Sestavila a průběžné aktualizuje terminologická skupina České meteorologické společnosti (ČMeS)

Výklad hesel podle písmene e

X
eau précipitable f
česky: ekvivalent vodní páry kapalný; slov: kvapalný ekvivalent vodnej pary; něm: ausfällbares Wasser n  2014
effet au vent du relief m
souborné označení pro změny hodnot meteorologických prvků na návětří orografických překážek, tedy i v jejich předpolí. Návětrný efekt způsobuje mj. zvětšování oblačnosti a snižování výšky základny oblaků. Podílí se na orografickém zesílení srážek a tím i následně na vzniku závětrného efektu. Návětrný efekt působí i na strmých mořských pobřežích, v Evropě např. ve Skotsku a v Norsku. Viz též srážky orografické, efekt nálevkový.
česky: efekt návětrný; angl: upwind effect; slov: náveterný efekt; něm: Luveffekt m, Luvwirkung f; rus: наветренный еффект  1993-a3
effet de foehn m
adiabatické oteplování spojené s poklesem relativní vlhkosti v klesajícím vzduchu při výskytu fénu. Bývá pozorováno na závětrné straně hor a v přiléhajících nížinných oblastech, pokud je převládající proudění vzduchu orientováno přibližně kolmo na horský hřeben. Polohy se stejnou nadm. výškou pak mají na závětrné straně vyšší teplotu vzduchu než na straně návětrné. Fénový efekt se v závětrných polohách projevuje i zmenšením atm. srážek. Jeho vliv může v našich podmínkách dosahovat až desítky km od pohoří a bezprostředně souvisí se srážkovým stínem. Toto snížení srážkových úhrnů bývá dobře identifikovatelné např. na klimatologických mapách. Viz též fén, mezera fénová, efekt závětrný.
česky: efekt fénový; angl: foehn effect; slov: föhnový efekt; něm: Föhneffekt m; rus: фёновый эффект  1993-a3
effet de föhn m
adiabatické oteplování spojené s poklesem relativní vlhkosti v klesajícím vzduchu při výskytu fénu. Bývá pozorováno na závětrné straně hor a v přiléhajících nížinných oblastech, pokud je převládající proudění vzduchu orientováno přibližně kolmo na horský hřeben. Polohy se stejnou nadm. výškou pak mají na závětrné straně vyšší teplotu vzduchu než na straně návětrné. Fénový efekt se v závětrných polohách projevuje i zmenšením atm. srážek. Jeho vliv může v našich podmínkách dosahovat až desítky km od pohoří a bezprostředně souvisí se srážkovým stínem. Toto snížení srážkových úhrnů bývá dobře identifikovatelné např. na klimatologických mapách. Viz též fén, mezera fénová, efekt závětrný.
česky: efekt fénový; angl: foehn effect; slov: föhnový efekt; něm: Föhneffekt m; rus: фёновый эффект  1993-a3
effet de serre m
oteplení nižších vrstev atmosféry v důsledku selektivní absorpce záření, konkrétně schopnosti atmosféry propouštět většinu slunečního krátkovlnného záření k zemskému povrchu a pohlcovat dlouhovlnné záření zemského povrchu. Dlouhovlnné záření v atmosféře pohlcují tzv. skleníkové plyny, především vodní pára (asi z 60 %), oxid uhličitý (přibližně 26 %), dále metan, oxid dusný a další plyny (ozon, freony…). Tím se atmosféra ohřívá a předává zpětným zářením energii k zemskému povrchu, což vede ke zmenšování efektivního vyzařování zemského povrchu, a tedy snížení jeho radiačního ochlazování. Analogické poměry jsou ve sklenících a pařeništích, kde tomu ale není primárně v důsledku selektivní propustnosti skla pro krátkovlnné a dlouhovlnné záření, ale spíše z důvodu izolovaného prostoru, který brání mechanické ventilaci tepla. Viz též klima skleníkové, mitigace.
česky: efekt skleníkový; angl: greenhouse effect; slov: skleníkový efekt; něm: Treibhauseffekt m, Glashauseffekt m; rus: парниковый эффект  1993-a3
effet Lenard m
proces separace elektrického náboje nastávající při spontánním tříštění vodních kapek, které dorostou během svého pádu v atmosféře do kritické velikosti a stanou se hydrodynamicky nestabilní. Kapka se přitom rozpadá na několik větších zbytků a určitý počet maličkých kapiček. Lenardův efekt pak spočívá v tom, že větší zbytky rozpadlých kapek nesou kladný náboj, maličké kapičky náboj záporný, který kromě toho difunduje do okolí ve formě záporných iontů. Obdobný el. jev nazývaný rovněž Lenardův efekt vzniká i při tříštění vodních kapek dopadajících jako atm. srážky na zemský povrch, ve vodopádech, apod. Lenardův efekt poprvé popsal bratislavský rodák, něm. fyzik P. Lenard (1862–1947) v r. 1904.
česky: efekt Lenardův; angl: Lenard effect, waterfall effect; slov: Lenardov efekt; něm: Lenard-Effekt m, Wasserfalleffekt m; rus: эффект Ленарда  1993-a3
effet orographique m
souborné označení pro změny hodnot meteorologických prvků na návětří orografických překážek, tedy i v jejich předpolí. Návětrný efekt způsobuje mj. zvětšování oblačnosti a snižování výšky základny oblaků. Podílí se na orografickém zesílení srážek a tím i následně na vzniku závětrného efektu. Návětrný efekt působí i na strmých mořských pobřežích, v Evropě např. ve Skotsku a v Norsku. Viz též srážky orografické, efekt nálevkový.
česky: efekt návětrný; angl: upwind effect; slov: náveterný efekt; něm: Luveffekt m, Luvwirkung f; rus: наветренный еффект  1993-a3
effet orographique m
souborné označení pro změny hodnot meteorologických prvků, které lze pozorovat v závětří různých překážek. V případě horských pásem dochází kvůli předchozímu působení návětrného efektu a změnám atmosférické cirkulace vlivem orografické překážky ke vzniku srážkového stínu. K závětrným efektům dále patří zmenšování oblačnosti, nárůst dohlednosti, oteplování a zmenšení vlhkosti vzduchu působením fénového efektu, výskyt padavého větru, vlnového proudění, závětrných vírů, rotorových oblaků apod. Za výraznějšími pohořími může docházet k orografické cyklogenezi, orografické okluzi a k přechodnému zeslabování atmosférických front. K závětrným efektům však patří i srážkový stín a deformace pole proudění za menšími přírodními nebo umělými překážkami, které prostřednictvím větrného stínu zmenšují i výpar. Při existenci převládajícího větru se závětrný efekt uplatňuje i v klimatických poměrech určité oblastí nebo místa.
česky: efekt závětrný; angl: lee effect; slov: záveterný efekt; něm: Lee-Effekt m, Leewirkung m; rus: подветренный эффект  1993-a3
effet sous le vent du relief m
souborné označení pro změny hodnot meteorologických prvků, které lze pozorovat v závětří různých překážek. V případě horských pásem dochází kvůli předchozímu působení návětrného efektu a změnám atmosférické cirkulace vlivem orografické překážky ke vzniku srážkového stínu. K závětrným efektům dále patří zmenšování oblačnosti, nárůst dohlednosti, oteplování a zmenšení vlhkosti vzduchu působením fénového efektu, výskyt padavého větru, vlnového proudění, závětrných vírů, rotorových oblaků apod. Za výraznějšími pohořími může docházet k orografické cyklogenezi, orografické okluzi a k přechodnému zeslabování atmosférických front. K závětrným efektům však patří i srážkový stín a deformace pole proudění za menšími přírodními nebo umělými překážkami, které prostřednictvím větrného stínu zmenšují i výpar. Při existenci převládajícího větru se závětrný efekt uplatňuje i v klimatických poměrech určité oblastí nebo místa.
česky: efekt závětrný; angl: lee effect; slov: záveterný efekt; něm: Lee-Effekt m, Leewirkung m; rus: подветренный эффект  1993-a3
effet Venturi m
v meteorologii lokální pokles tlaku vzduchu, lokální zesílení větru a vznik nárazů větru v určitých místech, kde dochází vlivem orografie ke zhuštění proudnic. Příkladem Venturiho efektu je efekt tryskový, efekt nálevkový a lokální jevy při přetékání vzduchu přes horské překážky. Nejnebezpečnější projevy Venturiho efektu se vyskytují na závětrné straně překážek, kde často vznikají rozsáhlé škody na lesních porostech, venkovních el. vedeních apod.
česky: efekt Venturiho; angl: Venturi effect; slov: Venturiho efekt; něm: Venturi-Effekt m; rus: еффект Вентури  1993-a1
efficacité pluviale f
česky: efektivnost srážková; slov: zrážková efektívnosť; něm: Niederschlagseffizienz f; rus: эффективность осадков  1993-a3
efficacité thermique f
česky: efektivnost tepelná; angl: thermal efficiency; slov: tepelná efektívnosť; něm: thermische Effizienz f ; rus: тепловая эффективность  1993-a1
EIC m
(Convective Inhibition – inhibice /zabraňování, brzdění/ konvekce) – energie, kterou je nutné vynaložit při adiabatickém výstupu vzduchové částice z přízemní hladiny z0 do hladiny volné konvekce. Na termodynamickém diagramu je to oblast mezi stavovou křivkou a křivkou zvrstvení, kde je vystupující částice chladnější než okolí. Jako kladnou veličinu ji definujeme vztahem:
CIN [ J .kg-1 ]=-z0 HVKBdz= -z0 HVKgT-TTdz ,
kde B je vztlak, T‘ značí teplotu adiabaticky vystupující částice a T teplotu okolního vzduchu, HVK značí výšku hladiny volné konvekce. Vzhledem k tomu, že vztlaková síla je definovaná pomocí rozdílu hustoty vystupující částice a okolního vzduchu, uvádí se v literatuře někdy definice CIN pomocí virtuální teploty. V tom případě se pak ve vzorci pro výpočet hodnoty CIN nahradí teplota T virtuální teplotou Tv. Viz též CAPE.
česky: CIN; angl: convective inhibition; slov: CIN; něm: CIN; rus: энергия конвективно устойчивого слоя (CIN)  2014
El Niño m
[el niňo] – teplá fáze ENSO, provázená zápornou fází jižní oscilace, tedy zeslabením Walkerovy cirkulace. V obecně chladnější vých. části Tichého oceánu dochází podél rovníku k nárůstu teploty povrchu moře oproti dlouhodobému průměru až o více než 3 °C. To zde způsobuje nadnormální srážky, které zasahují i na záp. pobřeží Jižní Ameriky, kde vyvolávají mnohdy katastrofální záplavy. Naopak v Austrálii, západním Tichomoří i Indii často nastává sucho. Pokles tlaku vzduchu ve vých. Tichomoří způsobuje zeslabení pasátů, takže slábnou povrchové oceánské proudy i upwelling hlubinné vody bohaté na živiny při záp. pobřeží Jižní Ameriky. To zde vede k hynutí ryb a potažmo působí značné hospodářské škody. Stejně jako opačný jev La Niña se El Niño zpravidla projevuje nejsilněji od prosince do dubna, což vedlo k jeho pojmenování (chlapeček, jezulátko).
česky: El Niño; angl: El Niño; slov: El Niño; něm: El Niño; rus: Эль-Ниньо  1993-a3
emplacement des instruments météorologiques m
umístění meteorologických přístrojů. Volí se tak, aby měřené údaje reprezentovaly skutečný stav atmosféry v okolí místa instalace čidel met. přístrojů. Viz též budka meteorologická, měření meteorologické, stanice meteorologická reprezentativní.
česky: expozice meteorologických přístrojů; angl: exposure of meteorological instruments; slov: expozícia meteorologických prístrojov; něm: Exposition der meteorologischen Geräte f; rus: размещение метеорологических приборов  1993-a1
empreinte de flux f
oblast ležící v návětrném směru od přístroje, měřícího vertikální turbulentní tok (tepla, plynu, nebo hybnosti) v atmosféře, v níž je měřený turbulentní tok generován. Velikost a tvar této oblasti (footprintu), kterou přístroj „vidí“, závisí na výšce, v níž je vertikální tok měřen, drsnosti povrchu a vertikální teplotní stabilitě atmosféry. Například nárůst výšky měření, snížení drsnosti povrchu a stabilizace teplotního zvrstvení budou mít za následek zvětšení plochy footprintu a zvětšení vzdálenosti, z níž přichází maximální příspěvek k měřenému toku, od přístroje směrem proti větru. Snížení výšky měření, nárůst drsnosti a labilizace zvrstvení naopak způsobí zmenšení plochy footprintu a posun oblasti maximálního příspěvku blíže k přístroji.
česky: footprint toku v atmosféře; angl: atmospheric flux footprint, flux footprint, footprint; slov: footprint toku v atmosfére  2014
ENSO m
zkratka termínů El Niño a jižní oscilace (Southern Oscillation). Používá se jako souborné označení oscilace mající původ v tropickém Tichomoří. Interakce atmosféry a oceánu zde způsobuje provázání jižní oscilace se střídáním teplé a studené fáze ENSO (El Niño a La Niña). Cyklus ENSO je nepravidelný, s délkou dva až sedm let, přičemž jednotlivé fáze v délce cca 9 až 12 měsíců jsou proloženy podmínkami blízkými klimatologickému normálu. Během cyklu se v různých částech tropického Tichého oceánu mění teplota povrchu moře, teplota vody v hloubce i výška mořské hladiny. Dochází ke vzniku klimatických anomálií, především srážek a teploty vzduchu, i ke změnám intenzity a polohy subtropického tryskového proudění. Anomálie se projevují nejen v samotném Tichomoří, nýbrž prostřednictvím dálkových vazeb i jinde na Zemi. Pro takové oblasti je predikce vývoje ENSO důležitým nástrojem dlouhodobé předpovědi počasí, neboť umožňuje např. odhalit hrozbu nahodilého sucha nebo posoudit budoucí sezonu z hlediska nebezpečí tropických cyklon.
česky: ENSO; angl: ENSO; slov: ENSO; něm: ENSO  2014
enthalpie f
termodyn. veličina, která vyjadřuje celkový tepelný obsah jednotky hmotnosti dané látky. Patří mezi termodynamické potenciály. Označíme-li entalpii H, pak její změna dH odpovídá teplu získanému nebo odevzdanému při izobarickém procesu a je dána vztahem dH = cp dT, kde cp značí měrné teplo při stálém tlaku a dT změnu teploty v K. V met. literatuře se termín entalpie též užívá jako synonymum termínu zjevné teplo v protikladu k teplu latentnímu. Viz též děj izentalpický.
Termín pochází z hol. slova enthalpie, které zavedl nizozemský fyzik H. Kamerlingh Onnes před r. 1909. Vytvořil ho odvozením od řec. ἐνθάλπειν [enthalpein] „ohřívat, zahřívat“.
česky: entalpie; angl: enthalpy; slov: entalpia; něm: Enthalpie f; rus: энтальпия  1993-a3
enthalpie libre f
česky: energie volná Gibbsova; slov: Gibbsova voľná energia; něm: Gibbssche freie Energie f, freie Enthalpie f  2017
entropie f
termodyn. veličina definovaná až na aditivní konstantu. Je mírou termické neuspořádanosti daného systému. Pro jednotku hmotnosti ideálního plynu je vyjádřena vztahem
s=cplnT-Rlnp+konst.,
v němž cP značí měrné teplo při stálém tlaku, T teplotu v K, R měrnou plynovou konstantu a p tlak vzduchu. Z met. hlediska je významnou vlastností entropie její konzervativnost, tj. zachovávání konstantní hodnoty entropie při adiabatických dějích v nenasyceném vzduchu. Viz též děj izentropický, izentropa.
Termín je přejat z něm. slova Entropie, které zavedl něm. fyzik R. E. Clausius v r. 1850. Vytvořil ho analogicky ke slovu energie z řec. ἐν [en] „v“ a τρόπη [tropé] „změna, obrat“, které je příbuzné s řec. τρόπος [tropos] „obrat, způsob“, srov. např. troposféra, barotropie). Termín tedy doslova označuje „obsah změn“.
česky: entropie; angl: entropy; slov: entropia; něm: Entropie f; rus: энтропия  1993-a3
EPCD m
(Convective Available Potential Energy – konvektivní dostupná potenciální energie) – energie, kterou má adiabaticky izolovaná vzduchová částice v případě dosažení hladiny volné konvekce k dispozici při výstupu do hladiny nulového vztlaku. CAPE se udává v m2.s–2 = J.kg–1 a je definovaná vztahem:
CAPE [ J .kg-1]= HVKHNVBdz= HVKHNV gT-TTdz
kde B je vztlak, g tíhové zrychlení, T‘ značí teplotu adiabaticky vystupující částice a T teplotu okolního vzduchu, HVK značí výšku hladiny volné konvekce a HNV výšku hladiny nulového vztlaku. Na termodynamickém diagramu je proto reprezentována velikostí plochy mezi křivkou teplotního zvrstvení a stavovou křivkou částice, ve vrstvě nad hladinou volné konvekce, kde na částici působí kladný vztlak.
Hodnota CAPE, stanovená pro danou křivku teplotního zvrstvení, závisí na hodnotách tlaku, teploty a vlhkosti vzduchu v počátečním bodě jejího výstupu. V met. literatuře se proto setkáváme s několika variantami výpočtu CAPE, které se liší především stanovením počátečních podmínek pro výstup vzduchové částice. V nejčastějším případě, kdy se uvažují přízemní hodnoty tlaku, teploty a teploty rosného bodu, se CAPE označuje jako SBCAPE (z angl. Surface-Based CAPE).
Modifikovaný výpočet vychází z předpokladu, že v mezní vrstvě daného vertikálního rozsahu (zpravidla 50 hPa, popř. 100 hPa) dochází k intenzivnímu vertikálnímu promíchávání vzduchu. Hodnota potenciální teploty vystupující částice se stanoví jako průměrná potenciální teplota v uvažované směšovací vrstvě. Tato varianta CAPE se označuje jako MLCAPE (z angl. Mixed-Layer CAPE). Další používaná varianta CAPE se značí zkratkou MUCAPE (z angl. Most Unstable CAPE); představuje maximální hodnotu CAPE při uvažování výstupů vzduchové částice z kterékoli hladiny ve spodní vrstvě o tlousťce např. 100 hPa. Abychom zahrnuli do výpočtu CAPE i vliv vertikálního rozsahu vrstvy s kladným vztlakem, používá se normalizovaná hodnota NCAPE v m.s–2. Je definovaná jako CAPE dělená hodnotou vertikálního rozsahu vrstvy mezi HVK a HNV.
Vzhledem k tomu, že vztlaková síla je definovaná pomocí rozdílu hustoty vystupující částice a okolního vzduchu, používá se někdy k výpočtu CAPE jeho virtuální teplota, přičmež výslekdy se mohou značně lišit.
Veličina CAPE je patří mezi charakteristiky konv. prostředí; její zvýšené hodnoty signalizují pravděpodobnost vývoje silné konvekce. Je proto hojně využívaná jako prekurzor konvektivních bouřípředpovědi počasí. Viz též CIN.
česky: CAPE; slov: CAPE; něm: CAPE; rus: конвективно доступная потенциальная енергия  2014
EPCD m
viz CAPE.
česky: energie potenciální dostupná konvektivní; angl: convective available potential energy; slov: dostupná konvektívna potenciálna energia; něm: verfügbare potentielle Energie für Konvektion (CAPE) f; rus: конвективно доступная потенциальная енергия  2017
espèce de nuage f
kategorie mezinárodní morfologické klasifikace oblaků, která blíže určuje vzhled, velikost, strukturu a vývoj oblaku. Oblak určitého druhu může být označen jménem jen jednoho tvaru, určitý tvar se však může vyskytnout u několika druhů oblaků. Podle mezinárodně přijaté klasifikace oblaků rozeznáváme tyto tvary oblaků: calvus, capillatus, castellanus, congestus, fibratus, floccus, fractus, humilis, lenticularis, mediocris, nebulosus, spissatus, stratiformis, uncinus a volutus.
česky: tvar oblaku; angl: cloud species; slov: tvar oblaku; něm: Wolkenart f; rus: вид облака  1993-b2
estégramme m
křivka získaná na základě aerologických měření, která vyjadřuje adiabatickou vlhkou teplotu jako funkci tlaku vzduchu.
Termín zavedl skotský meteorolog C. W. B. Normand v r. 1931. Pochází ze zkratky angl. termínu saturation temperature „teplota nasycení“ a řec. γράμμα [gramma] „písmeno, zápis“. Termínem saturation temperature se totiž dříve označovala vlhká teplota.
česky: estegram; angl: estegram; slov: estegram; rus: эстеграмма  1993-a3
EUCOS m
evropský kombinovaný systém pozorování. Zahrnuje pozorování z vybraných synoptických a aerologických stanic, měření z letadel (E-AMDAR), pozorování z lodí a bójí (E-SURMAR), aerologická měření z lodí (E-ASAP) a radarová měření profilu větru (E-WINPROF). Důležitou součástí systému je monitoring kvality dat. EUCOS je součástí EUMETNET.
česky: EUCOS; angl: European Composite Observing Network; slov: EUCOS; něm: EUCOS; rus: ЕВКОС  2014
EUMETCast m
systém přenosu družicových snímků, dat a odvozených meteorologických produktů prostřednictvím komerčních telekomunikačních družic, provozovaný organizací EUMETSAT.
česky: EUMETCast; angl: EUMETCast; slov: EUMETCast; něm: EUMETCast; rus: ЕВМЕТКаст  2014
EUMETNET m
(European Meteorological Services Network, Evropská síť meteorologických služeb) – organizace koordinující činnost evropských met. služeb. V rámci jednotlivých programů je řízena činnost v oblasti pozorování, zpracování dat, numerických předpovědí, systému výstrah a výzkumu. V roce 2011 patřilo ke členům EUMETNET 29 evropských zemí včetně České republiky.
česky: EUMETNET; angl: EUMETNET; slov: EUMETNET; něm: EUMETNET; rus: ЕВМЕТНЕТ  2014
EUMETSAT m
(European Organization for the Exploitation of Meteorological Satellites, Evropská organizace pro využití meteorologických družic) – evropská mezivládní organizace zřízená za účelem budování a provozování systému meteorologických družic pro potřeby jejích členských států. EUMETSAT vznikl postupným vyčleněním z Evropské vesmírné agentury (ESA), od roku 1986 je již samostatnou organizací se sídlem v německém Darmstadtu. EUMETSAT od počátku provozuje především geostacionární meteorologické družice pod názvem Meteosat, později rovněž různé polární meteorologické družice. Česká republika se stala spolupracujícím členem EUMETSATu roku 2005, od roku 2010 je již plným členem této organizace.
česky: EUMETSAT; angl: EUMETSAT; slov: EUMETSAT; něm: EUMETSAT; rus: ЕВМЕТСАТ  2014
exhalation f
1. znečišťující látky a jejich směsi vstupující do ovzduší ze zdrojů znečišťování ovzduší, popř. též vzduch, který je součástí spalin apod. Za exhalace se považuje rovněž vulkanický popel;
2. syn. emise, zejména ve druhém významu termínu.
Termín pochází z lat. exhalatio „vydechování, vypařování, výpar“, odvozeného od slovesa exhalare „vydechovat“ (z ex „z“ a halare „dýchat, vypařovat“).
česky: exhalace; angl: exhalation; slov: exhalácie; něm: Exhalation f; rus: выбросы  1993-a3
exosphère f
vnější část atmosféry Země s horní hranicí kolem 20 000 až 35 000 km, plynule přecházející do meziplanetárního prostoru. V této oblasti je elektronová hustota nízká a nacházejí se zde převážně volné atomy vodíku a hélia. Působení gravitace je slabé, což má za následek, že částice mohou unikat do okolního volného prostoru. Dolní hranici exosféry kladou různí autoři do odlišných výšek v rozmezí zhruba 500 až 700 km nad zemským povrchem.
Termín se skládá z řec. ἔξω [exó] „vně, mimo“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“).
česky: exosféra; angl: exosphere, outer atmosphere; slov: exosféra; něm: Exosphäre f; rus: экзосфера  1993-a3
exposé verbal m
letecké meteorologii slovní komentář meteorologa o existujících a očekávaných podmínkách počasí na letové trati určený posádce letadla. Obsahuje zejména upozornění na nebezpečné jevy. Viz též předpověď počasí letecká.
česky: briefing meteorologický; angl: meteorological briefing; slov: meteorologický briefing; něm: Wetter-Briefing n; rus: устная (метеорологическая) консультация  1993-a3
exposé verbal météorologique m
letecké meteorologii slovní komentář meteorologa o existujících a očekávaných podmínkách počasí na letové trati určený posádce letadla. Obsahuje zejména upozornění na nebezpečné jevy. Viz též předpověď počasí letecká.
česky: briefing meteorologický; angl: meteorological briefing; slov: meteorologický briefing; něm: Wetter-Briefing n; rus: устная (метеорологическая) консультация  1993-a3
exposition des versants f
1. orientace svahů nebo různých povrchů vzhledem ke světovým stranám a jejich sklon k rovině horizontu, což je v daném místě a čase určující pro příjem slunečního záření, pro světelné poměry, vystavení větrům a srážkám. Klimatická expozice je velmi významným klimatotvorným faktorem, který se uplatňuje ve všech měřítkách klimatu. Bývá zejména předmětem studia topoklimatologie. Viz též klima svahové;
2. v pojetí A. Gregora poloha met. stanice v terénu, která rozhoduje o její reprezentativnosti pro užší nebo širší okolí.
česky: expozice klimatická; angl: exposure; slov: klimatická expozícia; něm: klimatische Exposition f  1993-a1
extinction f
zeslabení záření procházejícího daným prostředím. V meteorologii jde nejčastěji o zeslabení přímého slunečního záření následkem jeho rozptylu nebo absorpce v zemské atmosféře. Extinkce v atmosféře závisí na vlnové délce záření a je největší v případě krátkých vlnových délek. Viz též koeficient extinkce.
česky: extinkce; angl: extinction; slov: extinkcia; něm: Extinktion f; rus: экстинция  1993-a1
extrême m
1. v klimatologii nejvyšší hodnota (maximum) nebo nejnižší hodnota (minimum) meteorologického prvku, zaznamenaná během určitého období. Rozdíl mezi maximem a minimem se nazývá amplituda. Lze hovořit o extrémech v denním nebo ročním chodu meteorologických prvků podobně jako o extrémech zjištěných v jednotlivých dnech, měsících, sezonách, letech nebo delších obdobích. Nejvyšší a nejnižší hodnoty met. prvku zaznamenané za celou dobu měření se označují jako absolutní extrémy, tj. absolutní maximum a absolutní minimum. Z extrémů jednotlivých dní, měsíců atd. je možné vypočítat průměrné extrémy, tj. průměrné denní, měsíční a roční maximum a minimum. Světové extrémy jsou evidovány WMO (http://wmo.asu.edu).
2. V meteorologii maximální, popř. minimální hodnota met. prvku za kratší období, např. 1, 3 nebo 6 hodin v případě maximálních hodnot rychlosti větru, 12 hodin v případě extrémů teplot ve zprávách SYNOP z evropských zemí.
3. Událost charakteristická přítomností výrazných meteorologických nebo klimatických anomálií, viz ohrožení hydrometeorologické.
Termín pochází z lat. extremus „nejzazší, krajní“, do češtiny pronikl přes němčinu.
česky: extrém; angl: extrem, extreme value; slov: extrém; něm: Extremwert m; rus: экстремальнoе значениe, экстремум  1993-a3
podpořila:
spolupracují: