítek m.s–1. V extrémních případech dosahují až hodnot kolem 65 m.s–1. Viz též komín termický, oblak konvektivní, bouře konvektivní. Mimo meteorologii se s konvekcí setkáváme v astronomii, geofyzice i v dalších oborech.
česky: konvekce angl: convection rus: конвекция něm: Konvektion f  1993-a3
konvekčná bunka
cirkulační element vytvářející základní jednotku buněčné konvekce a obsahující výstupný i sestupný proud vzduchu. V tomto směru může být typickým příkladem Bénardova buňka. Někteří autoři do tohoto pojmu zahrnují i jednoduché cely vyskytující se buď samostatně nebo jako součást multicely, popř. i strukturálně podstatně složitější cirkulaci supercely. Viz též bouře konvektivní.
česky: buňka konvekční angl: convective cell něm: Konvektionszelle f rus: конвективная ячейка, ячейка конвекции fr: cellule convective f, cellule de convection f  1993-a3
konvekčná búrka
syn. bouře konvekční – souhrnné obecné označení pro meteorologické jevy, které se vyskytují při vývoji konvektivních oblaků druhu cumulonimbus nebo jejich soustav. Zahrnuje např. výskyt bouřky, tornáda, krup, prudkého nárazovitého větru nebo přívalového deště. Nepřesně se pro termín konv. bouře používá jako synonymum či hovorové označení termín bouřka. Jako bouře velmi silné intenzity (angl. severe storms) jsou zpravidla označovány konv. bouře splňující alespoň jedno z těchto kritérií: výskyt tornáda, výskyt krup o průměru větším než 2 cm, výskyt ničivého větru o rychlosti přesahující 25 m.s–1. Viz též multicela, supercela, gust fronta, downburst, jednoduchá cela.
česky: bouře konvektivní angl: convective storm rus: конвективная буря něm: konvektiver Sturm m, konvektiver Sturm m fr: orage m  1993-a3
konvekčná búrka
syn. bouřka konvekční – nepřesné zkrácené označení pro konvektivní bouři. Viz též bouřka.
česky: bouřka konvektivní angl: convective thunderstorm něm: konvektives Gewitter n rus: конвективная гроза fr: orage m, orage de convection m  1993-b3
konvekčná instabilita ovzdušia
česky: instabilita atmosféry konvekční angl: convective instability rus: конвективная неустойчивость атмосферы něm: konvektive Instabilität der Atmosphäre f  1993-a2
konvekčná kondenzačná hladina
kondenzační hladina dosažená vzduchovou částicí, jejíž počáteční teplota odpovídá hodnotě konvekční teploty a vlhkost odpovídá hodnotě přízemní vlhkosti, při výstupu z přízemní hladiny. Na termodynamickém diagramu určujeme konv. kondenzační hladinu průsečíkem izogramy vedené z teploty přízemního rosného bodu a křivky teplotního zvrstvení. Viz též teplota konvekční kondenzační hladiny.
česky: hladina kondenzační konvekční angl: convective condensation level rus: конвективный уровень конденсации něm: Konvektionskondensationsniveau n  1993-a3
konvekčná rovnováha
česky: rovnováha konvekční angl: convective equilibrium rus: конвективное равновесие něm: konvektives Gleichgewicht n  1993-a3
konvekčná teória cyklogenézy
česky: teorie cyklogeneze konvekční angl: convective theory of cyclogenesis rus: конвективная теория циклонообразования  1993-a1
konvekčná teplota
hodnota přízemní teploty vzduchu, při jejímž dosažení v denním chodu nastanou podmínky vhodné pro spontánní vývoj konvektivních oblaků. Na termodynamickém diagramu se určí jako průsečík přízemní izobary a suché adiabaty, která prochází bodem vyznačujícím na křivce teplotního zvrstvení polohu konvektivní kondenzační hladiny. Hodnotu konv. teploty lze použít při předpovědi vývoje konv. oblačnosti za předpokladu, že poloha přízemní teploty rosného bodu se významně nezmění. Viz též instabilita atmosféry termická.
česky: teplota konvekční angl: convection temperature, convective temperature rus: температура конвекции  1993-a3
konvekčná turbulencia
označení pro turbulenci vznikající a vyskytující se zpravidla v souvislosti s termickou konvekcí.
česky: turbulence konvekční angl: convective turbulence rus: конвективная турбулентность  1993-a1
konvekčné zrážky
syn. srážky konvektivní – srážky vypadávající ze srážkových kupovitých oblaků, zejména z oblaků druhu cumulonimbus. Mohou mít formu přeháněk s omezeným plošným rozsahem, krátkou dobou trvání a rozdílnou intenzitou. Mohou však dosáhnout i formy přívalového deště. Bývají doprovázeny bouřkou. Ve stř. zeměp. šířkách jsou v létě tvořeny deštěm, někdy s kroupami, v přechodných roč. dobách a v zimě zpravidla mokrým sněhem nebo sněhovými krupkami. V nízkých zeměp. šířkách, kde se mohou srážkové částice vyvinout i v teplých oblacích, vypadávají silné konv. srážky i z oblaků cumulus congestus. Viz též intenzita srážek, teorie vzniku srážek koalescencí.
česky: srážky konvekční angl: convective precipitation rus: конвективные осадки něm: konvektiver Niederschlag m  1993-a3
konvekčný oblak
syn. oblak konvekční – oblak, jehož vývoj je důsledkem výstupných pohybů vzduchu vyvolaných konvekcí. Typickými konv. oblaky jsou oblaky druhu cumulus a cumulonimbus.
česky: oblak konvektivní angl: convective cloud rus: конвективное облако něm: konvektive Wolke f  1993-b3
konvekčný vietor
jedna ze složek ageostrofického větru. Vektor rychlosti konvekčního větru vko je v z-systému dán vztahem:
vko=gvz λ2THT,
kde g značí velikost tíhového zrychlení, vz vertikální rychlost, λ Coriolisův parametr, T teplotu vzduchu a H horiz. gradient. Z uvedeného vzorce vyplývá, že konvekční vítr směřuje ve směru největšího horiz. vzrůstu (poklesu) teploty vzduchu, jestliže vert. rychlost v z-systému je záporná (kladná). V p-systému lze konvekční vítr vyjádřit ve tvaru
vko=ωα λ2TpT,
v němž α znamená měrný objem vzduchu, ω vertikální rychlost v p-systému a p izobarický gradient.
česky: vítr konvekční angl: convection wind  1993-a1
konvenčná klasifikácia klímy
česky: klasifikace klimatu konvenční něm: konventionelle Klimaklassifikation f  1993-b2
konvenčná tropopauza
definice tropopauzy přijatá Aerologickou komisí Světové meteorologické organizace r. 1957 a později ještě upravená, podle níž
a) "první tropopauza" je nejnižší hladina, ve které poklesne teplotní gradient na 2 °C/km nebo méně za předpokladu, že prům. gradient mezi touto hladinou a všemi vyššími hladinami uvnitř vrstvy silné 2 km nepřekročí 2 °C/km;
b) jestliže v některé hladině nad první tropopauzou překročí vert. gradient teploty 3 °C/km a prům. vert. gradient teploty mezi touto hladinou a všemi vyššími hladinami ve vrstvě silné 1 km je větší než 3 °C/km, potom "druhá tropopauza" je definována stejně jako první. Uvedená kritéria se používají zpravidla v hladinách nad 500 hPa.
česky: tropopauza konvenční angl: convectional tropopause rus: конвенционная тропопауза  1993-a2
konvergencia prúdenia
česky: konvergence proudění angl: convergence of wind rus: конвергенция тока něm: Strömungskonvergenz f  1993-a1
konvergujúce prúdenie
česky: proudění konvergující angl: convergent flow rus: сходимый поток něm: konvergierende Strömung f  1993-a1
konzervatívne vlastnosti vzduchových hmôt
vlastnosti, které se v průběhu času nemění, resp. mění se tak pomalu, že po jistý časový interval jejich číselná hodnota charakterizuje danou vzduchovou hmotu. Za konzervativní pokládáme v praxi takové vlastnosti, které min. podléhají vnějším vlivům a změnám při adiabatických dějích. Ve volné atmosféře k nim počítáme např. izobarickou ekvivalentní poenciální teplotu, méně už potenciální teplotu a dále měrnou vlhkost vzduchu, u zemského povrchu např. teplotu rosného bodu.
česky: vlastnosti vzduchových hmot konzervativní angl: conservative air masses feature rus: консервативные свойства воздушной массы  1993-a2
koordinovaný svetový čas
(UTC) – mezinárodní časový standard, který je měřen pomocí atomových hodin, a proto je nezávislý na rychlosti rotace Země. Vzhledem ke změnám v rotaci Země se UTC liší od tzv. univerzálního času UT1. Ten je založen na rotaci Země, měřen v současné době interferometricky z pozorování vzdálených kvasarů a přepočítán z míst pozorování na Greenwichský poledník, včetně opravy eliminující vliv pohybu pólů na zeměpisnou délku. Pro zachování synchronizace dne a noci se UTC upravuje přibližně jednou za rok pomocí jednosekundových oprav (tzv. přestupných sekund) tak, aby rozdíl mezi UTC a univerzálním časem UT1 nepřesáhl hodnotu 0,8 sekundy. O provedení úpravy UTC rozhoduje mezinárodní organizace IERS (International Earth Rotation and Reference Systems Service) podle měření rotace Země. Vzhledem k tomu, že se rotace Země mírně zpomaluje, jsou přestupné sekundy vždy přidávány, teoreticky se však počítá i s odečtením přestupné sekundy. UTC je základem systému občanského času a jednotlivá časová pásma jsou definována odchylkami od UTC, např. středoevropský čas SEČ = UTC + 1. Údaje z meteorologických pozorování pro mezinárodní výměnu jsou uváděna s časovou identifikací v UTC.
česky: čas světový koordinovaný angl: Universal Time Coordinated něm: koordinierte Weltzeit f, UTC rus: координированное мировое время, всемирное координированное время fr: temps universel coordonné m  1993-a3
kopa
čes. překlad termínu cumulus. Viz též oblak kupovitý.
česky: kupa rus: куча  1993-a1
kopovitá oblačnosť
česky: oblačnost kupovitá rus: кучевая облачность něm: Haufenwolken f/pl  1993-a1
kopovitý oblak
oblak s patrnou strukturou v podobě valounů, zaoblených vrcholků vln apod., jehož horiz. rozměry jsou srovnatelné s jeho vert. rozsahem. Vzniká v důsledku konvekce nebo dynamické a mechanické turbulence při vert. rychlostech řádu m.s–1. Typickými kupovitými oblaky jsou cumulus a cumulonimbus. Pojem kupovitý oblak se vztahuje k vnějšímu vzhledu konv. oblaků, není přesněji vymezen a v mezinárodní morfologické klasifikaci oblaků se nepoužívá. Viz též oblak vrstevnatý.
česky: oblak kupovitý angl: cumuliform cloud rus: кучевообразные облака něm: Haufenwolke f  1993-a3
Köppenova klasifikácia klímy
jediná celosvětově rozšířená efektivní klasifikace klimatu, postupně vytvářená W. Köppenem (ve finální verzi Köppen, 1936). Další dílčí úpravy provedl R. Geiger (1961), proto bývá někdy označována i jako Köppenova-Geigerova. Původní Köppenova klasifikace vycházela čistě z fytogeografického hlediska, později byla vztažena k rozložení teploty vzduchu a srážek na Zemi. Rozlišuje pět hlavních klimatických pásem, označených velkými písmeny:
A – tropické dešťové klima;
B – suché klima;
C – mírné dešťové klima;
D – boreální klima;
E – sněhové klima.
Hlavní klimatická pásma se dále dělí do klimatických typů, jejichž hranice jsou určeny např. izotermami prům. měs. teploty vzduchu nejteplejších a nejchladnějších měsíců nebo poměrem úhrnů srážek v zimě a v létě. Viz též klasifikace klimatu Trewarthaova.
česky: klasifikace klimatu Köppenova angl: Köppen`s classification of climate rus: классификация климатов Кеппена něm: Klimaklassifikation nach Köpppen f  1993-b2
korekcia údaja výškomeru
z met. hlediska oprava údaje aneroidového výškoměru při zjišťování skutečných výšek nebo výškových rozdílů. Protože stupnice přístroje je konstruována podle rozložení tlaku vzduchu ve standardní atmosféře, má na tyto opravy vliv kolísání atm. tlaku v počátečním bodě nastavení a skutečný průběh teploty vzduchu ve vrstvě změřeného výškového rozdílu. Např. pro daný konstantní rozdíl výšek je hodnota barometrického rozdílu různá, při nadnormálním tlaku je vyšší než za normálu, stejně tak při chladnějším vzduchu a naopak. Podobně platí odvozené vztahy pro přepočet výšek z naměřeného barometrického rozdílu. Je proto nutné při přesném měření započítat opravy, které se dají odvodit např. z výpočtů podle barometrické formule.
česky: opravy údaje výškoměru angl: altimeter corrections rus: поправки высотомера něm: Korrektur der Höhenmessung f  1993-a1
korekcie družicových údajov
potlačení či odstranění různých chyb a nepřesností měření přístroji na meteorologických družicích, případně cílená úprava některých jejich vlastností. Zahrnuje např. geometrické korekce, filtraci šumu, odstranění chybných dat, konverzi dat na určitou nominální polohu družice (u geostacionárních družic), aj.
česky: korekce družicových dat angl: satellite data corrections rus: поправка (исправление) спутниковых данных něm: Korrektur der Satellitendaten f  1993-a3
koróna
fotometeor, vznikající ohybem světla na vodních kapičkách kouřma, mlhy nebo oblaků; je tvořený jedním nebo více sledy (sériemi) soustředných barevných kruhů (prstenců) poměrně malého průměru kolem Slunce nebo Měsíce; sérií bývá jen zřídka více než tři. V každé sérii je uvnitř fialová nebo modrá barva, vnější kruh je červený a mezi nimi se vyskytují ostatní barvy. Velikost a jas barev koróny závisí na spektru velikostí vodních kapiček. V případě kapiček o shodných velikostech je koróna nejvýraznější. Úplné vysvětlení koróny na základě ohybu světla podal franc. fyzik E. Verdet v r. 1852. Viz též aureola, kolo malé.
česky: koróna angl: corona rus: венец, корона něm: Korona f  1993-a3
korónový výboj
trsovitý el. výboj z elektrody udržované na vysokém elektrickém potenciálu v elektricky neutrálním prostředí, zpravidla plynu. Tento typ výboje předpokládá, že v důsledku dostatečně silného elektrického pole v bezprostředním okolí zmíněné elektrody zde dochází k ionizaci nárazem a vytváří se tak plazma. Meteorologickým příkladem, kdy v roli elektrody působí uzemněný vodič bodových rozměrů, jsou intenzivní hrotové výboje projevující se jako oheň svatého Eliáše.
česky: výboj korónový angl: corona discharge 
korpuskulárne žiarenie
záření tvořené toky atomových jader, elektronů, protonů, neutronů, pozitronů, mezonů atd. Příkladem korpuskulárního záření je radioakt. záření typu alfa nebo beta, korpuskulární kosmické záření a zejména korpuskulární záření Slunce, zahrnující i sluneční vítr, tj. spojité vytékání plazmy z oblasti sluneční koróny. Korpuskulární sluneční záření vyvolává při interakci se zemským magnetickým polem a atmosférou polární záře, magnetické bouře a další geofyz. jevy. Viz též činnost sluneční.
česky: záření korpuskulární angl: corpuscular radiation rus: корпускулярнoe излучение  1993-a1
Koschmiederov vzťah
vztah vyjadřující závislost mezi prahovým kontrastem oka, propustností atmosféry, dohledností a vzdáleností mezi světelným zdrojem a fotometrem. Používá se ve tvaru:
Ec=PD/Z,
kde Ec je prahový kontrast oka v % (při přepočtu hodnoty propustnosti atmosféry na dráhovou dohlednost se používá hodnota 5 %), P propustnost atmosféry v %, D dohlednost v m a Z vzdálenost světelného zdroje od fotometru udaná v m. V letecké meteorologii se Koschmiederův vztah používá při přepočtu hodnot propustnosti atmosféry na dráhovou dohlednost. Vzorec slouží i k porovnání měřené a vizuálně odhadované dohlednosti. Byl nazván podle něm. meteorologa H. Koschmiedera (1925). Viz též měření dráhové dohlednosti, vztah Allardův.
česky: vztah Koschmiederův angl: Koschmieder formula  1993-a3
košava
mírný až silný nárazovitý vítr jv. směru v sev. Srbsku. Vyskytuje se v chladném pololetí (od října do dubna), nejčastěji trvá 2 až 3 dny, výjimečně až 30 dnů. Jeho nárazy dosahují 25 až 35 m.s–1, max. rychlosti dosahuje košava ve výšce kolem 300 m nad zemí. Jde o nízkohladinové tryskové proudění v mezní vrstvě atmosféry na okraji anticyklony nad Ukrajinou, zesilované orografií Karpat a Balkánu. Oblast, v níž se košava projevuje, mívá délku zpravidla kolem 300 km a šířku kolem 200 km. Při košavě převládá málooblačné počasí beze srážek s teplotami vzduchu závisejícími na charakteru advehované vzduchové hmoty. Košava působí značné škody v zemědělství (odnos osevů, nánosy písku), v dopravě a energetice (při teplé advekci škody způsobené námrazou na el. vedení).
česky: košava angl: kossava rus: кошава něm: Košava m  1993-a1
kovový tlakomer
česky: tlakoměr kovový angl: metallic barometer rus: металлический барометр  1993-a2
kozmická meteorológia
starší označení pro část meteorologie, která studuje jevy, vyskytující se úplně nebo zčásti mimo atmosféru Země. V současné době se tento termín neužívá a uvedené problémy jsou zahrnuty do pojmů družicová meteorologie a kosmické počasí.
česky: meteorologie kosmická angl: cosmical meteorology rus: космическая метеорология něm: kosmische Meteorologie f  1993-a3
kozmické lúče
česky: paprsky kosmické angl: cosmic rays rus: космические лучи něm: kosmische Strahlen m, kosmische Strahlen m  1993-a1
kozmické počasie
fyzikální a fenomenologický stav meziplanetárního prostoru. Výzkum kosmického počasí usiluje pomocí pozorování, monitorování, analýz a modelování o pochopení a předpovídání stavu Slunce, meziplanetárního prostoru a vnějších obalů planet i náhlých změn tohoto stavu, vyvolaných sluneční činností a dalšími zdroji, i o předpovědi možných dopadů na biologické a technologické systémy.
česky: počasí kosmické angl: space weather něm: Weltraumwetter n  2014
kozmické žiarenie
syn. paprsky kosmické – záření s vysokou energií (107 až cca 1020 eV) a pronikavostí. V kosmickém záření výrazně převažují nabité částice, jejichž dráhy jsou zakřivovány zejména v magnetických polích. Primární kosmické záření proniká do zemské atmosféry z vesmíru a skládá se z jader atomů vodíku (protonů), helia (alfa–částic) a dalších prvků, dále z elektronů a γ–fotonů. Interakcí primárního kosmického záření s atomy v atmosféře vzniká sekundární kosmické záření, které zahrnuje prakticky všechny známé formy elementárních částic. Vznikají tak nové částice s vysokou energií vytvářející tzv. spršky sekundárního kosmického záření. Z hlediska atmosférické elektřiny jsou v těchto sprškách významné tzv. ubíhající elektrony, kterým se dnes mnohými autory připisuje zásadní význam pro vznik blesků při bouřkách. Hustota toku kosmického záření v atmosféře s výškou rychle roste a ve vysokých vrstvách atmosféry se ustavuje přibližně na hodnotě 1 700 částic procházejících plochou 1 m2 za sekundu. Kosmické záření, které zachycujeme na Zemi, je téměř přesně izotropní, tedy přichází ze všech směrů stejně. Drobné odchylky od této izotropie jsou způsobeny v nízkoenergetické oblasti (do 1011 eV) zářením přicházejícím od Slunce, přičemž tato složka jeví znatelné 11leté variace shodné se slunečním cyklem. Pro vyšší energie je odchylka od izotropie menší než 1 %. Informace o kosmickém záření mají význam při zabezpečování letů ve velkých výškách, kde toto záření může v organismu vyvolávat rozklad bílkovinných molekul s následným onemocněním. Objev kosmického záření se připisuje V. F. Hessovi a W. Kolhörsterovi (1913), kteří ho prokázali při balónových letech ve velkých výškách. Na nový druh záření však upozornili již v r. 1902 E. Rutherford a H. L. Cook.
česky: záření kosmické angl: cosmic radiation, cosmic rays rus: космическая радиация  1993-a3
kozmický prach
velmi malé částice pevných kosmických látek, jež dopadají do zemské atmosféry a na zemský povrch. Roč. množství činí 104 až 106 t. Jsou to produkty rozpadu asteroidů, komet, meteoritů apod. Byly pozorovány i oblaky kosmického prachu, tzv. meteorický prach.
česky: prach kosmický angl: cosmic dust rus: космическая пыль něm: kosmischer Staub m  1993-a3
krajinský dážď
zast. označení pro trvalý déšť.
česky: déšť krajinný angl: widespread rain něm: Landregen m rus: обложной дождь fr: pluie régionale f  1993-a3
krátkodobá koncentrácia znečisťujúcich látok v ovzduší
stř. hodnota koncentrace znečišťující látky v ovzduší zjištěná na stanoveném místě v časovém intervalu řádu minut (v ČR obvykle 60 min. apod.). Vyjadřuje krátkodobé extrémní hodnoty znečištění ovzduší způsobem postačujícím pro praxi.
česky: koncentrace znečišťující látky v ovzduší krátkodobá angl: short-term concentration of heterogeneous matter in atmosphere rus: кратковременная концентрация инородного вещества в воздухе něm: Kurzzeitkonzentration von Fremdstoffen in der Luft f  1993-b3
krátkodobá predpoveď počasia
předpověď budoucího stavu počasí v daném místě nad určitou oblastí nebo územím na období od 12 hodin do 3 dnů. Pro její zpracování se v současnosti používá především numerických předpovědí počasí. Viz též předpověď počasí střednědobá, dlouhodobá, velmi krátkodobá.
česky: předpověď počasí krátkodobá angl: short-range forecast rus: краткосрочный прогноз něm: kurzfristige Vorhersage f  1993-a3
krátkovlnné žiarenie
v meteorologii elmag. záření o vlnových délkách kratších než 3 µm. Viz též záření dlouhovlnné.
česky: záření krátkovlnné angl: short-wave radiation rus: коротковолновая радиация  1993-a3
krepuskulárne lúče
temné pruhy ve směru slunečních paprsků při poloze Slunce za obzorem. V podstatě to jsou stíny oblaků, které rovněž mohou být za obzorem, promítající se na pevné nebo kapalné částice, vznášející se v atmosféře. Někdy se stíny promítají až na opačnou stranu oblohy a jsou pozorovatelné v blízkosti antisolárního bodu. V tomto případě se nazývají antikrepuskulární paprsky. Krepuskulární paprsky patří k fotometeorům. Termín paprsky krepuskulární se primárně vztahuje k situacím při zapadajícím nebo vycházejícím Slunci, popř. v době soumraku, kdy tyto paprsky vytvářejí jakoby vějíř rozevírající se vzhůru. Někdy se však jako paprsky krepuskulární označuje i obdobný jev při větších výškách Slunce nad obzorem a otvorech v oblačné vrstvě, kdy se zmíněný vějíř rozevírá dolů.
česky: paprsky krepuskulární angl: crepuscular rays rus: сумеречные лучи něm: Crepuskularstrahlen m/pl, Crepuskularstrahlen m/pl  1993-a3
kreslenie poveternostných máp
zakreslování meteorologických informací, tj. pozorovaných hodnot meteorologických prvků nebo jevů po jejich dekódování z meteorologických zpráv do podkladových map různých zobrazení a měřítek. Informace se zakreslují pomocí znaků a číslic uspořádaných kolem staničního kroužku podle příslušného staničního modelu, odlišného podle měřítka mapy, jejího účelu a druhu. Kreslení povětrnostních map se provádí automaticky pomocí výpočetní techniky. Dříve se povětrnostní mapy kreslily ručně, což bylo časově i personálně velmi náročné. Viz též analýza synoptických map.
česky: kreslení povětrnostních map angl: drawing of weather charts rus: составление синоптических карт něm: Wetterkartenzeichnen n  1993-a3
krieda
nejmladší geol. perioda mezozoika (druhohor), zahrnující období před 145 – 66 mil. roků. Do té doby blízko sebe ležící pozůstatky superkontinentu Pangea se od sebe postupně vzdálily, takže uspořádání kontinentů se začalo blížit dnešnímu. Tehdejší klimatické optimum dalo vzniknout mj. mohutným vápencovým souvrstvím i ložiskům ropy.
česky: křída angl: Cretaceous něm: Kreide f  2018
kritická rýchlosť prúdenia
rychlost, při níž přechází laminární prouděníproudění turbulentní. V meteorologii se s ní setkáváme např. při fyzikálním modelování procesů v mezní vrstvě atmosféry pomocí aerodyn. nebo viskózních modelů. Viz též turbulence, číslo Reynoldsovo.
česky: rychlost proudění kritická angl: critical velocity of flow, critical velocity of streaming rus: критическая скорость течения něm: kritische Strömungsgeschwindigkeit f  1993-a2
kritická teplota
hodnota teploty, při jejímž překročení již nelze dosáhnout kapalného stavu dané látky. Při dosažení kritické teploty tedy mizí rozhraní mezi kapalnou a plynnou fází. Pro vodu má kritická teplota hodnotu 647,3 K (374,1 °C). Na hodnotě kritické teploty končí na fázovém diagramu typu p – T křivka vypařování a tento koncový bod se označuje jako kritický bod. Odpovídá mu tlak vodní páry 22,13 MPa.
česky: teplota kritická angl: critical temperature  2017
kritický bod
česky: bod kritický angl: crititcal point něm: kritischer Punkt m  2017
krivka nasýtených pár
česky: křivka nasycených par něm: Sättigungsdampfdruckkurve f  2017
krivka rosného bodu
syn. depegram – grafické vyjádření průběhu teploty rosného bodu s tlakem vzduchu (výškou) na termodynamickém diagramu jako výsledek aerologického měření vlhkosti vzduchu. Využívá se pro stanovení dalších vlhkostních charakteristik volné atmosféry. Viz též křivka teplotního zvrstvení.
česky: křivka rosného bodu angl: depegram rus: кривая точки росы něm: Taupunktkurve f  1993-a2
krivka sublimačná
křivka na fázovém diagramu, která představuje rozhraní mezi plynnou a pevnou fází sledované látky (v met. mezi vodní párou a ledem). Vychází z trojného bodu a určuje podmínky, za nichž je pevná a plynná fáze v termodynamické rovnováze.
česky: křivka sublimační angl: sublimation phase boundary něm: Sublimationskurve f  2017
krivka teplotného zvrstvenia
grafické vyjádření průběhu teploty vzduchu s výškou (tlakem) na termodynamickém diagramu. Křivku teplotního zvrstvení sestrojujeme především na základě údajů z radiosond.
česky: křivka teplotního zvrstvení angl: lapse rate curve, temperature stratification curve rus: кривая температурной стратификации něm: Temperaturschichtungskurve f  1993-a2
krivka topenia
křivka na fázovém diagramu, která představuje rozhraní mezi pevnou a kapalnou fází sledované látky (v met. mezi ledem a kapalnou vodou). Vychází z trojného bodu a určuje podmínky, za nichž je pevná a kapalná fáze v termodynamické rovnováze.
česky: křivka tání angl: melting phase boundary něm: Schmelzkurve f  2017
krivka vyparovania
syn. křivka výparu, křivka nasycených par – křivka na fázovém diagramu, která představuje rozhraní mezi plynnou a kapalnou fází sledované látky (v met. mezi vodní párou a kapalnou vodou). Fázový diagram vody prochází trojným bodem a určuje podmínky, za nichž je vodní pára a kapalná voda v termodynamické rovnováze. Směrem od trojného bodu k vyšším teplotám končí v kritickém bodě, směrem k nižším teplotám odpovídá přechlazené vodě. Viz též Clausiova a Clapeyronova rovnice.
česky: křivka vypařování angl: vapor-pressure curve, vaporization phase boundary něm: Verdunstungskurve f  2017
krivostná vorticita
složka relativní vorticity určená zakřivením proudnic. V přirozené souřadnicové soustavě lze křivostní vorticitu ξR určit podle vztahu:
ξR=Vn,
kde V představuje rychlost větru, n je směr orientovaný kolmo a vlevo vůči směru proudění. Čím větší je zakřivení proudnic, tím vyšší hodnoty nabývá křivostní vorticita. Je-li zakřivení cyklonální, má křivostní vorticita na sev. (již.) polokouli kladnou (zápornou) hodnotu, pro anticyklonální zakřivení je hodnota křivostní vorticity záporná (kladná). Tato složka relativní vorticity působí neomezené stáčení proudění a má za následek např. spirálovitý tvar oblačného pásu v centru cyklony. Termín se používá hlavně pro pohyby synoptického měřítka. Viz též vorticita střihová, rovnice vorticity.
česky: vorticita křivostní angl: curvature vorticity  2015
kruh vedľajších sĺnc
česky: kruh vedlejších sluncí rus: круг ложных солнц něm: Nebensonnenkreis m  1993-a1
krupica
starý název pro sněhová zrna, který se přestal používat po vydání Mezinárodního atlasu oblaků v r. 1965.
česky: krupice rus: снежные зерна něm: Griesel m  1993-a1
krúpky
srážky složené z průsvitných ledových částic převážně kulového, zřídka též kuželovitého tvaru o ekvivalentním průměru do 5 mm. Krupky se vyskytují výhradně v přeháňkách. V konvektivních oblacích mohou krupky tvořit kroupové zárodky.
česky: krupky angl: small hail rus: ледяная крупа, небольшой град něm: Graupel f  1993-a3
krupobitie
srážka tvořená kroupami. Krupobití patří k nebezpečným jevům, které se mohou vyskytnout při konvektivních bouřích. Trvá zpravidla jen několik minut, výjimečně i půl hodiny, a zasahuje obvykle jen omezenou oblast. Vyskytuje se převážně v teplé roč. době v odpoledních hodinách. Někdy mívá charakter živelních pohrom, zvláště při značné hustotě a velikosti krup a v případě, že je zasažena rozsáhlejší oblast, hlavně před sklizní. K včasné identifikaci krupobití slouží meteorologické radiolokátory. Vzhledem k malému měřítku a složitosti procesů, při nichž dochází k vývoji krup, není dostatečně prostorově a časově lokalizovaná předpověď krupobití zatím možná. Viz též ochrana před krupobitím, izochalaza.
česky: krupobití angl: hailstorm rus: градобитие něm: Hagelschlag m  1993-a3
krúpový zárodok
částice o velikosti řádu jednotek milimetru, která je patrná na řezu velkými kroupami a tvoří počáteční stadium kroupy. Jde o ledovou krupku, která vznikla jako velký ledový krystal nebo zmrzlá kapka rostoucí dále zachycováním přechlazených kapek nebo agregací ledových krystalů.
česky: zárodek kroupový angl: hail embryo  2014
krúpy
kulové, kuželovité nebo i nepravidelné kusy ledu o průměru 5 až 50 mm, někdy i větším, které mohou vznikat v konvektivních bouřích v oblacích druhu cumulonimbus s velkou vertikální mohutností a rychlostí výstupného proudu. K největším úředně zdokumentovaným kroupám patří kroupa o hmotnosti 766 g a maximálním obvodu 44 cm, která spadla za bouřky v Kansasu (USA) dne 3. září 1970; objem této kroupy je ekvivalentní objemu koule o poloměru cca 7 cm a předpokládá se, že rychlost jejího dopadu na zemský povrch činila 43 m.s–1 (155 km.h–1). Podmínkou pro vývoj krup je vznik zárodků krup rostoucích za vhodných podmínek zachycováním a namrzáním kapek přechlazené vody, které do oblasti vývoje krup dopravuje výstupný proud. Na řezu velkými kroupami mohou být zřetelně patrné vrstvy ledu o různé koncentraci vzduchových bublin. Jsou výsledkem vlivu tepelné bilance rostoucí kroupy na průběh namrzání zachycených přechlazených kapek. Rozeznáváme dva základní režimy růstu označované jako mokrý (vlhký) růst a suchý růst kroupy. Podle toho, který z uvedených dvou režimů narůstání ledu v určitém časovém intervalu převládá, se u velkých krup mohou střídat vrstvy více a méně homogenního ledu, které se na řezu kroupou jeví jako různě průzračné. Pádová rychlost krup dosahuje až 45 m.s–1 a závisí na velikosti krup a jejich tvaru. Matematické modelové studie kroupotvorného oblaku neprokázaly opakované propadávání a stoupání krup oblakem. Ukázaly však, že určitá malá část modelových trajektorií může mít spirálovitý tvar. Při výskytu krup se ve zprávě SYNOP uvádí maximální průměr krup. Intenzivní forma těchto srážek (krupobití) působí značné hospodářské škody především na zeměd. kulturách. Viz též ochrana před krupobitím.
česky: kroupy angl: hail rus: град něm: Hagel m  1993-a3
krvavý dážď
syn. déšť červený – déšť zabarvený červeným prachem, popř. červenými řasami. Ve stř. Evropě je krvavý déšť zabarven především pouštním africkým prachem, pronikajícím do této oblasti ve vyšších vrstvách atmosféry při silném proudění již. směrů, zpravidla na přední straně výškových brázd. Po oschnutí dešťových kapek zůstává na povrchu předmětů nebo na sněhové pokrývce minerální vrstvička červeného zabarvení.
česky: déšť krvavý angl: blood rain něm: Blutregen m rus: кровaвый дождь fr: pluie de sang f, pluie rouge f  1993-a1
kryograf
registrační půdní mrazoměrměření promrzání půdy. Jeho záznam se označoval jako kryogram.
česky: kryograf angl: cryograph rus: криограф něm: Kryograph m  1993-a3
kryogram
záznam kryografu.
česky: kryogram angl: cryogram rus: криограмма něm: Kryogramm n  1993-a1
kryometer
česky: kryometr angl: cryometer rus: криометр něm: Kryometer n  1993-a3
kryopedometer
česky: kryopedometr angl: cryopedometer rus: криопедометр něm: Frosttiefenmesser m  1993-a3
kryosféra
nesouvislý obal Země tvořený ledem (především v ledovcích), sněhem a permafrostem. Kryje se tedy s částí hydrosféry, pedosféry a litosféry. Klimatickými podmínkami utváření kryosféry se zabývá glacioklimatologie.
česky: kryosféra angl: cryosphere rus: криосфера něm: Kryosphäre f  1993-a3
kryptoklíma
označení pro mikroklima uzavřených prostor, které zavedli angl. meteorologové C. E. P. Brooks a G. J. Evans v r. 1956.
česky: kryptoklima angl: cryptoclimate rus: криптоклимат něm: Kryptoklima n  1993-a1
kryštalická námraza
syn. jinovatka – jeden z námrazových jevů. Je tvořen křehkou ledovou usazeninou ve tvaru jemných jehel nebo šupin. Vzniká zpravidla při teplotách nižších než –8 °C při mlze nebo bez ní. Na povrchu letadla vzniká hlavně při klesání z chladnějšího a suššího prostředí do teplejšího a vlhčího prostředí a také v oblačnosti druhu cirrus, cirrocumulus a cirrostratus. Krystalickou námrazu lze snadno odstranit poklepem. Není příčinou vzniku škod na vegetaci, el. vedeních a neohrožuje bezpečnost leteckého provozu.
česky: námraza krystalická angl: soft rime rus: кристаллическая изморозь něm: weiche Raufrost n  1993-a3
kumulonimbus
česky: kumulonimbus rus: кумулус, кучево-дождевые облака něm: Cumulonimbus m  1993-a1
kumulus
viz cumulus.
česky: kumulus rus: кучевые облака něm: Cumulus m  1993-a1
kúpeľná klimatológia
syn. balneoklimatologie - část lékařské klimatologie zabývající se klimatem lázeňských míst jako jedním z hlavních činitelů komplexní lázeňské léčby. Do lázeňské klimatologie spadá i vyhledávání míst s příznivým klimatem k využití pro klimatickou lázeňskou léčbu, resp. rekreaci. Viz též klimatoterapie.
česky: klimatologie lázeňská angl: balneoclimatology rus: климатология курортов něm: Kurortklimatologie f, Balneoklimatologie f  1993-a1
Kuzminov vzorec
vzorec pro výpočet měs. hodnot výparu ze sněhu a ledu. Má tvar:
V=n(0,18+0,098v 10)(eaed),
kde V je výpar za měsíc v mm, n počet dní v měsíci, v10 prům. měs. rychlost větru v m.s–1 ve výšce 10 m nad povrchem sněhu, ea tlak nasycené vodní páry v hPa odpovídající prům. měs. teplotě vzduchu a ed je prům. měs. hodnota tlaku vodní páry ve vzduchu v hPa zjištěná měřením. Analogického vzorce lze použit i pro výpočet denní hodnoty výparu ze sněhu (pro n = 1 a denní průměry příslušných veličin).
česky: vzorec Kuzminův angl: Kuzmin formula rus: формула Кузьмина  1993-a2
kvapalinový teplomer
teploměr, pro jehož funkci je využito rozdílné teplotní roztažnosti kapaliny a nádobky. Jako teploměrných kapalin se nejčastěji používá rtuť u rtuťových teploměrů, líh (etylalkohol) u lihových teploměrů, popř. toluen nebo petrolej. U teploměrů kapalinových skleněných se teplota stanoví podle délky sloupce teploměrné kapaliny vytlačené z nádobky do skleněné kapiláry spojené s nádobkou. U teploměrů kapalinových s kovovou nádobkou se využívá pro stanovení teploty velikosti vnitřního tlaku v nádobce.
česky: teploměr kapalinový angl: liquid thermometer rus: жидкостный термометр  1993-a2
kvapalinový tlakomer
viz tlakoměr. Viz též tlakoměr rtuťový.
česky: tlakoměr kapalinový angl: mercury barometer rus: жидкостный барометр  1993-a1
kvapalné zrážky
hydrometeor tvořený vodními kapkami dopadajícími z oblaků na zemský povrch nebo usazenými na předmětech na zemském povrchu, popř. v atmosféře, např. na plochách letadla, na povrchu balonu apod. Mezi padající kapalné srážky patří déšť a mrholení, mrznoucí déšť a mrznoucí mrholení, k usazeným kapalným srážkám počítáme rosu. Viz též srážky tuhé, srážky smíšené.
česky: srážky kapalné angl: liquid precipitation rus: жидкие осадки něm: flüssiger Niederschlag m  1993-a3
kvapalný ekvivalent vodnej pary
česky: ekvivalent vodní páry kapalný něm: fällbares Wasser fr: eau précipitable f  2014
kvapalný oblak
syn. oblak vodní.
česky: oblak kapalný angl: water cloud něm: Wasserwolke f 
kvapalný vodný obsah
úhrnná hmotnost vodních kapek v jednotce objemu oblaku, popř. mlhy. Vyjadřuje se v kg.m–3 nebo tradičně v g.m–3. V odborné literatuře se setkáváme s užitím zkratky LWC (z angl. Liquid Water Content). Viz obsah vodní oblaku, obsah vodní ledový.
česky: obsah vodní kapalný angl: liquid water content rus: водность (облаков) něm: Flüssigwassergehalt m  2014
kvapka mrholenia
kapka vody o průměru menším než 500 µm vypadávající z oblaků nebo z mlhy na zemský povrch. Viz též mrholení.
česky: kapka mrholení angl: drizzle droplet rus: капля мороси něm: Nieseltropfen m, Sprühregentropfen m  1993-a3
kvapka studeného vzduchu
studený vzduch, který se projevuje ve stř. a horní troposféře a často způsobuje vznik výškové cyklony, v jejímž středu je vzduch nejstudenější. Kapka studeného vzduchu bývá tvořena vzduchem, který se oddělil od výškové brázdy a postoupil (slangově „skápl“) do nižších zeměp. šířek. Někdy vzniká jako relikt cyklony vyplněné studeným vzduchu, jejíž přízemní střed se vyplnil. Kapka studeného vzduchu se zpravidla pohybuje ve směru přízemního proudění, ale nižší rychlostí. Někdy lze směr a rychlost pohybu jen obtížně předpovídat. Bývá spojena s výraznými projevy počasí, zejména s trvalými nefrontálními srážkami. Povětrnostní situace spojená s kapkou studeného vzduchu se u nás vyskytuje jen několikrát za rok, převážně v zimní polovině roku.
česky: kapka studeného vzduchu angl: cold-air drop rus: капля холодного воздуха něm: Kaltlufttropfen m  1993-a3
kvartér
syn. čtvrtohory – současná geol. perioda v rámci kenozoika, která začala před 2,588 mil. roků. Zahrnuje epochy pleistocén (starší čtvrtohory) a holocén (mladší čtvrtohory). Kvartér je relativně chladným obdobím vyznačujícím se velkými výkyvy klimatu na celé zeměkouli v rámci kvartérního klimatického cyklu. To se projevovalo šířkovým posunem klimatických pásem a změnami v rozsahu kontinentálního zalednění. V mírných zeměp. šířkách docházelo k opakovanému střídání studených a teplých fází – glaciálů a interglaciálů. V nižších zeměpisných šířkách se střídaly vlhčí pluviály a sušší interpluviály. Viz též paleoklima.
česky: kvartér angl: Quaternary rus: четвертичный период, климат четвертичного периода, четвертичный климат něm: Klima im Quartär n, Quartär n  1993-b3
kvartérny klimatický cyklus
syn. cyklus klimatický čtvrtohorní – opakování obdobných klimatických poměrů a klimatických změnkvartéru (čtvrtohorách). Klimatické výkyvy různého řádu se opakovaly v zákonitém sledu a podmínily i periodický vývoj sedimentů, půd a bioty. Periodicita klimatu kvartéru se projevuje v tom, že časově od sebe vzdálená období si mohou být z hlediska klimatu mnohem podobnější než období následující přímo po sobě. Např. různé glaciály měly klima velmi podobné, a přitom výrazně odlišné od klimatu interglaciálů, přičemž perioda tohoto cyklu je cca 100 000 let. Opakovaně se též vyskytovala kratší zakolísání klimatu trvající obvykle stovky roků: chladnější a sušší stadiály a teplejší interstadiály. Viz též teorie paleoklimatu.
česky: cyklus klimatický kvartérní angl: quarternary climatic cycle něm: Klimazyklus des Quartärs m rus: четвертичный климатический цикл fr: variations climatiques quaternaires pl  1993-a3
kvázidvojročná oscilácia
cyklus kvazidvouletý (QBO) – oscilace projevující se střídáním směru zonálního větru ve stratosféře s periodou cca 26 měsíců. Uplatňuje se v centrální části tropického pásma (cca mezi 15° sev. a již. šířky), směrem k obratníkům její amplituda klesá. V různých výškách vrstvy od 20 do 35 km se zde nad sebou vyskytují východní větry Krakatoa a západní Bersonovy větry, přičemž jejich výměna se šíří shora dolů, rychlostí cca 1 km za měsíc. Vzájemný vztah obou proudění byl vysvětlen teprve na přelomu 50. a 60. let 20. století (Reed et al., 1961; Veryard, Edbon, 1961).
česky: oscilace kvazidvouletá angl: Quasi-Biennial Oscillation něm: Quasi-biennial-oscillation, QBO f  2015
kvázidvojročný cyklus
česky: cyklus kvazidvouletý angl: quasi-biennial oscillation něm: 26-monatige Periode f rus: квазидвухлетняя осцилляция, квазидвухлетняя цикличность fr: oscillation quasi biennale f  1993-a3
kvázifrontálna búrka
druh bouřky ve studené instabilní vzduchové hmotě. Kvazifrontální bouřky souvisejí s uspořádanou konvekcí, vytvářejí zpravidla pásy a svými projevy se podobají bouřkám studené fronty. Postup konvektivních bouří, při jejichž vývoji se kvazifrontální bouřky vyskytují, je rychlý, řádově 50 km.h–1. Kvazifrontální bouřky mají na daném místě krátké trvání a mohou se opakovat i několikrát za den. Mohou vznikat již v dopoledních hodinách, odpoledne zesilují, k večeru a během noci slábnou. Nejčastěji se vyskytují v jarním období.
česky: bouřka kvazifrontální fr: orage en V m, orage en série m  1993-a3
kvázigeostrofická aproximácia
zjednodušení modelu atmosféry, kde je uvažována advekce pouze geostrofickými složkami proudění. Kvazigeostrofická aproximace předpokládá velikost vektoru rychlosti větru blízkou velikosti vektoru rychlosti geostrofického větru a nulové zrychlení ve vert. směru. Důsledkem je, že všechny veličiny závisející na větru kromě divergence proudění lze aproximovat geostroficky. Kvazigeostrofická aproximace je vhodná pro analýzu vnětropických tlakových útvarůsynoptickém měřítku.
česky: aproximace kvazigeostrofická angl: quasi-geostrophic approximation něm: quasigeostrophische Approximation f rus: квазигеострофическое приближение fr: approximation quasi-géostrophique f  1993-a3
kvázigeostrofické rovnice
soustava prognostických rovnic, ve kterých jsou vybrané členy aproximovány geostrofickým přiblížením na základě měřítkové analýzy. Dále jsou použity zjednodušující aproximace hydrostatické rovnováhy a tenké vrstvy. Pro praktickou předpověď počasí se používaly do 60. let 20. století. Filtrují gravitační a zvukové vlny. Prakticky se dají použít pro planetární měřítka až po rozlišení asi 400 km, při kterém jsou již podle Rossbyho poloměru jsou srovnatelné inerční a vztlakové účinky na cirkulaci. Stále se využívají pro teoretické studie a například pro řešení inverzního problému vývoje potenciální vorticity. Viz též číslo Rossbyho, aproximace kvazigeostrofická.
česky: rovnice kvazigeostrofické angl: quasi-geostrophic equations rus: квазигеострофические уравнения něm: quasi-geostrophische Gleichung f  2014
kvázipermanentná anticyklóna
anticyklona vyskytující se na klimatologických mapách po celý rok téměř na stejném místě. Střed kvazipermanentní anticyklony se od zimního období k letnímu (a naopak) posouvá zpravidla jen málo. Ke kvazipermanentním anticyklonám patří všechny subtropické anticyklony vyskytující se nad oceány obou polokoulí. Kvazipermanentní anticyklony jsou permanentními akčními centry atmosféry.
česky: anticyklona kvazipermanentní angl: quasi-permanent anticyclone rus: квазиперманентный антициклон fr: anticyclone quasi permanent m  1993-a2
kvázipolárna meteorologická družica
česky: družice meteorologická kvazipolární angl: near-polar orbiting meteorological satellite něm: quasipolar-umlaufender Wettersatellit m rus: квазиполярный метеорологический спутник fr: satellite défilant héliosynchrone m, satellite défilant m, satellite à défilement m, satellite à orbite polaire m, satellite circumpolaire m  1993-a3
kvázistacionárna anticyklóna
syn. anticyklona stacionární – anticyklona, která obvykle po dobu několika dní mění svou polohu jen minimálně. Viz též anticyklona kontinentální, anticyklona subtropická.
česky: anticyklona kvazistacionární angl: quasi-stationary anticyclone něm: quasistationäre Antizyklone f rus: квазистационарный антициклон, неподвижный антициклон fr: anticyclone quasi stationnaire m  1993-a2
kvázistacionárna cyklóna
syn. cyklona stacionární – cyklona, která obvykle po dobu několika dní mění svou polohu jen minimálně. Bývá zpravidla cyklonou řídicí, centrální nebo termickou.
česky: cyklona kvazistacionární angl: quasi-stationary low něm: quasistationäre Zyklone f rus: квазистационарный циклон fr: dépression quasi-stationnaire f, dépression à caractère semi-permanent f  1993-a3
kvázistacionárny front
atmosférická fronta s nepatrným pohybem vzhledem k zemskému povrchu. Vzduchové hmoty se podél ní pohybují v opačném směru a přibližně rovnoběžně s frontální čárou. Viz též fronta stacionární.
česky: fronta kvazistacionární angl: quasi-stationary front rus: квазистационарный фронт něm: quasistationäre Front f fr: front quasi stationnaire m  1993-a1
kyslý dážď
označení pro kapalné padající atm. srážky, které mají v důsledku antropogenního znečišťování ovzduší výrazně zvýšenou kyselost, tj. snížené pH. Kyselý déšť vzniká zejména rozpouštěním oxidů síry a dusíku ve srážkové vodě a představuje značné ekologické nebezpečí, poškozuje půdu a vegetaci, zamořuje povrchové vody, působí škody na architektonických objektech apod. Srážková voda má určitou přirozenou kyselost, způsobenou rozpuštěným oxidem uhličitým a dosahující hodnot pH 5,6 až 6,0, zatímco u kyselého deště může být pH sníženo až na hodnoty 3 až 4, v extrémních případech i menší. Termín kyselý déšť poprvé použil angl. chemik R. A. Smith, když ve 2. polovině 19. století popisoval znečištění ovzduší v Manchesteru. Viz též složení srážek chemické, chemie atmosféry.
česky: déšť kyselý angl: acid rain něm: sauerer Regen m rus: кислотный дождь fr: pluie acide f  1993-a1
podpořila:
spolupracují: