Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene v

X
váhový tlakomer
rtuťový tlakoměr založený na určení hmotnosti rtuťového sloupcebarometrické trubici (zavěšené na vahadle vah), nebo rtuti v nádobce tlakoměru. Je určen k registraci tlaku vzduchu. V současné době se v ČR již nepoužívá. Viz též barograf.
česky: tlakoměr váhový angl: weight barometer rus: весовой барометр  1993-a2
vánok
1. vítr o prům. rychlosti 0,3 až 1,5 m.s–1 nebo 1 až 5 km.h–1. Odpovídá prvnímu stupni Beaufortovy stupnice větru;
2. obecné označení pro zpravidla slabý vítr místní cirkulace charakteristický výraznou denní změnou směru, jakým je např. bríza.
česky: vánek angl: breeze (2.), light air (1.) rus: бриз, тихий ветер  1993-a3
vardar
místní název větru v Makedonii. Jde o studený padavý vítr sv. směru vanoucí hlubokým údolím řeky Vardar do Soluňského zálivu. Vyskytuje se zvláště v zimě, když nad vých. Evropou je tlak vzduchu vyšší než nad Egejským mořem. Trvá většinou dva až tři dny a dosahuje prům. rychlosti 16 až 25 km.h–1, v nárazech až 55 km.h–1.
česky: vardar angl: vardar  1993-a1
variačná metóda asimilácie dát
(4D VAR) – je metoda asimilace dat do numerického modelu předpovědi počasí, která formuluje optimální počáteční podmínku modelu tak, že tato počáteční podmínka minimalizuje váženou sumu kvadratických odchylek předpovězených a naměřených hodnot v asimilačním okně. Váhy lze použít k zohlednění přesnosti měření. Tato metoda vychází z předpokladu, že minimalizací chyby v asimilačním okně se získá počáteční podmínka, která bude minimalizovat i chybu modelové předpovědi. Řešení minimalizačního problému je velmi komplikované vzhledem k nelineárnosti modelu i vzhledem k rozměru problému, protože počáteční podmínky pro model představují typicky minimálně 105 zpravidla však o několik řádů více hodnot. Praktické řešení minimalizačního problému spočívá ve zjednodušení modelu (např. použije se adiabatický model) a snížení dimenze problému (zmenšení rozlišení). Pro minimalizaci se aplikuje metoda největšího spádu, přičemž gradient se počítá pomocí adjungovaného modelu.
česky: metoda asimilace dat variační angl: variational assimilation method rus: метод вариационного усвоения (данных) něm: Variationsassimilations Methode f  2014
variačná metóda objektívnej analýzy
(3D VAR) – metoda objektivní analýzy meteorologických prvků, která vede k minimalizaci funkcionálu (penalizační funkce). Při formulaci funkcionálu se využívá Bayesova formulace pravděpodobnosti, kde vstupní pole dat je předpověď numerického modelu počasí a novou informací jsou naměřené hodnoty. Existuje několik ekvivalentních způsobů formulace funkcionálu, např. PSAS, které se liší efektivností jejich numerického řešení. Pro řešení minimalizace funkcionálu se zpravidla využívá metoda největšího spádu. Metoda 3D VAR je obecnější než optimální interpolace. Hlavní výhodou této metody je, že minimalizace se provádí ve fyzikálním prostoru (minimalizuje se veličina, která se analyzuje), čímž se liší od optimální interpolace, kde se nejprve počítají váhy a na jejich základě analyzovaná veličina. Za předpokladu, že chyby předpovědi (předběžného pole) a chyby měření mají Gaussovo rozdělení, jsou metody 3D VAR a optimální interpolace ekvivalentní.
česky: metoda objektivní analýzy variační angl: variational objective analysis method rus: вариационный метод объективного анализа něm: objektive Variationsanalyse? F  2014
variograf
česky: variograf angl: variograph  1993-a1
variometer
v meteorologii přístroj pro měření (indikaci) malých tlakových změn. Variometry jsou založeny zejména na vyrovnávání tlaku vzduchu mezi tepelně izolovanou komorou a vnější atmosférou malým otvorem. Měření se provádí většinou pomocí mikromanometru.
česky: variometr angl: variometer rus: вариометр  1993-a2
vedenie tepla v pôde
česky: vedení tepla v půdě angl: heat conduction in soil rus: теплопроводность почвы  1993-a1
vedľajší synoptický termín
česky: termín synoptický vedlejší angl: intermediate standard time rus: дополнительный синоптический срок, промежуточный стандартный срок  1993-a1
vedľajšia dúha
syn. duha sekundární – méně jasná duha, objevující se současně s hlavní duhou, téměř dvojnásobně široká, s červenou barvou na vnitřní straně (úhlový poloměr oblouku asi 50°) a fialovou barvou na vnější straně (úhlový poloměr oblouku asi 54°). Vzniká následkem lomu a dvojnásobného vnitřního odrazu světla na dešťových kapkách.
česky: duha vedlejší něm: Nebenregenbogen m rus: вторичная радуга fr: arc secondaire m  1993-a1
vedľajšie slnko
česky: slunce vedlejší něm: Nebensonne f  1993-a1
vedľajšie synoptické pozorovanie
česky: pozorování synoptické vedlejší angl: synoptic observation at intermediate standard times rus: синоптическое наблюдение в промежуточный срок něm: synoptische Beobachtung zu Zwischenterminen  1993-a3
vegetačná doba
česky: doba vegetační něm: Vegetationszeit f fr: saison de végétation f  1993-a1
vegetačná klíma
česky: klima vegetační něm: Vegetationsklima  1993-b1
vegetačné obdobie
syn. doba vegetační – období, v němž jsou příznivé podmínky pro růst a vývoj rostlin a nepřímo celých ekosystémů (ať řízených či neřízených). V podmínkách ČR se jím zpravidla rozumí období vymezené prům. daty nástupu a ukončení určité prům. denní teploty vzduchu. Rozlišují se:
a) velké vegetační období, vymezené daty nástupu a ukončení prům. denní teploty 5 °C a vyšší;
b) hlavní neboli malé vegetační období, což je období s prům. denní teplotou 10 °C a vyšší;
c) tzv. vegetační léto s prům. denní teplotou 15 °C a vyšší.
Kritéria pro vymezení vegetačního období nejsou jednotná a to ani v rámci střední Evropy. V zahraničí se za vegetační období v prvním přiblížení považuje období bezmrazové, dále období s max. denní teplotou vzduchu vyšší než 0 °C nebo 10 °C apod. Vegetační období bývá též nevhodně ztotožňováno s teplým pololetím.
česky: období vegetační angl: growing season, vegetation season, vegetative period rus: вегетационный период, сезон роста něm: Vegetationsperiode f, Vegetationszeit f  1993-a3
vektopluviometer
přístroj k měření sklonu a směru padajícího deště. V ČR se běžně nepoužívá.
česky: vektopluviometr angl: vectopluviometer  1993-a3
veľké halo
syn. halo 46°, kolo velké – fotometeor, patřící mezi halové jevy a jevící se obvykle jako slabší bělavě nebo duhově zbarvený světelný kruh kolem zdroje světla (Slunce nebo Měsíce) se zdánlivým úhlovým poloměrem 46°. Jeho intenzita bývá podstatně slabší než intenzita malého hala a též jeho výskyt je mnohem méně častý. Vzniká dvojitým lomem světelných paprsků na šestibokých hranolcích ledových krystalků, kdy paprsek do hranolku vstupuje plochou podstavy a vystupuje plochou pláště nebo naopak, tzn. že jde o lom na hranolu s lámavým úhlem 90°. V české literatuře se jako synonymum někdy vyskytuje velké kolo, z čehož však mohou vznikat nedorozumění, neboť do vydání české verze Mezinárodního atlasu oblaků v r. 1965 se termín velké halo též vyskytoval jako označení pro velké i malé halo.
česky: halo velké angl: halo of 46°, large halo rus: большое гало, гало в 46° něm: grosser Ring m, 46°-Ring m fr: halo de 46° m, grand halo m  1993-a3
veľkopočasie
v češtině nevhodné označení pro typ makrosynoptické situace.
česky: velkopočasí  1993-a1
veľmi krátkodobá predpoveď počasia
předpověď počasí na dobu 0 až 12 hodin nebo kratší, např. na dobu 0 až 6 hodin. Mezi tento druh předpovědí patří např. letecké předpovědi počasí, předávané ve formě předpovědí typu trend nebo TAF, specializované předpovědi pro zimní údržbu silnic, popř. předpovědi pro další aktivity ovlivňované počasím. Často se využívá objektivní extrapolační nowcasting srážek nebo oblačnosti využívající zejména metod dálkové detekce. V současné době se provozují též hybridní systémy optimálně využívající jak metod dálkové detekce, tak numerických modelů předpovědi počasí. Viz též předpověď počasí krátkodobá, nowcasting.
česky: předpověď počasí velmi krátkodobá angl: very short-range weather forecast rus: очень краткосрочный прогноз погоды, сверхкраткосрочный прогноз погоды něm: Kürzestfristvorhersage f  1993-a3
velopauza
název pro vrstvu stratosféry ve výškách kolem 20 km a zeměp. š. přibližně od 20° do 60°. V této vrstvě probíhá v létě přechod od převládajícího záp. proudění v troposféře a spodní stratosféře k proudění východnímu ve vyšších vrstvách stratosféry. Název velopauza se používá hlavně v rus. odb. literatuře.
česky: velopauza angl: velopause rus: велопауза  1993-a2
velum
(vel) – jeden z průvodních oblaků podle mezinárodní morfologické klasifikace oblaků. Velum je závojovitý oblak velkého horiz. rozsahu. Vyskytuje se těsně nad nebo přímo na vrcholu jednoho nebo několika kupovitých oblaků, které jím často prorůstají. Vyskytuje se u druhů cumulus a cumulonimbus.
česky: velum angl: velum rus: вуаль  1993-a2
ventilácia
syn. větrání – zpravidla kvalititativní charakteristika přísunu vzduchu do dané lokality (oblasti) závislá na rychlosti proudění, terénních tvarech, drsnosti povrchu, uspořádání aerodyn. překážek v terénu apod. Ventilace může být přirozená (provětrávání volné krajiny, města apod.), nebo umělá (v uzavřených prostorách jako součást klimatizace). V meteorologii se termínu ventilace používá i v souvislosti s prouděním vzduchu kolem čidel met. přístrojů, např. v meteorologické budce, u aspiračního (ventilovaného) psychrometru apod.
česky: ventilace angl: ventilation rus: вентиляция  1993-a2
ventilačný faktor
index ventilační, viz vrstva směšovací.
česky: faktor ventilační angl: ventilation (venting) factor rus: вентиляционный фактор něm: Ventilationsfaktor m fr: facteur de ventilation m  1993-a2
ventilačný index
faktor ventilační, viz vrstva směšovací.
česky: index ventilační angl: ventilation index, venting index  2015
ventilovaný meteorograf
meteorograf vybavený zařízením pro umělou ventilaci čidel pro měření meteorologických prvků. Používá se v případech, kdy přirozená ventilace čidel by byla nedostatečná (např. při pohybu meteorografu).Viz též meteorograf.
česky: meteorograf ventilovaný angl: aspiration meteorograph rus: аспирационный метеорограф něm: Aspirationsmeteorograph m  1993-a3
ventilovaný teplomer
teploměr doplněný zařízením, které zabezpečuje umělou ventilaci nádobky proudem vzduchu stálé rychlosti, zpravidla 2 m.s-1. Při rychlosti vyšší než 5 m.s–1 je psychrometrický koeficientpsychrometrickém vztahu již prakticky nezávislý na ventilační rychlosti a vlhkostní charakteristiky vypočítané z údajů suchého a vlhkého teploměru psychrometrickou metodou jsou proto zatíženy jen zanedbatelnými chybami. Ventilace suchého teploměru zrychluje jeho přizpůsobení teplotě okolního vzduchu. Používal se při měření vlhkosti vzduchu v aspiračním psychrometru nebo při přesném měření teploty vzduchu.
česky: teploměr ventilovaný angl: aspirated thermometer, ventilated thermometer rus: вентилируемый термометр  1993-a3
Venturiho efekt
v meteorologii lokální pokles tlaku vzduchu, lokální zesílení větru a vznik nárazů větru v určitých místech, kde dochází vlivem orografie ke zhuštění proudnic. Příkladem Venturiho efektu je efekt tryskový, efekt nálevkový a lokální jevy při přetékání vzduchu přes horské překážky. Nejnebezpečnější projevy Venturiho efektu se vyskytují na závětrné straně překážek, kde často vznikají rozsáhlé škody na lesních porostech, venkovních el. vedeních apod.
česky: efekt Venturiho angl: Venturi effect rus: еффект Вентури něm: Venturi-Effekt m fr: effet Venturi m  1993-a1
Venušin pás
zpravidla slabě narůžovělý pás, jenž krátce po západu nebo před východem Slunce odděluje soumrakový oblouk od části oblohy osvětlované rozptýleným slunečním světlem. Vzniká působením zpětného rozptylu slunečních paprsků na molekulách plynných složek vzduchu. Bývá pozorován při jasné obloze v dostatečně čistém vzduchu.
česky: pás Venušin angl: belt of Venus něm: Venusgürtel m  2014
vergencia
syn. pro divergenci proudění v obecném smyslu. Používání termínu vergence je opodstatněno tím, že kladná divergence v obecném smyslu se nazývá v užším smyslu rovněž divergence, zatímco záporná divergence se v obecném smyslu označuje jako konvergence.
česky: vergence angl: vergence  1993-a1
vertebratus
(ve) [vertebrátus] – jedna z odrůd oblaků podle mezinárodní morfologické klasifikace oblaků. Části oblaku jsou uspořádány tak, že připomínají páteř, žebra nebo rybí kostru. Vyskytuje se u druhu cirrus.
česky: vertebratus angl: vertebratus rus: хлебтовидные облака  1993-a2
vertikálna dohľadnosť
největší vzdálenost, na niž pozorovatel vidí a identifikuje objekt ležící na vertikále nad ním.
česky: dohlednost vertikální angl: vertical visibility něm: Vertikalsicht f rus: вертикальная видимость fr: visibilité verticale f  1993-b3
vertikálna instabilita ovzdušia
instabilita určité vrstvy atmosféry vůči posunutí vzduchové částice ve vert. směru, způsobená charakteristickým teplotním zvrstvením atmosféry. Rozeznáváme podmíněnou instabilitu atmosféry a absolutní instabilitu atmosféry. Vertikální instabilita atmosféry vytváří podmínky pro konvekci, pro vert. mísení vzduchu a vert. přenos hybnosti, tepla, vodní páry a různých příměsí. K příčinám vzniku vert. instability atmosféry obecně patří vert. nerovnoměrná advekce hustoty vzduchu ve vzduchové hmotě (viz instabilita atmosféry advekční), přehřívání zemského povrchu slunečním zářením (viz instabilita atmosféry termická), radiační ochlazení horní hranice oblačnosti apod. Vert. instabilita atmosféry se může dále rozvinout ve vrstvě s potenciální instabilitou atmosféry. Viz též klasifikace instability (stability) atmosféry Normandova, hmota vzduchová instabilní, stabilita atmosféry vertikální.
česky: instabilita atmosféry vertikální angl: vertical instability rus: вертикальная неустойчивость něm: vertikale Instabilität der Atmosphäre f  1993-a3
vertikálna rýchlosť
vzdálenost, kterou urazí pohybující se vzduchové částice za jednotku času ve vert. směru. Definuje se vztahem vz=dzdt,
kde z je vert. souřadnice dané částice a t značí čas.
česky: rychlost vertikální angl: vertical velocity rus: вертикальная скорость něm: Vertikalgeschwindigkeit f  1993-a2
vertikálna rýchlosť v p-systéme
změna tlaku vzduchu uvnitř vzduchové částice za jednotku času následkem jejího pohybu ve vert. směru. Definuje se vztahem ω=dpdt,
kde p značí tlak vzduchu a t čas. Vzhledem k tomu, že ω nemá rozměr rychlosti, mluvíme často o tzv. generalizované vertikální rychlosti. Pro horiz. a vert. pohyby běžně pozorované v atmosféře lze závislost tlaku vzduchu na výšce nad zemským povrchem aproximovat rovnicí hydrostatické rovnováhy a mezi vertikální rychlostí v p-systému a vertikální rychlostí vzz-systému pak platí přibližný vztah ω=-vzgpRT,
v němž g značí velikost tíhového zrychlení, R měrnou plynovou konstantu a T teplotu vzduchu. Rychlost ω má tedy analogický význam jako obyčejná vertikální rychlost v z-systému, přičemž při výstupných pohybech je ω < 0, při sestupných je ω > 0. V případě intenzivních vertikálních pohybů, např. v oblacích druhu cumulonimbus, však tento přibližných vztah zpravidla neplatí. Viz též rovnice vertikální rychlosti v p-systému.
česky: rychlost vertikální v p-systému, rychlost vertikální generalizovaná angl: vertical velocity in p system rus: вертикальная скорость в системе координат (x, y, p t) něm: Vertikalgeschwindigkeit im p-System f  1993-a3
vertikálna stabilita atmosféry
1. stav atmosféry, při němž dochází k útlumu poruch spojených s vychýlením vzduchové částice ve vert. směru. Je charakterizován vertikálním teplotním gradientem menším, než je suchoadiabatický teplotní gradient v případě vzduchu nenasyceného vodní párou a menším než nasyceně adiabatický teplotní gradient v případě vzduchu nasyceného vodní párou. Ve druhém případě někdy mluvíme o absolutní stabilitě atmosféry.
2. souhrnná charakteristika teplotního zvrstvení atmosféry v porovnání s hodnotou adiabatického teplotního gradientu. Někdy používáme i označení statická stabilita atmosféry, neboť se zpravidla hodnotí v prostředí, které je v hydrostatické rovnováze. Stabilita atmosféry se v praxi nejčastěji určuje rozborem výsledků aerologických měření na termodynamickém diagramu. Viz též instabilita atmosféry vertikální, metoda částice, index stability, míra stability.
česky: stabilita atmosféry vertikální angl: vertical stability rus: вертикальная устойчивость něm: vertikale Stabiliität der Atmosphäre f  1993-b3
vertikálne mohutná konvekcia
syn. konvekce hluboká, konvekce pronikavá – konvekce o velkém vertikálním i horizontálním rozsahu, často zasahující celou troposféru a někdy i pronikající 2 až 3 km nad tropopauzu. Jejím projevem jsou konv. bouře.
česky: konvekce vertikálně mohutná angl: deep convection, penetrating convection rus: мощная вертикальная конвекция něm: hochreichende Konvektion f  2014
vertikálne pohyby vzduchu
souhrnné označení pro výstupné a sestupné pohyby vzduchu v atmosféře.
česky: pohyby vzduchu vertikální angl: vertical movements of air rus: вертикальные движения воздуха něm: Vertikalbewegungen der Luft f/pl  1993-a1
vertikálne zrážky
poměrně zřídka se vyskytující označení pro srážky padající, viz srážky.
česky: srážky vertikální  1993-a1
vertikálny profil beta a gama žiarenia
rozdělení β a γ záření v zemské atmosféře s výškou. Intenzita radioaktivního záření v atmosféře je dána jak přirozenou radioaktivitou atmosféry, tak umělou radioaktivitou atmosféry. Intenzita přirozené radioaktivity, tzv. přirozené pozadí, se v blízkosti zemského povrchu pohybuje mezi 0,025 a 0,09 µGy.h–1 a s výškou vzrůstá tak, že ve výšce okolo 25 km je přibližně 5 až 8 µGy.h–1. Zjišťováním odchylek od těchto hodnot lze sledovat kontaminaci atmosféry umělou radioaktivitou. Vertikální profily beta a gama záření se zjišťují při sondáži radioaktivity ovzduší pomocí sond pro měření radioaktivity.
česky: profil beta a gama záření vertikální něm: Vertikalprofil der beta- und gamma-Strahlung n  2014
vertikálny profil koncentrácie ozónu
vertikální rozložení koncentrace ozonu v atmosféře s výškou. Vertikální profil koncentrace ozonu je prostorově i časově proměnlivý a většinou se vyjadřuje hodnotami parciálního tlaku ozonu v mPa ve standardních tlakových hladinách nebo v hladinách významných (zlomových) bodů profilu. Mezi faktory, které nejvíce ovlivňují profil koncentrace ozonu, patří všeobecná cirkulace atmosféry a chemické procesy v atmosféře. Měření vertikálního profilu koncentrace ozonu se nejčastěji provádí pomocí ozonových sond a lidarů. Jako vertikální profil koncentrace ozonu lze označit i měření celkového množství ozonu v Dobsonových jednotkách ve zvolených vrstvách atmosféry pomocí ozonových spektrofotometrů a družicových spektrofotometrů využívajících tzv. Umkehr efekt. Viz též ozon přízemní, vrstva ozonová, sonda ozonová, sondáž ovzduší ozonometrická.
česky: profil koncentrace ozonu vertikální něm: Vertikalprofil der Ozonkonzentration n  2014
vertikálny profil teploty vzduchu
rozdělení teploty vzduchu v zemské atmosféře s výškou. Závisí na vzájemné interakci řady faktorů, především na radiační a turbulentní výměně tepla mezi zemským povrchem a spodními hladinami atmosféry i mezi jednotlivými atm. vrstvami, na absorpci krátkovlnného a dlouhovlnného záření plyny a vodní párou, na uvolňování a pohlcování tepla při fázových přeměnách vody v troposféře, na advekčním přenosu tepla, na zeměp. šířce, roč. době atd. Vert. profil teploty vzduchu lze všeobecně, bez uvádění konkrétních hodnot, charakterizovat takto: v troposféře teplota vzduchu až do hladiny tropopauzy klesá; ve stratosféře je rozdělení teploty vzduchu zpočátku zhruba izotermické, v horních hladinách teplota s výškou roste až do kladných hodnot (ve °C); v mezosféře se teplota vzduchu s výškou snižuje, zatímco v termosféře vzrůstá. Profil teploty se zjišťuje pomocí radiosond, letadel, sodarů, meteorologických raket a družic. Viz též profil teploty vzduchu vertikální z družic.
česky: profil teploty vzduchu vertikální angl: vertical air temperature profile rus: вертикальный профиль температуры воздуха něm: vertikales Lufttemperaturprofil n, Vertikalprofil der Lufttemperatur n  1993-a2
vertikálny profil teploty vzduchu z družíc
jeden z možných výstupů družicové sondáže atmosféry.
česky: profil teploty vzduchu vertikální z družic angl: vertical temperature profile from satellites rus: вертикальный профиль температуры со спутника něm: Temperaturprofil aus Wettersatellitendaten n  1993-a3
vertikálny profil vetra
rozdělení směru a rychlosti větru v atmosféře s výškou. Je velmi složité a závisí na řadě faktorů, z nichž nejdůležitější je všeobecná cirkulace atmosféry, podmíněná rozdělením teploty a tlaku vzduchu na zemském povrchu i v atmosféře, a její časové změny, dále vliv otáčení Země a členitost zemského povrchu. Rychlost větru v troposféře obvykle roste s výškou. V mezní vrstvě atmosféry je vertikální profil větru významně ovlivňován třením a jeho základní rysy zhruba vyjadřuje Taylorova (Ekmanova) spirála, v přízemní vrstvě atmosféry např. logaritmický vertikální profil větru.
česky: profil větru vertikální angl: vertical wind profile rus: вертикальный профиль ветра něm: vertikales Windprofil n  1993-a1
vertikálny profil vlhkosti vzduchu
rozdělení obsahu vodní páryatmosféře s výškou. V mezní vrstvě atmosféry závisí na výparu na zemském povrchu, na vert. promíchávání vzduchu a na teplotě, ve volné atmosféře především na advekci a vertikálních pohybech vzduchu. Profil vlhkosti je obvykle velmi složitý. Za normálních podmínek se střídají vlhké, popř. nasycené vrstvy vzduchu s vrstvami rel. suchými. Stratosféra vzhledem k izotermickému a inverznímu zvrstvení je pro vert. přenos vlhkosti zadržující vrstvou. Občasný výskyt perleťových oblaků ve výškách okolo 25 km a stříbřitých oblaků kolem 80 km se však uvádí jako důkaz existence vodní páry i v těchto výškách.
česky: profil vlhkosti vzduchu vertikální angl: vertical air moisture profile rus: вертикальный профиль влажности воздуха něm: vertikales Profil der Luftfeuchtigkeit n  1993-a2
vertikálny rez atmosférou
řez aerologický – graf. zobrazení některých skalárních nebo i vektorových charakteristik zjištěných při aerologických měřeních. Na vert. osu se vynášejí hodnoty výšky a tlaku vzduchu nebo jiné charakteristiky na nich funkčně závislé, na horiz. osu časové intervaly měření na jedné stanici nebo prostorová vzdálenost různých stanic. Podle toho rozeznáváme několik druhů řezů, např. meridionální nebo zonální vert. řez, vert. řez časový nebo prostorový. Na jednom vertikálním řezu atmosférou mohou být zakresleny izolinie většího počtu met. charakteristik. Vertikální řezy atmosférou byly v minulosti často využívány v synoptické, a především v letecké meteorologii.
česky: řez atmosférou vertikální angl: vertical cross section rus: вертикальный разрез něm: Vertikalschnitt m  1993-a3
vertikálny rozsah oblaku
rozdíl mezi výškou základny a výškou vrcholku oblaku. Některé oblaky mají malý vert. rozsah (např. Cu hum, Cs, Ac, Ci), jiné naopak velký (Cb, Ns). Vrstvou oblaků malého vert. rozsahu může prosvítat Slunce nebo Měsíc. Vertikální rozsah oblaku se dá při malých hodnotách určit některými typy přístrojů pro měření výšky základny oblaků, v ostatních případech pomocí radiolokátorů nebo letadlových měření.
česky: rozsah oblaku vertikální angl: vertical development of a cloud rus: вертикальный размер облака něm: vertikale Wolkenausdehnung f  1993-a2
vertikálny strih vetra
česky: střih větru vertikální angl: vertical wind shear rus: вертикальный сдвиг ветра něm: vertikale Windscherung f  1993-a1
vertikálny teplotný gradient
česky: gradient teplotní vertikální angl: temperature lapse rate rus: вертикальный градиент температуры něm: vertikaler Temperaturgradient m fr: gradient de température vertical m, gradient thermique vertical m  1993-a1
vertikálny tlakový gradient
česky: gradient tlakový vertikální angl: vertical pressure gradient rus: вертикальный барический градиент něm: vertikaler Druckgradient m fr: gradient vertical de pression m  1993-a1
veterná búrka
vítr dosahující vysoké rychlosti, takže může v daném místě způsobit podstatné škody. V Beaufortově stupnici větru jde přibližně o stupně 9 až 12, tedy vichřiceorkán. Může postihovat různě velké území a trvat různě dlouho v závislosti na příčinách. Rozsáhlé a často vícedenní větrné bouře jsou spojeny s hlubokými cyklonami, přičemž v tropické cykloně dosahují obecně větší intenzity než v mimotropické cykloně. V souvislosti s konvektivními bouřemi vznikají větrné bouře různých typů, viz např. derecho, downburst, húlava, tornádo. Větrné bouře mohou být podmíněny i orograficky, viz např. padavý vítr, efekt tryskový, vlnové proudění. Viz též extrémy rychlosti větru.
česky: bouře větrná angl: wind storm něm: Windsturm m fr: tempête de vent f  2014
veterná koruhva
zast. označení pro větrnou směrovku, zpravidla doplněnou anemometrem s výkyvnou deskou.
česky: korouhev větrná angl: wind vane rus: флюгер něm: Windfahne f  1993-a2
veterná ružica
graf. znázornění režimu větru na určitém místě formou směrového (paprskového) diagramu. Délka paprsků, značících světové strany, vyjadřuje četnost větru z daného směru. Složitějším druhem tohoto diagramu je podmíněná větrná růžice, která znázorňuje charakteristiky režimu větru za současného výskytu jiných meteorologických prvků a dalších jevů. Sestrojuje se pro dny nebo termíny, v nichž byl pozorován podmiňující prvek nebo tento prvek nabyl hodnoty v určitém intervalu. Jde např. o znázornění směru větru při jeho různých rychlostech, při různých oborech hodnot met. prvků, při určitých koncentracích znečišťujících příměsí, různých typech vertikální stability atmosféry apod.
Speciálním typem podmíněné větrné růžice je stabilitně a rychlostně členěná větrná růžice, která slouží jako vstup pro výpočty rozptylu emisí některými gaussovskými rozptylovými modely. Pro české gaussovské modely SYMOS´97 a ATEM se využívá stabilitní členění podle Bubníka a Koldovského, založené na hodnotě vertikálního teplotního gradientu.
česky: růžice větrná angl: wind rose rus: роза ветров něm: Windrose f  1993-a3
veterná smerovka
přístroj k měření směru větru. Má otočnou část, která se účinkem větru nastavuje po směru proudnic. Její poloha se určuje buď vizuálně podle pevné větrné růžice, jak tomu bylo u dříve používaných větrných korouhví, nebo při dálkovém přenosu polohového úhlu se odčítá na indikační, popř. registrační části přístroje. Většinou je otočná kolem svislé osy a měří tedy horiz. složku směru větru. Speciálně zkonstruované tzv. dvojsměrovky neboli dvoukomponentní větrné směrovky mohou měřit i vert. složku směru větru, dnes se však k tomu účelu používají spíše třírozměrné ultrasonické anemometry. Měřicí vlastnosti směrovky jsou závislé zejména na rotačním momentu a tvarování její otočné části. Např. lehké směrovky s rozbíhavými plochami ocasní části jsou citlivé na krátkodobé změny směru větru zejména při nízkých rychlostech větru, zatímco hmotné směrovky s ocasní částí kapkovitého tvaru udávají částečně shlazené hodnoty směru větru.
česky: směrovka větrná angl: wind vane rus: флюгарка něm: Windfahne f, Windrichtungsgeber m  1993-a3
veterné rozhranie
poměrně trvalá hranice v poli větru, oddělující dvě oblasti se značně rozdílnými směry převládajícího větru. Příkladem větrného předělu je osa hřebene vysokého tlaku vzduchu, který v zimě směřuje ze sibiřské anticyklony západně přes střední Evropu nad Francii a v létě z azorské anticyklony přes Španělsko a Francii nad střední Evropu. Je patrná na klimatologických mapách.
česky: předěl větrný angl: wind divide rus: ветрораздел něm: Windscheide f  1993-a3
veterný rukáv
slang. označení pro větrný rukáv.
česky: pytel větrný něm: Windsack m  1993-a1
veterný tieň
prostor za překážkou, v němž dochází k poklesu rychlosti větru. Rozsah větrného stínu souvisí s tvarem i výškou překážky a zvětšuje se s rychlostí proudění vzduchu. Viz též závětří, efekt závětrný.
česky: stín větrný angl: wind shadow rus: ветровая тень něm: Windschatten m  1993-a2
vetrolam
pás tvořený stromy a keři vysázený na ochranu zájmového území před škodlivými účinky větru. Větrolamy se zakládají v převážně rovinných a bezlesých oblastech se sušším klimatem ve snaze snížit rychlost výsušných větrů a omezit např. odnos půdních částic nebo sněhu z polí. Větrolamy mají komplexní účinky na vodní a tepelnou bilanci prostředí v mikroklimatickém měřítku. Viz též meliorace klimatu, suchověj.
česky: větrolam angl: windbreak rus: ветрозащитная полоса  1993-a1
vetromer
málo užívané čes. označení pro anemometr.
česky: větroměr rus: ветромер  1993-a1
vetromerný rukáv
„pytel" větrný – zařízení pro orientační určení směru a částečně i rychlosti větru. Skládá se z otevřeného kužele zhotoveného z tkaniny a upevněného na širším konci ke kovovému kruhu volně otočnému kolem svislé osy tak, aby se působením větru mohl spolu s ním otáčet. Větrný rukáv má být na každém letišti. Používá se rovněž pro orientační určení větru na dálnicích, především jako upozornění na boční vítr, a na průmyslových, zpravidla chem. zařízeních s produkcí škodlivých látek do ovzduší.
česky: rukáv větrný angl: wind cone, wind sleeve, wind sock rus: ветровой конус něm: Windsack m  1993-a1
vetry Krakatoa
vých. větry ve stratosféře nad centrální částí tropického pásma, které se zde vyskytují současně se západními Bersonovými větry, s nimiž se v různých výškách vrstvy od 20 do 35 km periodicky střídají v rámci kvazidvouleté oscilace. Dosahují rychlosti mezi 25 a 50 m.s–1. Byly objeveny díky šíření sopečného prachu po výbuchu sopky Krakatoa v r. 1883.
česky: větry Krakatoa angl: Krakatoa winds rus: ветры Кракатау  1993-a3
vetva atmosférického frontu
větší nebo menší úsek hlavní troposférické fronty, např. arktické nebo polární fronty, které prakticky nikdy nejsou souvislé okolo celé zemské polokoule, ale jsou zřetelně vyvinuty jen v některých oblastech. Např. polární fronta se nejčastěji rozpadá na tyto větve: polární frontu v západní části Tichého oceánu, polární frontu ve východní části Tichého oceánu, atlantskou polární frontu, která často zasahuje nad Evropu, a v chladné roční době i na středomořskou frontu. Větve atmosférické fronty vykazují značnou prostorovou proměnlivost během roku, a to i v jednotlivých měsících, přičemž se mění i jejich počet.
česky: větev atmosférické fronty angl: sections of atmospheric front rus: ветвь атмосферного фронта  1993-a1
vchod frontálnej zóny
oblast frontální zóny, ve které dochází ke konfluenci (sbíhání) izohyps absolutní barické topografie, a tím i k dyn. vzestupu tlaku zejména v nižších vrstvách atmosféry. Viz též pole deformační.
česky: vchod frontální zóny angl: entrance region rus: область входа  1993-a1
viacnásobné zrkadlenie
viz zrcadlení.
česky: zrcadlení vícenásobné angl: multiple mirage rus: многочисленный мираж  1993-a1
viacnásobný výboj blesku
bližší označení pro blesk, který se skládá ze dvou nebo více dílčích výbojů blesku. Tvoří asi polovinu všech výbojů blesku mezi oblakem a zemí. Viz též výboj blesku jednoduchý.
česky: výboj blesku vícenásobný angl: multiple-stroke lightning rus: многократный разряд молнии  1993-a1
viacstredová cyklóna
obvykle horiz. velmi rozsáhlá cyklona, v jejíž centrální části lze na synoptické mapě nalézt několik oblastí sníženého tlaku s alespoň jednou uzavřenou izobarou či izohypsou.
česky: cyklona vícestředá angl: complex low něm: Tiefdruckkomplex m rus: многоцентровая депрессия, многоцентровой циклон fr: dépression complexe f  1993-a2
viacvrstvová tropopauza
dvě i více vrstev, odpovídajících definici tropopauzy, které leží kvazihorizontálně nad základní neboli první tropopauzou. Vícevrstvá tropopauza se vyskytuje nejčastěji v subtropických oblastech v souvislosti se subtropickým tryskovým prouděním. Viz též listovitost tropopauzy.
česky: tropopauza vícevrstvá angl: multiple tropopause rus: многослойная тропопауза, многоуровенная тропопауза  1993-a1
vianočné oteplenie
česky: oteplení vánoční rus: рождественское потепление něm: Weihnachtstauwetter n  1993-a1
vianočný odmäk
označení pro poměrně teplé a vlhké počasí, které se může vyskytnout ve stř. Evropě mezi Vánocemi a Novým rokem při proudění rel. teplého mořského vzduchu od jihozápadu až západu a které nastupuje po období tužších mrazů. V nižších a středních polohách se zpravidla projevuje deštěm, táním sněhové pokrývky a ledových krytů na vodních hladinách, zatímco ve vyšších horských polohách může při nízko položené hranici sněžení dojít k nárůstu výšky sněhové pokrývky. Existence vánoční oblevy, dříve považované za jednu ze středoevropských singularit, která údajně odděluje časnou zimu od „vlastní“ zimy, byla v novějších pracích zpochybněna. Častěji totiž dochází k pokračování relativně teplého počasí z druhé dekády prosince, kdy sněhová pokrývka v nižších polohách nebývá přítomna. Vánoční obleva je u nás zachycena v lid. povětrnostní pranostice k 24. 12. „Na Adama a Evu čekejte oblevu“.
česky: obleva vánoční angl: Christmas thaw rus: рождественская оттепель něm: Weihnachtstauwetter n  1993-a3
videodistrometer
zařízení pro stanovení spektra velikosti dešťových kapek. Využívá snímání dešťových kapek, které padají do záchytného prostoru videodistrometru, dvěma vysokofrekvenčními kamerami umístěnými v kolmých směrech.
česky: videodistrometr angl: video distrometer  2014
Vidieho aneroidová škatuľka
syn. dóza Vidieho – kovová krabička s tenkými stěnami z pružného materiálu, z níž je částečně nebo zcela vyčerpán vzduch. Vzdálenost stěn Vidieho aneroidové krabičky se zmenšuje při růstu tlaku vzduchu a zvětšuje při jeho poklesu. Starší Vidieho aneroidové krabičky mají vnitřní nebo vnější napínací pružiny, novější jsou samopružící. Deformaci stěn Vidieho aneroidové krabičky rušivě ovlivňuje teplota okolního vzduchu. Její vliv se kompenzuje zbytkovou náplní vzduchu v krabičce, zařazením bimetalu do převodního systému nebo volbou materiálů s vhodnými koeficienty roztažnosti. Vidieho aneroidová krabička se používá jako čidlo aneroidu nebo barografů.
česky: krabička aneroidová Vidieho angl: aneroid capsule, pressure capsule rus: анероидная коробка, коробка Види něm: Aneroiddose f, Vidiedose f  1993-a2
Vidieho dóza
česky: dóza Vidieho něm: Vidie Dose f, Druckdose f rus: анероидная коробка, коробка Види, мембранная коробка fr: capsule de Vidie f, capsule anéroïde f  1993-a1
viditeľné žiarenie
krátkovlnné záření o vlnových délkách od 0,4 do 0,73 µm, na něž je citlivé lidské oko. Jednotlivým vlnovým délkám odpovídají určité barvy spektra, a to od fialové, která má nejkratší vlnové délky, až po červenou s nejdelšími vlnovými délkami. Viz též záření Slunce.
česky: záření viditelné angl: visible radiation rus: видимоe излучение  1993-a1
viditeľnosť
nevhodné označení pro dohlednost.
česky: viditelnost angl: visibility rus: видимость  1993-a3
Viedenská konvencia
česky: konvence vídeňská angl: Vienna Convention  2018
viedenská konvencia na ochranu ozónovej vrstvy
mezinárodní úmluva deklarovaná ve Vídni v roce 1985 s cílem zahájit aktivní ochranu ozonové vrstvy před účinky látek poškozujících ozonovou vrstvu. V následujících letech se k Vídeňské konvenci připojila většina členských zemí OSN a řada mezinárodních organizací. Prvním právně závazným dokumentem Vídeňské konvence se stal Montrealský protokol o látkách poškozujících ozonovou vrstvu.
česky: Vídeňská konvence na ochranu ozonové vrstvy angl: Vienna Convention for the Protection of the Ozone Layer rus: Венская конвенция об охране озонового слоя něm: Wiener Übereinkommen zum Schutz der Ozonschicht f  2014
Viedenský dohovor
česky: úmluva vídeňská angl: Vienna Convention  2018
vietor
jeden ze základních meteorologických prvků, který popisuje pohyb zvolené částice vzduchu v určitém místě atmosféry v daném časovém okamžiku. Pro jeho vyjádření užíváme vektor rychlosti větru, v met. praxi zkráceně vektor větru. Horiz. složka vektoru větru vzniká především působením horiz. složky síly tlakového gradientu a Coriolisovy síly. Dále se uplatňuje i odstředivá síla a síla tření. Vert. složka vektoru větru vzniká jako důsledek pohybu vzduchu v cirkulačních a frontálních systémech, konvekce, obtékání překážek apod. V běžné řeči se za vítr považuje jen horiz. složka vektoru větru. Vítr je prostředkem přenosu vody v atmosféře, přenosu energie, hybnosti a dalších fyz. vlastností ve vzduchových hmotách. Zvyšuje intenzitu výparu z vodní hladiny a z povrchu vlhkých předmětů, odnímá teplo tělesům, působí na překážky dynamickým tlakem, ovlivňuje ukládání sněhových závějí, vytváření námrazků apod. V met. praxi se sleduje odděleně směr a velikost vektoru větru jako směr větru a rychlost větru. Viz též měření větru, profil větru, protivítr, radiovítr, zákon větru barický, energie větru, vánek, náraz větru, pole větrů, pulzace větru, růžice větrná, tlak větru, extrémy rychlosti větru, stáčení větru, stočení větru, střih větru, bouře větrná.
česky: vítr angl: wind rus: ветер  1993-a3
vietor meraný rádiotechnickými prostriedkami
česky: vítr měřený radiotechnickými prostředky  1993-a1
víchrica
1. vítr o prům. rychlosti 20,8 až 24,4 m.s–1 nebo 75 až 88 km.h–1. Odpovídá devátému stupni Beaufortovy stupnice větru. 2. hovorové označení pro větrnou bouři.
česky: vichřice angl: strong gale rus: шторм  1993-a3
virga
syn. vir, pruhy srážkové – jedna ze zvláštností oblaků podle mezinárodní morfologické klasifikace oblaků. Má tvar srážkových pruhů, které směřují svisle nebo šikmo pod základnu oblaku a nedosahují však k zemskému povrchu. Virga se řadí mezi zvláštnosti oblaků, protože srážkové pruhy lze považovat za prodloužení oblaku. Vyskytuje se nejčastěji u druhů cirrocumulus, altocumulus, altostratus, nimbostratus, stratocumulus, cumulus a cumulonimbus.
česky: virga angl: virga rus: полосы падения  1993-a2
vírnatosť
historický termín pro vorticitu.
česky: vírnatost  1993-a2
vírové prúdenie
1. proudění vzduchu v oblasti hor, které je vázáno na vrstvu vzduchu s rychlostí větru rostoucí s výškou, přičemž však rychlost zpravidla nepřevyšuje 10 m.s–1 a v úrovni horského hřebene dochází k jejímu ustálení. Za horskou překážkou se vytváří pouze jeden vír s horiz. osou. Význačná turbulence se vyskytuje jen za překážkou a obvykle se nevytvářejí typické vlnové oblaky;
2. v dynamické meteorologii se termínem vírové proudění označuje proudění s nenulovou rel. vorticitou. Termín vírové proudění se v tomto smyslu nevztahuje k vířivým turbulentním pohybům.
česky: proudění vírové něm: verwirbelte Strömung f  1993-a3
vírové spektrum
česky: spektrum vírové něm: Wirbelspektrum n  1993-a1
virtuálna teplota
charakteristika vlhkého vzduchu, která odpovídá teplotě suchého vzduchu o stejných hodnotách tlaku a hustoty jako má vzduch vlhký. Hodnotu virtuální teploty lze stanovit na základě stavové rovnice ideálního plynu pro vlhký vzduch na základě předpokladu, že suchý vzduch i vodní pára se chovají jako ideální plyny. Virtuální teplota Tv však umožňuje použít pro vlhký vzduch stavovou rovnici ideálního plynu pro suchý vzduch, dosadíme-li do ní virtuální teplotu místo teploty vzduchu, tzn.
p/ρ=RdTv,
kde p je tlak vlhkého vzduchu, ρ hustota vlhkého vzduchu a Rd měrná plynová konstanta suchého vzduchu. Pro danou měrnou vlhkost s lze hodnotu Tv v K určit pomocí vztahu
Tv=T[ (1+( RvRd1 )s) ]T(1+0,61s),
kde T značí teplotu v K a Rv měrnou plynovou konstantu vodní páry. Obdobně lze Tv vyjádřit pomocí směšovacího poměru w, využijeme-li převodní vztah
s=w1+w.
Platí tedy, že Tv ≥ T, kde znaménko rovnosti obou veličin odpovídá suchému vzduchu. Virtuální teplota bývá při zemi obvykle o 0,1 až 5,0 °C vyšší než skutečná teplota vzduchu, přičemž hodnota horní hranice rozdílu odpovídá napětí nasycené vodní páry při 30 °C. V meteorologii se využívá také prům. virtuální teplota vrstvy vzduchu mezi dvěma izobarickými hladinami, která je přímo úměrná jejich vertikální vzdálenosti. Relativní izohypsy na mapách relativní topografie jsou tedy zároveň izotermami prům. virtuální teploty. Ve fyzice oblaků a srážek zahrnují někteří autoři do definice virtuální teploty i přírůstek hustoty vyvolaný přítomností kondenzované fáze vody. Definice má potom tvar
Tv=T(1+0,61w wl),
kde wl je směšovací poměr kondenzované fáze vody.
česky: teplota virtuální angl: virtual temperature rus: виртуальная температура  1993-a3
virtuálne trenie
česky: tření virtuální angl: virtual friction rus: виртуальное трение  1993-a1
víry v atmosfére
pojmem vír obecně označujeme rotační pohyb hmotného elementu v plynu nebo v kapalině. V atmosféře se lze setkat s víry různých velikostí, které vznikají z rozmanitých příčin. Největším vírem, souvisejícím se všeobecnou cirkulací atmosféry, je cirkumpolární vír, patrný na výškových mapách horní troposféry a spodní stratosféry. K vírům synoptického měřítka patří cyklony a tropické cyklony. V subsynoptickém měřítku lze na družicových snímcích často identifikovat různé oblačné víry, k vírům malého měřítka o průměru řádově jednotek až stovek m patří prachové nebo písečné víry a tromby. Všechny zmíněné víry se vyznačují přibližně vert. orientací rotační osy. V atmosféře se však vytvářejí i stabilní víry s horiz. nebo kvazihorizontální osou, tzv. rotory. S turbulencí v atmosféře je spjat výskyt náhodně se pohybujících nestabilních vírů s různou orientací osy rotace, jejichž průměry dosahují od několika mm do stovek m. Viz též měřítko vírů v atmosféře, proudění vírové.
česky: víry v atmosféře angl: whirls in atmosphere rus: вихри в атмосфере  1993-a1
viskózne napätie
česky: napětí vazké angl: viscous stress rus: вязкое напряжение něm: Viskositätsspannung f, viskose Spannung f  1993-a1
viskózne trenie
česky: tření vazké angl: viscosity friction rus: вязкое трение  1993-a1
vizuálne meteorologické pozorovanie
pozorování bez met. přístrojů, např. pozorování druhu oblačnosti, bouřek, stavu půdy, určování dohlednosti odhadem.
česky: pozorování meteorologické vizuální angl: visual meteorological observation rus: визуальное метеорологическое наблюдение něm: visuelle meteorologische Beobachtung f  1993-a3
vlaha
1. nevhodné označení pro půdní vodu, viz bilance půdní vody;
2. neurčité označení pro vodu z atmosférických srážek, např. zimní vláhu, akumulovanou v půdě z deště a tajícího sněhu do začátku vegetačního období. Častěji se užívá přídavné jméno vláhový, viz např. jistota vláhová, index vláhový Končkův.
česky: vláha angl: dampness, moisture rus: влага, влажность  1993-a3
vlahová bilancia
česky: bilance vláhová rus: водный баланс fr: bilan hydrique des sols m  1993-a1
vlahová istota
vžitý název pro Minářův koeficient vláhové jistoty, který zavedl M. Minář (1948) pro podrobnější klimatologické členění tehdejšího Československa. Tento index humidity má tvar
kM=R¯ -30(T¯+7 )T¯ ,
kde R¯ je prům. roč. úhrn srážek v mm a T¯ je prům. roč. teplota vzduchu ve °C. Nejsušší oblasti ČR mají kM s hodnotami zápornými a nejvlhčí oblasti s hodnotami nad 35.
česky: jistota vláhová  1993-a2
vlajkový oblak
orografický oblak, který tvarem připomíná vlajku. Tvoří se při silném větru za izolovaným horským vrcholem v důsledku snížení teploty vzduchu vyvolaného poklesem tlaku v aerodyn. úplavu. Je typickým oblakem horských oblastí, který se vyskytuje v omezeném prostoru na závětrné straně jednotlivých vrcholů a při příznivém proudění se neustále obnovuje. Popisován je např. na Matterhornu v Alpách, u nás se vyskytuje např. na Milešovce v Českém Středohoří apod. Vrchol s vlajkovým oblakem bývá lid. označován jako „kouřící hora“. Vlajkový oblak nesmí být zaměňován se sněhem, který je unášen větrem z hřebenů nebo vrcholů hor.
česky: oblak vlajkový angl: banner cloud rus: облачное знамя, облачный флаг  1993-a2
vlásočnice
česky: vlásečnice angl: tendrils  2016
vlasový vlhkomer
vlhkoměr měřící relativní vlhkost vzduchu. Jeho čidlem je jeden nebo několik speciálně připravených lidských vlasů. Délka vlasů se s rostoucí relativní vlhkostí v rozpětí od 0 do 100 % zvětšuje asi o 2,5 %. Změny délky vlasů se indikují ručičkou na stupnici. Údaje přístroje jsou téměř nezávislé na teplotě vzduchu v rozpětí hodnot, které se u nás běžně vyskytují. Na profesionálních stanicích v ČR se používá vlasový vlhkoměr jako záložní přístroj.
česky: vlhkoměr vlasový angl: hair hygrometer rus: волосной гигрометр  1993-a3
vlhká adiabata
křivka na termodynamickém diagramu, která vyjadřuje vztah mezi dvěma stavovými proměnnými (zpravidla mezi teplotou a tlakem) při adiabatickém ději ve vlhkém nenasyceném vzduchu. Protože rozdíl mezi adiabatou pro suchý vzduch a adiabatou pro vlhký nenasycený vzduch je velmi malý, do termodynamického diagramu se vlhké adiabaty nezakreslují a pro adiabatický děj v nenasyceném vzduchu se používají suché adiabaty. V americké terminologii se jako vlhká adiabata označuje nasycená adiabata.
česky: adiabata vlhká něm: Feuchtadiabate f fr: adiabatique humide m  1993-a3
vlhká klíma
česky: klima vlhké angl: humid climate rus: влажный климат něm: feuchtes Klima n  1993-b3
vlhká oblasť
česky: oblast vlhká angl: humid zone rus: влажная зона, влажная область něm: feuchtes Gebiet n, humides Gebiet n  1993-a3
vlhká teplota
1. teplota, které teor. nabude původně nenasycený vzduch po nasycení vodní párou. Proběhne-li tento proces jako děj adiabatický nebo děj izobarický, rozlišujeme:
a) adiabatickou vlhkou teplotu Tav. Pomocí termodynamického diagramu ji přibližně určíme tak, že uvažovanou vzduchovou částici převedeme po suché adiabatě do výstupné kondenzační hladiny, kde se vystupující vzduch stane nasyceným vodní párou. Odtud pak vzduchovou částici necháme sestoupit po nasycené adiabatě do výchozí hladiny, na níž přečteme Tav. Převedeme-li částici po nasycené adiabatě dále do tlakové hladiny 1 000 hPa, dostaneme adiabatickou vlhkou potenciální teplotu. Adiabatická vlhká potenciální teplota má ve vzduchu obsahujícím nasycenou vodní páru z hlediska podmínek pro vertikální stabilitu atmosféry analogický význam jako potenciální teplota v nenasyceném vzduchu;
b) izobarickou vlhkou teplotu Tiv. Při jejím určení předpokládáme, že k nasycení (vzhledem k rovinnému vodnímu povrchu) dojde za stálého tlaku vypařováním vody do uvažované vzduchové částice, jíž se odnímá teplo spotřebované na výpar. Tuto teplotu lze vypočítat podle vzorce
Tiv=TL wv(wsw) cp,
kde T značí teplotu vzduchu, Lwv latentní teplo vypařování, cp měrné teplo vzduchu při stálém tlaku, w, resp. ws skutečný směšovací poměr vodní páry, resp. směšovací poměr vodní páry odpovídající stavu nasycení.
Izobarická vlhká teplota je vždy vyšší než adiabatická vlhká teplota. Spolu s ní se v meteorologii používá k analýze termodyn. vlastností vzduchových hmot. Přejdeme-li na termodyn. diagramu z bodu určeného teplotou Tiv v uvažované tlakové hladině po nasycené adiabatě do hladiny 1 000 hPa, zjistíme na teplotní stupnici izobarickou vlhkou potenciální teplotu;
2. v meteorologii běžné zkrácené označení pro teplotu vlhkého teploměru, která se v ideálním případě (z hlediska funkce vlhkého teploměru a na něj působících vnějších faktorů) blíží izobarické vlhké teplotě. Ztotožňování teoreticky určené izobarické vlhké teploty a změřené teploty vlhkého teploměru, k čemuž někdy v praxi dochází, však není zcela přesné.
česky: teplota vlhká angl: wet-bulb temperature rus: температура смоченного термометра  1993-a1
vlhké obdobie
1. syn. období srážkové;
2. obecné označení časového úseku, během něhož se v určité oblasti vyskytly v porovnání s klimatologickým normálem nebo s jiným obdobím větší úhrny srážek. Uvažovaný časový úsek přitom může trvat jen několik dní, ale i celé geologické období, viz např. pluviál.
česky: období vlhké angl: wet spell rus: влажный период něm: nasse Periode f  1993-a3
vlhkoadiabatický teplotný gradient
adiabatický teplotní gradient částice vlhkého, ale nenasyceného vzduchu. Protože rozdíl mezi hodnotou suchoadiabatického teplotního gradientu a vlhkoadiabatického teplotního gradientu je velmi malý, obvykle se adiabatická změna teploty vlhké nenasycené vzduchové částice popisuje suchoadiabatickým teplotním gradientem. Na rozdíl od češtiny se v amerických textech používá termín vlhkoadiabatický teplotní gradient jako synonymum pro nasyceně adiabatický teplotní gradient.
česky: gradient teplotní vlhkoadiabatický fr: gradient adiabatique humide m  1993-a3
vlhkomer
syn. hygrometr – přístroj pro měření vlhkosti vzduchu, zpravidla relativní vlhkosti vzduchu, tlaku vodní páry nebo teploty rosného bodu. Pracuje nejčastěji na principu:
a) psychrometrickém (psychrometry);
b) deformačním (vlasové a blánové vlhkoměry);
c) absorpčním (absolutní vlhkoměry nebo elektrické vlhkoměry);
d) kondenzačním (kondenzační vlhkoměry).
česky: vlhkoměr angl: hygrometer rus: гигрометр  1993-a3
vlhkosť klímy
česky: vlhkost klimatu  1993-b1
vlhkosť pôdy
množství vody, včetně vodní páry, obsažené v půdě. Vlhkost půdy hmotnostní je definována jako poměr hmotnosti vody obsažené ve vzorku půdy k hmotnosti vysušeného vzorku půdy. Vlhkost půdy objemová je definována jako poměr objemu vody obsažené ve vzorku půdy k celkovému objemu tohoto vzorku, tj. objemu suché půdy a půdního vzduchu a vody. Vlhkost půdy hmotnostní i objemová se udávají v procentech. Viz též voda půdní.
česky: vlhkost půdy angl: soil moisture rus: влажность почвы  1993-a3
vlhkosť vzduchu
základní meteorologický prvek popisující množství vodní páry ve vzduchu. V meteorologii lze vlhkost vzduchu vyjádřit pomocí řady vlhkostních charakteristik, jako jsou např. tlak vodní páry, hustota vodní páry, měrná vlhkost, relativní vlhkost, směšovací poměr, deficit teploty rosného bodu, sytostní doplněk, popř. další. Viz též měření vlhkosti vzduchu, vertikální profil vlhkosti vzduchu, inverze vlhkosti vzduchu, pole vlhkosti.
česky: vlhkost vzduchu angl: air humidity, air moisture rus: влажность воздуха  1993-a3
vlhkostné rozhranie
úzká přechodová zóna v mezosynoptickém nebo až synoptickém měřítku mezi vzduchovými hmotami, které se výrazněji liší v množství obsažené vodní páry. Pro vlhkostní rozhraní je typický zvětšený horiz. gradient charakteristik vlhkosti vzduchu; např. gradient teploty rosného bodu může dosahovat hodnot až 10 °C na 10 km. V blízkosti vlhkostního rozhraní dochází podobně jako v případě atmosférické fronty často ke stáčení větru, naopak výskyt brázdy nízkého tlaku vzduchu podél rozhraní není typický. Rozdíly v teplotě vzduchu mezi suchou a vlhkou stranou bývají poměrně malé, přičemž vzduch na suché straně bývá ve dne o něco teplejší a v noci o něco chladnější než na vlhké straně. Ve stř. zeměp. šířkách je hlavním mechanizmem formování vlhkostního rozhraní velkoprostorové konfluentní proudění z různých ohnisek vzniku vzduchových hmot. Vlhkostní rozhraní lze typicky detekovat v místech styku tropického mořského a pevninského vzduchu, ale také v zónách, kde se setkává vzduch pocházející z oblastí s rozdílnou vlhkostí půdy a s různým vegetačním pokryvem i využíváním krajiny člověkem. Kvazistacionární vlhkostní rozhraní, charakteristické pouze reverzibilním denním chodem pohybu, se často vyskytuje na jaře a v létě východně od Skalnatých hor, kde bývá nezřídka odpovědné za explozivní zesílení konvektivních bouří provázených tornády a krupobitím. Vlhkostní rozhraní se objevují i v jiných částech světa, např. na severu Indie, ve vých. oblastech Číny a na Pyrenejském poloostrově. Viz též pole frontogenetické.
angl: dewpoint front, dryline česky: rozhraní vlhkostní  2019
vlhký rast krúp
česky: růst krup vlhký angl: wet growth of hailstones něm: nasses Hagelwachstum n 
vlhký teplomer
vžité označení pro jeden z dvojice rtuťových teploměrů tvořících psychrometr. Jeho nádobka je pokryta tkaninovým obalem, tzv. punčoškou, pomocí níž se vytváří film čisté vody nebo ledu na povrchu nádobky. Film se vypařuje při relativní vlhkosti vzduchu nižší než 100 %, čímž se nádobce odnímá teplo potřebné pro výpar, jehož množství je úměrné, mimo jiné, sytostnímu doplňku. Měřená teplota je proto většinou nižší než teplota vzduchu v okolí nádobky, tzn. nižší než údaj suchého teploměru. Může být výjimečně vyšší než teplota suchého teploměru při záporných teplotách ve °C a husté mlze, kdy je nádobce dodáváno latentní teplo kapiček mlhy, které na této nádobce mrznou. Při čtení se zjišťuje, zda při záporných teplotách je na punčošce voda nebo led a podle toho se k vyhodnocení vlhkosti vzduchu použije příslušně označený oddíl psychrometrických tabulek. Na profesionálních stanicích ČR se údaje z vlhkého teploměru používají při nefunkčnosti automatického měřicího systému, pro pravidelné srovnávací měření a na vybraných stanicích pro souběžná měření s automatickým měřicím systémem.
česky: teploměr vlhký angl: wet-bulb thermometer rus: смоченный термометр  1993-a3
vlhký vzduch
termodynamice atmosféry vzduch tvořený směsí suchého vzduchu a vodní páry. V obecných popisech se setkáváme s pojmem vlhký vzduch ve smyslu vzduch s vysokou relativní vlhkostí. Viz též vlhkost vzduchu, vzduch nasycený.
česky: vzduch vlhký angl: moist air rus: влажный воздух  1993-a2
vlna
viz též vlny.
česky: vlna angl: wave rus: волна  1993-a1
vlna horúčav
teplá vlna anebo vícedenní období letních veder na větším území, během něhož dosahují max. denní teploty výrazně nadnormálních hodnot. Stanovení dolní meze teploty je relativní a závisí obvykle na místě. Často se udává odchylkou nad průměrným maximem eventuálně nad příslušným percentilem rozložení maximální teploty. U nás se za praktickou mez považuje 30 °C. Ve stř. Evropě bývá horká vlna podmíněna advekcí tropického vzduchu do nitra pevniny nebo intenzívním radiačním ohříváním vzduchu mírných šířek, který setrvává nad přehřátou pevninou v oblastech anticyklon. Výskyt horkých vln patří mezi významné sledované faktory s ohledem na změnu klimatu a její důsledky především kvůli výraznému nárůstu mortality v těchto obdobích. Viz též oteplování advekční, dny psí.
česky: vlna horká angl: heat wave rus: волна тепла  1993-a3
vlna horúčav
často používané syn. pro termín vlna horká.
česky: vlna veder  2015
vlna tropopauzy
zvlnění tropopauzy vyvolané vert. pohyby vzduchu v souvislosti s výraznou cyklonální činností, která může vést i k protržení tropopauzy. Současně se změnami výšky tropopauzy při přesunu cyklon a anticyklon v atmosféře se mění i teplota v hladině tropopauzy a nad ní, tj. ve spodní části stratosféry, a to tak, že při nízké tropopauze se její teplota zvyšuje, při vysoké snižuje.
česky: vlna tropopauzy angl: tropopause wave rus: волна тропопаузы  1993-a1
vlnenie dymovej vlečky
jeden z tvaru kouřové vlečky. Pro vlnění kouřové vlečky je příznačný kruhový nebo eliptický průřez vlečky ve směru kolmém na její podélnou osu. Vlečka má tvar protáhlého kužele s téměř vodorovnou osou. Vlnění kouřové vlečky je charakteristické pro počasí s mírným až silným větrem a s mírně stab. teplotním zvrstvením ovzduší v celé vrstvě, v níž se vlečka šíří. Rozptyl exhalací je v tomto případě působen v rozhodující míře nevelkými víry při mechanické turbulenci. Vlnění je nejběžnějším tvarem kouřové vlečky, může se vyskytovat v kterékoli části dne a roku.
česky: vlnění kouřové vlečky angl: coning rus: конусообразный факел, конусообразный шлейф загрязнений  1993-a1
vlnenie vodnej hladiny
rytmické pohyby vodní hladiny vyvolané větrem na oceánech, mořích, jezerech, přehradách atd., jejichž rozměry jsou přímo závislé na rychlosti větru, jeho trvání, na velikosti vodní hladiny a hloubce nádrže. Jsou významné jak ve vodní dopravě, tak při stavbě hydrotechnických děl. Viz též vlny stojaté.
česky: vlnění vodní hladiny angl: wind waves rus: ветровое волнение, ветровые волны  1993-a1
vlnová teória cyklogenézy
teorie vycházející z předpokladu, že cyklona vzniká vlivem vlnových pohybů na frontální ploše. Vznikla na základě synop. praxe norské meteorologické školy vedené V. Bjerknesem, která určila stadia vývoje cyklony. Nejjednodušší představa vzniku vlny na frontální ploše, a tím nové cyklony, byla spojována s přiblížením se staré cyklony k polární frontě. Mat. zdůvodnění vlnové teorie cyklogeneze publikovali v r. 1933 V. Bjerknes a H. Solberg.
česky: teorie cyklogeneze vlnová angl: wave theory of cyclogenesis rus: волновая теория циклогенеза  1993-a1
vlnové prúdenie
proudění vzduchu interagující především v závětrné oblasti hor s gravitačními vlnami, které je vázáno na vert. mohutnou vrstvu vzduchu se stabilním teplotním zvrstvením. Rychlost větru v ní obvykle převyšuje ve výšce horského hřebene 10 m.s–1 a roste s výškou. Na závětrné straně horské překážky vzniká vlnová deformace proudění v podobě stojatých vln, pod jejichž vrchy se vyskytují 2 až 3 víry s horiz. osou (rotory) přibližně ve výšce horského hřebene. Vzdálenost prvního rotoru od překážky a vzájemná vzdálenost vírů roste s rychlostí proudění a klesá se zvětšující se stabilitou teplotního zvrstvení. Podle J. Förchtgotta je tato vzdálenost zhruba rovna desetinásobku rel. převýšení závětrné strany horské překážky. Doprovodná silná až extrémní turbulence je vázána především na oblasti rotorů, které jsou při dostatečné vlhkosti vyjádřeny oblaky cumulus fractus. Vert. složka rychlosti proudění vzduchu může dosahovat 10 až 25 m.s–1. Při vhodném teplotním zvrstvení, příznivém profilu větru a dostatečné rel. výšce horské překážky může zóna vlnové deformace proudění zasahovat až do horní troposféry, popř. i do stratosféry, jak např. dokládá tragický let Švéda. K. E. Ovgarda na bezmotorovém letadle do výšky nad 16 000 m nad Sierrou Nevadou v prosinci 1951. Typickým jevem spojeným s vlnovým prouděním jsou vlnové oblaky tvaru lenticularis. Pro vlnové proudění se v letecké (plachtařské) meteorologii často používá označení závětrné vlny nebo vlna horská.
česky: proudění vlnové angl: wave flow něm: Wellenströmung f  2014
vlnový oblak
oblak, jehož vznik nebo vývoj je podmíněn vlnovou deformací proudění. Příčinou vývoje vlnových oblaků může být proudění přes horské hřebeny, orientované přibližně kolmo na směr proudění. Je-li vzduch dostatečně vlhký, tvoří se vlnová oblačnost na závětrné straně hřebene, často v řadách rovnoběžných s hřebenem, a to do vzdáleností až několika desítek km. V Krkonoších se oblak nad vrcholem hřebenu nazýval v místním něm. nářečí „moazagotl". Vlnové oblaky mohou vzniknout i ve volné atmosféře ve vrcholech vln na rozhraní vzduch. vrstev s rozdílným vektorem větru nebo s různým vertikálním teplotním gradientem. Tyto vlnové oblaky se často vyskytují před studenou frontou. Viz též oblak stacionární, proudění vlnové, vlny Helmholtzovy.
česky: oblak vlnový angl: wave cloud rus: волнистое облако, волновое облако něm: wogenförmige Wolke f, Wogenwolke f  1993-a2
vlny na inverznej hladine
česky: vlny na inverzní hladině  1993-a1
vlny vo východnom prúdení
syn. vlny pasátové, vlny tropické – vlnové poruchy v poli východního pasátového proudění, které postupují od východu k západu rychlostí zpravidla menší, než je rychlost pozaďového proudění. Na synoptické mapě se tyto poruchy projevují vytvářením mělkých brázd nízkého tlaku vzduchu a nevýrazných hřebenů vysokého tlaku vzduchu. V přední (západní) části brázdy bývá jasno nebo jen malá oblačnost. V blízkosti osy brázdy a v jejím týlu se v důsledku konvergence horiz. proudění často vytváří rozsáhlá skupina konvektivních bouří, označovaná jako tropická porucha, z níž se za vhodných podmínek může dále vyvinout tropická cyklona. Zmíněná asymetrie v projevech počasí může být nad pevninou silně narušena vlivem orografie nebo denního chodu meteorologických prvků.
česky: vlny ve východním proudění angl: easterly waves, waves in the easterlies rus: восточные волны  1993-a3
vnútorná energia
energie systému, tvořeného soustavou částic, nezahrnuje kinetickou a potenciální energii související s působením vnějších sil na daný systém jako celek. Podílí se na ní energie translačního pohybu jednotlivých částic (molekul), energie jejich vibračních a rotačních stavů i energie související se vzájemným působením molekul. Poslední faktor se neuplatňuje v ideálním plynu a jeho vnitřní energie je pak závislá pouze na teplotě. Předpoklad ideálního plynu je obvyklý ve všech meteorologických aplikacích a vnitřní energie jednotky hmotnosti vzduchu je pak dána součinem jeho teploty vyjádřené v K a měrného tepla při stálém objemu. Zdrojem vnitřní energie atmosféry je sluneční záření. Vzrůst vnitřní energie atmosféry je spojen s jejím rozpínáním, přičemž v zemské atmosféře zůstává zachován poměr její vnitřní a potenciální energie. Souhrn obou těchto energií pak bývá označován jako celková potenciální energie atmosféry.
česky: energie vnitřní angl: free energy, Gibbs potential, Helmholtz free energy, internal energy něm: innere Energie f fr: énergie interne  2017
vnútroštátna výstraha na nebezpečné meteorologické javy v letectve
výstraha pro letectvo před pozorovaným nebo očekávaným, popř. již probíhajícím překročením stanovené hodnoty tlaku vzduchu, rychlosti větru, resp. před výskytem dalších jevů. Letecká meteorologická služba ČHMÚ vydává pro vnitrostátní potřebu výstrahy na pokles tlaku vzduchu redukovaného na hladinu moře podle standardní atmosféry (QNH) pod hodnotou 977 hPa, na rychlost větru 50 KT a více v hladině 850 a 700 hPa, 80 KT a více v hladinách nad 500 hPa, dále na výskyt vlnového proudění za horskými překážkami a na výrazné atmosférické fronty. Výstrahy tohoto druhu se vydávají v otevřené řeči a doba jejich platnosti je max. 9 hodin. Viz též služba meteorologická letecká, zpráva o náhlé změně počasí.
česky: výstraha před nebezpečnými meteorologickými jevy v letectví vnitrostátní  1993-a3
VOC
(Volatile Organic Compounds, těkavé organické látky) – organické sloučeniny, jejichž počáteční bod varu, měřený za standardního atmosférického tlaku 101,3 kPa, je nižší nebo roven 250 °C. Důsledkem je vysoký tlak jejich nasycených par v oboru normálních (pokojových) teplot a intenzivní výpar nebo sublimace z kapalné nebo pevné fáze do okolního ovzduší, kde jsou široce rozšířené. Řada VOC je škodlivá lidskému zdraví (benzen, formaldehyd), mnohé VOC patří k významným prekurzorům přízemního ozonu (nemethanické alkany, alkeny, některé alkyny, aldehydy, ketony, uhlovodíky obsahující ve své struktuře benzenová jádra apod.).
Uvedené vymezení VOC je dáno Směrnicí Evropského parlamentu a Rady 2004/42/ES ze dne 21. dubna 2004 o omezování emisí těkavých organických sloučenin, vznikajících při používání organických rozpouštědel v některých barvách a lacích a výrobcích pro opravy nátěru vozidel, a o změně směrnice1999/13/ES. Dle této Směrnice se do VOC, na rozdíl od dříve obvyklé praxe, zařazuje i methan. Pro těkavé organické látky jiné než methan se běžně používá termín nemethanické VOC (NMVOC, non-methane volatile organic compounds). Používání a emise VOC antropogenního původu, které mají široké využití např. jako rozpouštědla, jsou regulovány legislativou. Podstatnou součástí VOC jsou též biogenní těkavé organické látky (BVOC) přírodní povahy. Patří sem především izoprén C5H8, monoterpeny C10H16 a další látky. Jejich zdroji jsou zejména lesní a křovinné porosty, plantáže citrusových plodů apod. Produktem rozpadových reakcí VOC v přírodě je především formaldehyd, procesem nukleace z nich však též vznikají sekundární organické aerosoly.
česky: VOC angl: VOC, Volatile Organic Compound  2014
voda v atmosfére
nejvíce zastoupená chemická sloučenina v atmosféře Země. Její podíl na objemu hydrosféry je necelých 0,001 %, což by v kapalném skupenství představovalo 1,3.1013 m3 vody, tedy vrstvu na zemském povrchu o výšce cca 25 mm. Voda se v atmosféře vyskytuje ve všech třech skupenstvích, tzn. ve formě vodní páry i částic kapalné vody a ledu. Mezi skupenstvími dochází k fázovým přechodům, viz výpar a mrznutí kapalné vody, kondenzace vodní páry a její depozice, tání sněhu nebo ledu a jeho sublimace. Voda v atmosféře se tak významně podílí na hydrologickém cyklu. Viz též voda přechlazená, mikrofyzika oblaků a srážek.
česky: voda v atmosféře angl: water in atmosphere rus: вода в атмосфере  1993-a3
vodiaci výboj blesku
syn. leader – slabě svítící prorůstající předvýboj blesku uvnitř oblaku, mezi oblaky a mezi oblakem a zemí. Dráhu vůdčího výboje blesku ovlivňuje max. gradient elektrického pole v čele hlavy tohoto výboje a el. vodivost vzduchu na jeho dráze. Větvení vůdčího výboje blesku nastává ve směru šíření, vůdčí výboj blesku bývá stupňovitý nebo trvalý;
a) stupňovitý vůdčí výboj blesku neboli prorůstající předvýboj u prvního výboje blesku se člení na typ α s délkou jednotlivých stupňů do 200 m (s prům. délkou 50 m) a s rychlostí postupu v jednotlivých stupních okolo 5.107 m.s–1. Mezi jednotlivými stupni je pauza 30 až 100 µs. Efektivní rychlost šíření je 105 až 106 m.s–1; typ β má zpočátku značně vyšší efektivní rychlost než typ α, v dalším stadiu vývoje nastává pokles jeho rychlosti na 105 m.s–1 a někdy vůbec nedosáhne země. V horní části je vůdčí výboj značně větší. Proud stupňovitého vůdčího výboje bývá několik stovek A až asi 2 kA;
b) trvalý vůdčí výboj blesku nemá stupňovitý charakter. Rychlost šíření je menší než rychlost postupu stupňovitého vůdčího výboje blesku v jednotlivých stupních. Prům. rychlost šíření je asi 2.106 m.s–1. V čes. elektrotechnické literatuře se pro vůdčí výboj blesku používá též pojmu „lídr“ (angl. leader, rus. líděr).
česky: výboj blesku vůdčí angl: leader streamer, leader stroke rus: лидер молнии, удар лидерa  1993-a2
vodná hodnota snehovej pokrývky
výška vodní vrstvy, která vznikne rozpuštěním sněhové pokrývky, resp. její hmotnost, vztažená na jednotku plochy. Vodní hodnota sněhové pokrývky se udává v mm vodního sloupce nebo v kg.m–2. Pro zatížení stavebních konstrukcí se používají jednotky kg.m—2 nebo kPa. Viz též sněhoměr.
česky: hodnota sněhové pokrývky vodní angl: snow water equivalent, water equivalent of snow rus: водный эквивалент снега, запас воды в снежном покрове něm: Wassergehalt der Schneedecke m  1993-a3
vodná para
voda v plynném skupenství. V atmosféře je vodní pára obsažena ve velmi proměnném množství; u zemského povrchu v průměru od 0 do 3 % objemu. S výškou obsah vodní páry v atmosféře velmi rychle ubývá. Při vhodných podmínkách vodní pára kondenzuje a vytváří oblaky, popř. hydrometeory. Vodní pára intenzivně pohlcuje a vyzařuje dlouhovlnné záření, a je proto významná pro radiační režim atmosféry, v rozhodující míře se podílí na skleníkovém efektu atmosféry. Viz též atmosféra Země, vzduch nasycený, vzduch vlhký, kondenzace vodní páry, okno atmosférické, tlak vodní páry.
česky: pára vodní angl: aqueous vapour, water vapour rus: водяной пар něm: Wasserdampf m, Wasserdampf m  1993-a2
vodná smršť
hovorové označení pro trombu, popř. tornádo, vyskytující se nad vodní hladinou a dotýkající se jí. Může se vyskytnout nejen pod spodní základnou oblačnosti Cumulonimbus, ale i pod Cumulus congestus.
česky: smršť vodní angl: water spout rus: водяной смерч něm: Wasserhose f  2014
vodná triešť
soubor vodních kapiček, které byly odtrženy z hladiny větších vodních ploch větrem a vyneseny obvykle na krátkou vzdálenost do vzduchu. K odtrhávání kapiček dochází hlavně na hřebenech vln. U nás je vodní tříšť pozorována jen na meteorologických stanicích na březích vodních nádrží při silnějším nárazovitém větru, kde způsobuje zvlhnutí předmětů až do vzdálenosti několika set metrů od místa vzniku. Vodní tříšť patří k hydrometeorům.
česky: tříšť vodní angl: water spray rus: брызги воды  1993-a2
vodnatosť oblaku
nevhodné označení pro vodní obsah oblaku.
česky: vodnost oblaku  1993-a2
vodný oblak
syn. oblak kapalný – oblak složený výlučně z vodních kapek bez přítomnosti ledových částic. Může se jednat o oblak teplý nebo oblak přechlazený.
česky: oblak vodní angl: water cloud rus: водяное облако něm: Wasserwolke f  1993-a2
vodný obsah oblaku
úhrnná hmotnost kapalných a tuhých částic vody v jednotce objemu oblaku, popř. mlhy. Vyjadřuje se v kg.m–3 nebo tradičně v g.m–3. V odborné literatuře se setkáváme s užitím zkratky CWC (z angl. Cloud Water Content). Viz obsah vodní kapalný, obsah vodní ledový.
česky: obsah oblaku vodní angl: cloud water content rus: водность облаков něm: Wassergehalt der Wolke m  1993-a3
vodný pyrheliometer
pyrheliometr využívající k měření přímého slunečního záření přírůstek teploty známého objemu vody protékající přístrojem. Vodní pyrheliometr zkonstruovaný C. G. Abbotem byl standardním pyrheliometrem pro Smithsonskou mezinárodní pyrheliometrickou stupnici.
česky: pyrheliometr vodní angl: water flow pyrheliometer rus: водоструйный пиргелиометр něm: Wasserfluss-Pyrheliometer n  1993-a3
vodorovná dohľadnosť
viz dohlednost.
česky: dohlednost vodorovná angl: horizontal visibility něm: Horizontalsicht f rus: горизонтальная видимость fr: visibilité horizontale f  1993-b3
voľná atmosféra
část atmosféry nad mezní vrstvou atmosféry. Ve volné atmosféře není proudění vzduchu podstatně ovlivněno třením o zemský povrch a jeho rychlost lze zpravidla alespoň hrubě aproximovat rychlostí geostrofického větru. Viz též měření aerologické.
česky: atmosféra volná angl: free atmosphere něm: freie Atmosphäre f rus: свободная атмосфера fr: atmosphère libre f  1993-a1
voľná energia
termín samostatně užívaný zpravidla ve smyslu Helmholtzova volná energie, neboli Helmholtzův potenciál. Pojem volná energie se však též někdy vyskytuje ve spojení Gibbsova volná energie, což je syn. ke Gibbsovu potenciálu.
česky: energie volná něm: freie Energie f  2017
volná Helmholtzova voěná energia
česky: energie volná Helmholtzova něm: Helmholtzsche freie Energie f, freie Energie f fr: énergie de Helmholtz f, énergie libre de Helmholtz f, énergie libre f  2017
voľná konvekcia
konvekce, která se vyvíjí vlivem archimédovských vztlakových sil. V aerologické a synoptické praxi se touto konvekcí obvykle rozumí konvekce nad hladinou volné konvekce ve vrstvě existence CAPE. Viz též vertikální instabilita atmosféry, křivka stavová.
česky: konvekce volná angl: free convection rus: свободная конвекция něm: freie Konvektion f  1993-a3
voľný föhn
syn. fén anticyklonální – fén vyskytující se v kvazistacionárních anticyklonách nebo v hřebenech vysokého tlaku vzduchu za slabého horiz. proudění nebo za bezvětří. Při jeho vývoji se uplatňuje subsidence vzduchu a jeho rychlosti bývají menší ve srovnání s orografickým fénem. Na horách se mj. projevuje oteplením a silným poklesem relativní vlhkosti vzduchu, zatímco v nižších polohách se při něm mohou vytvářet izolovaná jezera studeného vzduchu s vysokou inverzní mlhou nebo s nízkou oblačností nad sebou. V horském terénu v silnějším anticyklonálním proudění je vlivem vzestupných pohybů vzduchu na návětrné straně pohoří subsidence potlačována a soustřeďuje se pak na závětrnou stranu, kde může vyvolat výrazné oteplení.
česky: fén volný angl: free air foehn rus: фён в свободной атмосфере něm: freier Föhn m fr: foehn anticyclonique m  1993-a3
volutus
(vol) [volůtus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Tvar volutus označuje dlouhý, nízko položený, horizontální válcovitý oblačný útvar, často pomalu rotující kolem své horizontální osy. Rotorový oblak volutus je samostatný a není spojen s žádným jiným oblakem. Je příkladem vlnové poruchy typu "undular bore". Tvar oblaku volutus se vyskytuje u druhů altocumulus a stratocumulus. Byl zaveden do mezinárodní morfologické klasifikace oblaků v roce 2017.
česky: volutus angl: volutus  2018
von Kármánova konštanta
jedna z význačných aerodyn. veličin. Nemá fyz. rozměr a její hodnota je blízká 0,4. Vystupuje jako konstanta úměrnosti κ ve vztahu pro směšovací délku l turbulentních elementů
l=κ.(z+z0),
kde z značí výšku nad zemským povrchem a z0 parametr drsnosti zemského povrchu. V met. aplikacích se vyskytuje ve vztazích vyjadřujících vert. průběh rychlosti proudění v přízemní vrstvě atmosféry. Viz též měřítko vírů v atmosféře.
česky: konstanta von Kármánova angl: Karman constant rus: постоянная Кармана něm: Kármán-Konstante f  1993-a3
vonkajšia teplota
ve stavebně tech. praxi označení pro teplotu vzduchu, měřenou na meteorologické stanici, které se užívá pro odlišení od teploty uvnitř budov nebo místností.
česky: teplota venkovní angl: external temperature rus: внешняя температура, температура наружного воздуха  1993-a2
vorticita
syn. vírnatost – obecně vektorová veličina, která je bodovou (mikroskopickou) mírou rotace vzduchu. Vorticita je definována jako rotace vektoru rychlosti proudění v:
×v=( vzy vyz, vxz vzx, vyx vxy),
kde vx, vy a vz značí složky rychlosti proudění v kartézské souřadnicové soustavě (x, y, z). Pokud uvažujeme rychlost proudění vzhledem k absolutní souřadnicové soustavě, jde o abs. vorticitu. V případě, že rychlost proudění vyjadřujeme v relativní souřadnicové soustavě pevně spojené s rotující Zemí, mluvíme o rel. vorticitě. Směr vektoru vorticity je shodně orientovaný s osou rotace, velikost vektoru vorticity je úměrná velikosti cirkulace. V dynamické meteorologii synoptického měřítka se vorticita obvykle vztahuje pouze k horiz. pohybům a ztotožňuje se proto pouze s vert. složkou rotace vektoru v,
ξ=vy xvxy,
která má velký prognostický význam. Mezi vertikálními složkami abs. vorticity ξa a rel. vorticity ξr platí vztah:
ξa=ξr+λ,
v němž λ značí Coriolisův parametr. V oblasti cyklon a brázd nízkého tlaku vzduchu je ξr > 0, naopak v oblasti anticyklon a hřebenů vysokého tlaku vzduchu je ξr < 0 (platí pro sev. polokouli).
Při popisu proudění a analýze jeho dynamiky v subsynoptickém měřítku je třeba uvažovat všechny tři složky vektoru vorticity. Vertikální složku vektoru vorticity spojenou s rotací v horiz. rovině pak často zkráceně označujeme jako vert. vorticitu; pod označením horiz. vorticita rozumíme výslednici obou horiz. složek vektoru vorticity spojenou s rotací ve vert. rovině. Například produkce horiz. rel. vorticity v důsledku horiz. gradientu vztlaku po obou stranách osy oblasti se sestupným pohybem vzduchukonvektivním oblaku je podstatná pro vznik velmi nebezpečné rotorové cirkulace na čele výtoku chladného vzduchu z konvektivní bouře. Pro samotný vývoj konv. oblaku má velký význam transformace horiz. rel. vorticity v okolí oblaku na vert. rel. vorticitu uvnitř oblaku. V okolí oblaku je horiz. rel. vorticita důsledkem vzájemného působení vert. střihu větru a nehomogenního rozložení vztlaku. K transformaci na vert. rel. vorticitu pak dochází prostřednictvím kvazihorizontálního vtoku do oblasti se silným výstupným pohybem. Tento proces je podstatný pro vznik rotace s vert. osou v supercele. Viz též rovnice vorticity.
česky: vorticita angl: vorticity rus: вихрь скорости  1993-a3
vpád monzúnu
označení pro náhlý bouřlivý nástup monzunu nebo náhlé prudké zesílení průvodních jevů letní monzunové cirkulace. Vpád monzunu se projevuje zejména rychlým vznikem mohutných oblačných systémů, náhlým zesílením srážkové činnosti a větru. Setkáme se s ním především v oblasti Arabského moře, Bengálského zálivu a Arabského poloostrova.
česky: vpád monzunu angl: advance of the monsoon rus: вторжение муссона  1993-a3
vpád studeného vzduchu
rychlý a plošně rozsáhlý příliv studené vzduchové hmoty do oblasti značně vzdálené od místa jejího utváření neboli od ohniska jejího vzniku. Dochází k němu v týlu cyklon a na zadní straně brázd nízkého tlaku vzduchu anebo na přední straně anticyklon. Studené vpády, které vyvolávají největší a nejprudší advekční ochlazování, jsou podmíněny výskytem velkých mezišířkových gradientů teploty a rychlým vystřídáním hlavních geogr. typů vzduchových hmot. Ve stř. Evropě tomu tak bývá většinou tehdy, když tropický vzduch je při intenzivní mezišířkové výměně vzduchu vystřídán vzduchem arktickým, což vede ke vzniku velkých záporných anomálií. Intenzita a plošný dosah vpádu studeného vzduchu závisí dále na tloušťce vrstvy proudícího studeného vzduchu a na orografických poměrech, zejméjna na výšce a orientaci horských hřebenů. Vpády studeného vzduchu mívají značné důsledky hospodářské, a to zvláště na jaře, kdy v některých rocích způsobují rozsáhlé škody v zemědělství při poklesech teploty vzduchu pod bod mrazu. Někdy bývají označovány jako návraty zimy. Mohou být nebezpečné i v zimním období, kdy podstatně ovlivňují dopravu, těžbu, energetiku apod. Viz též vlna studená.
česky: vpád studeného vzduchu angl: invasion of cold air, outbreak of cold air rus: вторжение холодного воздуха  1993-a1
vpád teplého vzduchu
intenzivní příliv teplého vzduchu podmiňující nad rozsáhlými oblastmi rychlé a výrazné oteplení a vícedenní trvání nadnormálních teplot. Ve stř. Evropě při vpádu teplého vzduchu proniká nejčastěji tropický vzduch do nitra pevniny, a to většinou z již. kvadrantu. V zimním období bývá tento vpád provázen převážně sychravým, v teplém pololetí suchým počasím. Vpády teplého vzduchu nejčastěji nastávají na přední straně hlubokých brázd nízkého tlaku vzduchu a cyklon nad záp. Evropou a na zadní straně anticyklon nad jv. a vých. Evropou. Při vpádech od jihu, např. scirocca, se někdy dostává nad stř. Evropu i pouštní prach, který zbarvuje padající srážky i sněhovou pokrývku. Viz též vlna teplá, oteplování advekční.
česky: vpád teplého vzduchu angl: invasion of warm air, outbreak of warm air rus: вторжение теплого воздуха  1993-a1
vpád vzduchu
náhlý a plošně rozsáhlý přísun vzduchové hmoty do oblasti značně vzdálené od ohniska jejího vzniku. Podle toho, zda jde o studenou nebo teplou vzduchovou hmotu, rozlišují se vpády studeného vzduchu a vpády teplého vzduchu.
česky: vpád vzduchu angl: invasion of air, outbreak of air rus: вторжение воздушной массы  1993-a1
vplyv zmesi znečisťujúcich látok na živé organizmy
směs látek znečisťujících ovzduší působí na organismy často jinak, než by odpovídalo prostému součtu vlivu jednotlivých znečisťujících látek. Rozlišuje se:
1. synergismus – směs znečisťujících látek má zvýšené účinky oproti aditivnímu působení neboli sčítání vlivu jednotlivých znečisťujících látek;
2. potencializace – směs znečisťujících látek má výraznější účinky než součet účinků izolovaně působících znečisťujících látek, přičemž některá ze znečisťujících látek sama o sobě nemá žádný vliv, nebo má zcela jiný vliv než při působení ve směsi;
3. aditivní účinek jednotlivých znečisťujících látek;
4. antagonismus – vliv směsi znečisťujících látek je menší než aditivní účinek izolovaně působících znečisťujících látek.
česky: vliv směsi znečišťujících látek na živé organismy angl: influence of pollutant mixture on living organisms rus: воздействие смеси вредных примесей на живые организмы  1993-b3
vratkosť ovzdušia
termín vyskytující se ve starší meteorologické literatuře jako syn. pro vertikální instabilitu atmosféry.
česky: vratkost ovzduší  1993-a2
vrchné zrkadlenie
viz zrcadlení.
česky: zrcadlení svrchní angl: superior mirage rus: верхний мираж  1993-a1
vrchol oblaku
nejvyšší část oblaku, v níž vzduch ještě obsahuje detekovatelné množství oblačných částic. Viz též základna oblaku, rozsah oblaku vertikální.
česky: vrcholek oblaku angl: cloud top rus: вершина облака  1993-a2
vrstevnatá oblačnosť
česky: oblačnost vrstevnatá angl: stratiform clouds rus: слоистообразная облачность něm: stratiforme Wolken f/pl  1993-a1
vrstevnatý oblak
oblak vyskytující se v horiz. rozsáhlé vrstvě. Jsou pro něj charakteristické výstupné rychlosti dosahující řádu 10–1 m.s–1. V řadě případů, např. v podinverzní vrstevnaté oblačnosti, jejíž vývoj je řízen radiačními procesy, jsou však hodnoty vertikální rychlosti zanedbatelné. Jako vrstevnaté označujeme oblaky druhu stratus, nimbostratus, altostratus a cirrostratus. Pojem vrstevnatý oblak není přesně vymezen a v mezinárodní morfologické klasifikaci oblaků se nepoužívá. Viz též oblak kupovitý.
česky: oblak vrstevnatý angl: stratiform cloud rus: слоистообразное облако něm: Schichtwolke f  1993-a3
vrstevnica
viz izohypsa.
česky: vrstevnice  1993-a3
vrstva dymna
vrstva, v níž je dohlednost snížena kouřmem. Může se vyskytovat při zemském povrchu nebo v určité výšce nad ním, zpravidla pod teplotními zadržujícími vrstvami.
česky: vrstva kouřma angl: mist layer  1993-a2
vrstva konštantného toku
česky: vrstva konstantního toku angl: constant flux layer of atmosphere 
vrstva miešania
česky: vrstva mísení angl: mixing layer  1993-a1
vrstva trenia
v meteorologii vrstva ovzduší, v níž se bezprostředně projevuje vliv tření o zemský povrch na proudění vzduchu. Její tloušťka se pohybuje v rozmezí zhruba 500 až 2 000 m, nejčastěji 1 000 až 1 500 m nad zemským povrchem, a zvětšuje se s rostoucí rychlostí proudění, s drsností zemského povrchu a s růstem instability teplotního zvrstvení ovzduší. Pro vrstvu tření je charakteristický turbulentní přenos hybnosti od vyšších hladin směrem dolů, který kompenzuje ztráty hybnosti působené v blízkosti zemského povrchu třením. Vertikální profil větru ve vrstvě tření lze v hrubých rysech popsat pomocí Taylorovy spirály. Vrstva tření je syn. termínu mezní vrstva atmosféry, pokud je tato vrstva posuzována z hlediska proudění. Analogickým způsobem však lze zavést i teplotní nebo vlhkostní mezní vrstvu jako část atmosféry, kde se bezprostředně projevuje vliv podkladu na teplotu nebo vlhkost vzduchu. Pojem mezní vrstva atmosféry je tedy obecnější než vrstva tření.
česky: vrstva tření angl: friction layer  1993-a1
vsakovanie
syn. infiltrace.
česky: vsak  1993-a1
vstok
místní název větru typu bóry na záp. pobřeží Nové Země. Jde o proudění studeného vzduchu podél zonálně orientovaných údolí, popř. průlivu Matočkin šar (mezi Sev. a Již. ostrovem), který se od východu na západ zužuje na šířku 2 km, zatímco hory bezprostředně nad průlivem mají převýšení kolem 1 000 m.
česky: vstok rus: вcток  1993-a1
všeobecná cirkulácia atmosféry
systém atm. proudění v planetárním nebo kontinentálním rozsahu, které se projevuje meridionální, zonální i vert. výměnou vzduchu spojenou s přenosem energie, hybnosti a vlhkosti. Na jejím vzniku se podílejí meridionální rozdíly bilance záření na Zemi, nerovnoměrné rozložení pevnin a oceánů, rotace Země a tření. Tyto faktory podmiňují existenci klimatických akčních center atmosféry a primární cirkulaci v rámci všeobecné cirkulace atmosféry. Její zjednodušený tříbuněčný model tvoří Hadleyova buňka, Ferrelova buňka a polární buňka, při uvažování sezonních výkyvů dále monzunová cirkulace. Všeobecná cirkulace atmosféry patří k základním faktorům podílejícím se na utváření makroklimatu. Je také hlavní přičinou vzniku povrchových oceánských proudů jako součásti velkoprostorové cirkulace vody v oceánu, se kterou je dále spjata složitými zpětnými vazbami. Studium všeobecné cirkulace atmosféry je dnes založeno na modelech klimatu, které zahrnují všechny složky klimatického systému.
česky: cirkulace atmosféry všeobecná angl: general circulation něm: allgemeine Zirkulation der Atmosphäre f rus: общая циркуляция атмосферы fr: circulation atmosphérique générale f, circulation atmosphérique f  1993-a3
všeobecná klimatológia
syn. všeobecná – část klimatologie zabývající se obecnými zákonitostmi geneze klimatu a klimatických změn, vztahy mezi klimatickými faktory a jevy i mezi klimatickými prvky navzájem. Studuje také vlivy klimatu na ostatní složky přírodního prostředí. Viz též klimatologie regionální.
česky: klimatologie obecná angl: general climatology rus: общая климатология něm: allgemeine Klimatologie f  1993-a1
všeobecná klimatológia
česky: klimatologie všeobecná rus: общая климатология něm: allgemeine Klimatologie f  1993-a1
všeobecná predpoveď počasia
předpověď počasí pro určité území (např. pro ČR, nebo některý kraj), určená široké veřejnosti a rozšiřovaná hromadnými sdělovacími prostředky včetně internetu zpravidla několikrát denně. Obsahuje předpověď oblačnosti, extrémních hodnot denní teploty vzduchu, směru a rychlosti větru a výskytu a množství srážek i jejich druhu. Upozorňuje na nebezpečné jevy, jako bouřky, vichřice, náledí, mlhy, ranní přízemní mrazy apod. Všeobecná předpověď počasí používá předepsaných formulací a odborných termínů s přesným kvantit. významem, takže je snadno obj. zhodnotitelná. Bývá většinou uváděna stručnou charakteristikou celkové povětrnostní situace a v ČR bývá vydávána na 12 až 48 h (vícekrát denně), resp. na 48 až 168 h (zpravidla jednou denně). Viz též předpověď počasí speciální.
česky: předpověď počasí všeobecná angl: general forecast rus: общий прогноз погоды něm: allgemeine Vorhersage f  1993-a3
všeobecná výstraha na nebezpečné meteorologické javy
dříve používaná met. informace o pravděpodobném výskytu nebo dalším trvání nebezpečných met. jevů během několika nejbližších hodin až několika dnů na určitém místě nebo v určité oblasti. Za nebezpečné met. jevy se pokládaly zejm. intenzivní srážky, silný vítr, náhlý pokles teploty, ranní mrazíky ve vegetačním období, mlha, námrazky a náledí. Všeobecné výstrahy bývaly určeny širokému okruhu zájemců, např. výstraha před výskytem mlhy a náledí všem uživatelům silnic, před výskytem intenzivních srážek vodohospodářům, pracovníkům povodňové služby, vodákům a všem obyvatelům oblastí s možnými zátopami apod. Všeobecné výstrahy byly proto rozšiřovány především rozhlasem a televizí a prostřednictvím internetu. V dnešní praxi je tato výstraha nahrazena Systémem integrované výstražné služby.
česky: výstraha před nebezpečnými meteorologickými jevy všeobecná  1993-a3
vťahovanie
v meteorologii označení pro mísení vzduchu uvnitř organizovaného proudění se vzduchem v okolí tak, že vtažený okolní vzduch se stává součástí proudu a může měnit jeho teplotu, vlhkost a hybnost. Může jít o vtahování vzduchu z okolí oblaku do výstupného proudu oblaku, zejména konv. oblaku druhu cumulus. Tzv. homogenní vtahování předpokládá, že vlastnosti vzduchu v oblaku se mění okamžitě a změna je úměrná množství vtaženého vzduchu a vzduchu v oblaku. Rozlišujeme také model laterálního vtahování z boku proudu a model vtahování u vrcholku oblaku. Vtahování označujeme jako nehomogenní, pokud charakteristická doba potřebná pro vtažení vzduchu je mnohem větší než doba výparu kapek. Za takových podmínek, které nastávají zejména na počátku vtahování vzduchu do konv. proudu, nastává výpar pouze na rozhraní mezi oblačným vzduchem a vzduchem vtaženým do oblaku. Jiným příkladem vtahování je proces, při němž turbulentní proudění ve směšovací vrstvě (turbulentní vrstvě mísení) vtahuje vzduch z přilehlé neturbulentní nebo podstatně méně turbulentní vrstvy. Vtahování tak pokračuje směrem k neturbulentní vrstvě a v nepřítomnosti advekce zvětšuje vertikální rozsah vrstvy promíchávání. Viz též metoda vtahování.
česky: vtahování angl: entrainment rus: вовлечениe  2014
vulkanický popol
(VA) – pevné částice vyvržené do atmosféry při vulkanické erupci, které mohou významně ovlivnit letecký provoz. Vulkanický popel patří mezi primární aerosoly. Viz též centrum poradenské pro vulkanický popel.
česky: popel vulkanický angl: volcanic ash rus: вулкани́ческий пе́пел něm: vulkanische Asche f  2018
výbežok vysokého tlaku vzduchu
česky: výběžek vysokého tlaku vzduchu rus: отрог высокого давления  1993-a1
výboj blesku medzi oblakmi
výboj blesku, jímž se neutralizují náboje opačné polarity téhož oblaku nebo různých oblaků. Je nejčastějším výbojem blesku. Poměr mezi počtem výbojů blesku mezi oblaky a výbojů blesku mezi oblakem a zemí je v tropech až 10:1, zatímco u nás 5:1 až 2:1. Počáteční stadium výboje blesku mezi oblaky začíná stupňovitým vůdčím výbojem blesku, stejně jako u výboje mezi oblakem a zemí. Změna elektrického gradientu je podstatně pomalejší než při výboji blesku do země. Celkové trvání výboje je asi 0,2 s. Délka výboje může dosáhnout několika km, v extrémním případě až 50 km. Výboj blesku mezi oblaky způsobuje škody na letadlech, vyvolává nebezpečné indukované napětí ve venkovních i kabelových sdělovacích vedeních a el. sítích nízkého napětí. Viz též intenzita výbojů blesku mezi oblaky. Výboje blesku mezi oblaky se v soudobé odb. literatuře značí zkratkou CC (z angl. Cloud to Cloud).
česky: výboj blesku mezi oblaky angl: cloud-to-cloud discharge rus: разряд молнии между облаками  1993-a3
výboj blesku medzi oblakom a okolitým vzduchom
výboj směřující z oblaku vzhůru, který bývá vzácně pozorován z vysokých míst, ležících nad horní základnou oblaku, nebo z letadel.
česky: výboj blesku mezi oblakem a okolním vzduchem angl: air discharge rus: разряд в атмосфере  1993-a1
výboj blesku medzi oblakom a zemou
výboj blesku, jímž se neutralizují náboje opačné polarity mezi oblakem a zemí. Rozlišují se čtyři zákl. typy tohoto výboje;
a) s vůdčím výbojem blesku šířícím se z kladného náboje oblaku k zemi (CG+);
b) s vůdčím výbojem šířícím se ze záporného náboje oblaku k zemi (CG);
c) vznikající na vysokém objektu na zemi a šířící se do oblaku s nábojem kladné polarity;
d) vznikající na vysokém objektu na zemi a šířící se do oblaku s nábojem záporné polarity.
Typ a) a b) lze rozeznat od typu c) a d) pouhým opt. pozorováním nebo ze statické fotografie podle směru větvení, které nastává ve směru šíření předvýboje. Parametry výboje blesku mezi oblakem a zemí byly a jsou předmětem intenzivního výzkumu. Výboje blesku do země způsobují škody na objektech na zemi, na el. silnoproudých i sdělovacích vedeních a zařízeních, na letadlech atd. Mohou být příčinou nežádoucích roznětů výbušnin až do několika set m pod zemí. Viz též zařízení hromosvodné, úder blesku, intenzita výbojů blesku do země, výboj blesku s vůdčím výbojem směřujícím nahoru, výboj blesku s vůdčím výbojem směřujícím dolů.
česky: výboj blesku mezi oblakem a zemí angl: cloud-to-ground discharge, ground discharge rus: разряд к землe, разряд молнии между облаком и землей  1993-a3
výboj blesku s vodiacim výbojom smerujúcim dole
výboj blesku mezi oblakem a zemí. Je to jediný typ blesku, který bije do země nebo nízkých objektů. Je převážně záporné polarity, může však být i polarity kladné nebo bipolární. Se vzrůstající výškou objektů se začínají objevovat výboje blesku s vůdčím výbojem směřujícím nahoru. Výboje blesku směřující z oblaku do země se v odborné literatuře označují zkratkou CG+ nebo CG (Cloud to Ground) podle své polarity, tj. podle toho, zda přenášejí na zemský povrch kladný nebo záporný el. náboj. Viz též výboj blesku vůdčí.
česky: výboj blesku s vůdčím výbojem směřujícím dolů angl: downward flash rus: разряд молнии с спускающимся лидером  1993-a2
výboj blesku s vodiacim výbojom smerujúcim nahor
výboj blesku mezi zemí a oblakem. Nastává z vrcholků hor a vysokých objektů. Výskyt v rovinách a na nízkých objektech je vzácný. Je převážně záporné polarity, může však být i polarity kladné nebo bipolární. Jeho parametry jsou zcela odlišné od výboje blesku s vůdčím výbojem směřujícím dolů. Viz též výboj blesku vůdčí, výboj blesku vstřícný.
česky: výboj blesku s vůdčím výbojem směřujícím nahoru  1993-a1
výborná dohľadnosť
syn. dohlednost mimořádná – dohlednost nejméně 50 km na stanicích s neomezeným obzorem. Např. na Milešovce (837 m n. m.) se v období 1951–1960 vyskytovala prům. 34 dnů za rok.
 
česky: dohlednost výborná angl: exceptional visibility něm: außergewöhnliche Sicht f, ungewöhnliche Fernsicht f fr: visibilité exceptionnelle f  1993-b3
východné polárne vetry
převládající vých. větry ve vysokých zeměp. šířkách na vnější straně subpolárního pásu nízkého tlaku vzduchu, které vanou při zemi a mají jen malý vertikální rozsah. Zvlášť stálé a silné východní větry se vyskytují na okrajích rozsáhlé a mohutné antarktické anticyklony.
česky: větry východní polární angl: polar easterlies rus: полярные восточные ветры  1993-a2
východné tropické vetry
nepoužívané označení pro pasáty.
česky: větry východní tropické angl: tropical easterlies rus: тропические восточные ветры  1993-a3
vyjasňovanie
postupné ubývání oblačnosti až do úplného vymizení oblaků na obloze. Viz též protrhávání oblačnosti.
česky: vyjasňování angl: clearing rus: прояснение  1993-a1
výklzné pohyby vzduchu
výstupné pohyby teplého vzduchu na anafrontách. Jsou typické zejména na teplých frontách při nasouvání teplé vzduchové hmoty nad studený vzduch. Setkáváme se s nimi i u studených front prvého druhu, zatímco na studených frontách druhého druhu se mohou vyskytovat pouze v nižších hladinách. Ve vyšších partiích je studená fronta druhého druhu vždy katafrontou.
česky: pohyby vzduchu výkluzné angl: upslide movements of air rus: восходящие скольжения воздуха něm: Aufgleitbewegungen f  1993-a2
vykurovacie obdobie
období, ve kterém je třeba v závislosti na povětrnostních podmínkách vytápět obytné prostory.
česky: období topné angl: heating season rus: отопительный период něm: Heizperiode f  1993-a3
vymývanie
odstraňování atm. příměsí srážkami. Příměsi se dostávají do srážkových částic různým způsobem:
a) již v oblacích jako kondenzační jádra nebo jádra mrznutí;
b) proniknutím do oblačných a srážkových částic nebo přilnutím k nim zejména v důsledku Brownova pohybu, turbulentních pohybů apod.;
c) zachycením příměsí padajícími srážkovými částicemi.
Soubor procesů vymývání je důležitou součástí samočištění ovzduší, avšak negativním doprovodným jevem je vstup znečišťujících látek do ostatních složek prostředí (hydrosféry, biosféry, pedosféry, kryosféry). V užším smyslu se jako vymývání někdy označuje pouze zachycování příměsí padajícími srážkami v podoblačné vrstvě vzduchu a tomuto pojetí obvykle odpovídají cizojazyčné ekvivalenty. Viz též depozice mokrá.
česky: vymývání angl: rain-out, wash-out rus: вымывание дождем  1993-a3
vynútená konvekcia
konvekce, k jejímuž rozvoji dává počáteční impulz proudění vzduchu přes orografické překážky, výkluzné pohyby vzduchu v oblasti frontálních rozhraní, popř. prostorová proměnnost drsnosti povrchu. Vynucená konvekce je doprovázena mechanickou turbulencí, přičemž rozměry turbulentních vírů jsou malé ve srovnání s rozměry konv. elementů.
česky: konvekce vynucená angl: forced convection rus: вынужденная конвекция něm: erzwungene Konvektion f  1993-a2
výpar
1. fázový přechod vody z kapalného do plynného skupenství, jímž vzniká vodní pára, přičemž dochází ke spotřebování latentního tepla výparu. V případě, že probíhá do nenasyceného vzduchu, převažuje nad opačným procesem, kondenzací vodní páry.
2. meteorologický prvek vyjadřující množství vody, které se za určitou dobu vypaří z nejrůznějších povrchů (evaporace) popř. i prostřednictvím rostlinných těl (transpirace) nebo oběma způsoby (evapotranspirace). Přitom se rozlišuje výpar potenciální (někdy též maximálně možný) a výpar skutečný (někdy též aktuální nebo efektivní). Vyjadřuje se obdobně jako úhrn srážek výškou vodního sloupce v mm. Provádí se měření výparu pomocí výparoměru, častěji však je výpar určován výpočtem. Představuje jednu z hlavních složek hydrologické bilance a významně ovlivňuje tepelnou bilanci zemského povrchu a přilehlého vzduchu. V tomto smyslu se pod výpar řadí i vznik vodní páry sublimací. Viz též vzorec Kuzminův, izoatma, izoombra, vztah Šatského.
česky: výpar angl: evaporation rus: испарение  1993-a3
výparnosť
česky: výparnost  1993-a1
výparomer
syn. evaporimetr – přístroj k měření výparu. Nejčastěji se měří výpar z volné vodní hladiny výparoměry a výpar z půdy s vegetací evapotranspirometry. Pro mikroklimatická měření v porostech je používán tzv. Picheův výparoměr.
česky: výparoměr angl: atmidometer, atmometer, evaporimeter rus: атмидометр, , атмометр, испаритель  1993-a3
výparomer EWM
výparoměr používaný na vybraných stanicích ČHMÚ pro měření výparu z volné vodní hladiny. Je tvořen nerezovou kruhovou nádobou o ploše průřezu 3 000 cm2, hlubokou 60 cm, která se zapouští do země tak, aby hladina vody byla v úrovni okolního terénu. Vlastní měřící zařízení je umístěno v nerezové nádobě válcovitého tvaru o průměru 7,5 cm s víkem, spojené s nádobou výparoměru. Využitím principu spojitých nádob dochází k vyrovnání hladin ve výparoměrné a měřící nádobě. Hladina vody v měřící nádobě je měřena plovákovým způsobem, přičemž poloha plováku je sledována digitálním optickým snímačem polohy s rozlišením 0,025 mm. Kontinuálně se registrují jak úbytky vody výparem, tak i vzestupy hladiny vlivem srážek. Výsledná hodnota výparu je dána součtem diferencí hladin a úhrnu spadlých srážek. Pro měření povrchové teploty vody v nádobě je využíván snímač Pt100.
česky: výparoměr EWM angl: evaporimeter EWM  2014
výparomer GGI 3000
starší typ výparoměru, na stanicích ČHMÚ nahrazovaný po roce 2000 výparoměrem EWM.
česky: výparoměr GGI 3000 angl: evaporimeter GGI 3000 rus: испаритель ГГИ-3000  1993-a3
výparomerný bazén
výparoměr tvořený dostatečně rozměrným zásobníkem vody, ve kterém lze přesně měřit výšku vodní hladiny. Pro svou nákladnost, velké rozměry a náročnost obsluhy a údržby se používá jen na specializovaných pracovištích.
česky: bazén výparoměrný angl: evaporation tank něm: Verdunstungsgefäß n rus: испарительный бассейн fr: bac d'évaporation m  1993-a1
vyplňovanie cyklóny
stádium vývoje cyklony, při němž dochází k vzestupu atmosférického tlaku, zvláště ve středu cyklony, zmenšování horiz. tlakového gradientu, slábnutí cyklonální cirkulace a výstupných pohybů vzduchu. Tento proces je spojen se zmenšováním teplotní asymetrie cyklony, když je celý její prostor postupně v horiz. a vert. směru vyplňován studeným vzduchem. Při vyplňování cyklony slábnou nebo přestávají vypadávat srážky a obvykle se zmenšuje oblačnost. Cyklona postupně zaniká jako samostatný tlakový útvar, často u zemského povrchu rychleji než ve vyšších hladinách. Viz též cyklolýza.
česky: vyplňování cyklony angl: filling of a depression rus: заполнение циклона  1993-a3
výpočtová vonkajšia teplota
nejnižší pětidenní prům. teplota vzduchu podle dlouhodobých met. pozorování. Tato charakteristika slouží ve stavební praxi při projektových pracích k výpočtu tepelných ztrát budov.
česky: teplota venkovní výpočtová rus: расчетная температура наружного воздуха  1993-a3
vyprahnuté obdobie
neurčitý pojem pro obzvlášť dlouhé suché období, nebo pro období obecně chudé na atmosférické srážky, provázené vysokou teplotou vzduchu a nízkou relativní vlhkostí vzduchu.
česky: období vyprahlé rus: период засухи? něm: Dürreperiode f  1993-a3
vysielací rozvrh
dříve použitelná tabulka udávající čas, druh a způsob vysílání meteorologických zpráv, meteorologických informací a podkladů, sestavená obvykle pro určitou část nebo úroveň světového telekomunikačního systému.
česky: rozvrh vysílací angl: schedule of transmission rus: расписание передач něm: Sendeplan m  1993-a3
výsledný vietor
prům. vektor větru v daném místě a v dané hladině za určité období. Nemusí být výstižnou klimatickou charakteristikou, vyskytují-li se dvě největší četnosti opačných směrů s málo rozdílnými rychlostmi.
česky: vítr výsledný angl: resultant wind rus: результирующий ветер  1993-a3
vysoká anticyklóna
anticyklona, která zasahuje nejméně do horních vrstev troposféry nebo až po tropopauzu. Vysoká anticyklona je teplá v celém svém vert. rozsahu a má uzavřenou cirkulaci i nad izobarickou hladinou 500 hPa, ležící zhruba ve výšce 5,5 km. K vysokým anticyklonám patří subtropické anticyklony a postupující anticyklony ve stadiu stabilizace.
česky: anticyklona vysoká angl: high anticyclone něm: Hochreichende Antizyklone f rus: высокий антициклон  1993-a2
vysoká atmosféra
v současné době v meteorologické literatuře ne zcela jednoznačný pojem. Často se vysoká atmosféra ztotožňuje zhruba s heterosférou nebo s ionosférou až po nejvyšší hladiny představující přechod v meziplanetární prostor. Někteří, zejména starší autoři však považují za vysokou atmosféru celou vrstvu atmosféry nad tropopauzou.
česky: atmosféra vysoká angl: high atmosphere něm: hohe Atmosphäre f rus: верхняя атмосфера fr: haute atmosphère f  1993-a3
vysoká cyklóna
česky: cyklona vysoká rus: высокий циклон fr: dépression à coeur froid f něm: hohe Zyklone f  1993-a1
vysoká hmla
syn. mlha inverzní, mlha podinverzní – mlha rozprostírající se na velkých plochách do výšky řádově několika set metrů. Často začíná jako oblačná vrstva nebo oblak druhu stratus pod horní hranicí subsidenční inverze teploty vzduchu, se základnou klesající postupně až na zemský povrch. Obyčejně se tvoří v kvazistacionárních anticyklonách nad souší v zimním období. Ke vzniku a udržení vysoké mlhy přispívá radiační ochlazování v podinverzní vrstvě vzduchu. Proto podle Willettovy klasifikace mlh patří mezi mlhy radiační.
česky: mlha vysoká angl: high fog rus: высокий туман něm: Hochnebel m  1993-a2
vysoká oblačnosť
česky: oblačnost vysoká angl: high cloudiness, high clouds rus: высокиe облака, облака верхнего яруса něm: hohe Bewölkung f, hohe Wolken f/pl  1993-a1
vysoká sloha
čes. překlad pro altostratus.
česky: sloha vysoká něm: hohe Schichtwolke f  1993-a1
vysoké oblaky
oblaky vyskytující se v polárních oblastech přibližně v nadm. výškách od 3 do 8 km, ve stř. zeměp. šířkách od 5 do 13 km a v tropických oblastech od 6 do 18 km. Do této skupiny patří oblaky druhu cirrus, cirrocumulus a cirrostratus. Do vysokého patra však zasahují i oblaky druhu cumulonimbus, často též altostratus a nimbostratus. Viz též klasifikace oblaků, patra oblaků, oblaky nízkého patra, oblaky středního patra.
česky: oblaky vysokého patra angl: high clouds, high-level clouds rus: высокиe облака, облака верхнего яруса něm: hohe Wolken f/pl  1993-a2
vysoko zvírený sneh
zvířený sníh, jehož částice jsou zdviženy do značné výšky nad zemí a unášeny větrem, takže vodorovná dohlednost ve výšce očí pozorovatele je zpravidla velmi malá a může být snížená ještě ve výšce 1 km nad zemí.
česky: sníh vysoko zvířený angl: blowing snow rus: снeжная низовая метель něm: Schneetreiben n  1993-a3
výstražný hlásič búrok
zařízení automaticky indikující pravděpodobnost příchodu bouřky. Využívá principu zvýšeného gradientu elektrického potenciálu atmosféry nebo změn el. gradientu, způsobených výboji blesku nebo zvyšující se amplitudou striků apod.
česky: hlásič bouřek varovný  1993-a3
výstupná kondenzačná hladina
kondenzační hladina, ve které vystupující nenasycená vzduchová částice přejde do stavu nasycení vodní párou následkem ochlazování při adiabatické expanzi. Výstupný pohyb může být způsoben termickou nebo vynucenou konvekcí. Výstupnou kondenzační hladinu určujeme na termodynamickém diagramu jako hladinu, v níž se protíná stavová křivka vystupující částice a izograma proložená teplotou rosného bodu v počáteční hladině výstupu. Výstupnou kondenzační hladinu určujeme nejčastěji pro adiabatický výstup z přízemní hladiny. Lze ji však určit pro výstup z libovolného bodu křivky teplotního zvrstvení. Viz též teplota výstupné kondenzační hladiny.
česky: hladina kondenzační výstupná angl: lifting condensation level rus: уровень конденсации при подъеме něm: Hebungskondensationsniveau n  1993-a2
výstupná rýchlosť balónu
vert. rychlost volně letícího pilotovacího nebo radiosondážního balonu. Tento balon vystupuje v atmosféře působením celkové stoupací síly balonu, která je vyjádřena Archimédovým zákonem jako rozdíl tíhy balonem vytlačeného vzduchu a tíhy plynu lehčího než vzduch, který objem balonu vyplňuje. Když od této síly odečteme tíhu balonu, popř. i zavěšené zátěže, dostaneme užitečnou stoupací sílu balonu (A). Při ustáleném vert. výstupu balonu působí proti této síle odpor vzduchu. Výsledný vztah, který vyjadřuje stoupací rychlost balonu (w), můžeme napsat ve tvaru
w=dAcρ,
kde ρ je hustota vzduchu, c obvod balonu a d koeficient charakterizující odpor prostředí. Teor. výpočty i praktická měření ukazují, že při zmenšování hustoty vzduchu stoupací rychlost balonu s výškou vzrůstá, ve výšce 5 km o 10 % a ve výšce 30 km až o 100 %. V meteorologii se ke stanovení výšky základny oblaků, při pilotovacích měřeních anebo aerologických měřeních pomocí radiosond balony obvykle plní na počáteční stoupací rychlost 1,5 až 3,5 nebo 5 m.s–1.
česky: rychlost balonu stoupací angl: ascensional rate of balloon rus: подъемная скорость шара-пилота něm: Aufstiegsgeschwindigkeit des Ballons f  1993-a2
výstupné pohyby vzduchu
vertikální pohyby vzduchu v atmosféře, které směřují vzhůru směrem od zemského povrchu. Patří k nim zejména:
a) konv. výstupné pohyby, jejichž rychlost může nabývat hodnot řádu až 101 m.s–1;
b) výstupné pohyby při obtékání orografických překážek na návětrné straně nebo v závětří, např. při vlnovém proudění;
c) výstupné pohyby typické pro oblasti nízkého tlaku vzduchu vznikající následkem horizontální resp. izobarické konvergence proudění v nižších hladinách. Dosahují rychlosti řádově pouze 10–2 m.s–1, avšak mají značný synoptický význam. Vyskytují se nad rozsáhlými oblastmi a mohou trvat několik dnů. Protějškem jsou sestupné pohyby vzduchuoblastech vysokého tlaku;
d) výkluzné pohyby teplého vzduchu na anafrontách;
e) výstupné pohyby na zvlněné spodní hranici vrstvy s inverzí teploty vzduchu.
česky: pohyby vzduchu výstupné angl: updraft movements rus: восходящие движения воздуха něm: Aufwinde m  1993-a2
výstupný vietor
česky: vítr výstupný  1993-a1
výška nad obzorom
úhel mezi rovinou astronomického obzoru a spojnicí místa pozorování na zemském povrchu s uvažovaným bodem na obloze, případně na nebeské sféře, např. se středem slunečního disku, hvězdou apod. Doplněk výšky nad obzorem do 90° se nazývá zenitový úhel. V atmosférických vědách má hlavní význam výška Slunce nad obzorem, která je spolu s délkou světlého dne určujícím faktorem solárního klimatu.
česky: výška nad obzorem angl: elevation angle rus: угловая высота  1993-a3
výška nového snehu
vert. vzdálenost mezi povrchem sněhové pokrývky a sněhoměrným prkénkem. Na stanicích ČR se měří výška nového sněhu v klimatologickém termínu 7 h, tj. za období 24 h od 7 h včera do 7 h dnes. Ve zprávách SYNOP z ČR se navíc uvádí výška nového sněhu, pokud za poslední hodinu před termínem pozorování napadl alespoň 1 cm nového sněhu.
česky: výška nového sněhu angl: depth of fresh snow, depth of new snow rus: высота свежевыпавшего снега  1993-a3
výška nulovej izotermy
výška, obvykle nadmořská výška, hladiny atmosféry, v níž teplota vzduchu nabývá hodnoty 0 °C. Viz též izoterma nulová.
česky: výška nulové izotermy angl: freezing level rus: высота нулевой изотермы  1993-a1
výška oblakov
česky: výška oblaků  1993-a1
výška rádiolokačného cieľa
výška cíle h se vypočítá podle vzorce
h=rsinα+r2 2Re+h0
kde r je vzdálenost od radaru, α elevační úhel antény, Re efektivní poloměr Země a h0 nadmořská výška radaru (osy antény).
česky: výška radiolokačního cíle angl: height of a radar target  2014
výška rozhodnutia
výška stanovená pro každé letiště, v níž se velitel letadla musí rozhodnout, zda pokračovat v přiblížení na přistání. V případě, že nebylo dosaženo požadovaného vizuálního kontaktu, je nutné přerušit přistávací manévr. Na výšce rozhodnutí závisí letištní provozní minima daného letiště, jež zahrnují dohlednost a výšku základny oblaků. Viz též provoz za každého počasí (AWO).
česky: výška rozhodnutí angl: decision height rus: высота решения  1993-a3
výška snehovej pokrývky
česky: výška sněhové pokrývky angl: depth of snow, snow depth rus: высота снежного покрова  1993-a3
výška tropopauzy
výška, v níž začíná tropopauza. Obvykle je to výška hladiny, v níž vert. teplotní gradient splňuje kritérium konvenční tropopauzy. Pokud se nad určitou oblastí vyskytuje několik tropopauz, hovoří se o výšce první, druhé, popř. další tropopauzy. Průměrná výška tropopauzy v polárních oblastech je 8 až 9 km, v mírných zeměpisných šířkách 10 až 12 km a v rovníkové oblasti 17 až 18 km. V zimním období je výška tropopauzy menší než v letním období, v oblasti cyklon je zpravidla menší než v oblasti anticyklon. V případě dynamické tropopauzy, je její výška závislá na dynamických pohybech v troposféře a stratosféře, obvykle je v polárních oblastech výrazně níž než v subtropech.
česky: výška tropopauzy angl: altitude of tropopause rus: высота тропопаузы  1993-a3
výška základne oblakov
1. výška nejnižšího bodu oblaku nad terénem v místě pozorování, popř. nadm. výška tohoto bodu. V ČR se výška základny oblaků pozoruje pouze na profesionálních stanicích. K jejímu měření slouží měřiče spodní základny oblaků. Kromě toho se výška základny oblaků odhaduje, a to především u oblaků středního a vysokého patra;
2. výška základny oblaků pro letecké účely, udávaná v souladu s předpisy Mezinárodní organizace pro civilní letectví, která musí být pro výšky nad 300 m stanovena zásadně objektivním měřením. Udává se v metrech nebo stopách (1 stopa = 0,3048 m). Tato výška je buď nadm. (zkr. MSL nebo starší MER), anebo nad terénem (zkr. AGL, resp. SOL). Pro přistávající letadla se výška základny oblaků vztahuje k nadm. výšce nejvyššího bodu dráhového systému, tj. k oficiální výšce letiště. Viz též měření výšky základny oblaků, minima letištní provozní.
česky: výška základny oblaků angl: height of cloud base rus: высота нижней границы облаков  1993-a2
výška zrážok
nevh. označení pro úhrn srážek.
česky: výška srážek  1993-a1
výškomer
aneroid sloužící k barometrické nivelaci. Je vybaven stupnicí zkonstruovanou podle teor. závislosti poklesu tlaku vzduchu na nadm. výšce a je používán především v letecké dopravě. Naměřený tlak přepočítává na základě matematického modelu tzv. standardní atmosféry a zobrazuje v jednotkách výšky. Viz též hypsometr, nastavení výškoměru, opravy údaje výškoměru.
česky: výškoměr angl: pressure altimeter rus: барометрический высотомер, высотомер-анероид  1993-a3
výšková anticyklóna
anticyklona ve stř. a horních vrstvách troposféry, která se projevuje pouze na výškových mapách, zatímco na přízemní mapě není vyjádřena. Výšková anticyklona má charakter teplé anticyklony vyskytující se v mírných zeměp. šířkách nad pevninou a vznikající většinou ze subtropické anticyklony.
česky: anticyklona výšková angl: high aloft , high-level anticyclone, upper-level anticyclone něm: Höhenantizyklone f, Höhenhoch n rus: высотный антициклон fr: anticyclone en altitude m  1993-a2
výšková brázda
brázda nízkého tlaku vzduchu ve stř. a horní troposféře, která je identifikovatelná na mapách absolutní topografie od 700 hPa výše.
česky: brázda výšková angl: upper trough něm: Höhentrog m rus: высотная ложбина fr: creux d'altitude m, thalweg d'altitude m  1993-a3
výšková cyklóna
cyklona, která je dobře vyjádřena na výškových mapách střední a horní troposféry, avšak na přízemní synoptické mapě v dané oblasti nenajdeme žádnou uzavřenou izobaru, uvnitř které by byl tlak vzduchu nižší než v okolí. Pod výškovou cyklonou se obyčejně vyskytuje oblast s malým horiz. tlakovým gradientem nejčastěji v poli poněkud vyššího tlaku vzduchu, někdy však i dobře vyjádřený hřeben vysokého tlaku nebo nízká anticyklona. Výšková cyklona souhlasí s oblastí studeného vzduchu v troposféře a je typická oblačným počasím se srážkami.
česky: cyklona výšková angl: high-level cyclone , low aloft , upper cyclone, upper-level low něm: Höhenzyklone f rus: высотный циклон fr: dépression d'altitude f, dépression en altitude f  1993-a3
výšková inverzia teploty vzduchu
teplotní inverze, jejíž dolní hranice leží v určité výšce nad zemským povrchem v mezní vrstvě atmosféry nebo ve volné atmosféře. Vzniká např. v důsledku subsidence vzduchu v oblastech vysokého tlaku, advekce teplého vzduchu ve výšce, při pasátové cirkulaci a často i v oblasti tropopauzy. Viz též inverze teploty vzduchu přízemní.
česky: inverze teploty vzduchu výšková angl: upper inversion rus: высотная инверсия něm: Höheninversion f  1993-a3
výšková mapa
syn. mapa aerologická – synoptická mapa, na níž jsou znázorněny met. podmínky nebo prvky, které jsou vztaženy k určité izobarické hladině ve volné atmosféře, k určité atm. vrstvě, popř. ke konstantní nadm. výšce. Nejčastěji se používají mapy absolutní topografie a mapy relativní topografie. K výškovým mapám patří také mapy tropopauzy, mapy výškového větru aj.
česky: mapa výšková angl: upper air chart rus: высотная карта něm: Höhenkarte f  1993-a1
výškové meteorologické pozorovanie
česky: pozorování meteorologické výškové angl: upper-air meteorological observation rus: высотное метеорологическое наблюдение něm: meteorologische Höhenbeobachtung f  1993-a1
výškový front
fronta ve stř. a horní troposféře. Na výškových mapách se projevuje zpravidla v poli teploty, vlhkosti a proudění vzduchu. Do blízkosti zemského povrchu tato fronta nedosahuje. Viz též fronta přízemní.
česky: fronta výšková angl: upper front rus: верхний фронт, высотный фронт něm: Höhenfront f fr: front d'altitude m  1993-a3
výškový hrebeň
hřeben vysokého tlaku vzduchu ve střední a horní troposféře, identifikovatelný na mapách absolutní topografie 700 hPa a vyšších hladin. Pod výškovým hřebenem se obvykle vyskytuje nevýrazné tlakové pole nebo oblast nízkého tlaku vzduchu, tj. cyklona nebo brázda nízkého tlaku vzduchu. Viz též brázda výšková.
česky: hřeben výškový angl: upper-level ridge rus: высотный гребень něm: Höhenrücken m  1993-a1
výškový vietor
označení pro vítr vanoucí v různých hladinách mezní vrstvy a volné atmosféry, měřený nejčastěji pomocí pilotovacích balonů nebo radiotechnických prostředků. Výškový vítr takto měřený, se počítá jako prům. hodnota z určité vrstvy, jejíž tloušťka je obvykle dána stoupací rychlostí balonu za zvolený časový interval. Pojem výškový vítr se obecně považuje za komplementární ve vztahu k přízemnímu větru, a potom se za výškový vítr zpravidla považují údaje o rychlosti větru už z hladin okolo 20 m nad zemským povrchem. Pro použití v synoptické a letecké meteorologii se výškový vítr šifruje ve zprávě z pozemní (mořské) stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách a ve zprávě z pozemní (mořské) stanice o výškovém větru. Jiným způsobem měření výškového větru je dálková detekce pomocí sodarů nebo windprofileru. Viz též profil větru, měření větru radiotechnickými prostředky, sondáž akustická.
česky: vítr výškový angl: upper wind rus: ветер на высотах, высотный ветер  1993-a3
výškový zákal
zákal ve vrstvě, jejíž spodní hranice leží nad zemským povrchem. Viz též vrstva zákalová.
česky: zákal výškový angl: haze aloft rus: мгла на высоте  1993-a1
vyvážený balón
balon z elastického materiálu, naplněný plynem lehčím než vzduch a vyvážený břemenem tak, aby v určité hladině užitečná stoupací síla balonu byla rovná nule. Používá se k určování horiz., popř. vert. rychlostí větru.
česky: balon vyvážený angl: constant-level balloon něm: Driftballon m rus: трансозонд, трансокеанский зонд, уравновешенный шар-зонд fr: ballon à niveau constant m  1993-a2
vyvýšená kopa
čes. překlad termínu altocumulus.
česky: kupa vysoká rus: высоко-кучевое облако  1993-a1
vyvýšený zdroj znečisťovania ovzdušia
zdroj, např. vysoký komín, dodávající do ovzduší znečišťující příměsi, jehož efektivní výška přesahuje tloušťku přízemních inverzí teploty vzduchu, typicky se vyskytujících v daném místě. Znečištění pocházející z tohoto typu zdrojů se rozptyluje nad inverzí a jeho přenos k zemskému povrchu je omezen silnou stabilitou v inverzní vrstvě. V bezprostředním okolí vyvýšených zdrojů jsou proto u země při výskytu přízemních inverzí teploty pozorovány malé koncentrace znečištění.
česky: zdroj znečišťování ovzduší vyvýšený angl: high-emitting source of air pollution rus: высотный источник загрязнения воздуха  1993-a1
význačné hladiny
hladiny uváděné ve zprávách PILOT a TEMP, v nichž podle aerologických měření nabývá teplota vzduchu, relativní vlhkost vzduchu, směr a rychlost větru hodnot, významných pro sestrojení křivek vertikálního profilu teploty, vlhkosti vzduchu a větru. Za význačné hladiny teploty se v troposféře považují zejména dolní a horní hranice inverzí teploty, resp. izotermií v případě, že tlakový rozdíl mezi základnou a horní hranicí těchto vrstev je alespoň 20 hPa, nebo je-li vrstva charakterizována významnou změnou vlhkosti vzduchu. Výběr dalších význačných hladin u teploty a vlhkosti vzduchu se provádí tak, aby se rozdíl změřené teploty a vlhkosti vzduchu nelišil od profilu zkonstruovaného pomocí význačných hladin o více než 1 °C do výšky hladiny 300 hPa, nebo první tropopauzy, o 2 °C nad touto výškou a o 15 % rel. vlhkosti v celém rozsahu měření vlhkosti. Pro výběr význačných hladin větru jsou rozhodující odchylky od vert. průběhu změřené rychlosti a směru větru o více než 10° u směru a 5 m.s–1 u rychlosti větru. Za význačnou hladinu se považuje i tropopauza, hladina maximálního větru, počáteční a nejvyšší bod měření. Jestliže se vert. průběh měřeného prvku vynáší do termodynamického diagramu pomocí lomené čáry, označují se význačné hladiny často jako zlomové body, popř. „zlomy".
česky: hladiny význačné angl: significant levels rus: характерные уровни něm: signifikante Flächen f/pl  1993-a3
význačné javy počasia
letecké meteorologii souborné označení pro následující jevy: bouřku, tropickou cyklonu, výrazné čáry instability, kroupy, mírnou a silnou turbulenci, mírnou a silnou námrazu na letadlech, významné závětrné vlny, rozsáhlé písečné nebo prachové bouře, namrzající déšť, popř. ledovku aj. Tyto jevy se někdy zkráceně označují jako význačné počasí. Viz též mapy význačného počasí, informace SIGMET, informace AIRMET, indikátory změny v přistávacích a letištních předpovědích.
česky: jevy počasí význačné angl: significant weather phenomena rus: характерные явления погоды něm: signifikante Wettererscheinungen f/pl  1993-a3
význačné počasie
česky: počasí význačné angl: significant weather rus: осoбыe явления погоды, характерная погода něm: signifikantes Wetter n  1993-a1
vyzrážateľná voda
česky: voda vysrážitelná rus: осажденная вода  2014
vyžarovanie
viz záření.
česky: vyzařování rus: излучение  1993-a1
vyžarovanie atmosféry
česky: vyzařování atmosféry rus: атмосферное излучение  1993-a1
vyžarovanie zemského povrchu
česky: vyzařování zemského povrchu rus: излучение земной поверхности  1993-a1
vzdialená búrka
bouřka, při níž je v daném místě slyšitelné alespoň jedno zahřmění a doba mezi bleskem a zahřměním je delší než 10 s (tj. bouřka se vyskytuje ve vzdálenosti více než 3 km). V pozorovací praxi vzdálené bouřky rozdělujeme na bouřky vzdálené do 5 km od místa pozorování a na bouřky vzdálené více než 5 km od místa pozorování. Největší vzdálenost vzdálené bouřky závisí především na hladině akust. šumu v místě pozorování a na směru větru. Ve dne bývá zpravidla 15 až 20 km, v noci až 25 km (výjimečně jsou možné i delší vzdálenosti). Viz též bouřka blízká, bouřka na stanici, hrom.
česky: bouřka vzdálená angl: distant thunderstorm něm: entferntes Gewitter n rus: отдаленная гроза fr: orage lointain m  1993-a2
vzduch
1. směs plynů, která vytváří atmosféru Země;
2. zkrácené označení pro vzduchovou hmotu, např. tropický vzduch;
3. pojem vzduch se někdy používá i jako syn. pro atmosféru, např. suchý a čistý vzduch ve smyslu suchá a čistá atmosféra.
česky: vzduch angl: air rus: воздух  1993-a1
vzduch miernych šírok
vzduchová hmota, vymezená geografickou klasifikací vzduchových hmot, s ohniskem vzniku vzduchové hmoty v mírných zeměp. šířkách. Jeho zast. označení polární vzduch pochází z doby, kdy nebyl vymezován na severní polokouli arktický, na jižní antarktický vzduch, oddělený arktickou, resp. antarktickou frontou. Na opačném okraji je vzduch mírných šířek ohraničen polární frontou. Jeho výskyt je typický celoročně pro klima mírných šířek, v chladné části roku pro subtropické klima, v teplé části roku pro subarktické klima. Mořský vzduch mírných šířek přináší do stř. Evropy oblačné počasí se srážkami. V zimě sem proniká od západu až jihozápadu a je relativně teplý, v létě je zde relativně chladný a proudí od západu až severozápadu. Četnost jeho závisí na intenzitě zonálního proudění. Směrem k východu narůstá na jeho úkor četnost výskytu pevninského vzduchu mírných šířek, který často vzniká transformací jeho mořské formy. Je zde nejčastější vzduchovou hmotou s maximem výskytu v období častých anticyklonálních situací. Bývá suchý a teplotně normální, s výjimkou zimy, kdy je především při zemském povrchu studený.
česky: vzduch mírných šířek angl: polar air rus: воздух умеренных широт  1993-a3
vzduchová častica
v meteorologii označení pro modelový objem vzduchu, o němž předpokládáme, že:
a) je dostatečně velký, takže jeho stav lze popsat hodnotami makroskopických proměnných;
b) je dostatečně malý, aby při svém pohybu nevyvolával kompenzační pohyby v okolním vzduchu.
Uvnitř vzduchové částice tedy neuvažujeme prostorové změny makroskopických proměnných (teploty, tlaku, hustoty a vlhkosti vzduchu, koncentrace znečištění apod.). Pojem vzduchová částice využíváme hlavně při modelování procesů spojených s pohybem vzduchu, zejména se změnou stavových proměnných při vertikálních pohybech. Viz též metoda částice.
česky: částice vzduchová angl: air parcel něm: Luftpaket n rus: воздушная частица, , частица воздуха fr: parcelle d'air f, particule d'air f  1993-a3
vzduchová diera
v letecké terminologii zastaralý a nevhodný název pro intenzívní sestupné pohyby působené termickou i mechanickou turbulencí zejména nad členitým terénem.
česky: díra vzdušná angl: air-pocket něm: Fallbö f, Luftloch n rus: воздушная яма fr: poche d'air f  1993-a1
vzduchová hmota
množství vzduchu v troposféře, souměřitelné co do plošných rozměrů s velkými plochami moří a pevnin, které má zhruba stejné vlastnosti a pohybuje se ve směru všeobecné cirkulace atmosféry. Vzduchová hmota vzniká v ohnisku, tedy oblasti, kde přijímá své charakteristické vlastnosti. Pro vznik vzduchové hmoty je důležitá cirkulační soustava, která zaručuje, že vzduch v dané oblasti setrvá dostatečně dlouho, aby vertikální gradient teploty a rozdělení vlhkosti dosáhly rovnovážného stavu se svým podkladem. Při pohybu dochází k transformaci vzduchové hmoty. Uvnitř vzduchové hmoty jsou prostorové změny meteorologických prvků pomalé a spojité, zatímco na rozhraní se sousední vzduchovou hmotou se mění prudce. Na rozhraní vzduchových hmot leží většinou atmosférická fronta, případně vlhkostní rozhraní. V rámci klasifikace vzduchových hmot se určitá vzduchová hmota může stručně označovat i jako „vzduch" s blíže určujícím přídavným jménem. Viz též vlastnosti vzduchových hmot konzervativní, homology vzduchových hmot.
.
česky: hmota vzduchová angl: air mass rus: воздушная масса něm: Luftmasse f  1993-a3
vzdušnina
zast. název pro vzduchovou hmotu. V čes. met. literatuře byl běžný do konce 2. světové války.
česky: vzdušina  1993-a1
vzlínanie vody
pohyb podpovrchové vody vlivem působení kapilárních sil proti směru zemské tíže.
česky: vzlínání vody angl: capillary rise of soil moisture rus: капиллярный подъем почвенной воды  1993-a1
vznos dymovej vlečky
syn. převýšení kouřové vlečky – výška nad úrovní ústí zdroje znečišťování ovzduší, v níž osa kouřové vlečky po počátečním vzestupu nabývá horiz. polohu. Je to tedy rozdíl mezi efektivní výškou komína a jeho skutečnou neboli stavební výškou. V praxi bývá hodnota vznosu kouřové vlečky nahrazována největší změřitelnou výškou osy vlečky nad ústím zdroje. Vznos kouřové vlečky se za jinak stejných podmínek zvětšuje, jestliže vzrůstá teplota exhalací, jejich objem a výstupní rychlost. Při růstu rychlosti větru se vznos kouřové vlečky zmenšuje. Při instabilním teplotním zvrstvení ovzduší dochází za jinak konstantních podmínek k většímu vznosu kouřové vlečky než při stabilním teplotním zvrstvení. Vznos kouřové vlečky významně ovlivňuje přízemní imise. Účinné zlepšení kvality ovzduší lze často dosáhnout dodržováním „pravidla jednoho komína“ (z angl. one stack rule): při vypouštění exhalací jedním společným komínem se obvykle dosáhne vyššího vznosu kouřové vlečky, a proto nižších přízemních imisí, než při vypouštění týchž exhalací několika komíny umístěnými blízko sebe a stejně vysokými nebo i poněkud vyššími než společný komín.
česky: vznos kouřové vlečky angl: plume rise rus: подъем дымового факела  1993-a2
vzorec
viz též formule, rovnice, věta, vztah, zákon, index.
česky: vzorec angl: formula rus: формула  1993-a1
vzostupný konvektívny prúd
(FFD, z angl. Forward-Flank Downdraft) syn. proud konvektivní sestupný čelní – hlavní sestupný konvektivní proudsupercele, který je většinou spojen se silnými srážkami. Nachází se v přední části supercely vzhledem ke směru jejího pohybu. Je zodpovědný za vznik gust fronty a pro ni typické oblačnosti ve formě zvláštnosti arcus. Na rozdíl od zadního sestupného proudu je tvořen studeným a vlhkým vzduchem, neboť se do něj vypařují srážkové částice.
česky: proud konvektivní sestupný přední angl: forward flank downdraft něm: vorderseitiger konvektiver Abwind m  2015
vzostupný konvektívny prúd
syn. updraft – vertikální vzestupný proud, vyvolaný instabilitou okolního prostředí, který dává vznik oblakům cumulus a cumulonimbus. V případě silnějších vzestupných proudů uvnitř konvektivních bouří mohou hodnoty maxima vertikální rychlosti dosáhnout až kolem 60 m.s-1. Projevem nejvyšších partií vzestupných proudů konv. bouří jsou přestřelující vrcholy – nejsilnější vzestupné konv. proudy generují nejvýraznější přestřelující vrcholy. Slangově se v češtině používá původní angl. termín updraft.
česky: proud konvektivní vzestupný angl: updraft něm: konvektiver Aufwind m, updraft m  2014
vzťah
viz též formule, vzorec, zákon, rovnice, věta.
česky: vztah  1993-a1
vzťažná teplota
Průměrná maximální teplota nejteplejšího měsíce, zpravidla července, na daném letišti. Na letišti Praha–Ruzyně je 23,6 °C (JUL). Hodnoty pro další letiště lze nalézt v Letecké informační příručce (AIP ČR).
česky: teplota vztažná angl: reference temperature  2014
vztlak
dynamické meteorologii označení pro vertikálně orientovanou výslednici síly zemské tíže a hydrostatické (aerostatické) vztlakové síly, které působí na vzduchovou částici. V případě, že je výslednice těchto sil orientována k zemskému povrchu, mluvíme obvykle o záporném vztlaku. Na rozdíl od dynamické meteorologie se v mechanice tekutin vztlakem rozumí pouze hydrostatická vztlaková síla. Používání termínu (archimédovská) vztlaková síla jako syn. vztlaku v dynamické meteorologii proto není vhodné. Viz též metoda částice.
česky: vztlak angl: buoyancy rus: плавучесть  2014
podpořila:
spolupracují: