Elektronický meteorologický slovník výkladový a terminologický (eMS) sestavila ČMeS

Výklad hesel podle písmene f

X
fac-similé m
česky: faksimile angl: facsimile slov: faksimile rus: факсимиле něm: Bildfunkübertragung f  1993-a1
facteur anthropique du climat pl (m)
klimatický faktor vyvolaný lidskými zásahy do klimatického systému. Působením člověka došlo především v posledních staletích k modifikaci některých geografických klimatických faktorů, a to od planetárního měřítka (změny složení atmosféry Země z hlediska koncentrace některých skleníkových plynů a atmosférického aerosolu) po regionální a lokální (změny energetické bilance v důsledku změn vlastností aktivního povrchu, uvolňování antropogenního tepla). Viz též meliorace klimatu, ovlivňování klimatu.
česky: faktor klimatický antropogenní angl: anthropogenic climatic factor slov: antropogénny klimatický faktor rus: антропогенный климатический фактор něm: anthropogener Klimafaktor m  1993-b3
facteur astronomique (m)
klimatický faktor podmíněný vlastnostmi Země jako planety v rámci sluneční soustavy. Skupina těchto faktorů patří mezi radiační klimatické faktory, neboť určují množství slunečního záření dopadajícího na horní hranici atmosféry a jeho rozdělení v čase a prostoru; jejich působení je zpravidla globální a nepřetržité. Mezi tyto faktory patří především vlastnosti záření Slunce (intenzita, vlnová délka), dále pak vlastnosti oběžné dráhy Země kolem Slunce (střední vzdálenost obou těles, rychlost oběhu, excentricita oběžné dráhy Země kolem Slunce), sférický tvar Země a její rotace, sklon zemské osy k rovině ekliptiky a vzájemná poloha perihelia a afelia vůči jarnímu a podzimnímu bodu. Mezi astronomické klimatické faktory patří i epizodicky působící impakty vesmírných těles. Viz též klima solární, cykly Milankovičovy.
česky: faktor klimatický astronomický angl: astronomical climatic factor slov: astronomický klimatický faktor rus: астрономический климатический фактор něm: astronomischer Klimafaktor (m)  1993-b3
facteur climatique m
česky: faktor klimagenní slov: klimagénny faktor  1993-a3
facteur climatique m
1. syn. faktor klimatotvorný, faktor klimagenní – činitel podílející se na genezi klimatu. Změna jednoho nebo více faktorů (v angličtině tzv. forcing) má za následek odpovídající vývoj klimatu ve formě kolísání klimatu, případně jednosměrné změny klimatu. Ta probíhá tak dlouho, dokud prostřednictvím záporných klimatických zpětných vazeb nedojde k opětovnému ustavení rovnováhy klimatického systému. Klimatické faktory se zpravidla navzájem ovlivňují, nicméně lze rozlišit jejich skupiny podle několika kritérií. Nejčastěji se uvádějí astronomické, geografické a antropogenní klimatické faktory, dále podle mechanizmu působení radiační a cirkulační klimatické faktory. Podle měřítka působení můžeme rozlišit faktory od globálních po lokální, z časového hlediska kontinuální a epizodické. Některé klimatické faktory působí v daném místě bezprostředně, působení jiných faktorů se přenáší do určité oblasti prostřednictvím dálkových vazeb.
2. nevhodné označení pro vliv klimatu na určitou lidskou aktivitu, např. na hustotu osídlení, zemědělství nebo cestovní ruch.
česky: faktor klimatický angl: climatic factor, climatic control slov: klimatický faktor rus: климатический фактор něm: klimatologischer Wirkungsfaktor m, Klimafaktor m  1993-a3
facteur climatique m
česky: faktor klimatotvorný slov: klimatotvorný faktor rus: климатообразующий фактор  1993-a1
facteur cosmique (m)
klimatický faktor podmíněný vlastnostmi Země jako planety v rámci sluneční soustavy. Skupina těchto faktorů patří mezi radiační klimatické faktory, neboť určují množství slunečního záření dopadajícího na horní hranici atmosféry a jeho rozdělení v čase a prostoru; jejich působení je zpravidla globální a nepřetržité. Mezi tyto faktory patří především vlastnosti záření Slunce (intenzita, vlnová délka), dále pak vlastnosti oběžné dráhy Země kolem Slunce (střední vzdálenost obou těles, rychlost oběhu, excentricita oběžné dráhy Země kolem Slunce), sférický tvar Země a její rotace, sklon zemské osy k rovině ekliptiky a vzájemná poloha perihelia a afelia vůči jarnímu a podzimnímu bodu. Mezi astronomické klimatické faktory patří i epizodicky působící impakty vesmírných těles. Viz též klima solární, cykly Milankovičovy.
česky: faktor klimatický astronomický angl: astronomical climatic factor slov: astronomický klimatický faktor rus: астрономический климатический фактор něm: astronomischer Klimafaktor (m)  1993-b3
facteur d'absorption m
česky: faktor absorpční angl: absorption factor slov: absorpčný faktor rus: фактор поглощения něm: Absorptionsfaktor m  1993-a1
facteur d'absorption m
syn. faktor absorpční – poměr velikosti absorbovaného a původního radiačního toku, jako funkce množství dané absorbující látky (nejčastěji vodní páry) obsažené v určité vrstvě atmosféry. Odečteme-li absorpční funkci od jedné, dostáváme tzv. funkci propustnosti.
česky: funkce absorpční angl: absorption function slov: absorpčná funkcia rus: функция поглощения něm: Absorptionsfunktion f  1993-a1
facteur de pluie de Lang m
index humidity, který navrhl R. Lang (1920) ve tvaru
I=R/T,
kde R je prům. roč. úhrn srážek v mm a T prům. roč. teplota vzduchu ve °C. Tato veličina měla původně vyjadřovat podmínky pro vytváření půdního humusu; později byla použita pro klasifikaci klimatu v planetárním měřítku. K tomu však není vhodná, neboť je definována jen pro T > 0. V ČR je modifikovaný Langův dešťový faktor vypočtený z dat za vegetační období používán k charakteristice sucha v jednotlivých letech. Mapa Langova dešťového faktoru je součástí Atlasu podnebí Česka (2007), viz atlas klimatologický.
česky: faktor dešťový Langův angl: Lang's rain factor slov: Langov dažďový faktor rus: фактор дождя Ланга něm: Lang-Regenfaktor m  1993-a3
facteur de pluviométrie de Lang m
index humidity, který navrhl R. Lang (1920) ve tvaru
I=R/T,
kde R je prům. roč. úhrn srážek v mm a T prům. roč. teplota vzduchu ve °C. Tato veličina měla původně vyjadřovat podmínky pro vytváření půdního humusu; později byla použita pro klasifikaci klimatu v planetárním měřítku. K tomu však není vhodná, neboť je definována jen pro T > 0. V ČR je modifikovaný Langův dešťový faktor vypočtený z dat za vegetační období používán k charakteristice sucha v jednotlivých letech. Mapa Langova dešťového faktoru je součástí Atlasu podnebí Česka (2007), viz atlas klimatologický.
česky: faktor dešťový Langův angl: Lang's rain factor slov: Langov dažďový faktor rus: фактор дождя Ланга něm: Lang-Regenfaktor m  1993-a3
facteur de transmission m
česky: funkce propustnosti angl: transmittance function slov: funkcia priepustnosti rus: функция пропускания něm: Transmissionsfunktion f  1993-a1
facteur de trouble de Linke m
charakteristika zeslabení slunečního záření v atmosféře v celém rozsahu spektra, která je definována poměrem extinkce reálné atmosféry obsahující zejména vodní páru a atmosférický aerosol k extinkci čisté a suché (Rayleighovy) atmosféry. Linkeho zákalový faktor vyjadřuje počet těchto ideálních atmosfér zeslabujících sluneční záření stejně jako reálná atmosféra. Určuje se z měření přímého slunečního záření pomocí pyrheliometrů nebo aktinometrů. Uvedenou charakteristiku definoval něm. meteorolog F. Linke v r. 1922. Hodnoty faktoru se obvykle pohybují v rozmezí 2 (studený a čistý vzduch) až 6 (vzduch znečištěný aerosolem).
česky: faktor zákalový Linkeho angl: Linke turbidity factor slov: Linkeho zákalový faktor rus: фактор мутности Линке, фактор помутнения něm: Trübungsfaktor nach Linke m  1993-a3
facteur de ventilation m
index ventilační, viz vrstva směšovací.
česky: faktor ventilační angl: ventilation (venting) factor slov: ventilačný faktor rus: вентиляционный фактор něm: Ventilationsfaktor m  1993-a2
facteur du climat - circulation atmosphérique m
klimatický faktor podmíněný charakteristickou atmosférickou cirkulací, která působí na další klimatické prvky. Tuto skupinu faktorů můžeme řadit mezi geografické klimatické faktory, přičemž měřítko jejich působení v rámci kategorizace klimatu závisí na měřítku příslušné atmosférické cirkulace. Makroklima velkých územních celků je určováno všeobecnou cirkulací atmosféry, naopak mezoklima a míkroklima může být významně ovlivňováno místní cirkulací. Cirkulační klimatické faktory se mohou uplatňovat je v určité sezoně, v případě faktorů menšího měřítka jen v některé denní době, přičemž ovlivňují např. výskyt mlh, inverze teploty vzduchu, denní chod oblačnosti a srážek apod.
 
česky: faktor klimatický cirkulační angl: circulation climatic factor slov: cirkulačný klimatický faktor rus: циркуляционный климатический фактор něm: Zirkulationsfaktor des Klimas m/pl  1993-b3
facteur du climat m
1. syn. faktor klimatotvorný, faktor klimagenní – činitel podílející se na genezi klimatu. Změna jednoho nebo více faktorů (v angličtině tzv. forcing) má za následek odpovídající vývoj klimatu ve formě kolísání klimatu, případně jednosměrné změny klimatu. Ta probíhá tak dlouho, dokud prostřednictvím záporných klimatických zpětných vazeb nedojde k opětovnému ustavení rovnováhy klimatického systému. Klimatické faktory se zpravidla navzájem ovlivňují, nicméně lze rozlišit jejich skupiny podle několika kritérií. Nejčastěji se uvádějí astronomické, geografické a antropogenní klimatické faktory, dále podle mechanizmu působení radiační a cirkulační klimatické faktory. Podle měřítka působení můžeme rozlišit faktory od globálních po lokální, z časového hlediska kontinuální a epizodické. Některé klimatické faktory působí v daném místě bezprostředně, působení jiných faktorů se přenáší do určité oblasti prostřednictvím dálkových vazeb.
2. nevhodné označení pro vliv klimatu na určitou lidskou aktivitu, např. na hustotu osídlení, zemědělství nebo cestovní ruch.
česky: faktor klimatický angl: climatic factor, climatic control slov: klimatický faktor rus: климатический фактор něm: klimatologischer Wirkungsfaktor m, Klimafaktor m  1993-a3
facteur géographique du climat (m)
klimatický faktor podmíněný heterogenitou přírodního prostředí Země v různých měřítkách, která se odrážejí v kategorizaci klimatu. Pro utváření makroklimatu je určující zeměp. šířka, rozložení pevniny a oceánů, uspořádání všeobecné cirkulace atmosféry a systém oceánských proudů. V menším prostorovém měřítku se uplatňuje vliv nadm. výšky, tvarů zemského reliéfu a krajinného pokryvu. Mezi geografické klimatické faktory můžeme rovněž řadit složení atmosféry Země, na které epizodicky působí zemský vulkanizmus.
česky: faktor klimatický geografický angl: geographical climatic factor slov: geografický klimaitický faktor rus: географический климатический фактор něm: geographischer Klimafaktor m  1993-b3
facteur humain des changements climatiques pl (m)
klimatický faktor vyvolaný lidskými zásahy do klimatického systému. Působením člověka došlo především v posledních staletích k modifikaci některých geografických klimatických faktorů, a to od planetárního měřítka (změny složení atmosféry Země z hlediska koncentrace některých skleníkových plynů a atmosférického aerosolu) po regionální a lokální (změny energetické bilance v důsledku změn vlastností aktivního povrchu, uvolňování antropogenního tepla). Viz též meliorace klimatu, ovlivňování klimatu.
česky: faktor klimatický antropogenní angl: anthropogenic climatic factor slov: antropogénny klimatický faktor rus: антропогенный климатический фактор něm: anthropogener Klimafaktor m  1993-b3
facteur planétaire (m)
klimatický faktor působící prostřednictvím určité složky radiační bilance. Základním radiačním klimatickým faktorem je sluneční záření dopadající na horní hranici atmosféry, k němuž se připojují i další astronomické klimatické faktory, které ho ovlivňují. Ostatní toky zářivé energie, podmíněné transformací slun. záření v atmosféře a na zemském povrchu, jako je záření přímé, rozptýlené, odražené, vyzařování zemského povrchu a atmosféry, jsou ovlivněny geografickými klimatickými faktory, především zeměp. šířkou, nadm. výškou a vlastnostmi aktivního povrchu.
česky: faktor klimatický radiační angl: radiative climatic factor slov: radiačný klimatický faktor rus: радиационный климатический фактор  1993-b3
facteur pluviométrique de Lang m
index humidity, který navrhl R. Lang (1920) ve tvaru
I=R/T,
kde R je prům. roč. úhrn srážek v mm a T prům. roč. teplota vzduchu ve °C. Tato veličina měla původně vyjadřovat podmínky pro vytváření půdního humusu; později byla použita pro klasifikaci klimatu v planetárním měřítku. K tomu však není vhodná, neboť je definována jen pro T > 0. V ČR je modifikovaný Langův dešťový faktor vypočtený z dat za vegetační období používán k charakteristice sucha v jednotlivých letech. Mapa Langova dešťového faktoru je součástí Atlasu podnebí Česka (2007), viz atlas klimatologický.
česky: faktor dešťový Langův angl: Lang's rain factor slov: Langov dažďový faktor rus: фактор дождя Ланга něm: Lang-Regenfaktor m  1993-a3
facteur pluviométrique m
tradiční, avšak nevhodné označení pro některé indexy humidity.
česky: faktor dešťový angl: rain factor slov: dažďový faktor rus: фактор осадков (дождя) něm: Regenfaktor m  1993-a3
Fata Morgana f
1) optický jev vytvářený zrcadlením v atmosféře, při němž vznikají zdánlivé (virtuální) přímé i vert. obrácené obrazy skutečných objektů, jež se mohou nalézat i ve větších vzdálenostech za obzorem.
2) případy silného zvýšení obzoru, kdy zakřivení světelných paprsků přibližně odpovídá křivosti povrchu Země. Nad obzor pak mohou vystoupit nepřevrácené obrazy objektů nalézajících se v extrémních případech až několik set km za geometrickým obzorem.
V našich oblastech je fáta morgana vzácným fotometeorem. Vyskytuje se více v pouštních a polárních oblastech. Název pochází z již. Itálie, kde podle lidové pověsti vytvářela fátu morganu v Messinském zálivu nad mořem víla (italsky fáta) jménem Morgana. Ve smyslu 2) se jev typicky vyskytuje při advekci teplé vzduchové hmoty nad studený mořský povrch. Viz též šíření elektromagnetického vlnění v atmosféře.
česky: fáta morgana angl: Fata Morgana slov: fatamorgána rus: Фата-Моргана něm: Fata Morgana f  1993-a3
fibratus m
(fib) [fibrátus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Jednotlivé navzájem oddělené oblaky nebo tenký oblačný závoj mají vláknitou strukturu. Vlákna jsou buď přímočará, nebo více méně nepravidelně pokřivená a nejsou zakončena ani háčky ani chomáčky. Označení fibratus se užívá hlavně u druhů cirrus a cirrostratus.
česky: fibratus angl: fibratus slov: fibratus rus: волокнистые облака, нитевидные облака něm: fibratus  1993-a3
film d'air froid m
slangové označení pro tenkou vrstvu studeného vzduchu, která se za vhodných podmínek udržuje nad zemským povrchem a neúčastní se všeobecného proudění vzduchu. Její tloušťka kolísá od několika metrů do několika stovek metrů. Vytváří se nejčastěji v zimě ve studených anticyklonách nad prochlazenou pevninou, v uzavřených terénních sníženinách, kde zejména v nočních hodinách studený vzduch stéká ze svahů do nižších poloh, nebo pod rozhraním teplé fronty v případě, kdy je její nejspodnější část výrazně zpomalována oproti ostatním částem fronty v důsledku tření o zemský povrch. V bláně studeného vzduchu zpravidla pozorujeme inverzi teploty vzduchu nebo izotermii. Viz též jezero studeného vzduchu.
česky: blána studeného vzduchu angl: film of cold air slov: blana studeného vzduchu něm: Kaltluftfilm m rus: пленка холодного воздуха  1993-a3
filtre de Kalman m
(KF) – rekurzivní algoritmus, který dává optimální odhad (ve smyslu minimalizace střední kvadratické odchylky) stavového vektoru lineárního dynamického systému (např. lineárního modelu) za předpokladu, že chyba lineárního modelu popisujícího dynamický systém má Gaussovo rozdělení a naměřené hodnoty stavového vektoru mají chybu s Gaussovým rozdělením nezávislou na chybě modelu. KF poskytuje optimální odhady pro minulé, současné i budoucí stavy systému společně s odhadem jejich chyby. Proto je KF filtr vhodný pro asimilaci dat do numerického modelu předpovědi počasí. Kromě toho se KF používá i v jiných meteorologických aplikacích jako je např. statistický postprocessing prognostických dat numerických modelů počasí, downscaling apod. Z řady nemeteorologických aplikací se KF využívá např. pro lokalizaci cílů a jejich pohybu na základě radarových měření. Pro nelineární dynamické systémy (nelineární modely) existují různé modifikace základního algoritmu. Zobecněný KF (EKF) linearizuje model v okolí aktuálního stavového vektoru a na tento model aplikuje KF. Vzhledem k tomu, že modely předpovědi počasí jsou silně nelineární, EKF nedává přijatelné výsledky a v meteorologických aplikacích se nepoužívá. Ansámblový KF (EnKF) aplikuje model na ansámbl počátečních stavových vektorů a určuje odhad chyby předpovědi modelu pomocí vyhodnocení získaného ansámblu předpovědí. Přitom se předpokládá Gaussovo rozdělení obou ansámblů. Zobecněním EnKF je částicový KF (PKF), který se liší od EnKF tím, že se neomezuje na Gaussovo rozdělení, což ovšem výrazně navyšuje časovou náročnost výpočtu. V současné době nejpoužívanější metoda aplikace KF v asimilaci dat je LETKF, což je z výpočetního hlediska velmi efektivní aplikace EnKF.
česky: filtr Kalmánův angl: Kalman filter slov: Kalmánov filter rus: фильтр Калмана něm: Kalman-Filter m  2014
floccus m
(flo) [flokus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má podobu kupovitých chomáčků nebo vloček, jejichž spodní okraje jsou více méně neostré, roztrhané a často je provází virga. Označení se užívá u druhů cirrus, cirrocumulus a altocumulus.
česky: floccus angl: floccus slov: floccus rus: хлопьевидные облака něm: floccus  1993-a3
foehn anticyclonique m
syn. fén volný.
česky: fén anticyklonální angl: anticyclonic foehn slov: anticyklonálny föhn rus: антициклонический фён něm: antizyklonaler Föhn m  1993-a3
foehn anticyclonique m
syn. fén anticyklonální – fén vyskytující se v kvazistacionárních anticyklonách nebo v hřebenech vysokého tlaku vzduchu za slabého horiz. proudění nebo za bezvětří. Při jeho vývoji se uplatňuje subsidence vzduchu a jeho rychlosti bývají menší ve srovnání s orografickým fénem. Na horách se mj. projevuje oteplením a silným poklesem relativní vlhkosti vzduchu, zatímco v nižších polohách se při něm mohou vytvářet izolovaná jezera studeného vzduchu s vysokou inverzní mlhou nebo s nízkou oblačností nad sebou. V horském terénu v silnějším anticyklonálním proudění je vlivem vzestupných pohybů vzduchu na návětrné straně pohoří subsidence potlačována a soustřeďuje se pak na závětrnou stranu, kde může vyvolat výrazné oteplení.
česky: fén volný angl: free air foehn slov: voľný föhn rus: фён в свободной атмосфере něm: freier Föhn m  1993-a3
foehn au Tian Shan et Kopet-Dag m
místní název pro suchý a horký vítr charakteru fénu v předhořích Kopet-Dagu a záp. Ťan-Šanu ve stř. Asii, vanoucí v létě od jihu a východu z hor. Působí škody na kulturních plodinách podobně jako suchověj.
česky: garmsil angl: garmsil slov: garmsil rus: гармсэл, керимсел něm: Garmsil m  1993-a1
foehn cyclonique m
viz fén.
česky: fén cyklonální angl: cyclonic foehn něm: zyklonaler F  1993-a3
foehn cyclonique m
viz fén.
česky: fén orografický angl: orographic foehn slov: orografický föhn rus: орографический фён něm: orographischer Föhn m  1993-a3
foehn m
syn. föhn – teplý suchý padavý vítr, který se vyskytuje na závětrné straně horských překážek. Může trvat několik hodin až několik dní a v zimě může vyvolávat prudké tání sněhu, protože rozdíl mezi teplotou vzduchu na návětrné a závětrné straně hor může dosahovat až desítky °C.
Pojem fén (föhn) vznikl v alpské oblasti, v současné době se však používá jako obecný termín pro tento typ proudění bez ohledu na místo jeho výskytu. Za fén lze považovat například chinook na východní straně Skalnatých hor v Severní Americe nebo vítr halný v jižním Polsku. Na území ČR se může projevit např. v závětří Šumavy, někdy i Beskyd a Jeseníků, na Slovensku pak zejména v závětří Vysokých Tater a Nízkých Tater.
Klasické vysvětlení vzniku fénu vychází z termodynamického modelu adiabatického přetékání horského hřebene. Na návětrné stráně hřebene v tomto případě dochází k nasycení vystupujícího vzduchu a vypadávání srážek, což se na závětrné straně projevuje oteplením vysušeného vzduchu při jeho nenasyceně adiabatickém sestupu. Uvedený model je značným zjednodušením celého procesu. Předpokládá dosažení výstupné kondenzační hladiny na návětrné straně hřebene a nebere v úvahu dynamické aspekty závětrného fénového proudění. Nezahrnuje také vliv složitější topografie horského terénu včetně horských průsmyků.
V programu MAP (Mesoscale Alpine Programme), který probíhal hlavně v prvním desetiletí tohoto století, bylo prokázáno, že prakticky polovina případů alpského fénu na rakouském území není doprovázena návětrnými srážkami. Termodynamickou teorii fénu je tedy nutné chápat jako důležité, avšak nikoliv úplné vysvětlení fénového proudění.
V současné době se zcela akceptuje, že fén může nastat bez vypadávání srážek na návětrné straně pohoří. Čím nižší je z návětrné strany horský hřeben, tím pravděpodobnější je, že advehovaný vzduch jednoduše proudí přes hřeben a následně na závětrné straně klesá. V mnoha případech přispívají k vývoji fénu oba mechanizmy, přičemž hlavní role se připisuje závětrnému adiabatickému vzestupu teploty a vypadávání srážek pak přispívá dodatečně menším dílem. Neúplně vyřešenou otázkou je pokles závětrného proudění do údolí zejména v případě, kdy je zaplněno chladným a stabilně zvrstveným vzduchem. Bylo sestaveno několik koncepčních modelů závětrného proudění, žádný z nich se však neprokázal jako univerzálně platný. Dnes se předpokládá, že neexistuje univerzálně použitelná teorie závětrného teplého fénového proudění. V závislosti na teplotě, vlhkosti a profilu větru se mohou při sestupném proudění uplatnit různé dynamické a termodynamické mechanismy.
Fén, vyvolaný prouděním nad horským terénem, při němž jsou splněny podmínky termodynamické teorie, se někdy označuje také jako fén orografický. Vyskytuje se nejčastěji v okrajovém proudění cyklon, a proto bývá označován též jako fén cyklonální. V současné odborné literatuře se však s těmito termíny setkáváme poměrně zřídka. Poměrně frekventovaný je termín volný fén se synonymem fén anticyklonální. V alpské oblasti v programu MAP bylo definováno několik dalších kategorií alpského fénu. Viz též efekt fénový, zeď fénová, mezera fénová, oblak fénový, touríello.
česky: fén angl: foehn slov: föhn rus: фён něm: Föhn m  1993-a3
foehn m
syn. fén.
česky: föhn angl: foehn slov: föhn rus: фён něm: Föhn m  1993-a1
fonction de courant f
skalární funkce Ψ, popisující pole nedivergentního rovinného proudění tekutiny. V dynamické meteorologii se používá pro popis vírového horiz. proudění v atmosféře a je definovaná až na aditivní konstantu vztahy
vx=Ψy, vy=Ψx,
kde vx a vy značí horiz. složky rychlosti proudění v kartézské souřadnicové soustavě (x, y, z). V mechanice tekutin se lze někdy setkat s alternativním vyjádřením, které má opačné znaménko. Z definice proudové funkce plyne, že její izolinie odpovídají proudnicím. Proudová funkce se používá mimo jiné při inicializaci vstupních datmodelu numerické předpovědi počasí.
česky: funkce proudová angl: streamfunction slov: prúdová funkcia rus: функция потока, функция тока něm: Stromfunktion f  1993-a3
fontaine stratosphérique f
označení specifické oblasti anomálně chladné tropické tropopauzy, kde se ve vybrané roční době dostává podstatné množství vzduchu z troposféry do stratosféry. Pojem zavedli Reginald Newella a Sharon Gould-Stewar, kteří ukázali na významný přenos do stratosféry v oblasti západního tropického Tichého oceánu během zimního období na severní hemisféře a rovněž v oblasti jihovýchodní Asie během letního monzunu. Aktualizovaná měření ukázala, že vzduch se dostává z troposféry do stratosféry během celého roku. Tento přenos ale vykazuje roční chod, a ačkoli není limitován pouze na určitý region, je významný zejména ve výše uvedených oblastech.
česky: fontána stratosférická angl: stratospheric fountain rus: стратосферный фонтан  2015
fontaines stratosphériques pl (f)
označení specifické oblasti anomálně chladné tropické tropopauzy, kde se ve vybrané roční době dostává podstatné množství vzduchu z troposféry do stratosféry. Pojem zavedli Reginald Newella a Sharon Gould-Stewar, kteří ukázali na významný přenos do stratosféry v oblasti západního tropického Tichého oceánu během zimního období na severní hemisféře a rovněž v oblasti jihovýchodní Asie během letního monzunu. Aktualizovaná měření ukázala, že vzduch se dostává z troposféry do stratosféry během celého roku. Tento přenos ale vykazuje roční chod, a ačkoli není limitován pouze na určitý region, je významný zejména ve výše uvedených oblastech.
česky: fontána stratosférická angl: stratospheric fountain rus: стратосферный фонтан  2015
footprint de flux m
oblast ležící v návětrném směru od přístroje, měřícího vertikální turbulentní tok (tepla, plynu, nebo hybnosti) v atmosféře, v níž je měřený turbulentní tok generován. Velikost a tvar této oblasti (footprintu), kterou přístroj „vidí“, závisí na výšce, v níž je vertikální tok měřen, drsnosti povrchu a vertikální teplotní stabilitě atmosféry. Například nárůst výšky měření, snížení drsnosti povrchu a stabilizace teplotního zvrstvení budou mít za následek zvětšení plochy footprintu a zvětšení vzdálenosti, z níž přichází maximální příspěvek k měřenému toku, od přístroje směrem proti větru. Snížení výšky měření, nárůst drsnosti a labilizace zvrstvení naopak způsobí zmenšení plochy footprintu a posun oblasti maximálního příspěvku blíže k přístroji.
česky: footprint toku v atmosféře angl: atmospheric flux footprint, flux footprint, footprint slov: footprint toku v atmosfére  2014
formation de dépression thermique f
cyklogeneze spojená s turbulentním přenosem zjevného tepla od podkladu. Termická cyklogeneze se vyskytuje především nad oblastmi přehřáté pevniny (např. v létě cyklona nad Pyrenejským poloostrovem) nebo při proudění studeného vzduchu nad teplý vodní povrch (např. v zimě cyklona nad Černým mořem).
česky: cyklogeneze termická angl: thermal cyclogenesis slov: termická cyklogenéza něm: thermische Zyklogenese f rus: термический циклогенез  1993-a3
forme universelle de représentation binaire des données météorologiques f
binární univerzální formát pro reprezentaci met. dat. Zpráva v kódu BUFR obsahuje kromě požadovaných dat, metadat a dalších informací také jejich přesný popis pomocí deskriptorů. To umožňuje použití kódu BUFR pro jakýkoliv typ dat, pro který jsou definované příslušné deskriptory. Binární formát a komprese dovolují redukci objemu dat.
česky: BUFR angl: BUFR slov: BUFR něm: BUFR rus: БУФР  2014
formule du nivellement barométrique f
syn. vzorec barometrický – vztah mezi geometrickou tloušťkou dané vrstvy vzduchu v atmosféře a tlakem vzduchu na horní a dolní hranici této vrstvy. Základní verzi barometrické formule lze psát ve tvaru
z2-z1=Rg p2p1 Tdpp,
po integraci
z2-z1=Rg T¯lnp1p2,
kde z2 a z1 značí výšku horní a dolní hranice uvažované vzduchové vrstvy, p1, resp. p2 tlak vzduchu v hladině z1, resp. z2, R měrnou plynovou konstantu vzduchu, g velikost tíhového zrychlení, T teplotu v K aT¯ prům. teplotu vrstvy vzduchu. Barometrická formule se používá při vyhodnocení aerologických měření, redukcích tlaku vzduchu, barometrickou nivelaci apod. Rozlišují se barometrické formule úplné a zjednodušené. Za první přesnou barometrickou formuli se považoval vzorec Laplaceův z konce 18. stol., který byl později různými autory dále upravován. Ze zjednodušených formulí je nejznámější vzorec Babinetův. Viz též vzorec Laplaceův–Rühlmannův.
česky: formule barometrická angl: barometric formula slov: barometrická formula rus: барометрическая формула něm: barometrische Höhenformel f  1993-a1
formule f
viz též vzorec.
česky: formule slov: formula rus: формула něm: Formel f, Gleichung f  1993-a1
fortes précipitations pl (f)
absolutní maxima úhrnů srážek v závislosti na době jejich akumulace. Např. nejvyšší roční úhrn srážek na Zemi o hodnotě 26 470 mm byl zaznamenán od srpna 1860 do července 1861 na stanici Cherrapunji (Indie), označované jako jeden z pólů dešťů. Pokud uvažujeme kalendářní roky, je absolutním maximem 22 990 mm v roce 1861 na téže stanici. Za nejvyšší úhrnsrážek během 24 hodin byl prohlášen úhrn 1 825 mm, dosažený 7. – 8. 1. 1966 na stanici Foc–Foc na ostrově Réunion (často uváděný úhrn 1 870 mm z roku 1952 je chybný). V případě hodinové intenzity srážek je absolutním maximem na Zemi hodnota 305 mm, naměřená 22. 6. 1947na stanici Holt ve státě Missouri (USA).
Na území ČR je za nejvyšší roční úhrn srážek považována hodnota 2254,7 mm, dosažená v roce 1913 na stanici Lysá hora. Dosud nepřekonaný denní úhrn srážek 345,1 mm pochází z 29. 7. 1897, kdy byl dosažen v Jizerských horách na stanici Nová Louka. Oficiálně uznávané absolutní maximum hodinové intenzity srážek na území ČR je 116,6 mm, změřené 3. 9. 1956 na ombrografické stanici Hamry poblíž Chrudimi. Podstatně větší intenzita srážek však byla zjištěna v otevřených nádobách dne 25. 5. 1872 (před vznikem husté sítě srážkoměrných stanic), kdy v obci Mladotice na Plzeňsku mělo během cca jedné hodiny spadnout přibližně 234 mm srážek.
Mezi srážkové extrémy lze počítat i nejdelší dobu bez zaznamenaných srážek, a to na stanici Arica v Chile od října 1903 do ledna 1918.
česky: extrémy srážek angl: extremes of precipitation slov: extrémy zrážok, zrážkové extrémy rus: экстремальные значения атмосферных осадков něm: Extremwerte des Niederschlags m/pl  2014
foudre en chapelet f
česky: blesk čočkový slov: šošovkový blesk rus: четочная молния  1993-a1
foudre f
el. výboj, který vzniká mezi centry kladných a záporných nábojů jednoho nebo více oblaků, mezi oblakem a zemí a vzácně mezi oblakem a stratosférou. Účinky blesku jsou především el. a z nich vyplývají účinky světelné, akust., tepelné, mech. a chemické. Blesk charakterizují jeho el. parametry:
a) amplituda rázové složky Imax (kolísající v rozmezí 102 až 3.106 A);
b) max. strmost čela rázové složky di/dt (103 až 109 A.s–1);
c) doba čela rázové složky (0,5 až 100).10–6 s;
d) čtverec impulsu proudu blesku
i2dt po dobu celého výboje;
e) počet dílčích výbojů bleskucelkovém výboji blesku (1 až 24);
f) trvání celého výboje (10–3 s až 2 s);
g) náboj blesku (bleskového výboje) Qb=idt .
Z uvedených el. hodnot se stanoví úbytek el. napětí –u = iR, tepelná nebo mech. energie přeměněná v zasaženém objektu v závislosti na jeho vlastnostech. Indukční účinky změny náboje a proudu blesku jak ve vůdčím výboji blesku (lídru), tak v hlavním výboji blesku jsou zdrojem elmag. vlnění s kmitočty (0,1 až 2).109 Hz. Viz též výboj blesku celkový, kanál blesku, proud bleskového výboje, počítač výbojů blesku, zařízení hromosvodné, sfériky, elektrony ubíhající.
česky: blesk angl: lightning slov: blesk něm: Blitz m rus: молния  1993-a1
foudre globulaire f
jev, který bývá popisován jako koule o průměru většinou 10 až 20 cm (někdy také 1 až 2 cm nebo někdy až 1,5 m), obvykle červené, oranžové nebo žluté barvy. Vyskytuje se za bouřky a často, ne však vždy, po úderu blesku v jeho blízkosti. Koule rychle sestupuje z oblaku a pak volně pluje vzduchem a často vniká do domů komínem, otevřenými dveřmi nebo okny. Dopadne-li koule do nádoby s vodou, dojde ke značnému zahřátí vody. Na lidském těle působí těžké popáleniny. Zánik koule bývá provázen někdy praskáním, rachotem až explozí, někdy zanikne tiše, zpravidla však zanechá ostrý zápach. Uvedené poznatky jsou zobecněním několika tisíc subj. pozorování. Dosud se nepodařilo u kulového blesku změřit žádnou el. veličinu. Vznik kulového blesku vysvětluje několik desítek teorií, od chem. reakcí až po vlnovod s dodávanou vnější energií o frekvenci několika stovek MHz (podle P. L. Kapici). Někteří současní autoři dávají kulový blesk do přímé souvislosti s běžnými blesky, např. v tom smyslu, že svinutím kanálu blesku vznikne uzavřený útvar plazmy, který je následně po určitou dobu schopen vlastní existence. V literatuře se dnes uplatňují i představy, že kulový blesk vzniká po úderu obyčejného blesku do místa, kde je v zemi silně omezena možnost rychlého prostorového rozložení el. náboje přeneseného bleskem. V omezeném objemu těsně pod zemským povrchem pak může dojít k bouřlivým dějům, které vytvoří přibližně kulový útvar plazmy, jenž přejde do vzduchu a je v něm dále unášen. Barva takto vzniklého kulového blesku pak může souviset se spalováním místních složek půdy při původním úderu blesku. Kulový blesk poprvé popsal franc. fyzik F. D. Arago v r. 1838.
česky: blesk kulový angl: ball lightning slov: guľový blesk něm: Kugelblitz m rus: шаровая молния  1993-a3
fractus m
(fra) [fraktus] – jeden z tvarů oblaků podle mezinárodní morfologické klasifikace oblaků. Oblak má podobu nepravidelných roztrhaných cárů. Vyskytuje se u druhů stratus a cumulus.
česky: fractus angl: fractus slov: fractus rus: разорванные облака něm: fractus  1993-a2
fréquence de Brunt-Vaisala f
jedna z často užívaných charakteristik stabilitních poměrů v atmosféře. Je dána jako
gΘΘz,
kde z značí vertikální souřadnici, g tíhové zrychlení a Θ potenciální teplotu. Při stabilním teplotním zvrstvení má reálnou hodnotu a představuje pak frekvekci kmitů, do kterých by se za předpokladu absence tlumícího vlivu vnitřního tření ve vzduchu dostala vzduchová částice po svém vynuceném vert. vychýlení z hladiny, v níž by se dříve nalézala v rovnováze se svým okolím.
česky: frekvence Bruntova–Vaisalova angl: Brunt–Vaisala frequency slov: Bruntova–Vaisalova frekvencia rus: частота Брюнта–Вайсала něm: Brunt-V  2014
frigorigraphe m
přístroj pro měření a registraci zchlazování (refrigerace). Je tvořen frigorimetrem, registrátorem množství spotřebované el. energie a dalšími pomocnými zařízeními.
česky: frigorigraf angl: frigorigraph slov: frigorigraf rus: фригориграф něm: Frigorigraph m  1993-a1
frigorimètre enregistreur m
přístroj pro měření a registraci zchlazování (refrigerace). Je tvořen frigorimetrem, registrátorem množství spotřebované el. energie a dalšími pomocnými zařízeními.
česky: frigorigraf angl: frigorigraph slov: frigorigraf rus: фригориграф něm: Frigorigraph m  1993-a1
frigorimètre m
přístroj k měření zchlazování (refrigerace). Jeho čidlem je těleso, např. začerněná měděná koule, vyhřívaná na teplotu blízkou teplotě lidského těla. Velikost zchlazování se určuje podle množství energie, které je třeba tělesu dodávat k udržení stálé teploty jeho povrchu.
česky: frigorimetr angl: frigorimeter slov: frigorimeter rus: фригориметр něm: Frigorimeter n  1993-a1
front anabatique m
atmosférická fronta s výstupným pohybem teplého vzduchu nad frontální plochou. Úhel sklonu plochy anafronty je větší než úhel sklonu stacionární fronty, tangens úhlu sklonu anafronty je řádově roven 0,01. Příkladem anafronty jsou teplé fronty a studené fronty prvního druhu. Termín anafronta zavedl švédský meteorolog T. Bergeron mezi roky 1934 a 1936. Viz též katafronta.
česky: anafronta angl: anabatic front, anafront slov: anafront něm: Anafront f, Aufgleitfront f rus: анабатический фронт, анафронт  1993-a3
front antarctique m
hlavní fronta oddělující na již. polokouli antarktický vzduch od vzduchu mírných šířek. Tvoří sev. hranici antarkt. vzduchu a probíhá v několika větvích atmosférické fronty nad mořem obklopujícím Antarktidu. Na antarkt. frontě se tvoří postupující cyklony, způsobující regeneraci cyklon na polární frontě. V procesu cyklonální činnosti může antarkt. fronta proniknout daleko do mírných šířek. Antarkt. frontu je nutné odlišit od vnitroantarktické fronty, která jako podružná fronta odděluje pevninský a mořský vzduch v rámci antarkt. vzduchové hmoty.
česky: fronta antarktická angl: antarctic front slov: antarktický front rus: антарктический фронт něm: Antarktikfront f  1993-a3
front arctique m
1. hlavní fronta tvořící již. hranici arktického vzduchu a oddělující ho od vzduchu mírných šířek. Obvykle se rozpadá na několik větví atmosférické fronty, někdy je však souvislá téměř kolem celé sev. polokoule. Na arkt. frontě dochází k cyklogenezi, svým charakterem shodné s cyklogenezí na polárních frontách, avšak slabší. Nejvýznamnější větve arkt. fronty jsou atlantsko-evropská, která vzniká nad Severním ledovým oceánem, a americká, vznikající nad sev. oblastmi Severní Ameriky.
2. fronta, která za vhodných podmínek vznikne v poměrně tenké spodní vrstvě troposféry v oblasti teplotního gradientu na rozhraní ledu a volného moře.
česky: fronta arktická angl: arctic front slov: arktický front rus: арктический фронт něm: Arktikfront f  1993-a3
front atmosphérique m
1. úzká přechodová zóna mezi různými vzduchovými hmotami v atmosféře. Pro zjednodušení představy nahrazujeme tuto zónu plochou diskontinuity (rozhraním). Atmosférická fronta se vyskytuje převážně v troposféře. Šířka přechodové zóny v horiz. směru bývá několik desítek km, tloušťka ve vert. směru několik set metrů, popř. jednotky km. Prům. sklon fronty vzhledem k zemskému povrchu je nejčastěji kolem 0,5°. Viz též klasifikace atmosférických front, plocha frontální, oblačnost frontální;
2. čára, ve které se plocha diskontinuity (rozhraní) protíná se zemským povrchem nebo určitou izobarickou hladinou. Termín atmosférická fronta byl do synoptické meteorologie zaveden norskou met. školou v r. 1920. Viz též čára frontální, větev atmosférické fronty, počasí frontální, frontogeneze, frontolýza, analýza frontální, profil fronty, topografie fronty, přechod fronty, izobary na atmosférické frontě, dynamika fronty, zostření fronty, deformace fronty orografická, vlna frontální, zóna frontální.
česky: fronta atmosférická angl: atmospheric front slov: atmosférický front rus: атмосферный фронт něm: atmosphärische Front f, Wetterfront f  1993-a3
front atmosphérique m
zast. a nevhodné označení pro atmosférickou frontu.
česky: fronta povětrnostní angl: atmospheric front, weather front slov: poveternostný front rus: атмосферный фронт něm: Wetterfront f  1993-a1
front au sol m
1. atmosférická fronta dosahující až na zemský povrch a projevující se tam ostrými změnami meteorologických prvků. Termín se používá jako protějšek fronty výškové;
2. atm. fronta nevelkého vert. rozsahu, obvykle do výšky 1 km až 3 km nad zemským povrchem. Viz též klasifikace atmosférických front.
česky: fronta přízemní angl: surface front slov: prízemný front rus: приземный фронт něm: Bodenfront f  1993-a1
front chaud m
fronta nebo její část, která se pohybuje směrem na stranu studeného vzduchu. Je anafrontou. V teplém vzduchu, který vykluzuje po frontální ploše, vzniká charakteristický oblačný systém s pásmem trvalých srážek širokým obvykle 300 až 400 km. Podle teorie přenosových pásů může za vznik oblačnosti z velké části hlavně teplý přenosový pás, nízké oblaky mohou vznikat i ve studeném přenosovém pásu. Srážky obvykle vypadávají před frontální čarou. Frontální oblačnost začíná většinou oblaky druhu cirrus a cirrostratus, které přecházejí v altostratus a nimbostratus. V oblasti srážek se pod nimi může vyskytovat stratus fractus. V případě typu „warm front shield“ se v teplém přenosovém pásu vytváří oblačnost i za frontou a mohou z ní vypadávat i trvalé srážky. Průměrný sklon teplé fronty je 1:150 až 1:250, v blízkosti zemského povrchu je v důsledku tření ještě menší. Před přechodem teplé fronty pozorujeme pokles tlaku vzduchu, čili zápornou hodnotu tlakové tendence, v zimě i předfrontální mlhy. Teplá fronta vzniká v přední části frontální cyklony. Viz též fronta studená
česky: fronta teplá angl: warm front slov: teplý front rus: теплый фронт něm: Warmfront f  1993-a3
front chaud ondulant m
česky: fronta teplá zvlněná angl: waving warm front slov: zvlnený teplý front rus: теплый волновой фронт něm: Warmfrontwelle f  1993-a1
front chaud/froid actif m
blíže neurčené označení pro atmosférické fronty, které s sebou přinášejí výrazné projevy počasí (intenzivní srážky, bouřky, silný vítr). Jejím opakem je fronta nevýrazná.
česky: fronta aktivní angl: active front slov: aktívny front rus: активный фронт něm: aktive Front f  1993-a3
front climatologique m
prům. sezonní nebo charakteristická geogr. poloha hlavních atmosférických front, popř. frontálních zón v určité oblasti, zpravidla v místech max. tlakového gradientu mezi klimatickými akčními centry atmosféry. Klimatologické fronty se znázorňují na klimatologických mapách, na rozdíl od reálných atm. front zakreslovaných do synoptických map. Klimatologické fronty se rozpadají na větve, např. polární klimatologická fronta se dělí na atlantickou polární frontu, středomořskou polární frontu aj. Viz též klasifikace klimatu Alisovova.
česky: fronta klimatologická angl: climatological front slov: klimatologický front rus: климатологический фронт něm: klimatologische Front f  1993-a3
front d'altitude m
fronta ve stř. a horní troposféře. Na výškových mapách se projevuje zpravidla v poli teploty, vlhkosti a proudění vzduchu. Do blízkosti zemského povrchu tato fronta nedosahuje. Viz též fronta přízemní.
česky: fronta výšková angl: upper front slov: výškový front rus: верхний фронт, высотный фронт něm: Höhenfront f  1993-a3
front de l'air froid m
slangové označení pro přední hranici postupující studené vzduchové hmoty, v tomto smyslu se jedná o syn. pro studenou frontu prvního a druhého druhu. V užším smyslu se termín čelo studeného vzduchu používá pro tu část studené fronty, která je v mezní vrstvě atmosféry vypuklá do teplého vzduchu. Uvedený profil fronty vzniká tím, že u zemského povrchu je rychlost postupu fronty v důsledku většího tření menší než ve vyšších vrstvách ovzduší. To se projevuje hlavně u studených front druhého druhu, kde pohyb studeného vzduchu v přízemní vrstvě má valivý charakter.
česky: čelo studeného vzduchu slov: čelo studeného vzduchu rus: клин холодного воздуха?  1993-a3
front de point de rosée m
pomyslná čára označující úzkou přechodovou zónu oddělující suchý a vlhký vzduch. Vytváří se v nižších hladinách. Bývá obvykle několik set km dlouhá a desítky km široká. Dryline se vyskytuje v různých částech světa, ale nejtypičtější je pro oblast tzv. Plání v USA, kde odděluje vlhký vzduch proudící z Mexického zálivu a suchý kontinentální vzduch proudící ze západu. Je důležitým faktorem v četnosti výskytu silných konvektivních bouří. Obvykle se během dne posouvá mírně k východu, v noci naopak ustupuje k západu. Český ekvivalent termínu není zaveden.
česky: dryline angl: dryline, dry line něm: dryline f rus: сухая линия  2015
front de rafales m
[gast] – přední okraj studeného vzduchu vytékajícího z konvektivní bouře. Zdrojem studeného vzduchu je sestupný proud, který se po dosažení zemského povrchu roztéká do stran a proniká pod okolní teplejší vzduch. Vert. mohutnost rozlévajícího se studeného vzduchu bývá řádově stovky metrů až jednotky kilometrů. U zemského povrchu je rozlévající se vzduch brzděn a v určité výšce nad zemí vytváří tzv. „nos“. Na čele studeného vzduchu se tvoří gust fronta, typická prudkou změnou rychlosti a směru větru, tlaku a teploty vzduchu. Na záznamu tlaku vzduchu se při přechodu gust fronty vytváří charakteristický bouřkový nos. Na čele gust fronty vzniká často typická oblačnost zvláštnosti arcus. V případech dostatečné mohutnosti této oblačnosti může být gust fronta detekovatelná meteorologickými radiolokátory a družicemi. Gust fronta se může od mateřské bouře šířit do vzdálenosti až stovky km a po celou dobu života může iniciovat vznik nové konvektivní oblačnosti. Krátkodobé zvýšení rychlosti větru při přechodu gust fronty přes místo pozorování bývá označováno též jako húlava.
česky: gust fronta angl: gust front slov: gust front rus: фронт порывов ветра? něm: Böenfront f  1993-a3
front des alizés m
atmosférická fronta v tropech oddělující od sebe „starý" tropický vzduch od trop. vzduchu, který vznikl transformací polárního vzduchu. Pasátová fronta obvykle leží v brázdě nízkého tlaku vzduchu mezi dvěma subtropickými anticyklonami. S pasátovou frontou bývají v pasátové oblasti spojeny srážky.
česky: fronta pasátová angl: trade-wind front slov: pasátový front rus: пассатный фронт něm: Passatfront f  1993-a1
front diffus m
atmosférická fronta, jejíž polohu nelze pomocí příznaků na přízemní synoptické mapě určit buď vůbec, nebo jen velmi obtížně, popř. o níž přízemní pozorování dávají nesprávné představy. Nejčastější příčinou maskované fronty bývá bezprostřední vliv zemského povrchu na teplotu přízemních vrstev vzduchu (výskyt přízemních radiačních inverzí teploty, silné ohřívání vzduchu nad pevninou v létě, popř. vliv fénu). Pro správné určení maskované fronty musíme mít k dispozici výškové synoptické mapy a vyhodnocené křivky teplotního zvrstvení atmosféry.
česky: fronta maskovaná angl: masked front slov: maskovaný front rus: маскированный фронт něm: maskierte Front f  1993-a3
front diffus m
atmosférická fronta, jejíž hlavní projevy slábnou či mizí a při jejímž přechodu se meteorologické prvky mění jen málo. Např. srážky slábnou nebo ustávají, oblačnost se rozpadá, vítr slábne a jeho stáčení se stává nevýrazným. Viz též frontolýza.
česky: fronta rozpadající se angl: dissipating front slov: rozpadajúci sa front rus: размытый фронт něm: auflösende Front f  1993-a3
front froid m
slangové označení pro přední hranici postupující studené vzduchové hmoty, v tomto smyslu se jedná o syn. pro studenou frontu prvního a druhého druhu. V užším smyslu se termín čelo studeného vzduchu používá pro tu část studené fronty, která je v mezní vrstvě atmosféry vypuklá do teplého vzduchu. Uvedený profil fronty vzniká tím, že u zemského povrchu je rychlost postupu fronty v důsledku většího tření menší než ve vyšších vrstvách ovzduší. To se projevuje hlavně u studených front druhého druhu, kde pohyb studeného vzduchu v přízemní vrstvě má valivý charakter.
česky: čelo studeného vzduchu slov: čelo studeného vzduchu rus: клин холодного воздуха?  1993-a3
front froid m
fronta nebo její část, která se pohybuje směrem na stranu teplého vzduchu. Vzniká obvykle na hlavní frontětýlu cyklony. Na studené frontě se oblačnost vytváří především ve výstupné části teplého přenosového pásu. Typická oblačnost v blízkosti frontální čáry je charakteristická výskytem oblaků druhu cumulonimbus, v letním období je obvykle doprovázená bouřkami, húlavami, dešti v přeháňkách, popř. kroupami. Intenzita těchto jevů souvisí se sklonem fronty a mírou stability teplého vzduchu vytlačovaného klínem studeného vzduchu. Na oblast oblaků druhu cumulonimbus někdy navazuje oblačnost druhu nimbostratus, altostratus a cirrostratus, někdy však za touto oblastí následuje rychlé vyjasňování. Podle rozložení výstupných pohybů podél celé frontální plochy rozeznáváme studenou frontu charakteru anafronty a studenou frontu charakteru katafronty, přičemž jedna studená fronta může být v určité části anafrontou a v jiné katafrontou. Někteří autoři hovoří o dělení na studenou frontu prvního druhu a studenou frontu druhého druhu. U studené fronty pozorujeme obvykle pokles tlaku vzduchu před frontou a rychlý vzestup za ní. Viz též fronta teplá.
česky: fronta studená angl: cold front slov: studený front rus: холодный фронт něm: Kaltfront f  1993-a3
front froid ondulant m
česky: fronta studená zvlněná angl: waving cold front slov: zvlnený studený front rus: холодный волновой фронт něm: Kaltfrontwelle f  1993-a1
front froid principal m
studená fronta s výstupnými pohyby teplého vzduchu podél frontální plochy v celém jejím výškovém rozsahu. Je anafrontou a její oblačný systém je tvořen zpravidla oblaky druhu cumulonimbus přecházejícími v druhy nimbostratus, altostratus a cirrostratus. Srážkové pásmo bývá široké 300 až 400 km a vyskytuje se za frontální čárou. Srážky na čele fronty mají charakter přeháněk, dále za frontou přecházejí v trvalé srážky. Tato fronta se pohybuje zpravidla pomaleji než studená fronta druhého druhu.
česky: fronta studená prvního druhu angl: cold front 1st type, slowly moving cold front, split cold front slov: studený front prvého druhu rus: холодный фронт первого рода něm: Kaltfront 1. Art f  1993-a1
front froid secondaire m
studená fronta s výstupnými pohyby teplého vzduchu pouze ve spodní části frontální plochy (do výšky 2 km až 3 km) a sestupnými pohyby ve vyšších vrstvách. Ve spodní části je anafrontou, v horní katafrontou. Její oblačný systém je zpravidla tvořen kumulonimby vázanými na čelo fronty, za čelem fronty se rychle vyjasňuje. Šířka oblačného pásma bývá jen několik desítek km, srážky jsou však intenzívní a mají přeháňkový charakter. Tato fronta se pohybuje obvykle rychleji než studená fronta prvního druhu.
česky: fronta studená druhého druhu angl: cold front, 2nd type, fast moving cold front slov: studený front druhého druhu rus: холодный фронт второго рода něm: Kaltfront 2. Art f  1993-a1
front intertropical m
syn. fronta tropická – nevhodné označení pro intertropickou zónu konvergence, a to především tam, kde ekvatoriální vzduch proniká daleko od geogr. rovníku v souvislosti s monzunovou cirkulací.
česky: fronta intertropická angl: intertropical front slov: intertropický front rus: внутритропический фронт něm: innertropische Konvergenz f  1993-a3
front intertropical m
česky: fronta tropická angl: tropical front slov: tropický front rus: тропический фронт něm: Tropikfront f  1993-a3
front m
česky: fronta angl: front slov: front rus: фронт něm: Front f  1993-a1
front masqué m
atmosférická fronta, jejíž polohu nelze pomocí příznaků na přízemní synoptické mapě určit buď vůbec, nebo jen velmi obtížně, popř. o níž přízemní pozorování dávají nesprávné představy. Nejčastější příčinou maskované fronty bývá bezprostřední vliv zemského povrchu na teplotu přízemních vrstev vzduchu (výskyt přízemních radiačních inverzí teploty, silné ohřívání vzduchu nad pevninou v létě, popř. vliv fénu). Pro správné určení maskované fronty musíme mít k dispozici výškové synoptické mapy a vyhodnocené křivky teplotního zvrstvení atmosféry.
česky: fronta maskovaná angl: masked front slov: maskovaný front rus: маскированный фронт něm: maskierte Front f  1993-a3
front méditerranéen m
větev polární fronty, která vzniká především na podzim a v zimě v oblasti Středozemního moře. Odděluje vzduch mírných šířek z Atlantiku a Evropy od tropického vzduchu ze sev. Afriky. Cyklonální činnost na středomořské frontě je rozhodující pro srážkový režim Středomoří, kde je příčinou podzimního nebo zimního maxima v ročním chodu srážek. Se středomořskou frontou souvisí také podružné srážkové maximum v některých oblastech ČR.
česky: fronta středomořská angl: Mediterranean front slov: stredomorský front rus: средиземноморский фронт něm: Mittelmeerfront f  1993-a2
front météorologique m
1. úzká přechodová zóna mezi různými vzduchovými hmotami v atmosféře. Pro zjednodušení představy nahrazujeme tuto zónu plochou diskontinuity (rozhraním). Atmosférická fronta se vyskytuje převážně v troposféře. Šířka přechodové zóny v horiz. směru bývá několik desítek km, tloušťka ve vert. směru několik set metrů, popř. jednotky km. Prům. sklon fronty vzhledem k zemskému povrchu je nejčastěji kolem 0,5°. Viz též klasifikace atmosférických front, plocha frontální, oblačnost frontální;
2. čára, ve které se plocha diskontinuity (rozhraní) protíná se zemským povrchem nebo určitou izobarickou hladinou. Termín atmosférická fronta byl do synoptické meteorologie zaveden norskou met. školou v r. 1920. Viz též čára frontální, větev atmosférické fronty, počasí frontální, frontogeneze, frontolýza, analýza frontální, profil fronty, topografie fronty, přechod fronty, izobary na atmosférické frontě, dynamika fronty, zostření fronty, deformace fronty orografická, vlna frontální, zóna frontální.
česky: fronta atmosférická angl: atmospheric front slov: atmosférický front rus: атмосферный фронт něm: atmosphärische Front f, Wetterfront f  1993-a3
front météorologique m
zast. a nevhodné označení pro atmosférickou frontu.
česky: fronta povětrnostní angl: atmospheric front, weather front slov: poveternostný front rus: атмосферный фронт něm: Wetterfront f  1993-a1
front occlus m
atmosférická fronta, která vznikla spojením studené a teplé fronty při okludování cyklony. Okluzní fronty řadíme ke frontám podružným. Rozlišujeme teplou okluzní frontu (s dopředu skloněnou frontální plochou), když studený vzduch za původní studenou frontou byl teplejší než vzduch před původní teplou frontou a studenou okluzní frontu (s dozadu skloněnou frontální plochou), když studený vzduch za původní studenou frontou byl chladnější než vzduch před původní teplou frontou. V prvním případě mluvíme též o okluzní frontě charakteru teplé fronty, ve druhém o okluzní frontě charakteru studené fronty. Ve stř. Evropě jsou v zimě častější teplé okluzní fronty, v létě studené okluzní fronty. U obou typů okluzní fronty můžeme někdy určit přízemní frontu (u teplé okluzní fronty je to teplá fronta, u studené okluzní fronty studená fronta) a horní výškovou frontu (u teplé okluzní fronty studenou, u studené okluzní fronty teplou). Protože horiz. vzdálenost přízemní a výškové fronty v systému okluzní fronty je rel. malá, nepodaří se ve většině případů bez speciálních měření obě fronty od sebe na synoptické mapě odlišit a za čáru okluzní fronty považujeme průsečnici příslušné přízemní fronty se zemským povrchem. V každém případě je typickým znakem okluzní fronty hřeben teplého vzduchu na výškové mapě nejčastěji 850 nebo 700 hPa nebo na mapě relativní topografie 1 000 až 500 hPa. Jak vyplynulo z družicových sledování, vznik okluzní fronty spojením teplé a studené fronty podle představ Norské meteorologické školy, tedy zužování teplého sektoru a jeho vzdalování od centra cyklony, je pozorovatelný jen výjimečně. Spíše dochází k protahování oblačnosti okluzní fronty západním směrem při současném zkracování fronty teplé. V některých případech vzniká oblačnost okluzní fronty, aniž by došlo k vlastnímu procesu spojování obou front, ale vytváří se oblačná spirála, zpravidla menšího vertikální rozsahu, z okluzního bodu. Oblačný systém a srážky okluzní fronty jsou podle Norské met. školy dány spojením oblačného systému a srážek původní teplé a studené fronty. Teorie přenosových pásů počítá s vlivem suchého, teplého a studeného přenosového pásu i vlhkého relativního proudu ve vyšších hladinách na anticyklonální straně tryskového proudění. Podle konkrétního průběhu přenosových pásů pak můžeme rozlišit okluzní fronty typu studeného přenosového pásu a okluzní fronty typu teplého přenosového pásu. S tím pak souvisí i relativní komplikovanost projevů počasí na okluzní frontě. Viz též okluze, bod okluzní.
česky: fronta okluzní angl: occluded front slov: oklúzny front rus: фронт окклюзии něm: okkludierte Front f  1993-a3
front ondulant m
pomalu se pohybující frontální rozhraní, obvykle ležící v úzké brázdě nízkého tlaku vzduchu nebo v oblasti, kde izobary protínají frontu pod malým úhlem. Na tomto rozhraní se vlivem dynamických, řidčeji orografických příčin tvoří vlny. Nejčastěji se přitom určitý úsek studené fronty mění vlivem změněných cirkulačních podmínek na teplou frontu. V tomto případě mluvíme o zvlněné studené frontě. Vzácně můžeme pozorovat vlny na teplé frontě, přičemž určitý úsek teplé fronty přijímá charakter studené fronty, a potom mluvíme o zvlněné teplé frontě. Trvají-li podmínky cyklogeneze dostatečně dlouho, tvoří se na vrcholu frontální vlny nová cyklona. Viz též brázda tvaru V.
česky: fronta zvlněná angl: waving front slov: zvlnený front rus: волновой фронт  1993-a1
front polaire m
hlavní fronta oddělující vzduch mírných šířek, dříve nazývaný polární vzduch, od tropického vzduchu. Nad sev. polokoulí probíhá v několika větvích atmosférické fronty, z nichž pro Evropu mají největší význam tyto: větev probíhající v zimě od Mexického zálivu nad sev. částí Atlantského oceánu k záp. pobřeží Francie a v létě se nacházející o 1 000 až 1 500 km severněji; středomořská fronta; větev táhnoucí se od Černého moře nad horní Povolží. Viz též teorie polární fronty.
česky: fronta polární angl: polar front slov: polárny front rus: полярный фронт něm: Polarfront f  1993-a3
front principal m
atmosférická fronta oddělující hlavní typy vzduchových hmot, vymezených geografickou klasifikací vzduchových hmot. Hlavními frontami jsou arktická fronta, antarktická fronta, polární fronta, příp. intertropická fronta. Hlavní fronta zpravidla neobepíná celou polokouli, ale rozpadá se do větví atmosférické fronty. Viz též fronta podružná.
česky: fronta hlavní angl: primary front, principal front slov: hlavný front rus: главный фронт něm: Hauptfront f  1993-a3
front principal m
česky: fronta základní angl: primary front, principal front slov: základný front rus: главный фронт něm: Hauptfront f  1993-a1
front quasi stationnaire m
atmosférická fronta s nepatrným pohybem vzhledem k zemskému povrchu. Vzduchové hmoty se podél ní pohybují v opačném směru a přibližně rovnoběžně s frontální čárou. Viz též fronta stacionární.
česky: fronta kvazistacionární angl: quasi-stationary front slov: kvázistacionárny front rus: квазистационарный фронт něm: quasistationäre Front f  1993-a1
front secondaire m
atmosférická fronta oddělující různé části téže vzduchové hmoty. Obvykle se vyskytují podružné studené fronty, což jsou fronty uvnitř horizontálně nestejnorodého arktického vzduchu nebo vzduchu mírných šířek, za nimiž postupuje chladnější část této vzduchové hmoty. Často se vyskytují v týlu cyklony za hlavní frontou a mají oproti ní menší vert. rozsah. Zasahují pouze spodní, nanejvýš stř. troposféru.
česky: fronta podružná angl: secondary front slov: podružný front rus: вторичный фронт něm: Nebenfront f, sekundäre Front f  1993-a3
front stationnaire m
teor. model atmosférické fronty, která nemění svou polohu v prostoru. Vzduchové hmoty se pohybují přesně horizontálně bez výkluzných prvků po obou stranách frontálního rozhraní, rovnoběžně s ním, mají však vzájemně opačný směr pohybu. Reálné fronty nejsou stacionární, mohou být nanejvýš frontami kvazistacionárními.
česky: fronta stacionární angl: stationary front slov: stacionárny front rus: стационарный фронт něm: stationäre Front f  1993-a1
front troposphérique m
česky: fronta troposférická angl: tropospheric front slov: troposférický front rus: тропосферный фронт něm: troposphärische Front f  1993-a1
frontogénèse f
proces vzniku nebo zostření atmosférické fronty. Typickým projevem frontogeneze je zvětšování horiz. gradientu vlastností vzduchu, typicky hustoty vzduchu, což se následně projeví zvětšováním horiz. gradientu teploty vzduchu, popř. i dalších meteorologických prvků. Frontogeneze může probíhat v určité vert. omezené vrstvě v blízkosti zemského povrchu nebo ve výšce, popř. současně od mezní vrstvy atmosféry až po výškovou frontální zónu. Rozlišujeme frontogenezi individuální a lokální, z hlediska příčin frontogenezi kinematickou a orografickou (topografickou). Opakem frontogeneze je frontolýza. Viz též pole frontogenetické.
česky: frontogeneze angl: frontogenesis slov: frontogenéza rus: фронтогенез něm: Frontogenese f  1993-a3
frontogenèse f
proces vzniku nebo zostření atmosférické fronty. Typickým projevem frontogeneze je zvětšování horiz. gradientu vlastností vzduchu, typicky hustoty vzduchu, což se následně projeví zvětšováním horiz. gradientu teploty vzduchu, popř. i dalších meteorologických prvků. Frontogeneze může probíhat v určité vert. omezené vrstvě v blízkosti zemského povrchu nebo ve výšce, popř. současně od mezní vrstvy atmosféry až po výškovou frontální zónu. Rozlišujeme frontogenezi individuální a lokální, z hlediska příčin frontogenezi kinematickou a orografickou (topografickou). Opakem frontogeneze je frontolýza. Viz též pole frontogenetické.
česky: frontogeneze angl: frontogenesis slov: frontogenéza rus: фронтогенез něm: Frontogenese f  1993-a3
frontolyse f
syn. rozpad fronty – proces rozpadání atmosférické fronty, opak frontogeneze. Obecně vhodné podmínky pro frontolýzu existují v difluentním proudění. Rozlišujeme frontolýzu individuální, lokální, popř. orografickou (topografickou). Frontolýza individuální se projevuje zmenšováním horiz. gradientů hustoty a tedy i teploty vzduchu, popř. i dalších meteorologických prvků v určité části ovzduší pohybující se spolu s prouděním. Lokální frontolýzu posuzujeme z hlediska zmenšování lokálních gradientů hustoty a tedy i teploty v dané oblasti pevně vztažené k zemskému povrchu. Jde-li o frontolýzu vyvolanou bezprostředním vlivem nehomogenit zemského povrchu, označujeme ji jako frontolýzu orografickou.
česky: frontolýza angl: frontolysis slov: frontolýza rus: фронтолиз něm: Frontolyse f  1993-a1
podpořila:
spolupracují: