1. plynný obal určitého vesmírného tělesa, tvořený směsí plynů a obsahující v některých případech i pevné a/nebo kapalné atmosférické částice. Atmosféra je k vesmírnému tělesu vázána gravitační silou a spolu s ním také alespoň do určité míry rotuje. Obecnou vlastností atmosfér je přítomnost statického tlaku, jehož hodnota vlivem stlačitelnosti plynů přibližně exponenciálně klesá s rostoucí vzdáleností od povrchu vesmírného tělesa. Předmětem studia meteorologie a jí příbuzných oborů je atmosféra Země. Viz též atmosféra planetární, chromosféra, koróna sluneční.
2. zast. jednotka tlaku o velikosti normálního tlaku vzduchu.
Výsledky hledání - "jednotka\ Dobsonova" - nalezeno 68 hesel
atmosféra
Termín zavedl holandský astronom a matematik W. Snellius na začátku 17. století v lat. podobě atmosphaera. Skládá se z řec. ἀτμός [atmos] „pára“ a σφαῖρα [sfaira] „koule, míč“ (přes lat. sphaera „koule, nebeská báň“). Na rozdíl od dnešního významu jím totiž W. Snellius označoval pouze tu vrstvu vzduchu obklopující zemské těleso, která obsahuje "vlhké výpary" neboli vodní páru.
angl: atmosphere; slov: atmosféra; něm: Atmosphäre f; fr: atmosphère f; rus: атмосфера 1993-a3
atmosféra suchá a čistá
atmosféra tvořená pouze směsí plynů, které jsou přirozeně přítomné v atmosféře Země a svými vlastnostmi se blíží ideálnímu plynu. Suchou a čistou atmosféru tedy tvoří suchý vzduch bez atmosférických příměsí. Viz též atmosféra čistá, složení atmosféry Země chemické.
angl: dry and clear atmosphere; slov: suchá a čistá atmosféra; něm: trockene und reine Atmosphäre f; fr: atmosphère pure et sèche f; rus: сухая и чистая атмосфера 1993-a3
bar
stará jednotka tlaku vzduchu, pro kterou platí 1 bar = 105 Pa neboli 1000 hPa. V anglosaském prostředí se nadále používá odvozená jednotka milibar.
Jednotku navrhl amer. fyzik T. W. Richards v r. 1903, ovšem v soustavě CGS s významem 1 dyn.cm-2, tedy 0,1 Pa neboli barye. V dnešním významu termín použil V. Bjerknes v r. 1906. Využití řec. kořene βαρ- [bar-], obsaženého např. ve slovech βάρος [baros] „tíha, váha“ nebo βαρύς [barys] „těžký“, odkazuje k souvislosti mezi tlakem vzduchu a silou zemské tíže.
angl: bar; slov: bar; něm: Bar n; fr: bar m; rus: бар 1993-a2
barye
jednotka tlaku vzduchu, pro niž platí vztah: 1 barye (ba) = 10–1 Pa = 10–3 hPa. Používala se hlavně pro měření akust. tlaku.
Jednotka byla navržena Britskou asociací v r. 1888 pod označením „barad“, které bylo upraveno na Mezinárodním fyzikálním kongresu v Paříži r. 1900. Po r. 1903 byla označována též jako bar. Označení pochází z řec. βαρύς [barys] „těžký“, odkazuje k souvislosti mezi tlakem vzduchu a silou zemské tíže.
angl: barye; slov: barya; něm: Barye n; fr: barye f; rus: бария 1993-a1
berk
starší označení pro dynamický metr.
Jednotka byla nazvána podle norského meteorologa a geofyzika V. Bjerknese (1862–1951).
slov: berk; rus: бьерк 1993-a1
cela jednoduchá
zákl. jednotka ve struktuře konvektivní bouře. Zpravidla prochází třemi vývojovými stadii:
1. stadiem cumulu, kdy v cele převládá výstupný konvektivní proud vzduchu, který transportuje vlhký a teplý vzduch z přízemních hladin do výšky;
2. stadiem zralosti, kdy se v oblaku kromě výstupného proudu vyvíjí i sestupný konvektivní proud vzduchu s vypadávajícími srážkami;
3. stadiem rozpadu, kdy vtok vlhkého a teplého vzduchu i výstupný proud zaniká, sestupné pohyby převládají a způsobí rozpad cely. Typická doba trvání stadia cumulu je 10–15 min, typické trvání stadia zralosti je 15–30 min. Trvání stadia rozpadu je obtížné vymezit, protože zbytek kovadliny Cb může existovat v horních hladinách velmi dlouho, často ve formě vysoké oblačnosti. Viz též multicela, supercela.
1. stadiem cumulu, kdy v cele převládá výstupný konvektivní proud vzduchu, který transportuje vlhký a teplý vzduch z přízemních hladin do výšky;
2. stadiem zralosti, kdy se v oblaku kromě výstupného proudu vyvíjí i sestupný konvektivní proud vzduchu s vypadávajícími srážkami;
3. stadiem rozpadu, kdy vtok vlhkého a teplého vzduchu i výstupný proud zaniká, sestupné pohyby převládají a způsobí rozpad cely. Typická doba trvání stadia cumulu je 10–15 min, typické trvání stadia zralosti je 15–30 min. Trvání stadia rozpadu je obtížné vymezit, protože zbytek kovadliny Cb může existovat v horních hladinách velmi dlouho, často ve formě vysoké oblačnosti. Viz též multicela, supercela.
Termín cela pochází z lat. cella „schránka, komůrka, buňka (medového plástu)“; jeho použití v meteorologii vychází z posledního uvedeného významu, viz cela otevřená, cela uzavřená.
angl: ordinary cell, single cell; slov: jednoduchá bunka (cela); něm: einzelne Zelle f; fr: orage ordinaire m, orage unicellulaire m, orage monocellulaire m 2014
cirkulace Brewerova–Dobsonova
koncept velkoprostorové cirkulace v rámci níž se vzduch v tropech dostává z troposféry do stratosféry a dále se pohybuje do vyšších hladin a směrem k pólům. Ve středních a vysokých šířkách pak opět klesá do nižších hladin. Model cirkulace byl navržen v roce 1949 Alanem Brewerem a v roce 1956 Gordonem Dobsonem s cílem vysvětlit pozorované rozložení koncentrací ozonu a vodní páry. Vznik této cirkulace je spojen s působením vertikálně se šířících atmosférických vln na zonální proudění ve stratosféře.
angl: Brewer–Dobson circulation; slov: Brewerova–Dobsonova cirkulácia; něm: Brewer-Dobson-Zirkulation f; fr: circulation de Brewer-Dobson f, circulation Brewer-Dobson f 2015
Copernicus
program Evropské komise, dříve označovaný jako GMES (Global Monitoring for Environment and Security), zaměřený na získávání údajů o životním prostředí (včetně atmosféry a oceánů), především pomocí metod dálkového průzkumu Země. Program vychází z úzké spolupráce s ESA, v oblasti družicových meteorologických měření probíhá spolupráce s organizací EUMETSAT při vývoji a provozu některých z družic/přístrojů Sentinel.
slov: Copernicus; něm: Kopernikus, Kopernikus m; fr: Copernicus m; rus: Программа Коперник, ранее известная как GMES (Глобальный мониторинг окружающей среды и безопасности) 2014
čas světový koordinovaný
(UTC) – mezinárodní časový standard, který je měřen pomocí atomových hodin, a proto je nezávislý na rychlosti rotace Země. Vzhledem ke změnám v rotaci Země se UTC liší od tzv. univerzálního času UT1. Ten je založen na rotaci Země, měřen v současné době interferometricky z pozorování vzdálených kvasarů a přepočítán z míst pozorování na Greenwichský poledník, včetně opravy eliminující vliv pohybu pólů na zeměpisnou délku. Pro zachování synchronizace dne a noci se UTC upravuje přibližně jednou za rok pomocí jednosekundových oprav (tzv. přestupných sekund) tak, aby rozdíl mezi UTC a univerzálním časem UT1 nepřesáhl hodnotu 0,8 sekundy. O provedení úpravy UTC rozhoduje mezinárodní organizace IERS (International Earth Rotation and Reference Systems Service) podle měření rotace Země. Vzhledem k tomu, že se rotace Země mírně zpomaluje, jsou přestupné sekundy vždy přidávány, teoreticky se však počítá i s odečtením přestupné sekundy. UTC je základem systému občanského času a jednotlivá časová pásma jsou definována odchylkami od UTC, např. středoevropský čas SEČ = UTC + 1. Údaje z meteorologických pozorování pro mezinárodní výměnu jsou uváděna s časovou identifikací v UTC.
angl: Universal Time Coordinated; slov: koordinovaný svetový čas; něm: koordinierte Weltzeit f, UTC; fr: temps universel coordonné m; rus: координированное мировое время, всемирное координированное время 1993-a3
data nástupu a ukončení charakteristických teplot
první a posledníden období s místně průměrnou denní teplotou vzduchu. Určují se z křivky ročního chodu teploty sestrojené z měs. průměrů teplot nebo výpočtem. Data nástupu a ukončení teploty 0 °C a vyšší, 5 °C a vyšší, 10 °C a vyšší atd. včetně trvání těchto teplot patří k významným teplotním a bioklimatickým charakteristikám. Např. období s teplotou 10 °C a vyšší je hlavním veget. obdobím, s teplotou 0 °C a nižší klimatickou zimou; sumy teplot z prvního období vyjadřují tepelnou potenci léta, z druhého tuhost zimy apod.
angl: dates of the beginning and the end of characteristic temperatures; slov: dátumy nástupu a ukončenia charakteristických teplôt; něm: Daten des Beginns und des Endes eines Schwellenwertes der Temperatur n/pl; fr: date de début et de fin de température caractéristique f 1993-a1
dBZ
(decibel radarové odrazivosti) – jednotka radarové odrazivosti, používaná při radiolokaci především meteorologických cílů.
slov: dBZ; něm: Dezibel n, Dezibel n; fr: dBZ m; rus: децибел отражения (dBZ) 2014
energotop
nejmenší územní jednotka s homog. aktivním povrchem, na níž jsou změny v prostorové struktuře tepelné bilance způsobovány výhradně denním nebo roč. chodem dopadající sluneční energie. Viz též klimatop.
Termín se skládá z řec. ἐνέργεια [energeia] „činnost, výkon“ a τόπος [topos] „místo“.
angl: energotop; slov: energotop; něm: Energotop n 1993-a1
fyzika oblaků a srážek
meteorologická disciplina, která studuje procesy probíhající při vzniku a vývoji oblaků a srážek, i procesy, při nichž oblaky působí na okolní prostředí. Základní oblasti fyziky oblaků a srážek jsou mikrofyzika oblaků a dynamika oblaků. Obecně zařazujeme do oblasti fyziky oblaků a srážek také oblačnou elektřinu a studium optických jevů působených oblaky a srážkami, popř. chemizmus oblaků a srážek. Kromě poznávací složky nacházejí výsledky fyziky oblaků a srážek uplatnění při vývoji parametrizace mikrofyziky a parametrizace konvekce v modelech numerické předpovědi počasí.
angl: physics of clouds and precipitation; slov: fyzika oblakov a zrážok; něm: Wolken- und Niederschlagsphysik f; fr: physique des nuages et des précipitations f, physique des nuages f; rus: физика облаков и осадков 1993-a3
Globální systém pro zpracování dat a předpovědi
(GDPFS, z angl. Global Data Processing and Forecasting System) – jeden z prvků Světové služby počasí. Jeho cílem je zabezpečit dostupnost met. analýz a předpovědí pro všechny členské státy Světové meteorologické organizace prostřednictvím světových meteorologických center, regionálních specializovaných meteorologických center a národních meteorologických center. Funkce systému v reálném čase jsou příprava dat před vlastním zpracováním, včetně kontroly kvality dat, tvorba met. analýz a předpovědí na jeden den až po dlouhodobé předpovědi, příprava speciálních předpovědí pro letectví, námořní dopravu a pro případ ekologických havárií a prezentace pozorovaných a zpracovaných dat. Dalšími funkcemi systému jsou zpracovaní dat pro klimatologické a výzk. účely, verifikace předpovědí, vývoj numerických modelů a dlouhodobé ukládání měřených dat, výstupů z numerických modelů a výsledků verifikace předpovědí.
angl: Global Data Processing and Forecasting System; slov: Globálny systém pre spracovanie dát a predpovede; něm: Globales Datenverarbeitungssystem n; rus: Глобальная система обработки данных 1993-b3
homogenita a izotropie polí meteorologických veličin
pole meteorologických veličin je homogenní a izotropní, jestliže jeho stř. hodnota je konstantní a korelační funkce závisí jen na vzdálenosti bodů pole. Tato zjednodušující vlastnost se používá při formulaci algoritmů numerické analýzy.
angl: homogeneity and isotropy of meteorological element fields; slov: homogenita a izotropnosť polí meteorologických veličín; něm: Homogenität und Isotropie der Felder von meteorologischen Größen f; rus: однородность и изотропия метеорологических полей 1993-a3
indikátory změny v přistávacích a letištních předpovědích
(BECMG, FM, TEMPO, NOSIG) – kódové zkratky vyjadřující předpokládaný vývoj meteorologického prvku nebo jevu v době platnosti předpovědi. Indikátor BECMG vyjadřuje postupnou změnu, FM změnu s uvedením času, v němž tato změna nastane, a TEMPO změnu. Pokud se neočekává v době platnosti přistávací předpovědi významná změna met. podmínek, uvádí se zkratka NOSIG. Viz též předpověď počasí letištní.
angl: change indicators in landing and airport forecasts; slov: indikátory zmeny v pristávacích a letištných predpovediach; něm: Indikatoren für die Änderung in Landung- und Flugplatzwettervorhersagen m/pl 1993-a3
jednotka Dobsonova
(D.U.) – jednotka celkového množství daného plynu v zemské atmosféře, pojmenovaná podle profesora oxfordské univerzity G. Dobsona, konstruktéra stejnojmenného spektrofotometru. Většinou se používá jako jednotka celkového množství ozonu. 1 D.U. celkového ozonu je definována jako množství ozonu obsažené ve vertikálním sloupci zemské atmosféry, které by po stlačení na 1 013 hPa při teplotě 0 °C vytvořilo vrstvu silnou 10-3 cm. Například celkové množství ozonu 300 D.U. by vytvořilo za uvedených podmínek homogenní ozonovou vrstvu silnou 3 mm.
angl: Dobson Unit; slov: Dobsonova jednotka; něm: Dobson-Einheit f, Dobson Unit f; rus: единица Добсона 2014
kandela
(cd) – jednotka svítivosti, definovaná jako svítivost světelného zdroje, který v daném směru vyzařuje monochromatické záření o frekvenci 540 THz a jehož zářivost v tomto směru činí 1/683 wattu na steradián. Uvedená frekvence odpovídá vlnové délce 0,555 mikrometrů, představuje odstín zelené barvy, nalézá se v blízkosti středu spektra viditelného záření a lidské oko na ni bývá při denním vidění nejcitlivější. Tato definice platí od r. 1979, předchozí definice z r. 1967 definovala kandelu jako svítivost 1/600 000 čtverečního metru povrchu absolutně černého tělesa při teplotě tuhnoucí platiny 1768 oC a normálním tlaku vzduchu. Návaznost nynější definice je zajištěna příslušnými přepočty.
angl: candela; slov: kandela; něm: Candela f; fr: candela f; rus: кандела 2022
komise WMO technická
komise ustanovená Světovou meteorologickou organizací pro celosvětové studium problémů ve vybraných oblastech meteorologie, klimatologie a hydrologie. Od r. 2019 existují dvě takové komise: Komise pro pozorování, infrastrukturu a informační systémy (Commission for Observation, Infrastructure and Information Systems, zkráceně Infrastructure Commission – INFCOM) a Komise pro služby a aplikace v oblasti počasí, klimatu, vody a dalších oblastech životního prostředí (Commission for Weather, Climate, Water and Related Environmental Services and Applications, zkráceně Services Commission – SERCOM).
Pod nově ustavenou technickou komisi INFCOM přešla agenda dvou zrušených komisí, jmenovitě Komise pro základní systémy (CBS) a Komise pro přístroje a pozorovací metody (CIMO). Pod nově ustavenou technickou komisi SERCOM přešla agenda pěti zrušených komisí, jmenovitě Komise pro leteckou meteorologii (CAeM), Komise pro zemědělskou meteorologii (CAgM), Komise pro atmosférické vědy (CAS), Komise pro klimatologii (CCl) a Komise pro hydrologii (CHg). Místo zrušené Společné komise WMO a IOC pro oceánografii a námořní meteorologii (JCOMM) byla ustavena Společná rada pro spolupráci WMO a IOC (Joint WMO-IOC Collaborative Board).
Pod nově ustavenou technickou komisi INFCOM přešla agenda dvou zrušených komisí, jmenovitě Komise pro základní systémy (CBS) a Komise pro přístroje a pozorovací metody (CIMO). Pod nově ustavenou technickou komisi SERCOM přešla agenda pěti zrušených komisí, jmenovitě Komise pro leteckou meteorologii (CAeM), Komise pro zemědělskou meteorologii (CAgM), Komise pro atmosférické vědy (CAS), Komise pro klimatologii (CCl) a Komise pro hydrologii (CHg). Místo zrušené Společné komise WMO a IOC pro oceánografii a námořní meteorologii (JCOMM) byla ustavena Společná rada pro spolupráci WMO a IOC (Joint WMO-IOC Collaborative Board).
angl: WMO Technical Commission; slov: technická komisia WMO; rus: техническая комиссия ВМО 2019
konstanta Stefanova–Boltzmannova
angl: Stefan and Boltzmann constant; slov: Stefanova–Boltzmannova konštanta; něm: Stefan-Boltzmann-Konstante f 2016
lidar
syn. lokátor laserový, lokátor kvantový optický, lokátor kvantový světelný – druh profileru určený k sondáži atmosféry na principu vysílání laserových pulsů a detekci zpětně rozptýleného záření. Ze zpoždění signálu a rychlosti světla lze určit vzdálenost od místa zpětného rozptylu signálu. Řada lidarů poskytuje i informace o změnách intenzity rozptýleného záření. Pomocí lidarů lze měřit řadu atmosférických parametrů: teplotu, tlak, vlhkost, koncentraci atm. plynů (např. ozonu, metanu, oxidů síry a dusíku atd.). Dále lze lidarů v meteorologii využívat k měření výšky základny oblaků, tvaru oblaků a tvaru kouřových vleček i k odhadu fyz. a chem. vlastností atmosférického aerosolu. Lidary jsou rovněž využívány na meteorologických družicích, kde kromě výše uvedených aplikaci jsou rovněž používány pro stanovení mikrofyzikálních vlastností oblačnosti. Pokud lidar umožňuje měřit změnu frekvence zpětně rozptýleného záření oproti vysílaným paprskům, využívá Ramanova rozptylu k identifikaci různých atmosférických příměsí. Viz též ceilometr.
První lidar byl vytvořen a pojmenován v r. 1961. Jde o akronym úplného angl. názvu LIght Detection And Ranging „světelná detekce a měření vzdálenosti“, sestavený analogicky k termínu radar.
angl: lidar; slov: lidar; něm: Lidar n; rus: лидар 1993-a3
lumen
(lm) – ve fotometrii jednotka světelného toku. Je definován jako světelný tok, který je do jednotkového prostorového úhlu vysílán bodovým zdrojem světla o svítivosti jedna kandela. Dle dřívější normy, která je dnes zohledněna příslušnými přepočty, byl lumen definován jako světelný tok, který vysílá povrch absolutně černého tělesa o velikosti 5,305 . 10-7 m2 při teplotě tuhnoucí platiny do celého poloprostoru.
angl: lumen; slov: lúmen; něm: Lumen n; fr: lumen; rus: люмен 2022
lux
měření meteorologických prvků v mezní vrstvě a volné atmosféře
meteorologické měření prováděné přístrojem umístěným nebo se pohybujícím v atmosféře nad její přízemní vrstvou. Tento druh měření zahrnuje především radiosondážní měření a většinu dalších přímých aerologických měření, včetně stožárových meteorologických měření. Do zavedení radiosond počátkem 30. let 20. století byla měření v mezní vrstvě a ve volné atmosféře prováděna pomocí meteorografů, vynášených do ovzduší balony nebo upoutanými meteorologickými draky, případně přímo posádkami volných balonů. Viz též sondáž ovzduší, stanice měřící v mezní vrstvě atmosféry.
angl: measurement of meteorological elements in boundary layer and free atmosphere; slov: meranie meteorologických prvkov v hraničnej vrstve a vo voľnej atmosfére; něm: Messung von meteorologischen Größen in der Grenzschicht und in der freien Atmosphäre f; rus: измерение метеорологических элементов в пограничном слое и в свободной атмосфере 1993-a3
měření radioaktivity atmosféry
určování radioaktivity atmosféry, srážek a suchého spadu. Zjišťuje se jako radioaktivita:
a) aerosolu zachyceného na filtru, jímž byl prosát známý objem vzduchu;
b) odparku ze srážkové vody zachycené za dané období (obvykle dny až 1 měsíc);
c) spadu, tj. pevných částic, které se usadily na vodorovném suchém nebo mokrém dnu sběrné nádoby za dané období (obvykle dny až 1 měsíc);
odebrané vzorky se měří pomocí zařízení indikujícího záření α, β, γ (popř. jen některých z nich) laboratorně nebo přímo v místě odběru (automatické systémy pro odběr a měření vzorků). V případě měření vzorků přímo v místě odběru výsledky zahrnují i příspěvek radionuklidů s krátkým poločasem přeměny, při laboratorních měřeních lze tento vliv eliminovat. Dále se provádí přímá měření příkonu dávky/dávkového ekvivalentu příslušnými detektory (např. Geiger-Müllerovy počítače, proporcionální počítače). Detektory mohou být umístěny na stacionárních měřicích místech, na přízemních mobilních stanicích nebo na radiosondách pro zjišťování vertikálních profilů beta a gama záření. V případě přímého měření příkonu dávky/dávkového ekvivalentu měřená hodnota zahrnuje kromě složky atmosférické radioaktivity i složky odpovídající terestriálnímu a kosmickému záření. Radioaktivita ovzduší se obvykle vyjadřuje v jednotkách becquerel (Bq), a to pro spad v Bq.m–2 a pro ovzduší v Bq.m–3. Dříve používaná jednotka aktivity curie (Ci) souvisí s novou jednotkou becquerel vztahem 1 Bq = 2,7.10–11 Ci, tj. 1 Bq = 27 pCi. Příkon dávkového ekvivalentu se vyjadřuje v jednotkách Sievert za hodinu (Sv.h–1). Odběry vzorků a měření příkonu se provádí na vybraných met. stanicích, odebrané vzorky se předávají do měřicích laboratoří Radiační monitorovací sítě (RMS), výsledky měření prováděných na místě se průběžně předávají na centrální pracoviště RMS. Viz též spad radioaktivní, zpráva o příkonu fotonového dávkového ekvivalentu (RAD).
a) aerosolu zachyceného na filtru, jímž byl prosát známý objem vzduchu;
b) odparku ze srážkové vody zachycené za dané období (obvykle dny až 1 měsíc);
c) spadu, tj. pevných částic, které se usadily na vodorovném suchém nebo mokrém dnu sběrné nádoby za dané období (obvykle dny až 1 měsíc);
odebrané vzorky se měří pomocí zařízení indikujícího záření α, β, γ (popř. jen některých z nich) laboratorně nebo přímo v místě odběru (automatické systémy pro odběr a měření vzorků). V případě měření vzorků přímo v místě odběru výsledky zahrnují i příspěvek radionuklidů s krátkým poločasem přeměny, při laboratorních měřeních lze tento vliv eliminovat. Dále se provádí přímá měření příkonu dávky/dávkového ekvivalentu příslušnými detektory (např. Geiger-Müllerovy počítače, proporcionální počítače). Detektory mohou být umístěny na stacionárních měřicích místech, na přízemních mobilních stanicích nebo na radiosondách pro zjišťování vertikálních profilů beta a gama záření. V případě přímého měření příkonu dávky/dávkového ekvivalentu měřená hodnota zahrnuje kromě složky atmosférické radioaktivity i složky odpovídající terestriálnímu a kosmickému záření. Radioaktivita ovzduší se obvykle vyjadřuje v jednotkách becquerel (Bq), a to pro spad v Bq.m–2 a pro ovzduší v Bq.m–3. Dříve používaná jednotka aktivity curie (Ci) souvisí s novou jednotkou becquerel vztahem 1 Bq = 2,7.10–11 Ci, tj. 1 Bq = 27 pCi. Příkon dávkového ekvivalentu se vyjadřuje v jednotkách Sievert za hodinu (Sv.h–1). Odběry vzorků a měření příkonu se provádí na vybraných met. stanicích, odebrané vzorky se předávají do měřicích laboratoří Radiační monitorovací sítě (RMS), výsledky měření prováděných na místě se průběžně předávají na centrální pracoviště RMS. Viz též spad radioaktivní, zpráva o příkonu fotonového dávkového ekvivalentu (RAD).
angl: atmospheric radioactivity measurement; slov: meranie rádioaktivity atmosféry; něm: Messung der atmosphärischen Radioaktivität f; rus: измерение радиоактивности атмосферы 1993-a3
měření tlaku vzduchu
určení hydrostatického tlaku v určitém místě atmosféry. Tlak vzduchu se měří v N.m–2, tj. v pascalech (Pa). V meteorologii je povolena jednotka hPa, která souvisí s dalšími jednotkami používanými v dřívější době těmito převodními vztahy:
Tlak vzduchu na met. stanicích se měří staničními tlakoměry s přesností na desetiny hPa. V dříve používaných rtuťových tlakoměrech bylo nutné odečtený údaj tlaku redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. Ve volné atmosféře se tlak vzduchu měří aneroidovými tlakoměry neboli aneroidy, popř. hypsometry. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
Tlak vzduchu na met. stanicích se měří staničními tlakoměry s přesností na desetiny hPa. V dříve používaných rtuťových tlakoměrech bylo nutné odečtený údaj tlaku redukovat na teplotu rtuti 0 °C a započítat přístrojovou opravu. Ve volné atmosféře se tlak vzduchu měří aneroidovými tlakoměry neboli aneroidy, popř. hypsometry. Viz též redukce tlaku vzduchu na dohodnutou hladinu.
angl: air pressure measurement; slov: meranie tlaku vzduchu; něm: Luftdruckmessung f; rus: измерение давления воздуха 1993-a3
měření záření
met. měření energie záření přijaté čidlem měřicího přístroje za jednotku času v určitém místě atmosféry nebo na zemském povrchu. Vyjadřuje se zpravidla ve W.m–2. Dříve se užívala jednotka cal.cm–2.min–1. Převodní vztah mezi oběma jednotkami je: 1 cal.cm–2.min–1 = 697,3.10–3 W.m–2. Změřené hodnoty se v přirozených podmínkách označují jako kladné, nebo i záporné podle toho, zda sledovaný povrch celkově více energie záření přijímá, nebo ztrácí. V atmosféře se intenzity toků záření obvykle pohybují v intervalu (–200 ; 1500) W.m–2.
V používaných radiačních přístrojích čili radiometrech se měřené záření zpravidla přeměňuje na tepelnou energii (kalorimetrická metoda měření), nebo na energii elektrickou (fotoelektricky nebo termoelektricky). Přímé sluneční záření se měří pyrheliometry a aktinometry, globální sluneční záření pyranometry, rozptýlené sluneční záření vhodně upravenými pyranometry, albedo albedometry, efektivní vyzařování zemského povrchu nebo atmosféry pyrgeometry a bilance záření bilancometry.Chyby měření zpravidla nepřevyšují 1 % měřené veličiny. Mezi měření záření bývá zařazováno i měření trvání slunečního svitu pomocí slunoměrů. Viz též aktinometrie.
V používaných radiačních přístrojích čili radiometrech se měřené záření zpravidla přeměňuje na tepelnou energii (kalorimetrická metoda měření), nebo na energii elektrickou (fotoelektricky nebo termoelektricky). Přímé sluneční záření se měří pyrheliometry a aktinometry, globální sluneční záření pyranometry, rozptýlené sluneční záření vhodně upravenými pyranometry, albedo albedometry, efektivní vyzařování zemského povrchu nebo atmosféry pyrgeometry a bilance záření bilancometry.Chyby měření zpravidla nepřevyšují 1 % měřené veličiny. Mezi měření záření bývá zařazováno i měření trvání slunečního svitu pomocí slunoměrů. Viz též aktinometrie.
angl: actinometry; slov: aktinometrické meranie; něm: aktinometrische Messung f; rus: актинометрическое измерение 1993-a3
metr geopotenciální
jednotka geopotenciální výšky definovaná vztahem:
kde H je výška v geopotenciálních metrech, z výška v geometrických metrech a g velikost místního tíhového zrychlení. Vztah mezi geopotenciálním metrem a geometrickým metrem lze vyjádřit ve tvaru
1 geopotenciální metr = 9,8/g geometrických metrů.
Geopotenciální metr je v meteorologii běžně užívanou jednotkou výšky, která se rovná geometrickému metru na místech, kde je tíhové zrychlení přesně rovno 9,8 m.s–2. V geopotenciálních metrech se např. uvádějí výšky na mapách barické topografie a užívá se ho v mezinárodní standardní atmosféře ICAO. Viz též metr dynamický.
kde H je výška v geopotenciálních metrech, z výška v geometrických metrech a g velikost místního tíhového zrychlení. Vztah mezi geopotenciálním metrem a geometrickým metrem lze vyjádřit ve tvaru
1 geopotenciální metr = 9,8/g geometrických metrů.
Geopotenciální metr je v meteorologii běžně užívanou jednotkou výšky, která se rovná geometrickému metru na místech, kde je tíhové zrychlení přesně rovno 9,8 m.s–2. V geopotenciálních metrech se např. uvádějí výšky na mapách barické topografie a užívá se ho v mezinárodní standardní atmosféře ICAO. Viz též metr dynamický.
angl: geopotential metre; slov: geopotenciálny meter; něm: geopotentielles Meter n; rus: геопотенциальный метр 1993-a2
Mezinárodní komise pro atmosférickou elektřinu
(ICAE, International Committee for Atmospheric Electricity) – orgán při Mezinárodním sdružení pro meteorologii a atmosférické vědy, které je součástí Mezinárodní unie pro geodézii a geofyziku (International Union for Geodesy and Geophysics – IUGG). Zabývá se rozvojem poznatků o el. podmínkách a jevech v atmosféře Země, včetně jejich aplikací v dalších oborech.
angl: International Committee for Atmospheric Electricity (ICAE); slov: Medzinárodná komisia pre atmosférickú elektrinu; rus: Международная комиссия по атмосферному электричеству 1993-a3
Mezinárodní sdružení pro meteorologii a atmosférické vědy
(IAMAS, z angl. International Association of Meteorology and Atmospheric Sciences) – jedno ze sdružení Mezinárodní unie pro geodézii a geofyziku (International Union of Geodesy and Geophysics – IUGG), se kterou spolupracuje Světová meteorologická organizace podle dohody uzavřené v roce 1955. Do roku 1993 se toto sdružení nazývalo Mezinárodní sdružení pro meteorologii a fyziku atmosféry (International Association of Meteorology and Atmospheric Physics, IAMAP).
angl: International Association of Meteorology and Atmospheric Sciences; slov: Medzinárodné združenie pre meteorológiu a atmosférické vedy; něm: Internationale Vereinigung für Meteorologie und Physik der Atmosphäre f; rus: Международная ассоциация по геодезии и геофизике 1993-b3
mikrofyzika oblaků a srážek
část fyziky oblaků a srážek, která studuje především procesy vzniku, růstu a rozpadu oblačných a srážkových částic. Tyto mikrofyzikální procesy mají charakteristické rozměry které odpovídají velikosti jednotlivých částic. Při popisu mikrofyzikálních procesů však užíváme i matematické modely, které popisují chování celého souboru částic v oblasti, která přesahuje charakteristické rozměry jednotlivých částic. Z hlediska mikrofyziky oblaků a srážek nás zajímají hlavně procesy, které vedou k vývoji srážkových částic a jejichž charakteristické rozměry zasahují do oblasti mikroměřítka. Viz též dynamika oblaků, klasifikace meteorologických procesů podle Orlanskiho.
angl: cloud and precipitation microphysics; slov: mikrofyzika oblakov a zrážok; něm: Mikrophysik der Wolken und des Niederschlags f; rus: микрофизика облаков и осадков 2014
milibar
jednotka tlaku vzduchu, 10–3 baru, pro niž platí vztah:
1 mbar [mb] = 102 Pa = 1 hPa.
Milibar byl do konce roku 1979 v Československu používán jako zákl. jednotka tlaku vzduchu v meteorologii. Po zavedení nové mezinárodní soustavy jednotek SI, která bar a jeho odvozeniny nepřipouští, se postupně přešlo k používání jednotky hektopascal (hPa), doporučené pro met. účely Světovou meteorologickou organizací a číselně rovné jednotce milibar. Viz též měření tlaku vzduchu.
1 mbar [mb] = 102 Pa = 1 hPa.
Milibar byl do konce roku 1979 v Československu používán jako zákl. jednotka tlaku vzduchu v meteorologii. Po zavedení nové mezinárodní soustavy jednotek SI, která bar a jeho odvozeniny nepřipouští, se postupně přešlo k používání jednotky hektopascal (hPa), doporučené pro met. účely Světovou meteorologickou organizací a číselně rovné jednotce milibar. Viz též měření tlaku vzduchu.
Termín se skládá z lat. mille „tisíc“ a slova bar.
angl: millibar; slov: milibar; něm: Millibar n; rus: миллибар 1993-a3
mol
zákl. fyz. jednotka látkového množství. Jeden mol dané látky obsahuje stejný počet částic, jako je obsaženo atomů ve 12 g izotopu uhlíku 12C (v atomovém jádru 6 protonů a 6 neutronů). Tento počet udává Avogadrova konstanta. V termodynamice atmosféry v aplikacích na atmosférické plyny se částicemi rozumí molekuly.
Termín v uvedeném smyslu zavedl něm. chemik W. Ostwald v r. 1894. Vznikl zkrácením slova molekula.
angl: mole; slov: mol; něm: Mol n 2016
MTG
(Meteosat Third Generation, Meteosat třetí generace) [emtýdží] – nejnovější generace geostacionárních družic Meteosat. Je rozdělena na dvě větve, MTG-I (MTG Imager) a MTG-S (MTG Sounder). Družice MTG-I jsou vybaveny dvěma hlavními přístroji, zobrazovacími radiometry FCI (Flexible Combined Imager) a LI (Lightning Imager). Družice MTG-S ponesou dva hlavní přístroje, sondážní radiometr IRS (Infrared Sounder) a spektrometr UVN (Ultraviolet, Visible and Near-Infrared Spectrometer), alternativně označovaný i jako Sentinel-4. Družice MTG-I budou vypuštěny celkem čtyři (první odstartovala 13. prosince 2022), družice MTG-S dvě.
angl: MTG; slov: MTG; něm: MTG; rus: MTG 2014
NASA
(National Aeronautics and Space Administration, Národní úřad pro letectví a kosmonautiku) – vládní agentura USA, spolupracující s NOAA na vývoji a provozu amerických geostacionárních i polárních meteorologických družic. Na rozdíl od NOAA provozuje nebo se podílí na vývoji a provozu i různých výzkumných družic.
slov: NASA; něm: NASA f; rus: НАСА 2014
NOAA
(National Oceanic and Atmospheric Administration, Národní úřad pro oceány a atmosféru) – vládní agentura USA, pod kterou spadá mj. americká Národní meteorologická služba (NWS) či Národní centrum pro klimatická data (NCDC) USA. NOAA provozuje operativní systém amerických geostacionárních meteorologických družic GOES a polárních meteorologických družic, jejichž současná generace, vybavená mj. radiometry AVHRR, je označována jako NOAA/POES, někdy zjednodušeně pouze NOAA.
angl: NOAA; slov: NOAA; něm: NOAA; fr: NOAA 2014
oblaky stratosférické polární obsahující kyselinu dusičnou a vodu
polární stratosférické oblaky sestávající z částic, které obsahují vodu, kyselinu dusičnou a popř. i kyselinu sírovou. Když teplota ve spodní a střední stratosféře klesá na hodnoty pod –78 °C jsou tyto PSC tvořeny trihydráty kyseliny dusičné, při poklesu pod –81 °C jde o oblaky obsahující přechlazené ternární (třísložkové) roztoky.
PSC obsahující kyselinu dusičnou a vodu se jeví jako tenký žlutavý závoj a vzhledem k tomuto difuznímu vzhledu mohou být chybně zaměněny buď za oblaky cirrostratus nebo za vrstvu zákalu. Jsou nejlépe vidět po západu slunce nebo před jeho východem v době občanského soumraku, když Slunce je mezi přibližně 1° a 6° pod obzorem.
PSC obsahující kyselinu dusičnou a vodu se jeví jako tenký žlutavý závoj a vzhledem k tomuto difuznímu vzhledu mohou být chybně zaměněny buď za oblaky cirrostratus nebo za vrstvu zákalu. Jsou nejlépe vidět po západu slunce nebo před jeho východem v době občanského soumraku, když Slunce je mezi přibližně 1° a 6° pod obzorem.
angl: polar stratospheric cloud with nitric acid and water 2022
papagajo
silný sv. padavý vítr z And na tichomořském pobřeží Nicaragui a Guatemaly. Vzniká při přechodu chladných vzduchových hmot (vítr „el norte“) přes horská pásma Střední Ameriky a přináší tzv. pěkné počasí. Nejčastěji se vyskytuje v lednu a v únoru, kdy často trvá 3 až 4 dny. Má charakter bóry.
Termín je přejat ze španělštiny. Byl vytvořen z části názvu Golfo de Papagayo „Záliv Papagayo“ (doslova: „Záliv papoušků“) na severozápadě Kostariky.
angl: papagayo; slov: papagajo; něm: Papagajo Wind m; rus: папагаио 1993-a1
pascal
základní jednotka pro tlak v soustavě SI. Označuje se Pa a je definována jako síla 1 N působící kolmo na plochu jednoho metru čtverečního. Pro meteorologické účely je tato jednotka malá, v meteorologii se proto nejčastěji užívá jednotka stokrát větší, tj. hektopascal (hPa). Má to zároveň praktickou výhodu, neboť hektopascal je číselně roven jednotce tlaku milibar (mbar), která se dříve běžně používala v meteorologii. Viz též měření tlaku vzduchu.
angl: pascal; slov: pascal; něm: Pascal n; rus: паскаль 1993-a2
počasí příznivé pro letecký provoz (CAVOK)
met. podmínky, při nichž je horiz. dohlednost 10 km nebo více a není hlášena nejnižší dohlednost, není oblačnost provozního významu a nevyskytuje se význačné počasí pro letectví (atm. srážky, bouřka, nízko zvířený sníh, přízemní mlha, atd.). Uvedené podmínky se v pravidelných a mimořádných leteckých meteorologických zprávách (METAR a SPECI), stejně jako v letištních předpovědích počasí (TAF a trend), označují zkr. CAVOK (cloud and visibility OK), která nahrazuje údaje o vodorovné, popř. dráhové dohlednosti, o stavu počasí a o oblačnosti. Viz též minima letištní provozní a oblačnost provozního významu.
angl: clouds and visibility okay; slov: priaznivé počasie pre leteckú prevádzku; něm: günstiges Wetter für den Flugverkehr n; rus: погода, благоприятная для полета 1993-a3
ppm
(parts per milion) – zkratka anglického výrazu pro jednu miliontinu celku (obdobně jako je procento setinou celku). V oboru kvality ovzduší se tato jednotka používá k vyjádření objemové koncentrace znečišťující látky. V chemii atmosféry odpovídá koncentrace 1 ppm přítomnosti jedné částice plynné příměsi v 1 milionu částic vzduchu.
Obdobnou jednotkou je ppb neboli miliardtina celku.
Obdobnou jednotkou je ppb neboli miliardtina celku.
angl: ppm; slov: ppm; něm: ppm 2014
puelche
viz vítr padavý.
Termín vznikl převzetím názvu jihoamerického etnika Puelche (doslova „východní lidé“), jehož členové v 18. století obývali východní svahy And v Chile a na jihozápadě Argentiny. Srov. chinook.
angl: puelche; slov: puelche; něm: Puelche m 1993-a1
radar
syn. radiolokátor – elektronické zařízení pro detekci a lokalizaci vzdálených objektů, které rozptylují nebo odrážejí rádiové elmag. záření. Radar se skládá z vysílače, anténního systému, přijímače, bloku signálového zpracování, bloku zpracování a vizualizace dat a dalších doplňkových obvodů.
Nejčastěji jsou radary konstruovány jako monostatické, kdy jeden anténní systém je využíván pro vysílání i příjem. V takovém případě radarová detekce využívá odrazu a zpětného rozptylu signálu na radiolokačních cílech. Podstatně méně časté jsou bistatické radary, které mají oddělené vysílací a přijímací anténní systémy a pro detekci využívají přímého rozptylu.
Radary lze též rozdělit podle způsobu vyzařování na impulzní a radary se stálou vlnou. Častěji jsou využívány radary impulzní, které v pravidelných cyklech vysílají do atmosféry velmi krátké pulsy mikrovlnného elmag. záření o velkém okamžitém (špičkovém) výkonu, formované anténou (parabolickou) do úzkého svazku. Radar se vždy bezprostředně po vyslání pulsu přepne do přijímacího módu. Objekty ležící v cestě radarového paprsku odrážejí, rozptylují a absorbují energii. Malá část odražené a rozptýlené energie směřuje zpět k anténě, na které je zachycena a odvedena do přijímače, kde je zesílena a dále zpracována. Pokud je přijatý signál dostatečně silný, je detekován a vyhodnocen jako radiolokační cíl. V rámci signálového zpracování je vyhodnocen přijatý výkon, případně další charakteristiky signálu. Přijatý výkon je pomocí radiolokační rovnice převeden na radarovou odrazivost. Čas mezi vysláním pulzu a přijetím odraženého signálu udává vzdálenost cíle, který společně se známou polohou antény (azimut, elevace) jednoznačně lokalizují cíl v prostoru. Podle typu radaru je možné vyhodnotit i některé další charakteristiky cíle. Dopplerovské radary mohou navíc pomocí Dopplerova efektu vyhodnotit radiální rychlost cíle ze změny frekvence přijatého signálu. Polarimetrické radary umožňují navíc současně vyhodnocovat odrazy horizontálně a vertikálně polarizovaného záření a z jejich porovnání odvodit další charakteristiky.
Radary se stálou vlnou nejsou vhodné k určování přesné polohy cíle, umožňují však lepší měření radiální rychlosti cílů (např. policejní radary pro měření rychlosti vozidel).
Nejčastěji jsou radary konstruovány jako monostatické, kdy jeden anténní systém je využíván pro vysílání i příjem. V takovém případě radarová detekce využívá odrazu a zpětného rozptylu signálu na radiolokačních cílech. Podstatně méně časté jsou bistatické radary, které mají oddělené vysílací a přijímací anténní systémy a pro detekci využívají přímého rozptylu.
Radary lze též rozdělit podle způsobu vyzařování na impulzní a radary se stálou vlnou. Častěji jsou využívány radary impulzní, které v pravidelných cyklech vysílají do atmosféry velmi krátké pulsy mikrovlnného elmag. záření o velkém okamžitém (špičkovém) výkonu, formované anténou (parabolickou) do úzkého svazku. Radar se vždy bezprostředně po vyslání pulsu přepne do přijímacího módu. Objekty ležící v cestě radarového paprsku odrážejí, rozptylují a absorbují energii. Malá část odražené a rozptýlené energie směřuje zpět k anténě, na které je zachycena a odvedena do přijímače, kde je zesílena a dále zpracována. Pokud je přijatý signál dostatečně silný, je detekován a vyhodnocen jako radiolokační cíl. V rámci signálového zpracování je vyhodnocen přijatý výkon, případně další charakteristiky signálu. Přijatý výkon je pomocí radiolokační rovnice převeden na radarovou odrazivost. Čas mezi vysláním pulzu a přijetím odraženého signálu udává vzdálenost cíle, který společně se známou polohou antény (azimut, elevace) jednoznačně lokalizují cíl v prostoru. Podle typu radaru je možné vyhodnotit i některé další charakteristiky cíle. Dopplerovské radary mohou navíc pomocí Dopplerova efektu vyhodnotit radiální rychlost cíle ze změny frekvence přijatého signálu. Polarimetrické radary umožňují navíc současně vyhodnocovat odrazy horizontálně a vertikálně polarizovaného záření a z jejich porovnání odvodit další charakteristiky.
Radary se stálou vlnou nejsou vhodné k určování přesné polohy cíle, umožňují však lepší měření radiální rychlosti cílů (např. policejní radary pro měření rychlosti vozidel).
Termín vznikl v r. 1940 v USA. Je zkratkou původního angl. označení tohoto zařízení RAdio Detection And Ranging „detekce a měření vzdálenosti pomocí rádiových vln“.
angl: radar; slov: radar; něm: Radar n; rus: радиолокатор 1993-a3
Registr emisí a zdrojů znečišťování ovzduší
(REZZO) – databáze zdrojů znečišťování ovzduší provozovaná v rámci Informačního systému kvality ovzduší (ISKO) Českého hydrometeorologického ústavu. Databáze obsahuje údaje o emisích z jednotlivě sledovaných (vyjmenovaných) stacionárních zdrojů o tepelném příkonu vyšším než 0,3 MW: REZZO 1 (ohlašované emise) a REZZO 2 (emise vypočítávané z ohlášených údajů a emisních faktorů). Emise z hromadně sledovaných zdrojů obsahuje REZZO 3 (nevyjmenované stacionární zdroje do tepelného příkonu 0,3 MW) a REZZO 4 (mobilní zdroje).
angl: Register of Emissions and Sources of Air Pollution; slov: Register emisií a zdrojov znečisťovania ovzdušia; něm: Emissions- und Quellenkataster n; rus: кадастр выбросов и источников загрязнения атмосферы 1993-b3, ed. 2025
rozdělení Chrgianovo–Mazinovo
syn. spektrum Chrgianovo–Mazinovo – často používané rozdělení velikosti oblačných kapek, které užívá gama rozdělení ve tvaru:
Hodnoty parametrů A a B je možné stanovit např. pomocí celkové koncentrace kapek N a středního poloměru kapek rstř
které známe z měření.
Hodnoty parametrů A a B je možné stanovit např. pomocí celkové koncentrace kapek N a středního poloměru kapek rstř
které známe z měření.
angl: Khrgian and Mazin distribution; slov: Chrgianovo-Mazinovo rozdelenie; něm: Chrgian-Mazin-Verteilung f 2018
rozdělení Marshallovo–Palmerovo
syn. spektrum Marshallovo–Palmerovo – rozdělení velikosti dešťových kapek, které stanovili J. S. Marshall a W. M. Palmer v roce 1948 na základě měření na zemském povrchu. Vyjadřuje hustotu rozdělení četnosti f(D) [m–3mm–1] pro dešťové kapky o ekvivalentním průměru D [mm] a má tvar:
přičemž parametry rozdělení nabývají hodnot N0 = 800 m–3mm–1 a λ = 4,1IR–0,21 mm–1, kde IR [mm.h–1] značí intenzitu srážek. Marshallovo–Palmerovo rozdělení velikosti kapek se i v současnosti považuje za vhodnou reprezentaci časově a prostorově středovaného spektra velikosti dešťových kapek, zejména u deště z vrstevnaté oblačnosti středních zeměpisných šířek.
přičemž parametry rozdělení nabývají hodnot N0 = 800 m–3mm–1 a λ = 4,1IR–0,21 mm–1, kde IR [mm.h–1] značí intenzitu srážek. Marshallovo–Palmerovo rozdělení velikosti kapek se i v současnosti považuje za vhodnou reprezentaci časově a prostorově středovaného spektra velikosti dešťových kapek, zejména u deště z vrstevnaté oblačnosti středních zeměpisných šířek.
angl: Marshall and Palmer distribution; slov: rozloženie Marshalla a Palmera; něm: Marshall-Palmer-Verteilung f; rus: распределение Маршала и Палмера 1993-b3
SEVIRI
(Spinning Enhanced Visible and InfraRed Imager) – zobrazovací radiometr družic MSG. Tento pasivní radiometr používá celkem 12 spektrálních kanálů, v nichž snímá celý zemský disk s periodou 15 minut, resp. severní část polokoule s periodou 5 minut. Rozlišení přístroje v nadiru je 3 km s výjimkou kanálu HRV (High Resolution Visible) s rozlišením 1 km.
angl: SEVIRI; slov: SEVIRI; něm: SEVIRI n 2014
Smogový varovný a regulační systém
(SVRS) – systém informování o výskytu mimořádně vysokých koncentrací znečišťujících látek v určité oblasti ČR na základě pravidel uvedených v Příloze 6 zákona o ochraně ovzduší. Infomace jsou podkladem pro pasivní nebo aktivní nouzová opatření, jakými jsou např. zdravotní doporučení skupinám citlivých osob nebo regulace emisí. Sledovanými látkami jsou suspendované částice PM10, oxid siřičitý (SO2), oxid dusičitý (NO2) a přízemní ozon (O3). Od roku 2018 se pro distribuci zpráv o vyhlášení smogové situace, varování nebo regulace v rámci SVRS též používá všeobecný výstražný protokol (CAP). Viz též smog.
angl: Smog Warning and Regulation System; slov: smogový varovný systém; něm: Smogwarnsystem n; rus: Всемирная система зональных прогнозов - ВСЗП 2014, ed. 2024
sodar
syn. lokátor akustický – zařízení k akustické sondáži atmosféry. Tento druh profileru pracuje na principu měření rozptylu akustických vln, k němuž dochází na turbulencí vyvolaných nehomogenitách akustického indexu lomu v atmosféře. Sodar vysílá intenzivní impulzy v oboru slyšitelných frekvencí, rozptýlený signál je přijímán citlivým směrovaným mikrofonem nebo soustavou mikrofonů. Z doby, průběhu a charakteru odezvy lze určit polohu a rozsah sledované cílové oblasti a usuzovat na charakter jevů, s nimiž je turbulence spojena (např. inverze teploty nebo vlhkosti vzduchu, vertikální střih větru apod.). Rozlišují se nejčastěji sodary monostatické (vysílač impulsů a přijímací mikrofony jsou na témže místě) a bistatické, kde je vysílač a přijímač oddělen. Starší provedení sodarů používala třísměrovou anténní soustavu uspořádanou tak, že jedna parabolická anténa byla vertikální a dvě další směřovaly obvykle pravoúhle k sobě a šikmo vzhůru. Současné systémy mají anténní systém tvořen polem reproduktorů, k nimž je vysílaný impulz přiváděn s fázovým posuvem. To umožňuje vytvářet směrované svazky v různých rovinách a pod různými vertikálními úhly. Sodar využívá Dopplerova efektu pro vyhodnocení radiálních, vert. a horiz. složek proudění. Provoz sodaru je řízen počítačem, který zajišťuje optimální generování vysílaných svazků, prvotní zpracování přijatého signálu, výpočet složek proudění a odvozených statistických charakteristik. Viz též šíření zvuku v atmosféře, radiolokátor meteorologický dopplerovský.
Termín je akronym úplného angl. názvu sonic detection and ranging „detekce a měření vzdálenosti pomocí akustických vln“.
angl: acdar, sodar; slov: sodar; něm: Sodar n; rus: акдар, содар 1993-a3
soustava SI
mezinárodně dohodnutá soustava jednotek fyzikálních veličin, která se skládá ze základních jednotek, odvozených jednotek a násobků a dílů jednotek. Některé ze sedmi základních jednotek (metr, kilogram, sekunda, kelvin, ampér, kandela, mol) se v meteorologii běžně používají. Odvozené jednotky se tvoří výhradně jako součiny a podíly jednotek základních. S vlastním názvem se v meteorologii používá odvozená jednotka pro tlak vzduchu (pascal) a teplotu (stupeň Celsia), bez vlastního názvu např. m.s–1 pro rychlost, kg.m–3 pro hustotu apod. Násobky a díly (výhradně dekadické) se tvoří pomocí předpon před jednotkami. Stále se používají tzv. vedlejší jednotky, které byly dříve pro svou všeobecnou rozšířenost a užitečnost řazeny do soustavy SI, přestože nebyly odvozeny ze základních jednotek. Soustava SI akceptuje používat souběžně s jednotkami SI tyto vedlejší jednotky: minuta, hodina, den, úhlový stupeň, úhlová minuta, (úhlová) vteřina, hektar, litr a tuna.
angl: international system of units, System International; slov: sústava SI; něm: internationales Einheitensystem n, SI n; rus: международные единицы измерения СИ 2014
spektrofotometr Dobsonův
přístroj, který slouží k určení celkového množství ozonu ve vert. sloupci atmosféry se spodní základnou na zemském povrchu a s horní základnou na vnější hranici atmosféry. Dobsonův spektrofotometr umožňuje měřit absorpci slunečního záření v oblasti absorpčních čar O3 v ultrafialové části slunečního spektra. Z těchto měření se pak vypočítává celkový obsah ozonu v atmosféře. Tyto údaje slouží současně jako referenční data pro kontrolu správnosti výsledků ozonometrické sondáže, prováděné pomocí ozonových sond. Světová síť pro měření celkového ozonu pomocí Dobsonova spektrofotometru vznikla z iniciativy Světové meteorologické organizace, která ji metodicky řídí.
angl: Dobson spectrophotometer; slov: Dobsonov spektrofotometer; něm: Dobson-Spektrophotometer n; rus: спектрофотометр Добсона 1993-a3
stupeň
1. jednotka teploty, viz stupnice teplotní;
2. jednotka úhlové vzdálenosti, tj. 1/360 kruhu.
3. intenzita jevu nebo veličiny definovaná v rámci dané stupnice, viz např. stupnice větru Beaufortovy nebo stupnice Fujitovy.
4. ve speciálních případech vert. vzdálenost, která odpovídá změně veličiny o jednotkovou hodnotu, viz stupeň barický, stupeň geotermický.
Viz též denostupeň.
2. jednotka úhlové vzdálenosti, tj. 1/360 kruhu.
3. intenzita jevu nebo veličiny definovaná v rámci dané stupnice, viz např. stupnice větru Beaufortovy nebo stupnice Fujitovy.
4. ve speciálních případech vert. vzdálenost, která odpovídá změně veličiny o jednotkovou hodnotu, viz stupeň barický, stupeň geotermický.
Viz též denostupeň.
slov: stupeň; něm: Grad n 1993-a3
sychravo
teplo latentní
syn. teplo skupenské, teplo utajené –
1. množství tepla potřebné k tomu, aby jednotka hmotnosti dané látky změnila skupenství, aniž přitom dojde ke změně její teploty. Ve fyzice atmosféry se zaměřujeme především na latentní teplo spotřebované nebo uvolněné při fázových přechodech vody. Rozeznáváme:
a) latentní teplo vypařování spotřebované při změně kapalné vody ve vodní páru;
b) latentní teplo tání spotřebované při fázovém přechodu ledu ve vodu;
c) latentní teplo sublimace spotřebované při přechodu ledu přímo ve vodní páru.
Při opačných fázových přechodech se stejné množství tepla uvolňuje a označujeme:
a) latentní teplo kondenzace uvolněné při fázovém přechodu vodní páry v kapalnou vodu;
b) latentní teplo mrznutí (tuhnutí) uvolněné při přechodu vody v led;
c) u fázového přechodu vodní páry přímo v led část autorů používá stále termín latentní teplo sublimace. V současné literatuře, zejména anglosaského původu, se často objevuje označení latentní teplo depozice.
2. v meteorologii se pojmu latentní teplo používá i k obecnému označení tepla, které se v atmosféře nebo na zemském povrchu uvolňuje při fázových přechodech vody.
1. množství tepla potřebné k tomu, aby jednotka hmotnosti dané látky změnila skupenství, aniž přitom dojde ke změně její teploty. Ve fyzice atmosféry se zaměřujeme především na latentní teplo spotřebované nebo uvolněné při fázových přechodech vody. Rozeznáváme:
a) latentní teplo vypařování spotřebované při změně kapalné vody ve vodní páru;
b) latentní teplo tání spotřebované při fázovém přechodu ledu ve vodu;
c) latentní teplo sublimace spotřebované při přechodu ledu přímo ve vodní páru.
Při opačných fázových přechodech se stejné množství tepla uvolňuje a označujeme:
a) latentní teplo kondenzace uvolněné při fázovém přechodu vodní páry v kapalnou vodu;
b) latentní teplo mrznutí (tuhnutí) uvolněné při přechodu vody v led;
c) u fázového přechodu vodní páry přímo v led část autorů používá stále termín latentní teplo sublimace. V současné literatuře, zejména anglosaského původu, se často objevuje označení latentní teplo depozice.
2. v meteorologii se pojmu latentní teplo používá i k obecnému označení tepla, které se v atmosféře nebo na zemském povrchu uvolňuje při fázových přechodech vody.
angl: latent heat; slov: latentné teplo; něm: latente Wärme f; rus: скрытое тепло 1993-a3
teplota efektivní
odb. termín s různými významy v jednotlivých vědních disciplínách:
1. ve fyzice záření teplota povrchu absolutně černého tělesa, který vyzařuje z jednotky plochy stejné celkové množství energie elektromagnetického záření jako jednotka plochy povrchu daného reálného tělesa. Určuje se prostřednictvím Stefanova–Boltzmannova zákona. V heliofyzice by šlo o povrchovou teplotu Slunce za zjednodušujícího předpokladu, že Slunce se při zachování svého zářivého výkonu chová přesně jako absolutně černé těleso.
2. v biometeorologii jedna z variant stanovení pocitové teploty. Je rovna teplotě nehybného vzduchu o stanovené relativní vlhkosti vzduchu (zpravidla 100 nebo 50 %), která vyvolá u člověka stejný tepelný pocit jako aktuální podmínky v atmosféře. Pojem efektivní teplota zavedl franc. bioklimatolog A. Missenard (1933), který ji počítal ze vzorce
kde Tef je efektivní teplota, T teplota vzduchu ve °C a rv relativní vlhkost.
3. v agrometeorologii rozdíl aktivní teploty a tzv. biologického minima teploty neboli biologické nuly. Jako kritéria pro hodnocení vlivu teploty vzduchu na růst a vývoj rostlin se používá zpravidla sum efektivních teplot odlišných pro různé plodiny.
4. v technické klimatologii charakteristika pro hodnocení tepelných ztrát budov. Podle L. S. Gandina se počítá např. podle vztahu
kde Te je efektivní teplota, T venkovní teplota vzduchu, Tb teplota vzduchu uvnitř budovy, v rychlost větru v m.s–1 a c bezrozměrný parametr vyjadřující tepelnou propustnost stěn budov.
1. ve fyzice záření teplota povrchu absolutně černého tělesa, který vyzařuje z jednotky plochy stejné celkové množství energie elektromagnetického záření jako jednotka plochy povrchu daného reálného tělesa. Určuje se prostřednictvím Stefanova–Boltzmannova zákona. V heliofyzice by šlo o povrchovou teplotu Slunce za zjednodušujícího předpokladu, že Slunce se při zachování svého zářivého výkonu chová přesně jako absolutně černé těleso.
2. v biometeorologii jedna z variant stanovení pocitové teploty. Je rovna teplotě nehybného vzduchu o stanovené relativní vlhkosti vzduchu (zpravidla 100 nebo 50 %), která vyvolá u člověka stejný tepelný pocit jako aktuální podmínky v atmosféře. Pojem efektivní teplota zavedl franc. bioklimatolog A. Missenard (1933), který ji počítal ze vzorce
kde Tef je efektivní teplota, T teplota vzduchu ve °C a rv relativní vlhkost.
3. v agrometeorologii rozdíl aktivní teploty a tzv. biologického minima teploty neboli biologické nuly. Jako kritéria pro hodnocení vlivu teploty vzduchu na růst a vývoj rostlin se používá zpravidla sum efektivních teplot odlišných pro různé plodiny.
4. v technické klimatologii charakteristika pro hodnocení tepelných ztrát budov. Podle L. S. Gandina se počítá např. podle vztahu
kde Te je efektivní teplota, T venkovní teplota vzduchu, Tb teplota vzduchu uvnitř budovy, v rychlost větru v m.s–1 a c bezrozměrný parametr vyjadřující tepelnou propustnost stěn budov.
angl: effective temperature; slov: efektívna teplota; něm: effektive Temperatur f; rus: эффективная температура 1993-a3
tlak vzduchu normální
tlak vzduchu na hladině moře ve standardní atmosféře. Jeho hodnota je 1 013,25 hPa neboli 760 torrů; v minulosti byla takto definována jednotka 1 atmosféra.
angl: normal atmospheric pressure; slov: normálny tlak vzduchu; něm: Normaldruck m; rus: нормальное давление воздуха 1993-a3
tlakoměr rtuťový
kapalinový tlakoměr, jehož princip navrhl E. Torricelli a pokus s jeho použitím provedl V. Viviani (1643). U rtuťového tlakoměru je tlak vzduchu v rovnováze s tíhou rtuťového sloupce. Délka tohoto sloupce se pro met. účely měří s přesností na 0,1 mm nebo vyšší a redukuje se na teplotu 0 °C a normální (standardní) tíhové zrychlení 9,80665 m.s–2. Podle konstrukce se rtuťové tlakoměry dělí na tlakoměry nádobkové, násoskové, nádobkové–násoskové a váhové. Vzhledem k tomu, že rtuťový tlakoměr měří tlak vzduchu pomocí délky rtuťového sloupce, byly první jednotky tlaku vzduchu délkové. Proto se užívala např. jednotka milimetr rtuťového sloupce (mm Hg), nahrazená později jednotkou torr. Vzhledem k závislosti údaje na teplotě je vhodné umístění rtuťových tlakoměrů uvnitř budov v místech, kde nedochází k rychlým změnám teploty vzduchu, navíc se tak tlumí oscilace vyvolané nárazovitosti proudění. Pro měření tlaku vzduchu na stanicích na území ČR se už rtuťové tlakoměry nepoužívají. Viz též trubice barometrická, „pumpování" tlakoměru.
angl: mercury barometer, weather glass; slov: ortuťový tlakomer; něm: Quecksilberbarometer n; rus: ртутный барометр 1993-a3
torr
stará jednotka tlaku, odpovídající hydrostatickému tlaku jednoho mm rtuťového sloupce (mm Hg) za definovaných normálních podmínek. Od 1. 1. 1980 není u nás torr jednotkou povolenou normami a základní jednotkou tlaku je dle soustavy jednotek SI pascal (Pa). Mezi oběma jednotkami platí převodní vztah: 1 torr = 133,322 Pa. Viz též měření tlaku vzduchu.
Jednotka byla nazvána podle italského přírodovědce E. Torricelliho (1608–1647).
angl: torr; slov: torr; něm: Torr n; rus: торр 1993-a3
UVN
(Ultra-violet, Visible and Near-infrared Spectrometer) – přístroj pro družicovou sondáž atmosféry, který bude provozován na družicích MTG Sounder. Alternativně je též označován jako Sentinel-4 programu Copernicus.
angl: UVN; slov: UVN; něm: UVN; fr: UVN 2023
uzel
syn. knot – jednotka používaná zejména v letecké meteorologii k vyjádření rychlosti větru. Její velikost je dána převodním vztahem:
Uzel je definován jako dráha 1 námořní míle, tj. 1 853,248 m za hodinu. Tato jednotka vznikla v mořeplavectví a používala se hlavně k vyjadřování rychlosti lodi nebo vodního proudu. K měření v uzlech sloužilo zařízení zvané log, na jehož šňůře, opatřené plováky a spouštěné z paluby pohybující se lodi do vody, byly navázány uzly v konstantní vzdálenosti přibližně 15 m. Údaj v uzlech byl dán počtem uzlů prošlých rukama námořníka za 28 s.
Uzel je definován jako dráha 1 námořní míle, tj. 1 853,248 m za hodinu. Tato jednotka vznikla v mořeplavectví a používala se hlavně k vyjadřování rychlosti lodi nebo vodního proudu. K měření v uzlech sloužilo zařízení zvané log, na jehož šňůře, opatřené plováky a spouštěné z paluby pohybující se lodi do vody, byly navázány uzly v konstantní vzdálenosti přibližně 15 m. Údaj v uzlech byl dán počtem uzlů prošlých rukama námořníka za 28 s.
angl: knot; slov: uzol; něm: Knoten m; rus: узел 1993-a3
vítr horský a údolní
vítr místní cirkulace s denní periodicitou v horských údolích a přilehlých rovinách, který se vyskytuje současně se svahovým větrem. Při anticyklonálním počasí se údolní vzduch ve dne intenzívně prohřívá, což vede ke vzniku anabatického větru ve směru osy údolí vzhůru (tzv. údolní vítr). Naopak v noci stéká radiačně ochlazený vzduch ve formě katabatického větru údolím dolů. Tento tzv. horský vítr bývá zpravidla rychlejší (až 8 m.s–1) než údolní vítr. Nad horským a údolním větrem zpravidla existuje kompenzující protisměrné proudění. Jakožto místní vítr mívá horský a údolní vítr různá regionální označení, např. tivano (horský vítr) a breva (údolní vítr) v oblasti jezera Lago di Como v sev. Itálii. Vysvětlení horských a údolních větrů podal rakouský meteorolog A. Wagner (1932).
angl: mountain and valley breeze, mountain-valley windsystem; slov: horský vietor; něm: Berg- und Talwinde m/pl; rus: горный ветер 1993-b3
Vojenský geografický a hydrometeorologický úřad
(VGHMÚř) – složka Armády České republiky, pro kterou zajišťuje mj. hydrometeorologickou službu. Úřad byl zřízen k 1. 7. 2003, přičemž do něj bylo zařazeno i dřívější Povětrnostní ústředí Armády České republiky.
angl: Office of Military Geography and Hydrometeorology 2024
vzduch suchý a čistý
vzorec Laplaceův–Rühlmannův
syn. formule barometrická úplná – nejpřesnější barometrický vzorec, který přihlíží jak k vlhkosti vzduchu, tak k závislosti síly zemské tíže na zeměp. šířce a výšce nad hladinou moře. Uvádí se ve tvaru:
kde Δz = z2 – z1 je rozdíl nadm. výšek [m] tlakových hladin p2 a p1, Tm prům. teplota ve °C, prům. tlak vodní páry a prům. tlak vzduchu ve vrstvě mezi oběma hladinami, zm = ½(z1 + z2) je nadm. výška středu uvažované vrstvy, φ značí zeměp. šířku, α je konstanta rovná 0,003 66, β konstanta rovná 0,000 000 314 pro volnou atmosféru a 0,000 000 196 pro horské oblasti. Tento vzorec vznikl zdokolnalením původního Laplaceova vzorce z let 1799 až 1805, které provedl R. Rühlmann v roce 1870.
kde Δz = z2 – z1 je rozdíl nadm. výšek [m] tlakových hladin p2 a p1, Tm prům. teplota ve °C, prům. tlak vodní páry a prům. tlak vzduchu ve vrstvě mezi oběma hladinami, zm = ½(z1 + z2) je nadm. výška středu uvažované vrstvy, φ značí zeměp. šířku, α je konstanta rovná 0,003 66, β konstanta rovná 0,000 000 314 pro volnou atmosféru a 0,000 000 196 pro horské oblasti. Tento vzorec vznikl zdokolnalením původního Laplaceova vzorce z let 1799 až 1805, které provedl R. Rühlmann v roce 1870.
angl: Laplace and Rühlmann formula; slov: Laplaceov a Rühlmannov vzorec; něm: Laplace-Rühlmann-Formel f; rus: формула Лапласа-Рюльмана 1993-b1
vztah Marshallův–Palmerův
viz vztah Z–I.
angl: Marshall and Palmer formula; slov: Marshallov a Palmerov vzťah; něm: Marshall-Palmer-Formel f 1993-b1
zákon Lambertův–Bouguerův
syn. zákon Bouguerův.
angl: Lambert and Bouguer law; slov: Lambertov a Bouguerov zákon; něm: Lambert-Bouguersches Gesetz n; rus: закон Ламберта и Бугера 1993-b1
zonda
regionální název horského větru ve stř. Argentině. Zpravidla se tak označuje suchý vítr typu fénu, proudící v zimě dolů v závětří And. Dosahuje rychlostí až 120 km.h–1.
Termín pochází ze španělštiny, byl pravděpodobně přejat z názvu oblasti ve střední Argentině, odkud zonda typicky vane směrem k městu San Juan.
angl: zonda; slov: zonda; něm: Zonda m; rus: зонда 1993-a1
zpráva z pozemní stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách (TEMP)
meteorologická zpráva o tlaku a teplotě vzduchu, o deficitu teploty rosného bodu a o směru a rychlosti větru ve standardních izobarických hladinách a také v hladinách významných změn vert. průběhu teploty a rychlosti větru. Zpráva se sestavuje podle kódu TEMP. Část A, resp. C této zprávy obsahuje údaje o všech uvedených parametrech volné atmosféry ve standardních izobarických hladinách do 100, resp. nad 100 hPa. V části B, resp. D, jsou uvedeny hodnoty teploty a deficitu teploty rosného bodu v hladinách významných změn vert. průběhu teploty do hladiny 100, resp. nad 100 hPa (sekce 5) a významné změny větru (sekce 6). Zpráva TEMP obsahuje i údaje o tropopauze, o max. rychlosti a vertikálním střihu větru v rozsahu daného měření. Zprávy TEMP se vysílají každých šest nebo každých dvanáct hodin a slouží kromě rozboru teplotního zvrstvení ovzduší a vertikálního profilu větru na daném místě také k sestavování výškových met. map. Zpráva z mořské stanice o tlaku, teplotě, vlhkosti a větru ve vyšších hladinách se sestavuje podle kódu TEMP SHIP. Viz též měření aerologické, měření meteorologických prvků v mezní vrstvě a volné atmosféře.
angl: Upper level pressure, temperature, humidity and wind report from a fixed land station (TEMP); slov: správa z pozemnej stanice o tlaku, teplote, vlhkosti a vetre vo vyšších hladinách; něm: TEMP-Meldung f; rus: ТЕМП 1993-a3