G

GAFOR — kód sloužící k rozšiřování leteckých předpovědí počasí pro všeobecné („malé") letectvo. Předpověď ve tvaru kódu GAFOR obsahuje označení pracoviště, které zprávu vydalo, dobu platnosti předpovědi, předpověď kategorie (třídy) počasí se zřetelem na letecky významné jevy a označení území, na které se předpověď vztahuje. V ČR není používán.

slov. GAFOR; 1993-a3

GAMEToblastní předpověď ve zkrácené otevřené řeči pro lety v nízkých hladinách zpravidla pro letovou informační oblast nebo její část, kterou připravuje met. služebna určená příslušným met. úřadem a která se vyměňuje mezi met. služebnami sousedních letových informačních oblastí podle dohody mezi příslušnými met. úřady. Jedná se o předpověď pro vrstvu mezi zemí a  letovou hladinou 100 (v horských oblastech až FL150). Předpověď je členěna do dvou sekcí, z nichž první obsahuje informace o nebezpečných jevech pro lety v nízkých hladinách a druhá pak doplňující informace. Předpovědi GAMET jsou vydávány zpravidla v  intervalu 6 hodin s platností na 6 hodin, pokud není jejich četnost a období platnosti upravena po dohodě mezi meteorologickou službou a uživateli.

slov. GAMET; 2014

garmsil — místní název pro suchý a horký vítr charakteru fénu v předhořích Kopet-Dagu a záp. Ťan-Šanu ve stř. Asii, vanoucí v létě od jihu a východu z hor. Působí škody na kulturních plodinách podobně jako suchověj.

angl. garmsil; slov. garmsil; 1993-a1

garua — 1. hustá mlha, někdy s mrholením, vyskytující se zvláště na podzim nad záp. pobřežím Již. Ameriky (na území Ekvádoru, Peru a Chile), omývaným studeným Peruánským proudem. Mívá dlouhé trvání a ve velmi suchých oblastech (např. poušť Atacama) je téměř jediným zdrojem vláhy pro tamější chudou vegetaci; 2. klimatický typ, vyskytující se na horkých subtropických pobřežích, kde se stýká teplý kontinentální vzduch s chladnými mořskými proudy, např. na záp. pobřeží Jižní Ameriky, již. Kalifornie, jz. Afriky a sz. Sahary.

angl. garua; slov. garua; 1993-a1

geligraf — dnes již nepoužívané zastaralé označení pro námrazoměr.

angl. ice deposit registrator; slov. geligraf; 1993-a3

geneze klimatu, utváření klimatu — vytváření a udržování určitých atm. podmínek na Zemi jako celku nebo v jednotlivých částech Země v důsledku spolupůsobení různých klimatických faktorů. Klimatické faktory se při genezi klimatu uplatňují rozdílně v závislosti na jeho měřítku, vyjádřeném kategorizací klimatu.

slov. genéza klímy; 1993-a2

genitus (gen) — označení vyjadřující, že daný druh oblaku vznikl transformací části jiného, tzv. mateřského oblaku. Tvar nově vytvořeného oblaku se označuje adjektivem složeným z názvu mateřského oblaku a z přípony genitus. Podle druhu mateřského oblaku rozeznáváme Ci nebo Cs cirrocumulogenitus (ccgen), Ci, As, Cu nebo Cb altocumulogenitus (acgen), Sc nebo Cb altostratogenitus (asgen), Sc, St nebo Cb nimbostratogenitus (nsgen), Cu nebo Cb stratocumulogenitus (scgen), Ac, Ns, St nebo Cb cumulogenitus (cugen) a Ci, Cc nebo St cumulonimbogenitus (cbgen).

angl. genitus; slov. genitus; 1993-a3

geomorfologie klimatická — dílčí disciplína geomorfologie, která studuje vznik a vývoj tvarů zemského povrchu v závislosti na klimatu a jeho změnách v geol. minulosti. Viz též oblast klimatomorfogenetická.

angl. climatic geomorphology; slov. klimatická geomorfológia; 1993-a2

geopotenciál, potenciál tíže zemské — potenciál spojený s tíhovým polem Země. Je ekvivalentní potenciální energii vzduchové částice o jednotkové hmotnosti vzhledem ke zvolené nulové geopotenciální hladině, kterou ztotožňujeme se stř. hladinou moře. Číselně je roven práci vykonané proti působení síly zemské tíže při zvednutí jednotkové hmotnosti ze stř. hladiny moře do hladiny, k níž geopotenciál vztahujeme. Geopotenciál Φ, je spojen s geometrickou výškou z vztahem
Φ=0zgdz
kde g je velikost tíhového zrychlení. Viz též hladina ekvipotenciální, výška geopotenciální.

angl. geopotential; slov. geopotenciál; 1993-a2

geosféra — neurčitý pojem, který označuje buď pevnou část planety Země, nebo její svrchní část (syn. litosféra), případně souborně všechny nebo jednotlivé její obaly, tedy litosféru, pedosféru, hydrosféru, biosféruatmosféru, k nimž někdy řadíme i kryosféru.

angl. geosphere; slov. geosféra; 1993-a3

gibli — místní název pro pouštní vítr v Tunisku a Libyi převážně jv. a již. směru (arabsky „jižní vítr").

angl. ghibli; gebli; slov. gibli; 1993-a1

glaciál, doba ledová — období relativního nárůstu zalednění na Zemi. V geol. minulosti nastal tento jev vícekrát, pravidelně se opakoval v rámci kvartérního klimatického cyklu. Tehdy prům. teplota vzduchu na Zemi klesala až o 10 °C oproti současnosti. Docházelo k mohutnému rozvoji zalednění, především k postupu pevninského ledovce, k periglaciálním jevům a k výraznému poklesu mořské hladiny o více než 100 metrů oproti interglaciálům. V drsném a suchém kontinentálním klimatu se šířila step a tundra, probíhaly intenzívní zvětrávací pochody, zvané zesprašnění, rozvíjela se geol. činnost větru (eolická činnost) a vytvářely se surové půdy.

angl. glacial; ice age; slov. glaciál; 1993-a3

glacioklimatologie — vědní obor zabývající se vztahy mezi zaledněním a klimatem. Studuje podmínky vzniku a  rozvoje ledovců v závislosti na klimatických podmínkáchklimatických změnách. Viz též kryosféra.

angl. glacioclimatology; slov. glacioklimatológia; 1993-a1

glórie, gloriola — jeden z fotometeorů, který se projevuje jedním nebo více soustřednými barevnými kruhy kolem stínu vrženého na vodní kapičky oblačné vrstvy, mlhy, popř. i rosy. Vzniká zpětným rozptylem světla na mnohočetných souborech vodních kapiček. Jestliže oblak nebo mlha jsou blízko pozorovatele, může se jeho vržený stín jevit zvětšený a jev se pak označuje jako Brockenské spektrum, Brockenské strašidlo nebo přízrak (podle pozorování na horské observatoři na hoře Brocken v Německu, odkud byl původně popsán). V obecné češtině se vyskytuje též název jevu vidmo.

slov. glória; 1993-a3

gloriola, syn. glórie.

angl. glory; slov. gloriola; 1993-a3

GOESmeteorologická geostacionární družice (Geostionary Operational Environmental Satellite) provozovaná americkou organizací NOAA.

angl. GOES; slov. GOES; 2014

graden, denostupeň, gradoden — algebraický rozdíl mezi průměrnou denní teplotou vzduchu a zvolenou referenční teplotou, vyjádřený ve °C. U nás se pro topné období (sezónu) používá referenční teplota 12 °C.

angl. degree-day; slov. graden; 1993-a1

graden klimatizační, graden pro klimatizaci — druh gradenu, který se používá pro odhad energ. požadavků na umělou klimatizaci (ochlazování uzavřených prostorů budov). Počítá se pro dny, v nichž prům. denní teplota vzduchu je vyšší než zákl. teplota, kterou je např. 25 °C.

angl. cooling degree-day; slov. graden pre klimatizáciu; 1993-a1

gradient — v met. vektor, který vyjadřuje velikost a směr poklesu hodnot skalární funkce φ(x,y,z), kde x, y, z jsou kartézské souřadnice, připadající na jednotkovou vzdálenost v prostorovém poli hodnot funkce. Je definován jako záporně vzatý součin funkce φ a Hamiltonova nabla operátoru vztahem
-φ=-(iφ x+j φy +kφ z),
kde i, j, k jsou jednotkové vektory ve směru os kartézského souřadného systému x, y, z. Dvourozměrný vektor
-φH=-(i φx+j φy),
nazýváme horizontálním gradientem φ a záporně vzatou parciální derivaci φ podle vert. souřadnice z gradientem vertikálním. Vektor opačného směru označujeme jako ascendent. V p-systému používáme místo horiz. gradientu φ gradient izobarický. V meteorologii nejčastěji pracujeme s gradientem atm. tlaku, teploty, potenciální teploty, vlhkosti apod. V matematice je gradient definován jako opačný vektor φ orientovaný směrem k rostoucím hodnotám funkce φ.

angl. gradient; slov. gradient; 1993-a2

gradient autokonvekční, gradient mechanické rovnováhy — vert. teplotní gradienthomogenní atmosféře. Použijeme-li stavovou rovnici pro suchý vzduch a rovnici hydrostatické rovnováhy, dostaneme v homogenní atmosféře hodnotu autokonvekčního gradientu rovnou g / R, kde g značí velikost tíhového zrychlení a R měrnou plynovou konstantu vzduchu. Pro suchý vzduch je hodnota autokonvekčního gradientu rovna 0,0342 K.m–1, tj. přibližně 3,4 K na 100 m. Jestliže je hodnota skutečného vert. gradientu teploty vzduchu větší než hodnota gradientu autokonvekčního, což by teoreticky mohlo nastat v silně ohřáté vrstvě vzduchu bezprostředně přiléhající k zemskému povrchu, vytvoří se inverze hustoty vzduchu, tj. hustota rostoucí s výškou. Konv. vert. pohyby pak vznikají i bez vnějších impulsů, dochází k autokonvekci. Pojem tzv. autokonvekce vychází z nesprávné analogie s konvekcí v nestlačitelné kapalině. V plynu dochází ke spontánnímu vzniku konvekce, jestliže vertikální gradient teploty překročí hodnotu gradientu adiabatického. Tzn. hodnotu přibližně 1 K na 100 m v suchém vzduchu.

angl. autoconvective lapse rate; slov. autokonvekčný gradient; 1993-a3

gradient barický, syn. gradient tlakový.

slov. barický gradient; 1993-a1

gradient barometrický — zast. označení pro tlakový gradient, zavedené angl. fyzikem T. Stevensonem v roce 1868.

slov. barometrický gradient; 1993-a1

gradient elektrického potenciálu v atmosféře, gradient elektrický — intenzita el. pole E ve vzdálenosti r od kladného bodového náboje ve vzduchu nebo vakuu
E=Qar 4πϵ0r2,
kde ar je jednotkový vektor ve směru r od náboje Qε0 je permitivita vakua (prakticky rovná permitivitě vzduchu v atmosféře).
V soustavě SI platí (4πε0)–1 = 4.10–1. Má-li zdroj pole negativní náboj, potom dle právě uvedeného vzorce siločáry el. pole směřují k tomuto bodovému náboji a  intenzita el. pole má záporné znaménko. Vzorec popisuje též gradient elektrického potenciálu vně symetrického kulového vodiče nesoucího náboj Q. Za podmínek elektřiny klidného ovzduší je země nabita záporně a atmosféra nad zemí kladně. Potom takto zavedený vektor el. pole nad zemí směřuje do středu Země. Tato konvence o orientaci elektrického pole se používá v obecně fyzikální a elektrotechnické literatuře. V meteorologické literatuře se však často ohledně orientace elektrického pole užívá opačná konvence, kdy se ve zde uvedeném vzorci orientuje polohový vektor tak, aby směřoval k náboji Q. Důvodem této, z obecného hlediska nestandardní konvence, je snaha, aby za podmínek elektřiny klidného ovzduší, kdy zemský povrch nese záporný a atmosféra kladný náboj, bylo vertikální el. pole považováno za kladné. Za podmínek elektřiny klidného ovzduší bývá u země gradient elektrického potenciálu v atmosféře asi 130 V.m–1. Za bouřky dosahuje řádově desítek kV.m–1, přičemž je orientován opačně vůči situaci za podmínek elektřiny klidného ovzduší.

angl. gradient of electric potential in the atmosphere; slov. gradient elektrického potenciálu v atmosfére; 1993-a3

gradient elektrický, syn. gradient elektrického potenciálu v atmosféře.

slov. elektrický gradient; 1993-a1

gradient geotermický — změna teploty s  hloubkou v pevné zemské kůře (litosféře) pod povrchovou vrstvou, do které ještě zasahuje vliv tepelné bilance zemského povrchu. Jde tedy o hloubky větší než 10 až 20 m. Geotermický gradient činí přibližně 3 K na 100 m. Viz též stupeň geotermický.

angl. geothermal gradient; slov. geotermický gradient; 1993-a1

gradient srážkový — změna úhrnu srážek na jednotku vzdálenosti nebo nadmořské výšky. Při uvažování dlouhodobých průměrů má vertikální srážkový gradient kladnou hodnotu až po hladinu, nad níž příp. nastává inverze srážek. Horizontální srážkový gradient může být zesílen přítomností klimatického předělu.

angl. precipitation gradient; slov. zrážkový gradient; 2016

gradient teplotní — obecně vektor daný složkami ∂T / ∂x, ∂T / ∂y, ∂T / ∂z, kde T znamená teplotu a x, y, z jsou osy souřadného systému. V meteorologii se však prakticky vždy pod teplotním gradientem rozumí vektor (–∂T / ∂x, –∂T / ∂y, –∂T / ∂z) , zatímco vektor (∂T / ∂x, ∂T / ∂y, ∂T / ∂z) se nazývá ascendent teploty. Teplotní gradient směřuje kolmo k izotermickým plochám a určuje změnu teploty připadající na jednotkovou vzdálenost ve směru, v němž dochází k největšímu prostorovému poklesu teploty. V meteorologii rozlišujeme horizontální gradient teploty (–∂T / ∂x, –∂T / ∂y) a vertikální gradient teploty (–∂T / ∂z).
Horiz. gradient směřuje v horiz. rovině kolmo na izotermy do strany s nižší teplotou. Vertikální gradient udává záporně vzatou změnu teploty připadající na jednotkovou vzdálenost ve vert. směru. Nejvyšší hodnoty horiz. gradientu teploty se obvykle vyskytují v oblastech výškových frontálních zón, v oblastech přízemních atmosférických front a za vhodných podmínek na rozhraní dvou fyz. podstatně odlišných podkladů (např. moře – pevnina). Podle vert. gradientu teploty hodnotíme statickou vertikální stabilitu atmosféry. Ve většině případů je v troposféře vert. gradient teploty –∂T / ∂z kladný (teplota klesá s výškou). Je-li v některých vrstvách záporný (teplota s výškou roste), mluvíme o inverzi teploty vzduchu.

angl. temperature gradient; slov. teplotný gradient; 1993-a2

gradient teplotní adiabatický — vert. gradient teploty vzduchové částice při adiabatické expanzi v atmosféře, která je v hydrostatické rovnováze. Odpovídá záporně vzaté změně teploty částice při jejím přemístění o jednotkovou vzdálenost ve vert. směru –dT/dz, kde dT je změna teploty a dz změna výšky. Vyjadřuje ochlazování vzduchové částice při jejím adiabatickém výstupu a oteplování při jejím adiabatickém sestupu. V meteorologii je obvyklé udávat adiabatický teplotní gradient v K nebo °C na 100 m. Podle relativní vlhkosti vzduchové částice rozlišujeme teplotní gradient suchoadiabatický, vlhkoadiabatickýnasyceně adiabatický, který se při praktické aplikaci aproximuje hodnotou pseudoadiabatického teplotního gradientu. Viz též děj adiabatický.

angl. adiabatic lapse rate; slov. adiabatický teplotný gradient; 1993-a3

gradient teplotní autokonvekční, syn. gradient autokonvekční.

slov. autokonvekčný teplotný gradient; 1993-a1

gradient teplotní horizontální, viz gradient teplotní.

angl. horizontal temperature gradient; slov. horizontálny teplotný gradient; 1993-a1

gradient teplotní nadadiabatický (superadiabatický) — vert. tepl. gradient v atmosféře y = –∂T / ∂z, jehož velikost převyšuje hodnotu adiabatického gradientu. Obvykle se pod pojmem superadiabatický vert. gradient teploty rozumí vert. teplotní gradient větší, než je hodnota suchoadiabatického gradientu, tj. změna teploty větší než 1 K na 100 m.

angl. superadiabatic lapse rate; slov. nadadiabatický teplotný gradient; 1993-a2

gradient teplotní nasyceně adiabatický — adiabatický teplotní gradient částice vzduchu nasyceného vodní párou, který může obsahovat i kondenzovanou vodu. Lze jej vyjádřit přibližným vztahem
γs=(-dT dz)sγd 1+ϵLvew RdTp1+ϵ2 Lv2ewcpd RdT2p,
kde dT je změna teploty, dz změna výšky, γd suchoadiabatický teplotní gradient, ε = 0,622 je poměr plynové konstanty suchého vzduchu a plynové konstanty vodní páry, Lv je latentní teplo výparu, Rd měrná plynová konstanta suchého vzduchu, ew napětí vodní páry nasycené nad vodou při teplotě T, cpd měrné teplo suchého vzduchu při konstantním tlaku vzduchu p. Hodnota nasyceně adiabatického teplotního gradientu závisí na teplotě a tlaku vzduchu v rozsahu přibližně od 0,2 do 1,0 K na 100 m výšky. Při teplotě 0 °C a tlaku vzduchu 1 000 hPa nabývá nasyceně adiabatický teplotní gradient hodnoty 0,6 K na 100 m. Přibližný vztah uvedený výše zanedbává množství tepla potřebné ke změně teploty kondenzované vody a tedy i rozdíl mezi vratným nasyceně adiabatickým gradientem a pseudoadiabatickým teplotním gradientem. Při nasycení nad ledem lze použít stejný vztah, v němž však nahradíme latentní teplo výparu latentním teplem sublimace a napětí nasycení nad vodou napětím nasycení nad ledem. Někdy se nasyceně adiabatický teplotní gradient chybně označuje jako gradient vlhkoadiabatický (toto označení je obvyklé v amerických textech, v češtině se u nasyceného vzduchu nepoužívá). Viz též Clausiova a Clapeyronova rovnice, děj adiabatický, děj pseudoadiabatický.

angl. saturated adiabatic lapse rate; slov. nasýtene adiabatický teplotný gradient; 1993-a3

gradient teplotní nenasyceně adiabatický — málo používané souhrnné označení pro gradient teplotní suchoadiabatickýgradient teplotní vlhkoadiabatický.

slov. nenasýtene adiabatický teplotný gradient; 1993-a2

gradient teplotní pseudoadiabatický — adiabatický teplotní gradient částice vzduchu nasyceného vodní párou při psedoadiabatickém procesu. Viz též gradient teplotní nasyceně adiabatický.

angl. pseudoadiabatic lapse rate; slov. pseudoadiabatický teplotný gradient; 2014

gradient teplotní suchoadiabatický — adiabatický teplotní gradient částice suchého vzduchu. Lze jej vyjádřit vztahem
γd=(-dT dz)d=gcpd,
kde dT je změna teploty, dz změna výšky. Hodnota γd je 0,98 K na 100 m, v praxi se obvykle zaokrouhluje na 1 K na 100 m.

angl. dry adiabatic lapse rate; slov. suchoadiabatický teplotný gradient; 1993-a3

gradient teplotní šířkový — rozdíl teploty vzduchu mezi místy ležícími na stejném poledníku, jejichž zeměp. šířka se liší se o 1°. Užívá se obvykle pro měs. nebo roč. průměry teploty.

angl. latitudinal temperature gradient; slov. šírkový teplotný gradient; 1993-a2

gradient teplotní vertikální, viz gradient teplotní.

angl. temperature lapse rate; slov. vertikálny teplotný gradient; 1993-a1

gradient teplotní vlhkoadiabatický — adiabatický teplotní gradient částice vlhkého, ale nenasyceného vzduchu. Protože rozdíl mezi hodnotou suchoadiabatického teplotního gradientu a vlhkoadiabatického teplotního gradientu je velmi malý, obvykle se adiabatická změna teploty vlhké nenasycené vzduchové částice popisuje suchoadiabatickým teplotním gradientem. Na rozdíl od češtiny se v amerických textech používá termín vlhkoadiabatický teplotní gradient jako synonymum pro nasyceně adiabatický teplotní gradient.

slov. vlhkoadiabatický teplotný gradient; 1993-a3

gradient tlakový (barický) — obecně vektor (∂p / ∂x, ∂p / ∂y, ∂p / ∂z) kde p značí atm. tlak a x, y, z jsou osy souřadnicového systému. V meteorologii se jako tlakový gradient označuje vektor opačného znaménka (–∂p / ∂x , –∂p / ∂y , –∂p / ∂z) a vektor (∂p / ∂x, ∂p / ∂y, ∂p / ∂z) se nazývá tlakový ascendent. Tlakový gradient směřuje kolmo k izobarickým plochám a vyjadřuje změnu atm. tlaku připadající na jednotkovou vzdálenost ve směru maximálního poklesu tlaku. V meteorologii obvykle uvažujeme odděleně horiz. tlakový gradient daný dvojrozměrným vektorem (–∂p / ∂x , –∂p / ∂y) a vert. tlakový gradient daný –∂p / ∂z. Horiz. tlakový gradient směřuje v horiz. rovině kolmo na izobary do strany s nižším atm. tlakem a rozhodující měrou ovlivňuje proudění vzduchu. Proudění ve volné atmosféře bývá přibližně kolmé na směr horiz. tlakového gradientu, takže postavíme-li se na sev. polokouli čelem po směru proudění, po pravé (levé) ruce máme vyšší (nižší) tlak vzduchu. Rychlost proudění je přitom úměrná velikosti horiz. tlakového gradientu. Vert. tlakový gradient vyjadřuje změnu atm. tlaku na jednotkovou vzdálenost ve vert. směru a jeho velikost souvisí s teplotou dané vzduch. hmoty, přičemž ve studeném vzduchu je pokles tlaku rychlejší než v teplém. Viz též síla tlakového gradientu, zákon Buys-Ballotův.

angl. barometric gradient; pressure gradient; slov. tlakový gradient; 1993-a3

gradient tlakový horizontální, viz gradient tlakový.

angl. horizontal pressure gradient; slov. horizontálny tlakový gradient; 1993-a1

gradient tlakový vertikální, viz gradient tlakový.

angl. vertical pressure gradient; slov. vertikálny tlakový gradient; 1993-a1

gradient větru — nespr. označení pro střih větru.

slov. gradient vetra; 1993-a1

gradoden, syn. graden.

slov. dennostupeň; 1993-a1

GRIB — obecná informace v pravidelné síti bodů v binárním formátu pro přenos zpracovaných nebo předpověděných hodnot met. prvků, zejména pro distribuci výstupů met. modelů. Kód GRIB obsahuje definici geometrie sítě bodů, popis typu dat, použité komprese a prezentace dat.

angl. GRIB; slov. GRIB; 2014

GRID — dříve používaný alfanumerický kód pro přenos zpracovaných nebo předpověděných údajů met. nebo geofyz. prvků v definované pravidelné síti bodů. K distribuci výstupů met. modelů se nyní používá binární kód GRIB, popř. BUFR.

angl. GRID; slov. GRID; 1993-a3

Grosswetterlage, viz typ makrosynoptické situace.

angl. general weather situation; slov. Grosswetterlage; 1993-a1

gust fronta [gast] — přední okraj studeného vzduchu vytékajícího z konv. bouře. Zdrojem studeného vzduchu je sestupný proud, který se po dosažení zemského povrchu roztéká do stran a proniká pod okolní teplejší vzduch. Vert. mohutnost rozlévajícího se studeného vzduchu bývá řádově stovky metrů až jednotky kilometrů. U zemského povrchu je rozlévající se vzduch brzděn a v určité výšce nad zemí vytváří tzv. „nos“. Na čele studeného vzduchu se tvoří gust fronta, typická prudkou změnou rychlosti a směru větru, tlaku a teploty vzduchu. Na záznamu tlaku vzduchu se při přechodu gust fronty vytváří charakteristický bouřkový nos. Na čele gust fronty vzniká často typická oblačnost zvláštnosti arcus, označovaná jako shelf cloud. V případech dostatečné mohutnosti této oblačnosti může být gust fronta detekovatelná meteorologickými radiolokátory a družicemi. Gust fronta se může od mateřské bouře šířit do vzdálenosti až stovky km a po celou dobu života může iniciovat vznik nové konv. oblačnosti. Krátkodobé zvýšení rychlosti větru při přechodu gust fronty přes místo pozorování bývá označováno též jako húlava.

angl. gust front; slov. gust front; 1993-a3